First- and Third-Order Optical Theory of Gradient Index Materials, with Application to Contact Lenses

Atchison, David A. & Smith, George (1998) First- and Third-Order Optical Theory of Gradient Index Materials, with Application to Contact Lenses. Optometry and Vision Science, 75(11), pp. 840-846.


Purpose. To investigate the feasibility of using gradient index media in contact lenses, we developed simple methods which we used to derive the power and aberrations associated with the contact lenses. Methods. In one method, we assume that the height of a ray does not change as it passes through the lens. We describe a second method in which the ray is assumed to follow a parabolic path as it passes through the lens. We use sophisticated third-order theory and finite raytracing for comparison with these methods. Results. The methods are compared for contact lenses with parabolic radial gradient index media. Without the gradient index, these lenses would have zero power. The formula for power which assumes no change in ray height gives errors of approximally 0.8 and 1.5% for lenses of thickness 0.18 and 0.36 mm. However, the formula for third-order spherical aberration which uses the same assumption gives poor estimations. The method for calculating power using the parabolic ray path is very accurate. The sophisticated third-order aberration theory was reasonably accurate out to 2.5 mm ray height. The contact lenses with the gradient index media have much smaller aberration in air than do conventional contact lenses of the same powers, with the sign of the aberration being reversed. Conclusion. Our simple procedures give good estimations of powers of contact lenses with gradient index media. The approximate method, which assumes that the height of a ray does not change as it passes through the lens, should not be used for finding the spherical aberration of such a lens. Contact lenses with gradient index media have potential for minimizing spherical aberration.

Impact and interest:

2 citations in Scopus
2 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 5173
Item Type: Journal Article
Refereed: Yes
Additional Information: The contents of this journal can be freely accessed online via the journal’s web page (see link) 12 months after publication. For more information, please refer to the journal’s website (see link) or contact the author. Author contact details:
Additional URLs:
Keywords: contact lens, gradient index, radial, spherical aberration, third, order theory
ISSN: 1538-9235
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > OPTOMETRY AND OPHTHALMOLOGY (111300)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 1998 Lippincott Williams & Wilkins
Deposited On: 02 Jan 2007 00:00
Last Modified: 15 Jan 2009 07:12

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page