Approaches to access control under uncertainty

(2012) Approaches to access control under uncertainty. PhD thesis, Queensland University of Technology.

Description

The ultimate goal of an access control system is to allocate each user the precise level of access they need to complete their job - no more and no less. This proves to be challenging in an organisational setting. On one hand employees need enough access to the organisation’s resources in order to perform their jobs and on the other hand more access will bring about an increasing risk of misuse - either intentionally, where an employee uses the access for personal benefit, or unintentionally, through carelessness or being socially engineered to give access to an adversary.

This thesis investigates issues of existing approaches to access control in allocating optimal level of access to users and proposes solutions in the form of new access control models. These issues are most evident when uncertainty surrounding users’ access needs, incentive to misuse and accountability are considered, hence the title of the thesis.

We first analyse access control in environments where the administrator is unable to identify the users who may need access to resources. To resolve this uncertainty an administrative model with delegation support is proposed. Further, a detailed technical enforcement mechanism is introduced to ensure delegated resources cannot be misused.

Then we explicitly consider that users are self-interested and capable of misusing resources if they choose to. We propose a novel game theoretic access control model to reason about and influence the factors that may affect users’ incentive to misuse.

Next we study access control in environments where neither users’ access needs can be predicted nor they can be held accountable for misuse. It is shown that by allocating budget to users, a virtual currency through which they can pay for the resources they deem necessary, the need for a precise pre-allocation of permissions can be relaxed. The budget also imposes an upper-bound on users’ ability to misuse. A generalised budget allocation function is proposed and it is shown that given the context information the optimal level of budget for users can always be numerically determined.

Finally, Role Based Access Control (RBAC) model is analysed under the explicit assumption of administrators’ uncertainty about self-interested users’ access needs and their incentives to misuse. A novel Budget-oriented Role Based Access Control (B-RBAC) model is proposed. The new model introduces the notion of users’ behaviour into RBAC and provides means to influence users’ incentives. It is shown how RBAC policy can be used to individualise the cost of access to resources and also to determine users’ budget. The implementation overheads of B-RBAC is examined and several low-cost sub-models are proposed.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

753 since deposited on 18 Mar 2013
19 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 58408
Item Type: QUT Thesis (PhD)
Supervisor: Dawson, Edward, Dulleck, Uwe, & Reid, Jason F.
Keywords: information security, access control model, role based access control, usage control, insider threat, economics, game theory, agency theory, uncertainty, information asymmetry, incentives, audit, accountability, healthcare, data breach
Divisions: Past > Institutes > Information Security Institute
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Institution: Queensland University of Technology
Deposited On: 18 Mar 2013 05:27
Last Modified: 29 Jun 2017 14:43