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ABSTRACT 

 

The primary objective of this study is to develop a robust queue estimation algorithm for 

motorway on-ramps. Real-time queue information is the most vital input for a dynamic queue 

management that can treat long queues on metered on-ramps more sophistically. The proposed 

algorithm is developed based on the Kalman filter framework. The fundamental conservation 

model is used to estimate the system state (queue size) with the flow-in and flow-out 

measurements. This projection results are updated with the measurement equation using the time 

occupancies from mid-link and link-entrance loop detectors. This study also proposes a novel 

single point correction method. This method resets the estimated system state to eliminate the 

counting errors that accumulate over time. In the performance evaluation, the proposed algorithm 

demonstrated accurate and reliable performances and consistently outperformed the 

benchmarked Single Occupancy Kalman filter (SOKF) method. The improvements over SOKF 

are 62% and 63% in average in terms of the estimation accuracy (MAE) and reliability (RMSE), 

respectively. The benefit of the innovative concepts of the algorithm is well justified by the 

improved estimation performance in the congested ramp traffic conditions where long queues 

may significantly compromise the benchmark algorithm’s performance. 
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INTRODUCTION  

 

Ramp metering is an access control for motorways in which a traffic signal located on on-ramps 

regulates the rate of vehicles entering the motorway. Ramp metering is an effective traffic 

management tool to efficiently exploit the existing motorway capacity. Preventing flow 

breakdowns in merging areas can effectively increase the vehicle throughput. On-ramp traffic 

also takes advantage of ramp metering, because the congestion on the mainline eventually 

reduces the opportunity of on-ramp traffic to use the motorway.  

 Although ramp metering is becoming an increasingly popular and is now considered as a 

proven traffic management strategy, some limitations and drawbacks are well documented in the 

literature. The most significant limitation of the existing ramp metering method is its adverse 

impacts on the on-ramp and surface street traffic. The nature of ramp metering and the way in 

which control algorithms operate, restrict the entry of ramp traffic to the motorway mainline and 

thus creates traffic queues. Long ramp queues may cause queue spillover onto the adjacent 

surface streets and interfere with the traffic streams. In practice, a queue management must be 

implemented alongside ramp metering. Upon a detection of queue spillover, the queue 

management overrides the normal metering control allowing the queued vehicles to bypass the 

metering to prevent queue spillover and potential street blockages. 

 A commonly used on-ramp queue management is the so-called “queue flush” method. 

This method is enabled by placing a detector close to the upstream end of the ramp. If the 

measured detector occupancy exceeds a threshold, it considers that the queue has reached the 

detector location and then increases the metering rate to the maximum setting to mitigate the 

queue. Although this simple method can effectively reduce queue spillover, queue flush 

adversely affects the mainline traffic stream by suddenly increasing the metering rate and 

diminishes the ramp metering benefit as a result (1, 2).  

 

Research Objectives 

The primary objective of this research is to develop a robust queue estimation algorithm for 

motorway on-ramps. Real-time queue information is the most vital input for a dynamic queue 

management on metered on-ramps. Accurate and reliable queue information enables an adaptive 

management of the ramp queue size and thus minimises queue flush and its adverse impacts 

while increasing the benefit of ramp metering for the mainline stream. Spiliopoulou and Manolis 

(2010) reported that accurate queue information could reduce the on-ramp queue spillover by 

45.7% compared with a simple queue flush control (3). 

The proposed algorithm is developed based on the Kalman filter framework. The 

fundamental traffic flow conservation is used to estimate the system state (i.e., queue sizes) with 

the flow-in and flow-out measurements. This estimation inevitably produces a noise due to the 

counting error. Therefore the estimation results are updated with the Kalman Filter measurement 

that uses loop detector time occupancies. This study also proposes a novel single point correction. 
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This method resets the system state when a significant change in the mid-link time occupancy is 

observed to eliminate the accumulated counting errors.   

 Abundant literatures describe queue estimation techniques, but only few propose 

appropriate solutions for motorway on-ramps. Those existing techniques are reviewed in the next 

section. The new algorithm is presented in the following section with a brief introduction to the 

Kalman Filter. The algorithm is evaluated in the microsimulation environments against a 

benchmark algorithm. The simulation results are discussed in the last section.  

 

EXISTING TECHNIQUES FOR RAMP QUEUE ESTIMATION 

 

Given the motorway on-ramp as the applying object and the conventional loop detector as the 

information source, recent queue estimation studies can be categorised into two types. The first 

approach uses the flow conservation model with flow-in and flow-out counts. This method 

assumes the traffic flow conservation rule and estimates the number of vehicles in a given 

roadway segment by calculating the difference of flow-in and flow-out counts measured by two 

detectors placed at the entrance and exit of the link. Although this approach is easy to understand 

and implement, a critical drawback is the detector counting error that accumulates over time. 

Even with a reasonable level of error rate, the accumulative errors may render the estimation 

results useless. Liu et al. reported that 31% of metered ramps have biased loop detectors in 

counting number of vehicles according to their study in Minnesota (3). The conservation model 

could be applied to 60% of ramps because of the counting noise of loop detectors.   

 A second approach uses advanced techniques to correct the estimation results of the first 

approach. Liu et al. proposed two methods: a regression model and a Kalman filter for the ramps 

with erroneous link-entrance and link-exit detectors (4). For the Kalman filter measurement, a 

linear regression model was developed using the occupancy and count measurements of the link-

entrance and link-exit detectors as variables. A study by Vigos et al. also employs the Kalman 

filter to improve the accuracy of the flow-in and flow-out approach by continuously adjusting the 

system state using the time occupancy measurements from an extra loop detector placed in the 

middle of the link (5). This method translates time occupancies into space occupancies using the 

basic relationship between these two measurements in signalised links as demonstrated by 

Papageorgiou and Vigos (6). The time occupancy measurement is an unbiased estimation and 

does not accumulate over time. Therefore, the mid-link occupancy can be used to generate a 

correction (or measurement) term in the Kalman filter framework. This method can produce 

reliable queue estimations while the queue end is fluctuating around the mid-block detector. 

However, for long queues where the queue end locates upstream of the mid-link detector, the 

mid-link occupancy will be constantly high and thus it is no longer an unbiased estimation and 

the generated correction term is no longer an accurate correction term.  
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ALGORITHM  DEVELOPMENT 

 

The Kalman Filter is a set of mathematical equations that provides an efficient tool to estimate 

the state of a system, in a way that minimises the mean of the squared error (7). The filter is very 

powerful in estimating past, present, and future states even when the precise information of the 

modelled system is unknown. The Kalman Filter theory has two basic sets of equations including 

a system state equation and a system measurement equation. The system state equation 

represents the nature of the system states, and is usually written as the following discrete form: 

 

 ( )     (   )     (   )   (   )           [1] 

 

Where,  

 x is system state vector; 

 A is input matrix;  

 u is control input vector; 

 B is control matrix;  

 w is process noise; and,  

 t represents the time instance 

 

 The system measurement equation describes the relationship between system states and 

measurements. Acknowledging that measurements inevitably contain noise, the measurement 

equation is expressed as follows:  

 

 ( )     ( )   ( )             [2] 

 

Where,  

 z is measurement vector;  

 H is output matrix; and,  

 v is measurement noise. 

 

System Estimation and Measurement  

A typical metered motorway on-ramp is illustrated in Figure 1. The figure also illustrates the 

detector requirements for the proposed algorithm. The algorithm estimates the ramp queue size 

or the number of vehicles between the link-exit detectors and the link-entrance detectors. It 

assumes three detector sets including link exit detectors, mid-link detectors, and link entrance 

detectors. The link exit and link entrance detectors provide flow measurements. Occupancy 

measurements are also required from the mid-link and link entrance detectors. 
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FIGURE 1 Metered motorway on-ramp and detector requirements. 

 

 The new algorithm is developed based on the Kalman filter framework. Two linear 

relationships are assumed to formulate the system state equation and the system measurement 

equation. The system state equation is formulated using the flow-in and flow-out count 

differences over time based on the flow conservation law, which can be expressed as follows: 

 

  ( )    (   )      ( )      ( )             [3] 

 

Where,  

 NV is the system state in terms of the number of vehicles on the ramp; 

     is the traffic flow-in measured by the ramp entrance detectors; and, 

      is the traffic flow-out measured by the ramp exit detectors. 

 

 The system measurement equation is developed based on the linear relationship between 

the space occupancy and the number of vehicles or NV, which can be estimated using the 

following equation:   

 

     ( )  
  ( )             

            
   ( )           [4] 

 

Where,  

    is the space occupancy; 

          is the average vehicle length; 

        is the number of lanes in the on-ramp; and, 

       is the ramp length. 
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 Space occupancy      is an instantaneous (at a certain time instance) space extended 

quantity that reflects the portion of link length covered by vehicles. It is impossible to directly 

measure the space occupancy using loop detector measurements; alternatively, time occupancies 

can be converted to approximate space occupancies. The time occupancy is a bias-free estimate 

of the space occupancy in a sufficiently small space-time window assuming the effective vehicle 

length equals the physical vehicle length (6). The Kalman Filter measurement equation proposed 

by Vigos et al. uses the time occupancy from the mid-link detector to update the system state (5). 

However, this method has a limitation in congestion conditions when the queue size is constantly 

long and the time occupancy measurements from the mid-link detector do not represent the 

actual queue size on the entire ramp.  

 This study also builds on the relationship between time occupancies and space 

occupancies; however, it includes the time occupancy from the link-entrance detector in the 

measurement equation to overcome the aforementioned limitation. The time occupancy 

measurements from the mid-link and the link entrance detectors are processed to approximate the 

link space occupancy using the following equation: 

 

 ̂ ( )  {
       ( )         ( )       

(        ( ))

 
               

           [5] 

 

Where,  

      is the time occupancy measurement from the mid-link detector; 

     is the time occupancy measurement from the ramp entrance detector; 

      is the congestion occupancy; and, 

  ̂  is the estimated space occupancy. 

 

 The above equation implies that the space occupancy is directly approximated using only 

the mid-link time occupancy for short queues. For long queues, the algorithm assumes a linear 

increase in the space occupancy with the increase in the link-entrance time occupancy at the rate 

of  
(        ( ))

 
. The value of      was set at 70% based preliminary simulation tests. 

 

Kalman Filter Estimator 

The process noise, w, is sourced from the loop detector counting errors, and is assumed to be an 

unbiased error with the mean value of zero. On the other hand, the measurement noise, v, is 

caused in converting the time occupancy into the space occupancy. As the two linear 

relationships are independent from each other, the two noises are assumed to be independent of 

each other, and normally distributed with constant variances as expressed follows: 
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 ( )  (   ) and   ( )  (   )             [6] 

 

Where,  

 Q is the constant process noise variance; and, 

 R is the constant measurement noise variance. 

 

 In the standard Kalman Filter process, a prediction process and a correction (estimation) 

process are employed. The errors involved in each process are referred to as a priori errors and a 

posterior error, respectively, and their definitions are as follows: 

 

  ( )   ( )   ̂ ( )                   [7] 

 ( )   ( )   ̂( )              [8] 

 

Where,  

   ( ) is the priori error; 

  ̂ ( ) is the prediction;  

  ( ) is the posterior error; and, 

  ̂( ) is the estimation (correction).   

 

 Accordingly, the two error covariances are given as follows: 

 

  ( )      ( )     ( )]             [9] 

 ( )     ( )    ( )            [10] 

  

 The correction equation is given by: 

 

 ̂( )   ̂ ( )   ( )  ( )    ̂ ( )             [11] 

 

Where,  

 K is the Kalman gain matrix. 

 

 The correction process is to use measurement to correct prediction. The Kalman Filter 

method attempts to select a K matrix to minimize the estimation error. One widely used solution 

for determining the K matrix is given as follows (8): 

 

 ( )    ( )    (   ( )    )            [12] 

 

 The purpose of the Kalman Filter is to minimise a posterior estimation error covariance 

by selecting an appropriate Kalman gain matrix. In other words, it uses actual measurements to 
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correct the system state prediction and then obtains a better estimation of the system state. There 

are two steps at each interval. The first step is a time update, the results from which are used as 

the prediction. For time update, the prediction is calculated by a system equation and the 

prediction error covariance is updated: 

 

 ̂ ( )     ̂(   )     (   )         [13] 

  ( )    (   )                [14] 

 

 Note that the Kalman Filter is applied to a single dimensional problem in this study 

where A=1, B=1, and H=1. The next step is the measurement update. For measurement update, 

the K matrix is firstly updated and then, the estimation is calculated. Finally, the estimation error 

covariance is updated as follows: 

 

 ( )      ( )     ( )            [15] 

 

 According to Welch and Bishop (8), the estimation error covariance,  ( ), and the 

Kalman gain matrix,  ( ) stabilise quickly and then remain constant once the filter is converged, 

if the variances of the two noises (i.e., Q and R) are constant. In this study, the process noise 

variance, Q, and the measurement noise variance, R, are assumed to be constant. Therefore, the 

value of P(t) and K(t) can be pre-computed by defining   ( )   ( ) and equation [12] can be 

re-written as follows given H=1.  

 

 ( )  
  

   
             [16] 

 

 Since   ( )   ( ) and A=1: 

 

 (   )   ( )                [17] 

 (   )  
  

   
              [18] 

 

 Since the noise is assumed to be unbiased, the estimation error covariance will converge 

to zero (i.e.,  (   )   ). Consequently, equation [18] can be re-written as:  

 

  
 

   
             [19] 

 

 The noise ratio, denoted as   
 

 
, yields, 

 

  
 

   
             [20] 
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 The value of K depends on the noise ratio, μ, rather than the explicit values of Q and R. If 

μ→0 (i.e. zero system noise and a significant measurement noise), equation [20] yields K=0, 

which indicates no need of correction; on the other hand, μ→  yields K=1, which means that 

only the measurement is reliable.  

In this study, the system noise should be smaller than the measurement noise. This is 

because the estimation method (i.e., flow-in and flow-out difference) is more accurate and 

reliable than the measurement method (i.e., converting time occupancies into space occupancies). 

Therefore, a small Kalman gain makes a little effect of the measurement correction on the system 

state. A previous study suggested the Kalman gain in the range of (0.05, 0.25) based on the 

actual error rate of the loop detector [4]. The Kalman gain is set at 0.05 in this study based on 

iterative tests of the gain value between 0.05 and 0.25 with increments of 0.05.  

 Finally, the basic formulation of the queue estimation algorithm can be built as follows: 

 

     ( )       (   )      ( )      ( )             [21] 

     ( )  
 ̂   ( )             

            
           [22] 

     ( )       ( )          ( )       ( )             [23] 

 

Where,  

       is the NV calculated using the system equation;  

       is the NV calculated using the measurement equation; 

   is the Kalman gain; 

       is the NV estimation, the result of the Kalman Filter process. 

 

The correction equation [23] can be re-arranged as follows: 

 

     ( )  (   )       ( )         ( )                                                      [24] 

 

In equation [24], the estimate is a smoothed value of       and      . Thus, the 

selection of the Kalman gain must consider the relative size of the system noise and the 

measurement noise. Since the system noise       is much smaller than the measurement noise, 

     , K must be a small number to make        as the dominant term in the smoothing. 

 

Single Point Correction 

The idea behind of the single point detection is that with an extra detector at the mid-link 

position, it can be observed when the queue end passes the detector in either forward or 

backward direction. For instance, a significant increase in the observed occupancy may indicate 

that the queue end has passed the detector location backward. On the other hand, a rapid 
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reduction in the occupancy value implies that a forward moving queue (i.e., dissipating queue) 

has passed the detector position. Figure 2 shows the occupancy measurements from a mid-link 

detector in comparison to the actual number of vehicles using microsimulation date. 

 

 
Figure 2 Mid-link time occupancies and number of vehicles.  

 

 The yellow circles indicate the occurrence of a significant increase or decrease of the 

mid-block occupancy value. It is clear in the graph that the detector occupancy changes sharply 

when the number of vehicles increases or decreases over the half of the ramp storage (around 15 

vehicles). This phenomenon can be used to reset the estimated number of vehicles. The single 

correction point is defined as the instances when the occupancy measurements from the mid-link 

detector drop or spike in a short-time period. A single correction point is defined as follows: 

 

      |    ( )      (   )|                 [25] 

 

Where,  

       is the observed occupancy increment 

     ( ) is the time occupancy measurement from the mid-link detector in the t
th

 interval 

   is the single point correction threshold 

 

 This study defines the single point correction threshold   at 35% based on preliminary 

simulation tests. Therefore, an increment or decrement of the time occupancy greater than 35% 

will activate the single point correction. Once the single point correction is activated, the 

estimated number of vehicles in this interval,      ( ), is set at half of the maximum queue size, 

         . This process can effectively eliminate the previously accumulated counting errors. 
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Algorithm Flow 

With the single point correction term, the proposed queue estimation algorithm is displayed in 

Figure 3. 

 

 
 

Figure 3 Queue estimation algorithm flow. 

 

 The single point correction requires occupancy measurements from the mid-link detector. 

Detection of a single point will yield the estimated queue size at the set point of  
 

 
      without 

the Kalman filter processing. The queue estimation algorithm takes the input of traffic count 

measurements from the link-exit and link entrance detectors for the system state equation. The 

occupancy from the mid-link and the link entrance detectors are used for the system state 

estimation. 

 

ALGORITHM  EVALUATION 

 

Simulation Testbed and Scenario 

The estimation accuracy and reliability of the new queue estimation algorithm were evaluated 

using the Aimsun microsimulation model. The evaluation was conducted on three on-ramps 

including the Birdwood Road northbound ramp, Marquis Street southbound ramp, and Logan 

Road northbound ramp, on the Pacific Motorway. The Pacific Motorway is a 100 km long 

motorway between Brisbane and the Queensland-New South Wales border. It is the major 

commuting route for commuters from south suburbs to the Brisbane CBD. Recurring congestion 

occurs to the northbound in the morning peak-hours and to the southbound in the afternoon peak-
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hours. Figure 4 shows the road geometry of these ramps including the position of the existing 

ramp signals. The motorway is three lanes and the on-ramps are two lanes as shown in the 

figures.   

 

Ramp
signal

(2 lanes)

130 m

290 m
Ramp
Signal

(2 lanes)175 m

425 m

Ramp signal
(2 lanes)

410 m

360 m

Birdwood Rd Marquis St Logan Rd
 

Figure 4 Road geometry of the selected on-ramps for the algorithm evaluation. 

 

 The ramp and mainline traffic volumes were drawn from the actual loop detectors data on 

the 25
th

 of May in 2010. The simulation period is 5 hours starting from 5 to 10 am for the 

Birdwood Road ramp and the Logan Road ramp to mimic the traffic conditions in the morning 

peak-hours. The afternoon peak period was modeled for the Marquis Street ramp from 2 to 7 pm. 

Figure 5 presents the traffic demand profiles of the selected ramps during the simulation period. 

The time-step of the simulation was 0.5 seconds or 2 steps per second. 

 

 
Figure 5 Traffic flow profiles (15 minutes period). 
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The proposed algorithm was implemented using the Application Programming Interface (API) 

functions provided by AIMSUN. The algorithm receives the time occupancies and traffic count 

data from the simulation model to estimate the space occupancy and queue size based on the 

proposed method. The processed results were compared against the actual queue and space 

occupancies observed from the simulation model.  

 

Ramp Metering Control  

To evaluate the algorithm under realistic conditions, the ALINEA ramp metering strategy was 

implemented on the simulation models to reproduce the traffic flow characteristics under a ramp 

metering control. ALINEA is a local-level traffic adaptive metering control that uses time 

occupancies as the feedback variable (9). The control objective is to maintain the merging area 

occupancy at the desired level by controlling the ramp flow. In addition, a simple queue flush 

strategy was modeled and operated with the metering control. The queue flush activates when 

the occupancy from the link-entrance detector is greater than a threshold value of 40%. The 

queue flush extends the metering rate to the maximum setting at 900 veh/hour/lane for a pre-

determined intervals to clear off the queue.    

 

Modeling the loop detector counting error 

In the simulation environment, all the detector measurements have no noise and are perfectly 

accurate. In order to test the proposed algorithm in realistic environments, a random noise in the 

counting error ranged between -10% and 10% was artificially added. This artificial error is 

applied to each 1 minute aggregated count measurements.  

 

Performance Measure 

The primary measure of the algorithm performance is the comparison of the actual queue lengths 

with the estimated values. The study uses three measures of performance for the model 

calibration and validation: mean absolute error (MAE), root-mean-square error (RMSE), and 

mean percentage error (MPE). MAE is a measure of the estimation accuracy. A small MAE 

value indicates more accurate estimation. RMSE is a measure of estimation stability in number 

of vehicles. A smaller RMSE value indicates a higher degree of estimation reliability. MPE 

indicates the degree estimation errors in a relative way to the actual queue length. 

 

    
 

 
∑ |            –            |                     [26] 

 

     √
 

 
∑ (                      ) 

                [27] 

 

    
   

 

 
∑             

                [28] 
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Benchmark algorithm  

A benchmark algorithm was modeled and evaluated for comparison with the performance of the 

proposed queue estimation algorithm. This method mimics the queue estimation method utilising 

only the mid-link time occupancy (4). The benchmark algorithm does not use the link entrance 

occupancy data. A potential drawback is therefore the estimation reliability in long queue 

conditions. The benchmark algorithm is referred to the Single Occupancy based Kalman Filter 

(SOKF) method in the rest of this paper.  

 

Simulation Results and Discussions  

The simulation results are presented and discussed in this section. The queue estimation 

performance is presented in comparison to the SOFK method with and without singular point 

correction. Total 20 simulation replications were performed to collect the results for each test 

scenario. Table 1 provides the summary of the simulation results. Note that the percentage in the 

bracket represents the relative changes from the benchmark algorithm.  

 

Table 1 Queue Estimation Algorithm Evaluation Results  

Strategy 
Performance 

measure 

Test on-ramps 
Average 

Birdwood Rd Marquis St Logan Rd 

Benchmark 

algorithm 

MAE  18.45 16.95 13.08 14.49 

MPE 38.79% 30.86% 27.74% 32.46% 

RMSE 26.90 22.09 19.58 19.63 

Proposed algorithm 

without singular 

point correction 

MAE 
6.75 

(-63.4%) 

5.96 

(-64.8%) 

6.25 

(-52.2%) 

6.32 

(-56.4%) 

MPE 13.83% 

(-64.3%) 

10.63% 

(-65.6%) 

13.17% 

(-52.5%) 

12.54% 

(-61.4%) 

RMSE 
9.63 

(-64.2%) 

7.61 

(-65.6%) 

8.81 

(-55.0%) 

8.68 

(-55.8%) 

Proposed algorithm 

with singular point 

correction 

MAE 
6.06 

(-67.2%) 

5.13 

(-69.7%) 

6.13 

(-53.1%) 

5.70 

(-60.7%) 

MPE 
12.81% 

(-67.0%) 

9.32% 

-69.8%) 

14.01% 

(-49.5%) 

12.05%  

(-62.9%) 

RMSE 
8.98 

(-66.6%) 

6.62  

(-70.0%) 

8.95 

(-54.3%) 

7.53 

(-61.6%) 

 

Overall, the new algorithm demonstrated reliable queue estimation performances at all the test 

sites outperforming the benchmark algorithm. The observed improvements over SOKF are 

60.7%, 62.9%, and 61.6% on average in terms of MAE, MPE, and RMSE, respectively, with 

singular point correction enabled. Without singular point correction, the improvements slightly 

decline to 56.4%, 61.4%, and 55.8% in terms of MAE, MPE, and RMSE, respectively. 
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Singular point correction played a supplementary role to further improve the queue 

estimation as expected. In high volume ramps, the ramp queue is likely to stay beyond the mid-

block detector position for most of the simulation period. As a result, the impact of singular point 

correction is insignificant, for example, 7 activations over the 5 hour period on the Birdwood 

Road on-ramp. 

 

Birdwood Road ramp 

This ramp has heavy mainline and ramp volumes during the peak-hours. The ramp is heavily 

congested from 7:30 to 9:30 am and long queues and queue spillover are frequently observed as 

a result. The proposed algorithm produced the averaged MAE, MPE, and RMSE at 6.06 (veh), 

12.81%, and 8.98 (veh), respectively, which are 67.2%, 67.0%, and 66.6% improvements over 

the benchmark algorithm.  

 Figure 6 displays the estimated queue sizes by the SOKF method and the proposed 

algorithm with singular point correction in comparison to the actual queue size. The graphs were 

drawn from one simulation replication as an example. It is clear in the graph that the SOKF 

method continuously overestimates the queue length especially in the peak-hours from 7:30 to 

9:30 am when long queues are present. The proposed algorithm captures the changes in the 

queue length reasonably well and the actual queue size does not affect the estimation accuracy. 

Note that similar results are found from other replications too.  

 

 
Figure 6 Queue estimation results example (Birdwood Road ramp). 

 

Marquis Street Ramp  

The ramp traffic volume on the Marquis Street ramp is one of the heaviest in the Brisbane area. 

As a result, the afternoon peak congestion begins at around 3:00 pm and lasts until the end of the 

simulation period at 7:00 pm. The queue size is constantly long on this ramp except the first one 

hour.  
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 In Figure 7, both queue estimation algorithms perform reasonably well until 4:00 pm and 

then produce overestimations for the next 20 minutes approximately until 4:20 pm. During this 

period, the ramp queue size significant fluctuates in the range of 80 and 100 vehicles caused by 

the queue flush operations. After 4:30 pm, the SOKF method constantly overestimates the queue 

size whereas the estimates by the proposed algorithm follow the actual queue size quite closely. 

The actual queue size in this time period fluctuates at around the mid-link position where the 

single point correction activates and supplements the Kalman Filter process. 

 

 
 

Figure 7 Queue estimation result example (Marquis Street ramp). 

 

Logan Road Ramp  

The simulation results of the Logan Road are similar to the other two ramps. However, the 

performance difference between the SOKF method and the proposed algorithm is relatively 

insignificant compared with the other two ramps. The mainline traffic volume is much lower at 

this location. Although the ramp traffic volume is still significantly high, the moderate traffic 

condition on the mainline allows less restrictive ramp metering and thus prevents long queues on 

the ramp.  

 Relatively moderate traffic conditions and queue sizes impacts on the estimation 

performance as evidently shown in Figure 8. The estimation accuracy of the SOKF method is 

much improved from those of the other two ramps, although overestimations are still observed 

between 7:10 and 7:40 am and between 8:40 and 9:00 am when long queues are present. On the 

other hand, the proposed algorithm captures the actual queue size reasonably well during the 

entire simulation period. The benefit of the innovative concepts of the proposed algorithm is well 

justified by the improved estimation performance in the high ramp traffic demand conditions 

where long queues significantly affected the benchmark algorithm’s performance. 
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Figure 8 Queue estimation result example (Logan Road ramp). 

 

 

CONCLUDING REMARKS 

 

The proposed queue estimation algorithm introduces two innovative concepts. Firstly, it 

continuously corrects the system state estimation using the time occupancy measurements from 

the mid-link and link entrance detectors. Having the additional occupancy term in the state 

measurement equation is to overcome the limitation of the existing method that the space 

occupancy estimation could be significantly compromised under heavy ramp traffic conditions. 

Additionally, a novel single point correction method is proposed to improve the queue estimation 

reliability. Although, the single point correction may occur occasionally depending on the ramp 

volumes, it can potentially eliminate significant counting errors that accumulate over time and 

substantially improve the queue estimation.   

 In the performance evaluation, the proposed algorithm demonstrated accurate and reliable 

estimation performances constantly outperforming the benchmarked Single Occupancy Kalman 

Filter (SOKF) method. The observed improvements over the SOKF method are 62% and 63% in 

average in terms of the estimation accuracy (MAE) and reliability (RMSE), respectively. The 

singular point correction feature played a supplementary role to further improve the queue 

estimation. The benefit of the innovative concepts of the algorithm is well justified by the 

improved estimation performance during the peak-hours when long queues are present. The 

proposed algorithm captured the actual queue size reasonably well in the peak-hours when long 

the performance of the benchmark algorithm significantly compromised.  

 The proposed algorithm requires additional validation tests using actual detector 

measurements and queue size information. Proper calibration of the algorithm parameters is also 

necessary using field data for the space occupancy estimation equation and the single point 

correction threshold. 
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