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Abstract 

Although transit travel time variability is essential for understanding the deterioration of 
reliability, optimising transit schedule and route choice; it has not attracted enough attention 
from the literature. This paper proposes public transport-oriented definitions of travel time 
variability and explores the distributions of public transport travel time using the Transit 
Signal Priority data. First, definitions of public transport travel time variability are established 
by extending the common definitions of variability in the literature and by using route and 
services data of public transport vehicles. Second, the paper explores the distribution of 
public transport travel time. A new approach for analysing the distributions involving all 
transit vehicles as well as vehicles from a specific route is proposed. The Lognormal 
distribution is revealed as the descriptors for public transport travel time from the same route 
and service. The methods described in this study could be of interest for both traffic 
managers and transit operators for planning and managing the transit systems.  

1. Introduction 

Public transport travel time reliability has been considered as a quality of service measures 
as the reflections of passengers’ anxiety in route choice and waiting; and operators’ 
frustrations in scheduling (Martchouk et al., 2010). Reliability has been defined by a number 
of authors in literature (Strathman et al., 2000, Currie et al., 2012, Abkowitz and Engelstein, 
1983) as the consistency or dependability in travel times. However, the literature focusing on 
the variability of public transport travel time, i.e. the variance in travel time itself is relatively 
limited.  
Understanding the travel time variability is important for transit operators. First, travel time 
variability could be used to explain travel time reliability. Understanding the public transport 
travel time variability (PTTV), one can investigate the reasons for deteriorations of travel time 
reliability and explain the values of reliability index. For instance, exceeding travel time 
spending at previous corridor causes late arriving at the later corridors and extra waiting time 
for passengers. Second, according to the TCQSM (TRB, 2003), recovery time is the amount 
of time that is added to the expected running time of a public transport service to take into 
account the journey time variations and allow a short break before the next departure. When 
the variation in running times is less due to improved reliability, it may be possible to reduce 
recovery time or allow longer breaks or accommodate additional services. Third, travel time 
variability also plays an important role in traveller trip planning and route choice (Abdel-Aty et 
al., 1995). It has been noted that unreliable and highly variable travel time increases in the 
anxiety and stress (Bates et al., 2001) and is an additional cost to the traveller (Noland and 
Polak, 2002). Thus ridership is lost when service is perceived to be unreliable. A study in 
Oregon, US found that a 10% decrease in headway delay variation could lead to an increase 
of 0.17 passengers per trip per timepoint (Kimpel et al., 2000). 
Notwithstanding the importance of PTTV, limited exploration has been done in the literature. 
Although the existing general definitions of travel time variability has been proposed (Bates 
et al., 1987, Noland and Polak, 2002), the definitions are better suited for measuring the 
private than public transport travel time variability. Some confusion still arises in the practical 
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use of them in the public transport case due to the dissimilarities between the modes of 
transport. First, in the case of private transport travel time variability (CTTV), the average or 
probe vehicles’ travel time is often used since the individual car travel time is generally not 
available. Conversely, individual travel times of transit vehicles are often accessible due to 
the needs of service monitoring. The possibility of tracking each vehicle opens other means 
of measuring the TTV. Vehicles running on the same study site or only vehicles of a 
specified route, or even a particular service can be of interests. Second, while the private 
transport vehicles could be considered homogenous to some extent, the public transport 
vehicles are noticeably different. Express transit routes are significantly faster than local 
ones by stopping at only selected stops. Within the same route, the scheduled travel time of 
different services could be varied between peak and off-peak periods. Therefore, the 
definition of PTTV could be similar or different to the CTTV. 
This paper uses Transit Signal Priority (TSP) data to establish PTTV definitions and 

investigate its distribution. Firstly, the paper establishes the definitions of PTTV. Secondly, 

the probability distribution of public transport travel time is investigated, revealing the nature 

and shape of travel time. The findings of this research enable transport managers and 

researchers to better monitoring public transport variability.  

2. Travel time variability in the literature 

TTV has been defined in the literature as having three main types (Bates et al., 1987, 
Noland and Polak, 2002). Vehicle-to-vehicle (or Inter-vehicle) variability is the difference 
between travel times experienced by different vehicles travelling similar trips within the same 
time period. The signal delay, driver behaviour, conflicts with pedestrians, etc. are involved 
in this type of TTV. Period-to-period (Inter-period or within-day variability) is the variability 
between the travel times of vehicles travelling similar trips at different times on the same 
day. It is mainly caused by differences in the level of demand, occurrence of accidents and 
incidents, weather conditions, level of daylight and so on. Day-to-day (or inter-day variability) 
is the variability between similar trips on different days within the same time period. It is 
attributed to the fluctuations in traffic demand, weather, driver behaviours, and incidents. 
This definition is independent to the congestion effects. Within the same time period, a high 
demand system could have little fluctuations in day-to-day travel time variability if 
congestions are recurrent.  
A considerable quantify of studies in CTTV has been conducted in the literature using 
different types of data sources such as floating cars (Chien and Liu, 2012), loop detectors 
(Oh and Chung, 2006) or even new sources of data such as Bluetooth (Martchouk et al., 
2010). Standard Deviation (SD) travel time is one of the most popular measures of travel 
time variability, along with Buffer time/buffer index, T90-T10, etc. Coefficient of Variations 
(CV) of travel time is also used by some authors (Susilawati et al., 2011). 
The literature on PTTV is relatively limited. Abkowitz and Engelstein (1983) predicted the 
running time and running time deviation by using linear regression analysis. Their model 
revealed that only the link length has significant impact on the day-to-day variability of public 
transport travel time. Mazloumi et al. (2010) adopted the definition of variability from Noland 
and Polak (2002) to explore the day-to-day PTTV in Melbourne, Australia using GPS data. 
The nature and pattern of variability were discussed by fitting bus travel time to Normal and 
Log-normal distribution, followed by a linear regression analysis to investigate the different 
impacts to the PTTV. Schramm et al. (2010) aimed to find the features that affecting TTV on 
Bus Rapid Transit Systems of many cities in the US. The study explored a ratio between 
peak and off-peak travel times. Moghaddam et al. (2011) proposed a procedure and 
empirical models for predicting the SD of bus travel time based on the average bus travel 
time, number of signalised intersection and a ratio between volume and capacity for an 
origin-destination path. Currie et al. (2013) analysed PTTV when measuring the impacts of 
transit priority using Automatic Vehicle Location data. The SD of travel time was studied in a 
linear regression analysis. To the best of the authors’ knowledge, there is no study aimed to 
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properly define the TTV of public transport and examine the use of different definitions of 
TTV on the same data.  

3. Methodology and data 

3.1 Data and case study site 

The Bluetooth and TSP scanners are operated at major corridors in Brisbane for monitoring 
and assisting traffic and transit operations, respectively. The Bluetooth scanners capture the 
unique MAC addresses and timestamps of all Bluetooth-enabled devices within a range of 
100 m. The TSP scanners identify the unique bus vehicle identification number of all buses 
that passing the intersection, along with their route numbers, timestamps and service 
scheduled start times using RFID technology. The service scheduled start time is the 
departure time from the first bus stop of the service as scheduled. 
The corridor between an upstream (Coronation Drive/High Street) and a downstream 
(Coronation Drive/Cribb Street) signalised intersection is chosen as the case study site. The 
corridor length is 2.29 km with speed limit of 60 km/h and 3 shared lanes of public and 
private transport on each side. The study site is highly congested on both morning and 
afternoon peak periods. In this paper, we derive the method of bus and car travel time 
estimation and data cleansing from a previous work by Kieu et al. (2012). The travel time is 
the difference between observed timestamps at upstream and downstream intersections.  
The analysis has been carried out on 4 months of Bluetooth and RFID data (March to June 
2012) on inbound traffic. Only in-service buses (buses that are on operation) on working 
days (weekdays excluding Public Holidays and School Holidays) are considered in the 
study. The data of Route 411 is used on the analyses involving a single specified route. It is 
a timetabled local bus which connects University of Queensland and the Brisbane CBD. The 
frequency of Route 411 is every 15~20 minutes. It is one of the busiest routes along the 
study corridor. Route 411 follows the path illustrated on Figure 1. 

3.2 Methodology 

The variability of public transport travel time is explored in this study using two main 
approaches. First, the paper defines vehicle-to-vehicle, period-to-period and day-to-day TTV 
specifically for public transport. Each definition is illustrated and quantified in the case study 
using TSP data. The common knowledge of TTVs is also presented using Bluetooth data for 
better understanding of the proposed PTTV. The Bluetooth-enabled vehicles travel times are 
captured by Bluetooth scanners and their TTV is calculated. This variability might not be the 
true representative of all private transport vehicles’ TTV because not all vehicles has 
enabled Bluetooth devices, but is an example of TTV from the dataset. The method of taking 
individual travel time from Bluetooth data has been explored by some authors in the 
literature (Kieu et al., 2012) and revealed as only 10% difference from the ground truth of 
travel time (Malinovskiy et al., 2011). Second, the distributions of bus travel time within 
different time windows are examined. The distribution of travel time describes the nature and 
shape of variability. For instance, a uniform distribution denotes no variability while a long tail 
skewed distribution shows that the bus could experience high and unreliable travel time.  
The variability of travel time is measured using the Coefficient of Variation of travel time. CV 
measures the variation as a percentage of the mean, or the ratio of the SD to the mean. 

    
    

  ̅̅̅̅
                           (1) 

Where: CV = Coefficient of variation (%) 
 SD = Standard deviation of travel times 

   ̅̅̅̅  = Mean of travel times 
CV is chosen as a meaningful comparison between two or more magnitude of variations. 
Because they are quantified in form of percentage, the variability from different sources are 
comparable even if they have different means or scales of measurements.  
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Study time period is involved in all definitions of TTV in the literature as “travelling within the 
same time period” (refer to section 2). If not explicitly stated otherwise, the time period for 
the TTV quantifications will be 30 mins. The period is short enough to be perceived by 
passengers as having uniform conditions and long enough to contain multiple buses in a 
study period. 
 
Figure 1 Study site 

 

4. Defining public transport travel time variability 

 
This section aims to define the TTV of public transport based on the knowledge of TTV 
commonly used in existing studies (Noland and Polak, 2002, Bates et al., 1987).  

4.1 Vehicle-to-vehicle travel time variability 

Vehicle-to-vehicle travel time variability measures the differences in travel time experiences 
by multiple individual vehicles within the same period and same day that making similar 
journeys (Noland and Polak, 2002, Bates et al., 1987).  

                                
√ 
 
∑            ̅̅̅̅    

   

  ̅̅̅̅
                                

Here         represents the     individual travel time samples during time window p of day d; 

  ̅̅̅̅  represents the average of n samples of         

Because of the unavailability of individual vehicle travel times, this type of variability does not 
attract much attention in the literature of private transport. The Figure 2 illustrates the 
vehicle-to-vehicle variability of Bluetooth enabled vehicles along the study corridor on the 
first 3 days of May 2012.  
The vehicle-to-vehicle PTTV is proposed based on the same definition of TTV. All the buses 
passing the study corridor within the studied day and time window (30 minutes) are 
considered. The PTTV between individual vehicles is showed in the Figure 3. 
It could be noted from the Figure 2, Bluetooth enabled vehicles TTV are relatively stable. 
Some patterns can clearly be seen from the figure. During congestion build-up, the vehicle-
to-vehicle TTV increases and then drops during morning peak due to jammed vehicles. In 
vehicle-to-vehicle PTTV case (Figure 3), although the same patterns can also be observed 
the fluctuations are really high among the periods. The variations of individual bus travel 
times could be any value between 0 to 40%. However, it might not reflect the transit 
performance since some routes are designed to be faster than others. Express buses only 
stop at a few selected bus stops along the corridor, while local routes service all the stops. 
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This definition of PTTV is only useful in a system where all services are relatively similar. It 
could be defined as vehicle-to-vehicle PTTV on corridor level. 
 
Figure 2 Vehicle-to-vehicle TTV of Bluetooth enabled devices on Coronation Drive, Brisbane. 

 
 
Figure 3 Vehicle-to-vehicle PTTV from multiple routes on Coronation Drive, Brisbane. 

 
 
From the transit operators’ point of view, there could be another definition of vehicle-to-
vehicle PTTV that reflects the performance of a specific bus route. Only vehicles of the same 
route are considered. Here the meaning of “similar journeys” in the basic definition of 
vehicle-to-vehicle TTV is vehicles of the same route travelling on the same corridor at the 
same time of day. Short time periods would be inadequate in this case due to insufficient 
number of vehicles of the same route within a small amount of time.  

                             
√ 
 
∑              ̅̅̅̅    

   

  ̅̅̅̅
                        

Here           represents the     individual travel time samples of route r during time window 

p of day d;   ̅̅̅̅  represents the average of n samples of           
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The Figure 4 illustrates an example of the definition on the first 3 days of May 2012. As an 
example, the chosen time window is 2 hours in order to accommodate at least 5 buses of the 
chosen bus route (route 411).  
As expected when only route 411 is considered, the vehicle-to-vehicle PTTV is generally 
stable during off-peak period, and increases up to around 70% during peak periods. This 
definition of PTTV could be useful as a performance measure for transit operators. It helps 
find the variance between bus-to-bus travel time between intersections or stops. However, 
insufficient or highly varied number of bus in time windows could negatively affect the 
robustness of this definition, especially in the comparison between multiple periods. The 
definition could be named as vehicle-to-vehicle PTTV on route level.  
 
Figure 4 Vehicle-to-vehicle PTTV from route 411 on Coronation Drive, Brisbane. 

 

4.2 Period-to-period travel time variability 

Period-to-period travel time variability measures the differences in travel time of vehicles 
making similar trips at different times on the same day (Noland and Polak, 2002, Bates et al., 
1987). CTTV is usually measured using average travel time values within a certain time 
window, or using the travel time of a floating car (which also represents the average travel 
time of the traffic flow) on the same study sites (Chien and Liu, 2012, Oh and Chung, 2006). 

                              
√ 
 
∑          ̅̅̅̅    

   

  ̅̅̅̅
                      

Here       represents the     averaged travel time samples of all the vehicles during time 

window p of day d;   ̅̅̅̅  represents the average of       on each of t time windows. The 

Figure 5 shows the period-to-period TTV of Bluetooth-enabled devices for the first 3 days of 
May 2012.  
A similar definition of period-to-period PTTV could be derived by taking the average travel 
time of all vehicles within a time window. The average value of travel time acts as a bus 
probe to represent the bus travel time in general. One could argue that by taking the 
average, we also normalise some sources of variability such as signal delay, driver 
behaviour, etc. However, taking the average is necessary to avoid biased period-to-period 
PTTV. We consider an example of n individual buses with different travel times     to      at 

period     At period   , if n buses with exactly the same travel times     to     are observed, 
in the definition of period-to-period TTV, the value of CV should be zero. If individual bus 
travel time samples are used for calculating period-to-period TTV, CV would be larger than 

zero. It is merely the vehicle-to-vehicle PTTV of two periods    and   . If the average value 

  ̅̅̅̅  of     to     is used to calculate the PTTV,   ̅̅̅̅    would be equal to   ̅̅̅̅    and CV would 
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be zero. The Figure 6 illustrates the variability of bus travel time on the first 3 days of May 
2012.  
The definition of PTTV denotes the variance in average bus travel time on different periods 
of a day. While the average travel time within off-peak periods are relatively stable, the 
average travel time at peak periods are not the same every day. Therefore, the use of this 
definition is two-fold. First, period-to-period PTTV shows how much is the variability in public 
transport travel time between peak and off-peak periods of the studied day. Second, when 
comparing the variability of different day, a high CV denotes a congested traffic due to higher 
average travel time during peak periods. For instance, Figure 5 and Figure 6 show higher 
congestion in 2nd and 3rd of May 2012 (especially during morning peak) compared to 1st of 
May. The CVs of these two days are also noticeably larger than the one of the first day. This 
definition could benefit traffic managers in monitoring the variance of bus travel time 
between different periods in general. It could be defined as period-to-period PTTV on 
corridor level. 
 
Figure 5 Period-to-period TTV of Bluetooth enabled devices on Coronation Drive, Brisbane 

 
 
Figure 6 Period-to-period PTTV on Coronation Drive, Brisbane 

 
 
Another definition which benefits transit operators could be proposed if the data of only 1 
specific bus route is used.  

                           
√ 
 
∑            ̅̅̅̅    

   

  ̅̅̅̅
                   

Here         represents the     averaged travel time samples of vehicles from route r during 

time window p of day d;   ̅̅̅̅  represents the average of         on each of t time windows. 
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The Figure 7 presents the route-level definition of period-to-period PTTV. This definition of 
period-to-period PTTV might be more suitable on the route level, where transit operators are 
interested in how stable is their service. This definition could be called period-to-period 
PTTV on route level. It shows the variations in travel time of buses from a specific route on 
different periods. Therefore, it could be used as a within-day stability indicator for the travel 
time of a route. The information might be of interest for transit operators. However, similar to 
the vehicle-to-vehicle case for route level, the accuracy suffers from the variations in number 
of buses in each time window.  
 
Figure 7 Period-to-period PTTV of route 411 on Coronation Drive, Brisbane 

 

4.3 Day-to-day travel time variability 

Day-to-day TTV measures the variability between travel times of vehicles on similar trips on 
different days within the same time period (Noland and Polak, 2002, Bates et al., 1987).   
Day-to-day CTTV is often calculated in the literature by multiple day average travel time 
values within a certain time window, or using the travel time of floating cars on the same 
study sites (Chien and Liu, 2012, Oh and Chung, 2006). 

                        
√ 
 

∑          ̅̅̅̅    
   

  ̅̅̅̅
                          

Here       represents the     averaged travel time samples of all the vehicles of day d 

during time window p;   ̅̅̅̅  represents the average of       on each of D days. The Figure 8 

illustrates the definition of day-to-day TTV through Bluetooth-enabled devices on all working 
days from March to June 2012 (in total 72 days).  
 
Figure 8 Day-to-day TTV of Bluetooth enabled vehicles on Coronation Drive, Brisbane 
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Derived from the same definition, the day-to-day PTTV could also be measured using TSP 
data. An average of all buses within a study time window (30 mins) on a working day is 
calculated to represent the average bus travel time on day di, time window pi. The average 
values are used by the same reason as discussed in the previous section. The Figure 9 
shows the measurement of day-to-day PTTV on all working days from March to June 2012. 
Day-to-day TTV from Bluetooth-enabled devices and buses share similar pattern. The CV is 
relatively low and stable during off-peak periods at around 5% for Bluetooth-enabled devices 
and 10% for bus. They are both sharply increasing and reducing during congestion built-up 
and dissipation, in which the CV could be up to 40% in the Bluetooth case and 35% in the 
bus case. It denotes that the average bus travel time could vary by up to 35% during these 
periods. The difference between traffic demands, weather condition, and incidents could be 
the main contributions to this variation. The TTV drops during morning peak period due to 
highly congestion. This definition of PTTV could be useful for traffic managers in monitoring 
the inter-day variability of bus travel time in general. However, the travel time is averaged, 
which could normalise some variability between individual buses such as driver behaviour 
and signal delay. This definition of variability could be named day-to-day PTTV on corridor 
level.  
 
Figure 9 Day-to-day PTTV on Coronation Drive, Brisbane 

 
 
Utilise the availability of bus route number and service scheduled start time; another way to 
measure the day-to-day PTTV could be defined. This definition focuses on the variability of a 
specific bus route rather than all the buses. The buses of the same route and service 
scheduled start time are considered, because these buses are scheduled to travel time 
similarly.  

                       
√ 
 

∑            ̅̅̅̅    
   

  ̅̅̅̅
                          

Here         represents the     individual travel time sample of the bus of route r which is 

scheduled to start at time s of day d;   ̅̅̅̅  represents the average of         on each of D days. 

The definition of PTTV is illustrated in the Figure 10. While the black points represent the 
individual bus travel time over 4 months data of working days, the blue points show the 
service scheduled start time and variability of the service. The service scheduled start time is 
earlier than the real observed time at the upstream intersection. This gap is approximately 3-
5 minutes vary from case to case.   
A similar pattern to the previous case could be observed. The day-to-day PTTV of services 
starting during off-peak periods is relatively low. It is the evidence that these services are 
reliable. However, as the congestion increasing, the variability is raising up. At a certain level 
of congestion, the day-to-day variability is getting lower because the vehicles are jammed 
with each other. This information is useful for transit operators in scheduling, particularly in 
deciding the timetable and recovery time. The reliability performance of each service on 
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multiple days could also be discovered by this definition. It could be defined as day-to-day 
PTTV on route level.   
 
Figure 10 Day-to-day PTTV of route 411 on Coronation Drive, Brisbane 

 

4.4 Discussion of the public transport travel time variability definitions  

For each type of TTV, two definitions have been proposed in this section. The first definition 
is similar to the private transport case, where the bus travel time in general is analysed and 
all buses are considered in the calculation. They facilitate the traffic managers to investigate 
the variability of bus travel time in general by considering all passing buses. The PTTV is 
explored in the comparison with other modes of transport. For instance, PTTV provides 
some insights on how much the attractiveness of public transport modes is compared to the 
private counterpart. Therefore, it is useful for macroscopic strategic planning purpose. The 
second definition utilises the additional information in public transport data: the route number 
and the service scheduled start time. The PTTV of a specified bus route or a service 
scheduled start time is proposed. The second definition is useful for transit operators to 
measure the performance, explore the sources of unreliability and optimise timetables. 
Hence, the application of the second definition is on a smaller scale compared to the first 
one, as a specific local or express transit route/service is of interest. The Table 1 summaries 
the proposed definitions. 
 
Table 1 Summary of proposed definitions 

Type of 
TTV 

PTTV 
definition Data used Utilities Weaknesses 

Vehicle  
to  
vehicle 

Corridor-
level 

Time window, day 
of study, individual 
travel time 

Variation between 
individual public transport 
vehicles in general 

The difference between 
express and local 
services might introduce 
some inaccuracy 

Route-
level 

Time window, day 
of study, specified 
route, individual 
travel time 

Performance measures 
of a specific route 

Results could be affected 
by the difference in 
number of bus on each 
time window 

Period  
to 
period 

Corridor-
level 

Day of study, 
average travel time 
within a time 
window 

Variability between peak 
and off-peak public 
transport travel time in 
general, and daily 
congestion indicator 

It only gives one value 
for a day, thus has 
limited information on the 
pattern of PTTV 

Route-
level 

Day of study, 
specified route, 
average travel time 
within a time 
window 

Stability indicator for 
travel time of a specific 
route 

Number of buses on 
each time window should 
be similar 
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Day 
 To 
day 

Corridor-
level 

Time window, days 
of study, average 
travel time within a 
time window on a 
day 

Variations of public 
transport travel time in 
multiple days in general 

The travel time is 
averaged, which could 
normalise some 
variability between 
individual buses  

Route-
level 

Days of study, 
specified route, 
specified service 
start time, individual 
travel time 

Insights of the pattern of 
PTTV, a method for 
monitoring performance 
and optimising the time 
tables 

Service number for each 
vehicle is required 

 
The vehicle-to-vehicle PTTV on corridor level is useful if the bus services are relatively 
similar. If distinctive services such as local and express bus routes are all considered in the 
measuring the PTTV, the value of CV could increase from the fact that these routes are 
designed to operate differently. The vehicle-to-vehicle PTTV on route level is useful in 
uniform headway-based frequent system, where the buses are distributed equally and within 
short time gap. The period-to-period PTTV on corridor level and on route level is beneficial to 
investigate the variance between peak and off-peak travel time of public transport. The 
higher period-to-period variability also denotes a more congested day. However, the vehicle-
to-vehicle and especially the period-to-period definitions of PTTV have limited information on 
the pattern of public transport TTV as the data of only a single day is explored.  
The definition of day-to-day PTTV on corridor level reflects the variability of bus travel time in 
general on multiple days. All the buses within the same time window are considered by 
averaging their travel times. By examining the CV of the average travel times, the pattern of 
the daily public transport variability can be discovered. The journeys within off-peak periods 
are relatively reliable while the average travel time during peak periods are fluctuated, 
especially during congestion built-up and dissipation. However, by averaging the travel time 
of individual buses, we also normalise some sources of variability such as driver behaviours, 
signal delay, etc. Conversely, the definition of day-to-day PTTV on route level measures the 
variability in travel time of a specified service on a specified route. It does not only reveal the 
pattern of TTV, but also provide a method for monitoring performance and optimising the 
time table of transit services.  
In comparison between the three types of travel variability for public transport, the definition 
of day-to-day PTTV on route level is the most intuitive in representing the pattern of 
variability, because the individual inter-day travel time samples are used. Moreover, from 
transit passengers point of view, the variability of travel time of the same service or route on 
multiple days would be more important than the variability among different vehicles (vehicle-
to-vehicle PTTV) or among different periods of a day (period-to-period PTTV). Many transit 
commuters travel daily by a specific route/service at around a specific time of the day. 
Therefore, day-to-day PTTV (especially the route-level one) is more advisable for exploring 
the TTV of public transport than other two types of variability. 

5. Day-to-day public transport travel time distribution analysis 

Probability distribution of travel time shows the shape and nature of travel time variability. A 
uniform distribution denotes no variability, while a long tail skewed distribution shows 
unreliable travel time. It is useful to assume a parametric family to the public transport travel 
time because of 3 reasons.  
First, travel time distribution is also essential in public transport planning. Resource 
allocation such as timetable is not often planned on the basis of average travel time, but on 
minimizing the opportunity that any journey would exceed the scheduled time (Moghaddam 
et al., 2011). Probability density function of public transport vehicle travel facilitates 
calculation of the probability that travel time would be higher than a predefined threshold. 
Given a network design and desired frequency setting, transit operators is interested in 
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minimizing the probability that their transit vehicles would experience the travel time higher 
than the predefined running time.  
Second, travel time distribution is the essential part of any simulation study on public 
transport. In traffic simulation, one would be interested in reproducing number of vehicles 
that have the travel time follows a parametric probability distribution similar to the reality.  
Third, the knowledge of public transport travel time distribution can also benefit various of 
statistical studies such as travel time prediction (Chien and Kuchipudi, 2003), route choice 
(Liu et al., 2004), dynamic scheduling {Hickman, 2001 #518} where transit vehicle travel time 
is modelled using the assumed family of distribution.  
However, the literature on the distribution of public transport travel time is still limited and 
inconsistent. Existing studies fitted the distribution to both symmetric, i.e. Normal distribution 
(Taylor, 1982), and skewed distribution, i.e. Lognormal distribution (Andersson et al., 1979) 
or both of them (Mazloumi et al., 2010). Most of the transit travel time distribution analyses in 
the literature have just only explored common distributions at limited time periods.  
A comprehensive seven-step approach is applied in this section. Based on the previous 
discussion, we focus on the probability distribution of bus travel from the same route and 
service, i.e. on route level.  Most continuous distribution types test whether the distribution 
is symmetrical (e.g. Normal, t-location scale, Error) or skewed (e.g. Lognormal, Burr, 
Weibull) as the nature of bus travel time is continuous. The analysis neglects only the 
discrete types of distribution (e.g. Binominal, Negative binominal, Poisson) as well as 
Uniform and limited samples distributions (Triangular, Rectangular).  
The list of 23 fitted distribution types includes: Beta, Birnbaum-Saunders, Burr, Chi-Squared, 
Dagum, Erlang, Error, Exponential, Frechet, Gamma, Generalized Pareto, Inverse 
Gaussian, Levy, Logistic, Log-logistic, Lognormal, Nakagami, Normal, Rayleigh, Rician, 
Pareto, t location-scale and Weibull.  

5.1 Seven-step approach for public transport travel time distribution 
analysis 

Travel time samples of each service are fitted by the Maximum Likelihood Estimation (MLE) 
method to estimate the parameters of each distribution. Most existing studies of travel time 
distribution analysis performed one of the three common goodness-of-fit tests named Chi-
Squared; Kolmogorov-Smirnov (KS); and Anderson-Darling to find whether the data follows 
the specified distribution (hypothesis H0). Any p-value larger than the significance level (α) 
fails to reject H0 and the distribution is considered as significantly fitted with the data. 
However, this method has two key drawbacks (Durbin, 1973). Chi-squared requires large 
sample size, while the other two test goodness-of-fit of distribution with predefined 
parameters, if estimated from the data, then original critical values of the test are not valid.  
Literature offers other approaches which solve the aforementioned problems, but they also 
have their own disadvantages. First, the information creation technique such as Bayesian 
Information Creation (BIC) (Schwarz, 1978) measures the relative quality of a statistical 
model by trading off the complexity (by considering the number of parameters) and 
goodness-of-fit of the fitted distribution (by considering the maximized value of the log-
Likelihood). However, the BIC statistic is difficult to interpret. The fitted distribution with the 
lowest BIC is the “best” descriptor of the data, without a hypothesis testing to validate the 
goodness-of-fit. Second, the best fitted distribution could be examined graphically by using 
the probability plot, histogram, stem & leaf plots, scatter plot, or box & whisker plots. This 
graphical approach does not provide a reference point so that multiple distributions can be 
compared within multiple time periods. Third, recent goodness-of-fit tests such as Lilliefors 
test (Lilliefors, 1967) extends the KS test by determining the critical value by a Monte Carlo 
simulation, which enables estimating the distribution parameters from the data. However, the 
critical values table supports only a few limited types of distributions, restricting the study to 
a few selected distributions. 
To overcome the limitation of the existing approach in travel time distribution analysis, this 
paper extends the Liliefors test to support all types of distribution by calculating critical 
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values using parametric bootstrap (D'Agostino and Stephens, 1986, Babu and Rao, 2004). 
The analysis follows the following steps. 

Step 1: Consider each type of distribution. MLE method is employed to estimate 
distribution parameter(s) from bus travel time data. 

Step 2: Generates random numbers from the studied distribution using the 
parameter(s) from Step 1. 

Step 3: Use MLE to re-estimate distribution parameter(s) from the generated data. 
The parameter(s) is used to build theoretical cumulative distribution function (c.d.f) F(x) at 
each value of the generated data  

Step 4: Calculate the KS statistics   
 , i.e., maximum difference between the 

empirical distribution function (e.d.f.)       from the generated data and the theoretical c.d.f. 
F(x) at each value of the generated data. 
 
   

                          (8) 
Where the e.d.f. SN(x) of N samples is calculated as in Equation (9). 
 

       {

                                                           
 

 
                             

                                                             

                     (9) 

 
Step 5: Repeat Step 2 to Step 4 a large number of time (say 10000) to gather the set 

of   
 . Since significance level (α) equals 0.05, the 95th percentile of the set is chosen as the 

critical value DC. 
Step 6: Compute the observed KS statistic DN between the e.d.f. from the bus travel 

time data and the c.d.f. at each sample of the bus travel time, and compare it to the 
simulated critical value. If DN < DC, the test fails to reject the null hypothesis that the 
distribution could describe bus travel time data.  
For each service, the list of accepted distribution types can be found. However, the KS test 
with parametric bootstrap does not provide a measure to compare the goodness-of-fit at 
each service if multiple distributions are accepted. A hybrid approach was then used, in 
which the top five distribution types in the number of passed KS test were chosen as the five 
candidates for the descriptor of bus travel time. The BIC statistic test was then conducted to 
find the goodness-of-fit of each of 5 candidates to the bus travel time.  

Step 7: BIC statistics are calculated for each candidate distribution from Step 6. The 
distribution type with lowest BIC is best fitted to the bus travel time data. 
The BIC can be formulated as follows (Schwarz, 1978) 

                                        (10) 
Where:  
n = number of observations 
k = number of parameters to be estimated 
Lmax = maximized value of the likelihood function of the estimated distribution 
This seven-step approach investigates the best descriptor of public transport travel time. 

5.2 Analysis results and discussion 

The Step 6 of the seven-step approach reveals five candidates of bus travel time distribution: 
Burr, Gamma, Lognormal, Normal and Weibull. While Normal and Lognormal are commonly 
used in public transport studies (Taylor, 1982, Andersson et al., 1979, Mazloumi et al., 
2010), the other three are relatively new in the area. The KS test results and histogram of 
each distribution type, along with the lowest 2 distribution types in BIC statistics are 
presented in Figure 11. The following presents each aforementioned candidate to justify its 
overall goodness-of-fit to the bus travel time data. 
The Burr distribution has been recently used in traffic engineering and believed as superior 
to Lognormal, Normal, Weibull and Gamma in modeling urban road travel time (Susilawati et 
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al., 2011). Burr distribution is described as a heavy-tailed, highly-skewed distribution. Figure 
11 shows that while the Burr distribution only passed the KS test at 18/37 services, it is the 
best fitted distribution where bus travel time is high left skewed and long tailed, especially 
with a range of travel time with very high occurrences. However, this travel time pattern 
appears in only a few services. The 5 services where Burr has the lowest BIC and the 4 
services where it comes second are all in congestion build-up and dissipation periods.  
The Weibull distribution has been widely used to represent travel time on arterial roads (Al-
Deek and Emam, 2006) and especially on duration-related studies such as traffic delay 
durations (Mannering et al., 1994) and waiting time at unsignalized intersections (Hamed et 
al., 1997). Weibull distribution has been described as flexible representing right-skew, left-
skew and also symmetric data. The BIC results show that Weibull is almost always within the 
top 2 in negative skewed travel time patterns. The histogram identifies that this pattern 
appears the at morning congestion period (because most vehicles experience a high travel 
time) and mid-peak period (when bus travel times are stable at around 300 seconds, but 
some faster buses form the “left tail” of the distribution). As the services with negatively 
skewed distribution are few in the dataset, Weibull distribution has the lowest BIC in only 3 
services. 
The Normal distribution has been suggested as the descriptor of bus travel time in a number 
of studies (Taylor, 1982, Mazloumi et al., 2010). It has a symmetric shape and its 
characteristics are thoroughly studied in statistics, which facilitates theoretical research. 
Figure 11 shows that Normal distribution is still a strong candidate as the descriptor of bus 
travel time in this study by passing the KS test in 20/37 services and having the lowest BIC 
statistics in 8 services, most of which are in mid-peak period.   
The tests results indicate the Gamma and Lognormal distributions to be superior. The 
Gamma distribution has been long considered one of the first candidates for distribution of 
travel time. Polus (1979) believed that travel time on arterial road would “closely follow” a 
Gamma distribution, and for this reason Dandy and McBean (1984) suggested Gamma 
distribution as the descriptor for in-vehicle travel time. Lognormal distribution is conversely 
used to represent bus travel time (Andersson et al., 1979, Mazloumi et al., 2010) due to the 
flexibility and ability to accommodate skewed data.   
While the Gamma distribution passes the KS test in 30/37 service, the Lognormal 
distribution passes in only one less services (29/37 services). Both of them are the optimal 
descriptors of bus travel time with moderate skewness and kurtosis (i.e. absolute value of 
skewness smaller than 1 and kurtosis smaller than 3). This type of travel time pattern is 
dominant in the dataset, which is why Gamma and Lognormal passed most KS tests. 
Again both Lognormal and Gamma distribution have the capability to model both heavy and 
light tailed data, but the Lognormal is capable of representing higher skewed and longer 
tailed data, as it came with the Burr distribution in the top 2 lowest BIC statistic in several 
services. The BIC statistics also indicate that Lognormal is the best fitted distribution in more 
services than any other distribution types (14/37 services).  

5.3 Hartigan Dip test for examining the bimodality 

The histograms on Figure 11 show some signs of bimodality on two services before and 
after the morning peak period. Testing the bimodality is best conducted with the Hartigan Dip 
test. Dip statistics express the largest difference between the empirical distribution function 
and a unimodal distribution function that minimizes that maximum gap (Hartigan and 
Hartigan, 1985). If the p-value of the test is more than the significance value (chosen as 
0.05), the data is concluded as unimodal distributed. 
The results from Figure 11 show that although the bimodality is significant in only two 
services, the distributions of travel time in many services before and after the morning peak 
period are also nearly bimodal (p-value slightly larger than 0.05). The bimodality of travel 
time is mainly caused by a mixture of congested and uncongested population of traffic. 
Earliness or excessive congestion on some days, or generally the spread of congestions 
could be the main reason. These services are within the congestion build-up and dissipation 
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periods, where speed could be free flow or congested depending on a day-to-day basis. The 
study was conducted on inbound traffic only, which means the pattern is not repeated for the 
afternoon.  
 
Figure 11 Descriptive statistic of analysis results 
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6. Conclusion 

Literature on public transport is limited on reliability studies, notwithstanding the importance 
of travel time variability in explaining reliability, performance measurement, scheduling and 
route choice. This paper proposes three definitions of public transport travel time variability 
and a new approach for studying the distributions of day-to-day travel time variability.  
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The definitions of PTTV are based on the common definitions of TTV proposed by Bates et 
al. (1987). The three definitions are vehicle-to-vehicle, period-to-period and day-to-day TTV. 
Utilise the extra information of individual bus (route number and scheduled service start 
time), we proposed the definitions for corridor and route level. The new definitions suit better 
to public transport, and should be of interest to traffic managers and transit operators. The 
corridor-level variability considers all buses that passing by an urban intersection. It provides 
the information of variability of buses in general. The corridor-level PTTV could be useful for 
strategic traffic planning, especially in comparison between multiple modes of transport. The 
route-level variability considers the travel time from a specific bus route, or a specific 
scheduled service start time. It can be used for performance measurement, optimising 
recovery time and scheduling. Among the definitions, the day-to-day definition of route-level 
travel time variability is the most intuitive. 
The distribution of public transport travel time reveals the pattern of variability within the 
buses of the same route and service. The comprehensive seven-step approach allows fitting 
most of the continuous types of probability distribution to all services. Each type of 
distribution is tested by both KS test with parametric bootstrapping and BIC method, 
identifying Lognormal distribution as the descriptor of day-to-day public transport travel time.  
The definitions and modelling methods presented in this paper established a strong basis for 
future researches on travel time variability and distribution. The factors that causing the long 
tail of the public transport travel time distribution or high probability of travel time delay can 
also be explored in future studies. In the meantime, the findings of this paper are best suited 
for PTTV and service performance monitoring. 
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