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Abstract 
Travel time prediction has long been the topic of transportation research. But most relevant 
prediction models in the literature are limited to motorways. Travel time prediction on arterial 
networks is challenging due to involving traffic signals and significant variability of individual 
vehicle travel time. The limited availability of traffic data from arterial networks makes travel 
time prediction even more challenging.  

Recently, there has been significant interest of exploiting Bluetooth data for travel time 
estimation. This research analysed the real travel time data collected by the Brisbane City 
Council using the Bluetooth technology on arterials.  Databases, including experienced 
average daily travel time are created and classified for approximately 8 months. Thereafter, 
based on data characteristics, Seasonal Auto Regressive Integrated Moving Average 
(SARIMA) modelling is applied on the database for short-term travel time prediction. 

The SARMIA model not only takes the previous continuous lags into account, but also uses 
the values from the same time of previous days for travel time prediction. This is carried out 
by defining a seasonality coefficient which improves the accuracy of travel time prediction in 
linear models. The accuracy, robustness and transferability of the model are evaluated 
through comparing the real and predicted values on three sites within Brisbane network. The 
results contain the detailed validation for different prediction horizons (5 min to 90 minutes). 
The model performance is evaluated mainly on congested periods and compared to the 
naive technique of considering the historical average.  

 Keywords: Travel time prediction, SARIMA modelling, Arterial travel time, Bluetooth data, 
Time series analysis 
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1. Introduction 
One of the most important parameters in traffic studies is travel time. Travel time estimation 
and prediction has long been a topic of research. Travel time estimation is transforming the 
observed traffic variables such as flow and occupancy into experienced travel time. 
Forecasting the future travel time values is termed as prediction. 

 To date numerous models for estimating travel time on motorways (Bhaskar and Chung, 
2013, van Lint and van der Zijpp, 2003, Sun et al., 2008, Sun et al., 1999) and arterials 
(Bhaskar et al., 2012, Bhaskar et al., 2011, Bhaskar et al., 2010, Bhaskar et al., 2009) have 
been proposed. Most of the existing models on motorways are developed based on loops 
data, which are the oldest and widely used traffic data sources. Travel time estimation on 
arterial links is always challenging because of various reasons such as stop and go running 
conditions due to signals; non-conservation of flow due to presence of mid-link sources and 
sinks (e.g. parking, side street) etc. The estimated travel time is the input for the prediction 
modelling (Bajwa et al., 2003, Park et al., 1999).  

With the advancement in technology, other data sources such as Bluetooth (BHASKAR et 
al., 2013, Bhaskar and Chung, 2013) and WiFi scanners (Abbott-Jard et al., 2013, Abedi et 
al., 2013) are being explored as a complementary transport data. Travel time from Bluetooth 
data is compared with that from video cameras for motorways (Wang et al., 2011) and 
arterial (Mei et al., 2012). This data provides significant benefit to the road operators for 
travel time estimation on road networks in a cost effective manner. In some studies (Haghani 
and Aliari, 2012), travel time from traditional matching of Bluetooth scanners is  considered 
as ground truth travel time. Bluetooth tracking is not only being explored for car travel times 
estimation, but also for other applications such as bicycle travel time (Mei et al., 2012), travel 
patterns of people movement in airports, shopping malls (Bullock et al., 2010, Malinovskiy 
and Wang, 2012, O’Neill et al., 2006), work zone delays (Haseman et al., 2010), Origin-
Destination studies (Barceló et al., 2012, Blogg et al., 2010, Barceló et al., 2010), route 
choice analysis (Hainen et al., 2011, Carpenter et al., 2012), and freeway travel time 
variability (Martchouk et al., 2011).  

Besides collecting reliable data for travel time calculation, short term travel time prediction is 
a topic of interest in transport studies. This is important due to its applications in real time 
traffic monitoring and management, including traveller information systems. This work first 
estimates travel time based on Bluetooth data. Then a prediction model is applied to forecast 
short term future travel time values in arterial corridors. The estimated travel time from case 
study routes can be shown and stored as stationary recurrent time-series with a specific 
seasonality. Then the seasonal auto regressive integrated moving average (SARIMA) 
modelling is chosen to forecast future behaviour of travel time-series. This model is applied 
on the Bluetooth data with different prediction horizon time. The results are evaluated by 
comparing them with the real values. Finally, the capability of the model is tested by applying 
it on various corridors.  

2. Background  

2.1. Bluetooth data collection method 
Bluetooth data application has recently become more popular in transport studies as a cost 
efficient method for collecting and making traffic databases in transportation studies (D. and 
Vickich, 2010). Each electronic device is enhanced by Bluetooth technology and used by 
automobile passengers, has its own unique identifier number. This number can be captured 
and registered by compatible Bluetooth scanners. These unique MAC (Media Access 
Control) addresses are captured by scanners to calculate travel time along an urban route 
when a vehicle containing a discoverable Bluetooth device passes through a scanner 
detection zone. Such a zone is the communication area defined by characteristics of the 
scanner antenna (Abedi et al., 2013) and here includes a radius of around 100-150 m. 
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Data collected and stored by Bluetooth scanners is saved in a table format and contains 
detailed information such as; scanner ID, captured MAC address (known as vehicle ID), 
detection date and time, and duration of device presence in detection zone.  This data is 
available in databases for each detector installed along arterials. All routes in arterial 
networks are divided into small sections between any two continuous detectors. Then an  
approximate travel time is found for each vehicle ID in the specified section through matching 
the vehicle ID and timestamps from the scanner databases (Tsubota et al., 2011). After 
accumulating all the different travel times calculated from all vehicle IDs passed a specific 
section, an average travel time value is defined for the section. This process is done for all 
sections along a corridor. The entire corridor travel time value is estimated by having each 
section travel time within a corridor. 

Estimating travel time with Bluetooth scanners along an arterial route of several links can be 
obtained by: 

A) Direct matching the MAC-IDs only from upstream entrance to downstream exit of the 

route 

B) Time-slice based travel time estimation from each link 

An example, best illustrates the function of the Bluetooth scanners are placed at 
intersections A, B and C where A, B and C are in order along a route. This provides travel 
time estimated between any two combinations of the scanner locations. An estimation of 
travel time from A to C can be obtained by direct matching MAC-ID’s at A and C. This is 
straight forward, but can have low sample of travel time values due to loss/gain of vehicles at 
B. Another approach is to first estimate time series of travel time from A to B and B to C and 
thereafter apply the time-slice based travel time estimation model on the two series to 
estimate travel time from A to C.  

The time-slice method can be mathematically formulated as follows; consider the following 
variables: 

 k is the time when the vehicle enters the first section; 

 tn is the entry time for a vehicle at nth section; 

 function t(i, ti) is the travel time for the vehicle on section i when its entry time on 
section i is ti. 

The time the vehicle completes its journey over the first section is given by            
and the entry time at the nth section is given by;  

                    

 

   

 

The travel time estimate for the route (tt) is the sum of individual section travel times as 
below: 
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This research applied the time slice method to estimate travel time along the study corridors. 
Figure 1 illustrates an example of a daily travel time profile along Coronation Drive, Brisbane, 
Australia.  
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Figure 1: Sample day travel time series for Coronation Dr 

 

 

The estimated travel time values for each corridor are saved in databases which are used 
later in forecasting model calibration in the next steps. 

2.2. Travel time prediction method 
Travel time prediction is needed for a variety of ITS applications such as advanced traveller 
information systems, dynamic route guidance and advanced control measures. Based on the 
data characteristics, different methods of; historical data-base algorithm, time series models 
and simulations are done before for forecasting future travel time (Smith and Demetsky, 
1994). Through using univariate or multivariate input data for prediction, different models 
have been assessed till now. In terms of multivariate data analysis, methods of linear and 
non linear regression, Kalman filtering and artificial neural network (ANN) are applied for 
predicting travel time and bus arrival time (Okutani and Stephanedes, 1984, Chien and Ding, 
1999, DeLurgio, 1998). The inputs of the mentioned techniques are independent variables 
which have direct effects on the predicted travel time by mathematical relation based on 
historical data(Chien et al., 2002). There are also univariate prediction models which are 
designed to predict a dependent variable just by making relation between historical data and 
future values. The commonly used univariate models include; probabilistic estimation, time 
series model and ARIMA (Auto Regressive Integrated Moving Average)(Chien and Ding, 
1999, Chien et al., 2002, DeLurgio, 1998, Stephanedes et al., 1990, Al-Deek et al., 1998, 
Anderson, 1995). Neural Network and SARIMA (Seasonal Auto Regressive Integrated 
Moving Average) can deal better with trends and seasonality in data (Tong and Liang, 2005). 
But in terms of forecasting univariate time series, SARIMA model is more suitable for short 
term forecasting than long term compared with neural network (Maier and Dandy, 1996). All 
these statements are concluded mainly for motorways, so in this paper by analysing 
Bluetooth data as univariate type of data, SARIMA is evaluated for the short term travel time 
prediction on signalised arterials as well.  

2.3. SARIMA modelling 
Auto Regressive Integrated Moving Average (ARIMA) method (Box, 1976) analyses 
stationary univariate time series. This statistical method is fitted on the data to make a better 
understanding of past data behaviour for predicting futures values in time series. ARIMA is a 
generalised model of auto regressive moving average (ARMA) method enhanced by a 
degree of differencing for changing non-stationary time series to stationary ones (Ong et al., 
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2005). This method also becomes more useful for forecasting future values when it is fitted 
on seasonal time series. In this case the method is changing to SARIMA with considering a 
seasonality value for the historical data.  

The shorthand notation SARIMA (p, d, q) (P, D, Q)s is often used when an ARIMA model is 
factored into "local" and "seasonal" multiplicative terms where the seasonal period “s” is 
known. The indicators p, d and q are non negative integers which refer to order of auto 
regressive, differencing and moving average non seasonal part of the model(Tong and 
Liang, 2005). Respectively the same capital letters are referring to the same action but in 
seasonal part.  

The following equation shows the SARIMA linear mathematical formula in a general form: 

    
         

                  
            

In this equation, B and Bs denote ordinary and seasonal backward shift operators. 
Respectively;  (B),  (B),  (Bs) and  (Bs), are polynomials (of x & a variables) in B and Bs of 
finite order p and q, P and Q, respectively. The “a” also is an estimated white noise by the 
model. This equation shows how much the future values are depended on their previous lags 
and the lags from past seasons. For example the equation for SARIMA (1,0,1)(1,0,1)12 would 
be: 

                                        

This sample equation shows when a SARIMA model with seasonality of 12 is fitted on a 
historical data, the Xt value is predicted by making the mentioned linear formula among the 
previous lags in the same season and previous season (Xt-1 & Xt-12), with considering a white 
noise and constant from current and past season. 

The steps for predicting future values by SARIMA are shown in Figure 2.  

 

Figure 2: Progress of time-series prediction by SARIMA modelling 
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Figure 2 represents the procedure in which the first values for the AR and MA are identified 
by drawing ACF (Auto Correlation Factor) and PACF (Partial Auto Correlation Factor) 
graphs. The ACF plots the correlations between Xt and Xt-k against the lags (k = 1, 2, 3 …) 
and then identifies possible MA terms. The PACF plots the coefficients in a regression of Xt 

on Xt-1, Xt-2…Xt-k   and identifies possible AR terms (Reisen, 1994, Ong et al., 2005).  

After this stage by fitting the model on half of data and calculating the residuals for the 
second half, diagnostics test is implemented. Accordingly, the final coefficients are defined 
and the identified model is ready for forecasting future lags. 

  

3. Methodology 
This research defines three urban signalised arterials in Brisbane. Then analyses inbound 
traffic flow for each. These three routes were chosen because they experience different 
traffic conditions in terms of; congestion periods, free flow periods and Bluetooth data 
volume. Travel time prediction results on these three different routes therefore provides  
good understanding about the model performance on signalised arterials. 

The three corridors are: a) Coronation Drive; b) Wynnum Road and c) Old Cleveland Road 
(Figure 3). 

Figure 3: Three case study corridors

 

This research forecasts future travel time values based on data gathered by Bluetooth 
scanners installed along the defined corridors. Before developing the prediction model 
(Section  3.3 and section  3.4), time series of historical travel time have to be estimated from 
the Bluetooth data (section  3.1 and section  3.2). 

3.1. Bluetooth data analyses  
In this study  data was collected from Bluetooth detectors installed along the urban corridors 
by the Brisbane City Council. This data represents unique MAC (Media Access Control) 
addresses captured by the Bluetooth detectors and then registered with their corresponding 
complete details of; date and time of first detection, and duration of presence in the detection 
zone. Access to this data for each detector, means the same MACs are matched from 
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upstream and downstream and the time spent by each vehicle to pass between the two 
detectors is calculated. These calculated time values between two detectors are counted as 
travel time for that section. This method enables several travel time values to be calculated 
for a unique vehicle (MAC address) in a short period of time (Araghi et al.,2010).  

After calculating all travel time values for each vehicle the calculated values are filtered 
according to two scenarios. The first is removing multiple registered travel time values for a 
unique vehicle ID in a short period of time and keeping just one value. Indeed, these multiple 
values are caused by vehicles which exited the detection zone once and returned to it after a 
few minutes. After identifying the best value which represents each vehicle travel time (less 
than others and above a defined minimum) for a section, all values are drawn as a daily 
travel time series for each route. The profile “A” in Figure 4 shows a sample day travel time 
profile for a section and identifies there are extra data points with a significant difference with 
other points which formed a condensed pattern as a daily TT (Travel time) profile. These 
extra points are recognized as outliers caused by vehicles passing detectors but chosing 
another route for passing the distance between two detectors. They also can be generated 
by vehicles stopping along the way. The second scenario of filtering all outlier points is to 
remove them by  applying MAD (Median Absolute Deviation) method (Gather and Fried, 
2004).  

Having travel time values as a univariate data, MAD is the median of the absolute deviations 
from the data's median(Gather and Fried, 2004). 

                            

        

In this formula “k” is a constant scale factor, which depends on the data distribution. This 
research created a moving time window (10 minutes) for applying MAD on data. So the 
distribution of data in most cases is investigated as normal within the time windows. 
Therefore, ”k” is considered as 1.4826. 

By  adding   to MAD and subtracting it from MAD, a maximum and minimum margin is 
defined for each minute time window and only travel time values within this interval are kept 
as final data. The values beyond this interval are found and removed as outliers (Gather and 
Fried, 2004).  

Profile “B” in Figure 4 shows how the travel time pattern looks for a sample day after 
removing outliers.  

Figure 4: A sample daily travel time graph before and after removing outliers 

(A) Sample day travel time profile before 
filtering outliers 

(B) Sample day travel time profile after 
filtering outliers 

  
 

http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Absolute_deviation
http://en.wikipedia.org/wiki/Scale_factor
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After removing outliers from each section (Distance between two continuous detectors) travel 
time values, the average travel time is calculated for each minutes of day by moving average 
method. Then after calculating TT for each minute of a day in each section, the whole 
corridor travel time is estimated using the aforementioned time-slice method. This process is 
done for all three case sample routes during 8 months from November 2011 to Jun 2012. 
The method of using accumulated data from all sections along a corridor, for calibrating and 
validating the prediction model is explained later in section 3.3.1  

3.2. Daily historical travel time data 
The next step after calculating the daily travel time value for corridors during 8 study months 
is to classify the data in three categories of; working days, public holidays and school 
holidays. Figure 5 illustrates these. Each time series in this figure represents a day travel 
time profile in October 2011.  All graphs have the horizontal axis divided from 0 to 24 
(showing 24 hours a day) and the vertical axis illustrates travel time value in seconds. This 
figure is a good schematic view for comparing daily travel time behaviour during a month, 
among the different categories. 

 

Figure 5: Classified daily travel time series for a sample month (October 2011) 

 

 

After classifying travel time data into the categories (working day, public holiday and school 
holiday), the similarity of daily travel time patterns is investigated by comparing the 
distribution of data variation during each week day. It is therefore concluded that daily travel 
time patterns show greater similarity on a weekly base. This means that the same week days 
(for example Mondays) within the same cluster (working, holiday etc.) have more similar 
patterns in their time series. Based on this conclusion, the historical data base for each 
corridor is created by putting all similar days from the same cluster, continuously together. As 
it can be seen clearly in Figure 5, daily travel time for working days experience more 
congestion (more peaks in time series) during some periods of time. So the analysis and 
predictions in this research are focused on the working day category.  

                                                
1
 In moving average method for estimating travel time for each minute of day, it is assumed that there 

are enough data points in sample sizes and TT estimated from Bluetooth data has enough confidence.  
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Calculating daily travel time values and putting all time series from the same cluster together 
identified that some days in the same cluster have unusual patterns and do not follow the 
routine trend. For example, in these days an exaggerated peak time can be observed, or an 
unexpected congestion happened during ordinary non congested hours (like during noon 
hours with free flow). This is further investigated by integrating the travel time profiles with 
incident records, and all the days with incidents (such as accidents, road works, and rainy 
weather) are removed.  

Following these steps, the developed travel time database is ready for use in SARIMA 
modelling. Figure 6 shows a sample historical database for all working recurrent Mondays 
(19 days) before a Monday on Coronation Drive. 

Figure 6: A sample historical data-base for using in SARIMA 

 

3.3. Fitting suitable SARIMA (p,d,q)x(P,D,Q)s model on data 
As illustrated in Figure 6, travel time patterns have a recurrent trend with a seasonality of 24 
hours. Although these recurrent profiles have different peaks after comparing the mean value 
from each day data, it is observed that the mean values fluctuate around a constant value 
and the daily mean value does not dramatically increase or decrease. Based on this 
observation the current historical travel time data base is recognised as a stationary time 
series and there was no need for differencing. For any other route experiencing an increase 
or decrease in the daily mean TT value, a first or second degree of differencing will be 
needed to turn the time series into a stationary one. But for the current historical data of the 
study routes, there is no need for differencing and the “d” indicator is defined as zero in the 
SARIMA model.  

The next step is defining suitable values for indicators (“p”,”P”,”q” and “Q”). As  explained 
before, these indicators define how much the previous continuous lags and seasonal lags 
contribute to forecasting the next lags. These indicators primarily are defined using ACF and 
PACF graphs. Basically, the “q” is defined as the point in the ACF graph where no more 
spike can be observed after that. Using the same method, the “Q” is defined from seasonal 
ACF graph. Repeating the same procedure with PACF graphs, the related values for “p” and 
“P” are obtained. Subsequently,  the suggested model is calibrated on half of the historical 
data for forecasting each day travel time. Then the model is validated on the second half of 
data and final parameters selected. Based on the characteristic of data in the selected 
sample corridors, the indicators for “p & q” are chosen between 1 and 2 which means that, 
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the prediction mostly dependes on one or two lags before and one or two lags in previous 
seasons (same day from last weeks).  

Predicting travel time of each day, historical databases consist of data from almost 18 to 25 
days before the specific day. For example, predicting travel time in a sample day Monday, 
with a historical data base shown in Figure 6, 19 Mondays before that sample day are used 
as historical data. Half of this data (10 days) is used for calibration of the model and the 
second half (9 days) is used to validate the created model.  

Simplification of the prediction process, the 24 hours of a day are divided to 5 minute groups 
which means that each day consists of 288 travel time data points. Therefore, by putting all 
similar days continuously together, the seasonality is defined as 288 in the model. Indeed, 
the number 288 refers to the data point in the previous 24 hours (in the previous season).  

For predicting travel time values in a sample day, the “p,d,q” parameters are defined as 
“1,0,1” with one day seasonality (288). Then the “P,D,Q” are automatically generated by the 
model . The model is fitted on half of data and coefficients estimated by the model are shown 
in Table 1. Thereafter for the next half of data the sum of the squared residuals (SSres) from 
the fitted model is calculated. The sum of the squared differences from the mean of the real 
values (SStot) is also defined. Finally the coefficient of determination “R2”2 is calculated as 
0.794 for the model. This demonstrates that the fitted SARIMA model predicts 79% of the 
variance in the historical data. 

Table 1: Sample model's coefficients and equation 

Parameters Estimated Coefficient 

Constant -0.017 

‘AR’ 0.962 

Seasonal ‘AR’ -0.105 

‘MA’ 0.668 

Seasonal ‘MA’ -0.593 

Variance 50.114 

                                                 

 

3.4. Defining different prediction horizons for forecasting process 
Prediction horizons are the number of lags (minutes) which will be predicted after real 
available travel time values. For predicting short term travel time in future, different horizon 
time is defined in this paper (5, 15, 30, 45, 60, 90 Minutes). For example in case of 15 minute 
prediction horizon, real data is available until 7:45 and the value for 15 minutes later which is 
8:00 is predicted. Then for predicting 8:01, the real data till 7:46 is used and forecasted 15 
minutes later. Therefore, through defining different prediction horizons, accuracy of short 
term prediction is tested in variety of time periods.  

4. Results and discussion 
Prediction results for several days in all three chosen study corridors are compared. This is 
performed within different time horizons to evaluate the prediction’s accuracy for each time 
horizon separately.    

Figure 7 is a schematic view of the comparison between real travel time series and predicted 
ones for a sample day in Coronation Drive. In the figure different colours are used to show 
various predicted travel time series within different time horizons. From this figure, it can be 

                                                
2
 R

2
 = 1- (SSres / SStot) indicates how closely values are obtained from fitting a model match the 

dependent variable the model is intended to predict. 
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clearly seen that the predicted time series change with alteration of time horizons. This figure 
also shows that changing the prediction horizon from 5 minutes to an hour causes an 
increase in error of prediction. 

 

Figure 7: Real travel time series and forecasted ones in different time horizons for a sample day  

 

 

SARIMA prediction’s results show a good accuracy in terms of having few amounts of lags 
between real travel time series and predicted one. This means that, there is not a 
considerable lag in congestion start times between real and forecasted trends. However, in 
most of the cases there is a drop in predicted trend after Congestion periods (peaks in time 
series). This drop is clearly shown in section “A” in Figure 7. By increasing the prediction 
horizon length, this drop in predicted travel time trend increases as well. The reason behind 
this issue is that when the prediction horizon increases, SARIMA uses previous lags which 
are predicted by the model, not the real data.  For instance the model has predicted two lags 
after the real data points  with associated error, then these values are used for predicting 
next lag .Therefore, error will dramatically increase, specifically when the difference of two 
continues lags are high (like in congestion build up and congestion dissipation parts).  

To solve this problem in short term travel time prediction, a threshold quantity, based on the 
whole day travel time trend can be considered. In this case the threshold value is defined 
based on free flow traffic in non congested periods. For example, for the sample day in 
Figure 7, the threshold line is shown. The constant value for drawing this line is estimated 
based on free flow travel time mean calculation. Then predicted values (located just after the 
peaks) less than the threshold are replaced with the threshold value.  

As the most challenging part of travel time prediction is predicting congestion periods (peaks 
in time series), the main investigations are carried out on the peak periods [morning (6:30-
9:00 am) and afternoon (3:30-7:00 pm) congestions]. The graphs in Figure 8 also show the 
difference between real travel time values and predicted values due to use of different 
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prediction horizons in SARIMA Modelling. In each graph vertical axis represents the 
difference between real and forecasted travel time in seconds and the horizontal axis 
represents congestion time periods (shown in 5 minutes intervals). These graphs are 
classified from 5 to 90 minutes prediction horizons and show the comparison only on peak 
periods. In each part, the upper bar chart is related to morning peak (6:30-9:0: am) and the 
lower one provides information about afternoon peak (3:30-7:00 pm).  

Figure 8: Difference between predicted and real TT value for the sample day  (in different prediction 
horizons of 5, 15, 30, 45, 60 & 90 minutes) 

  

  

  

 

As shown in these graphs, increasing the prediction horizon results in increase of the 
difference between predicted and real travel time value. This error gets to its highest level at 
45 minutes prediction and then falls down slightly and becomes constant after one hour.  

To evaluate the selected model results within each prediction horizon, the percentage of 
error during congestion periods is calculated for each predicted day. Then percentages of 
error for all results are illustrated in the charts in Figure 9. These bar charts show the 
percentage of the error occurred within each prediction horizon only  during peak periods. 
These values are calculated by MAPE (Median Absolute Percentage Error) method.  

The following equation is used as MAPE equation for comparing real travel time values and 
the predicted ones. In this formula Rt represents the real travel time values and the Ft stands 
for the predicted ones.  
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Figure 9: SARIMA prediction errors in different prediction horizons (congestion periods) 

Morning Congestion Period Afternoon Congestion period 

  

 

The calculated errors for predictions by SARIMA are shown for 5 to 90 minutes prediction 
horizons separately in Figure 9. The last vertical bar in the right side of each graph is related 
to the calculated error for predicted travel time values using historical mean method. The 
historical mean method is a simple naive method for forecasting an approximate future 
values in time series based on calculating the average values from historical data. According 
to this graph distribution of prediction error rate by SARIMA is acceptable as long as it is not 
above the historical mean error. From the charts it can be concluded that SARIMA prediction 
model works efficiently for predicting short term future up to 30 minutes.  

Besides, the reliability of prediction by SARIMA is evaluated by using E90 indicator. E90 is the 
90th percentile of absolute percentage error of predicted values. 

Figure 10: 90
th

 percentile of prediction error in different prediction horizons (congestion periods) 

Morning Congestion Period Afternoon Congestion period 

  

 

E90 value shows that 90% of predictions have less error than this value. Represented results 
in Figure 10 approve the previously results assessment for all three routes with different 
traffic conditions. 

Based on the results taken for all three case study corridors, SARIMA model shows 
acceptable prediction results up to 30 minutes during peak hours. This statement is 
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concluded by assessing the results of explained MAPE method in Figure 9. Besides, the 
reliability of the method is evaluated by E90 indicator in Figure 10. This assessment also 
shows that the travel time prediction by SARIMA method in at least 90% of the cases have 
better results than historical mean with a considerable rate of difference in errors. Discussing 
the results focused on congestions, implies  that this method works much better during other 
periods in daily travel time. 

SARIMA performs better in  predicting short term TT  in signalised arterials when congestion 
occurs over a good shaped recurrent trend peaks. For example, Figure 11 shows two 
popular types of peaks in travel time series. In section “A” there is a sharp peak representing 
a dramatic increase and decrease in travel time during a short period of time but it does not 
show fluctuation. In contrast, the peak in section “B” is a sample of wide peak with 
congestion build up and congestion dissipation happening gradually over a longer period of 
time. But as it can be clearly seen , these type of peaks usually show more fluctuation. The 
type “B” peaks are basically created when there is a lack of data points for estimating the 
corridor travel time.  

SARIMA model generally predicts type “A” peaks with less error compared to type “B”. In the 
case of fluctuating wide peaks, travel time changes between two continuous lags do not 
follow a reasonable pattern. So the model cannot make a good relation among these data 
points for predicting the future lags. But for good shaped regular peaks with normal 
behaviour, SARIMA model performs better. Consequently, for the arterial routes which show 
good shaped peaks (like type A) in their travel time series, SARIMA attains better results 
compared to other traffic conditions. 

  

Figure 11: Showing sharp peak & smooth peaks in a sample day travel time profile 

 

Generally the model’s prediction error rate in longer prediction horizons increases by having 
intense congestion build up or congestion dissipation in daily travel time series in any 
corridor. There is also a variation in day to day congestion start and end times. So in this 
situation, model’s accuracy for forecasting congestion travel time is decreased.  
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5. Conclusion 
This research first developed a Bluetooth based travel time database for three different 
signalised arterial corridors. A SARIMA model was calibrated and fitted to each database 
with its prediction results evaluated for all predicted days separately, by comparing them with 
real travel time data. The focus of the analysis is on congested conditions. The drops after 
the peaks generated by SARIMA were then replaced with a minimum value by defining a 
threshold based on same day free flow traffic condition, as an attached part to the prediction 
process.  

Accordingly, the SARIMA model produced good results for short term travel time prediction 
up to 30 minutes ahead. Predicting future values in longer prediction horizons, means 
prediction errors will increase due to the high variability in the day to day travel time trend.  

Generally, the accuracy, robustness and transferability of the model with the calculated rate 
of error were all evaluated by testing it on three corridors with a variety of traffic conditions.   
These results focused on congested periods concluding that the model performs much better 
in arterial corridors with normal shaped congestion peaks. These peaks generally are 
created by sufficient data points rate and with more similar recurrent trends in their historical 
travel time databases.  

Overall, the SARIMA modelling application in terms of short term travel time prediction on 
Bluetooth data can be further improved by increasing the quality of historical travel time 
estimates. To do so requires more reliable historical databases by applying better clustering 
methods. Increasing the confidence of corridor travel time estimation by improving the rates 
of travel time data points is also recommended. This can be achieved by fusing Bluetooth 
with loops.  
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