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Abstract

Stream ciphers are symmetric key cryptosystems that are used commonly to pro-

vide confidentiality for a wide range of frame-based applications; such as mobile

phone communication, pay TV transmission and Internet traffic. For these ap-

plications, stream ciphers are preferred for encryption due to the simplicity of

implementation, security against known attacks, efficiency and high throughput.

In modern stream ciphers, the initialisation process (also known as resyn-

chronisation) involves the use of publicly known material as well as the secret

key. Unless it is carefully designed, this process may reveal some information

about the secret key or may leave a stream cipher vulnerable for some attacks.

Analysis of the initialisation process in the literature is limited and has not been

addressed thoroughly.

The main objective of this research is to provide design recommendations

for strengthening initialisation processes in modern stream ciphers. We achieve

this by examining in-depth the initialisation process of three well-known stream

ciphers: A5/1, Sfinks and the Common Scrambling Algorithm. Our reasons for

choosing these algorithms are:

• These ciphers are broadly representative of modern stream ciphers.

• They cover a variety of loading processes

• A5/1 and the Common Scrambling Algorithm are both used widely.

We have examined the initialisation processes of these three ciphers

Design criteria provide to prevent these flaws as well as other flaws in the

initialisation process of stream ciphers.
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Chapter 1

Introduction

Stream ciphers are used in a wide range of real-time applications; such as the

internet, pay TV and mobile phone transmissions; in order to provide confiden-

tiality. That is, the information should not be accessible to unauthorised parties.

However, before the cipher can be used to protect information, it must be ini-

tialised using secret key material and sometimes other publicly known material

commonly referred to as an initialisation vector (IV) .

For some applications, the communication is divided into packets or frames,

and initialisation is performed for each section of the communication. Generally

the same secret key is used for the whole communication but with a different

IV for each packet or frame. After initialisation is completed, a keystream is

generated and used for encryption.

Stream ciphers are considered as an important class of encryption algorithms

for several reasons. Stream ciphers in general are faster than block ciphers. They

also have less complex hardware implementation. Stream ciphers have limited

error propagation, and in some applications there is no error propagation [83, p.

191]. The security provided by stream ciphers depends on both the initialisation

and keystream generation processes being secure.

Most cryptanalysts focus on the keystream generation phase, rather than

considering both the initialisation and keystream generation phases. However,

the security of the initialisation process is also important. The initialisation pro-

cess must ensure that the keystreams produced using the same secret key but

different IVs appear unrelated. A good initialisation process should ensure that

1
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each key-IV pair generates a distinct and unpredictable keystream. This is pos-

sible for recent proposals where the state size of the keystream generator is large

enough. Also, the initialisation process (loading and diffusion phases) should not

reveal any information about the secret key. The initialisation process should

ensure that the key recovery attack is hard and the mathematical relationships

between the key-IV pair and the keystreams are hard to establish as well.

This research aims to determine whether the initialisation processes are se-

cure at least against the known attacks. It focuses on the initialisation processes

as a necessary step before keystream generation. The security of the initialisation

processes is investigated and examined for different existing stream cipher pro-

posals. Initialisation processes are examined against generic attacks to identify

the features which contribute to successful attacks. This investigation covers the

strengths and weaknesses of the initialisation processes to identify the flaws that

may occur.

Efficiency of initialisation processes is another important point for some ap-

plications. For example, real-time applications such as mobile phones require

efficient initialisation processes because rekeying is performed for each portion of

data. For example, for mobile phone systems (such as GSM) , the rekeying pro-

cess is performed every 4.6 milliseconds (using the same secret key and different

IV) [24]. Efficient initialisation processes allow stream ciphers to perform fast

rekeying using the secret key and multiple IVs to produce multiple keystreams

without any noticeable delay between parties. In general, efficiency may involve

energy consumption, area (footprint) or required memory and space, although

these are beyond the scope of this research. In this research, we comment on

the efficiency as a secondary concern and only related to the time required to

complete the process.

1.1 Motivation

Communications between parties through public channels require security. Global

System for Mobile communications (GSM) , Internet and Pay TV, for example,

all may require confidentiality. In many cases, this is provided by encryption

using synchronous stream ciphers. A problem arises when the parties lose syn-

chronisation. So in this case, the sender is required to resend the lost message.

Therefore, the communication systems require techniques to maintain synchro-
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nisation. To address this problem efficiently, the requirement for reinitialisation

(rekeying) appears to be especially important for real-time applications.

Prior to 2000 most stream cipher proposals utilised only a secret key to gen-

erate the keystream sequences. This is the case, for example, for the widely

used RC4 stream cipher [91, p. 397]. Around that time, the problems of loss of

synchronisation and the generation of whole keystream using only the secret key

alone (vulnerable to TMTO) were identified with this practice of using secret

key alone. Therefore, the initialisation process and the use of an initialisation

vector (IV) was introduced to solve the practical problem of resynchronisation,

allowing the generation of multiple keystream sequences from the same secret

key with multiple IVs. Figure 1.1a illustrates the general models of keystream

generators that use only a secret key to generate a keystream, and Figure 1.1b

shows a keystream generator that uses both the secret key and an IV to generate

a keystream.

Keystream
Generation

Keystream
Initialisation

Secret key Initial
state

(a) Using only secret key as input

Keystream
Generation

Keystream
InitialisationSecret key

IV Initial
state

(b) Using secret key and IV as inputs

Figure 1.1: General structure of keystream generator

The requirement to use both a secret key and IV is comparatively recent, and

the security analysis of initialisation processes is less thoroughly addressed than

that of the keystream generation process but it is no less important. The New

European Schemes for Signatures, Integrity, and Encryption (NESSIE) project

(between 2000 and 2003) [68] marks a time point for stream cipher design, where

the use of an IV with the secret key became essential. The original call for

primitives did not require the use of an IV with the stream cipher algorithms.

However, requests to add rekeying proposals to submissions were made dur-

ing the project. Since then, rekeying schemes have become mandatory for new

stream cipher proposals. For example, the eSTREAM project (between 2004

to 2008) [50] sponsored by the European Network of Excellence for Cryptology
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(ECRYPT) required that the initialisation vector (IV) be used and an initialisa-

tion process specified as an essential part of the submissions.

To date, there is a limited number of studies on the resynchronisation problem

of the initialisation processes of stream ciphers. Resynchronisation attacks are

applied for some stream ciphers: for Grain stream cipher in [10, 45, 73, 76, 108],

and for Trivium stream cipher in [63, 64, 86]. Also, Hong and Kim [65] reported

entropy loss in the internal state of MICKEY stream cipher after a number of

iterations of the initialisation state update function.

1.2 Aims and Objectives

The general aim of this research project is to investigate the initialisation pro-

cesses of stream ciphers, primarily in terms of security. The research considers

both the loading phase (loading of secret key and IV) and the diffusion phase of

the initialisation process. In more detail, the aims of this research project are as

follows:

1. To identify common features and properties in the initialisation processes

of the keystream generators for stream ciphers during the loading and dif-

fusion phases.

2. To examine and determine the impact of these features on the security

provided by performing an in-depth analysis of the initialisation processes

of three stream ciphers to identify any potential flaws.

3. To propose design criteria for the initialisation process of stream ciphers

to avoid the identified weaknesses.

1.3 Contributions and Achievements

The contributions that have been achieved in this thesis are as follows:

1.3.1 Analysis of the Initialisation Process of A5/1 Stream

Cipher

In this contribution, the initialisation process of A5/1 stream cipher is analysed.

Three flaws are identified: state convergence, the existence of slid pairs and weak
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key-IVs. This contribution helps to achieve aims 1 and 2 from Section 1.2.

State Convergence in A5/1 Stream Cipher

In prior work, Golić [54, 55] demonstrated the proportional reduction of the

internal state space after one clock. In our research, we extended Golić’s work

by examining the reduction in the state space for further five iterations. We

extrapolated to estimate the state space reduction after 100 iterations. The

proportion of internal states which can be obtained is reduced after six iterations

by approximately half.

This contribution appears in the following publication:

• Sui-Guan Teo, Ali Alhamdan, Harry Bartlett, Leonie Simpson, Kenneth

Koon-Ho Wong and Ed Dawson. State convergence in the initialisation

of stream ciphers. In Udaya Parampalli and Philip Hawkes, editors, Pro-

ceedings 16th Australasian Conference Information Security and Privacy,

(ACISP 2011), Melbourne, Australia, volume 6812 of Lecture Notes in

Computer Science (LNCS), pages 75-88. Springer, 2011.

Slid Pairs in A5/1 Stream Cipher

The A5/1 stream cipher uses the same update function during both the initial-

isation and keystream generation processes. Additionally, each internal state

obtained after any number of iterations, is a legitimate loaded state. This is

used to show that slid pairs and shifted keystream can be obtained easily, even

after only one or two clocks. An attack procedure and the attacking algorithm

are presented using slid pairs and shifted keystream flaws for the A5/1 cipher.

This attack targets secret key recovery using a ciphertext-only attack model.

This contribution appears in the following publication:

• Ali Alhamdan, Harry Bartlett, Ed Dawson, Leonie Simpson and Kenneth

Koon-Ho Wong. Slid pairs in the initialisation of the A5/1 stream cipher.

In Clark Thomborson and Udaya Parampalli, editors, Proceedings of the

11th Australasian Information Security Conference (AISC 2013), Adelaide,

Australia, volume 138 of Conference in Research and Practice in Informa-

tion Technology (CRPIT), pages 3-12. Australian Computer Society, 2013.
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Weak Key-IV in A5/1 Stream Cipher

It is shown that the non-autonomous feedback mechanism during the key-IV

loading phase may result in the contents of one, two or three registers containing

all zeros. When two or three registers contain all-zeros, it is possible to perform

key recovery using ciphertext-only attack.

This contribution will appear in the following publication:

• Ali Alhamdan, Harry Bartlett, Ed Dawson, Leonie Simpson and Kenneth

Koon-Ho Wong. Weak key-IV Pairs in the A5/1 Stream Cipher. In Udaya

Parampalli and Ian Welch, editors, Proceedings of the Australasian Infor-

mation Security Conference (AISC 2014), Auckland, New Zealand, volume

149 of Conference in Research and Practice in Information Technology

(CRPIT). Australian Computer Society, to appear, 2014.

1.3.2 Analysis of the Initialisation Process of Sfinks Stream

Cipher

In this contribution, the initialisation process of the Sfinks stream cipher is anal-

ysed. Two flaws are identified: state convergence and the existence of slid pairs.

This contribution helps to achieve aims 1 and 2 from Section 1.2.

State Convergence in Sfinks Stream Cipher

This contribution demonstrates that, even though the individual components

of the state update function are one-to-one, the combination and interaction

between these components may not be one-to-one and therefore state convergence

can still occur.

This contribution appears in the following publication:

• Ali Alhamdan, Harry Bartlett, Leonie Simpson, Ed Dawson, and Ken-

neth Koon-Ho Wong. State convergence in the initialisation of the Sfinks

stream cipher. In Josef Pieprzyk and Clark Thomborson, editors, Pro-

ceedings 10th Australasian Information Security Conference (AISC 2012),

Melbourne, Australia, volume 125 of Conference in Research and Practice

in Information Technology (CRPIT), pages 27-32. Australian Computer

Society, 2012.
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Slid Pairs in Sfinks Stream Cipher

The occurrence of slid pairs and shifted keystreams is investigated for the Sfinks

stream cipher. Due to the padding pattern and the specification of the state up-

date function, the occurrence of slid pairs is deferred until the 17th iteration. We

demonstrate a modification to the padding pattern which is based on changing

the content of just one stage. This modified version dramatically changes the

time interval before slid pairs are obtained, and the probability of slid pairs and

shifted keystreams.

The contribution appears in the following publication:

• Ali Alhamdan, Harry Bartlett, Ed Dawson, Leonie Simpson and Kenneth

Koon-Ho Wong. Slide Attacks on the Sfinks Stream Cipher. In Proceedings

of the 6th International Conference on Signal Processing and Communica-

tion Systems, IEEE, Radisson Resort, Gold Coast, QLD, Dec. 2012.

1.3.3 Analysis of the Initialisation Process of the CSA-SC

This contribution is obtained from analysis of the initialisation process of the

Common Scrambling Algorithm Stream Cipher (CSA-SC). Two flaws have been

identified in the CSA-SC: state convergence and the existence of slid pairs. This

contribution helps to achieve aims 1 and 2 from Section 1.2.

State Convergence in CSA-SC

The state update function during the initialisation process is not one-to-one,

because the registers are not updated autonomously. This leads to state conver-

gence during the majority of the initialisation process.

Slid Pairs in CSA-SC

The occurrence of slid pairs and shifted keystreams in the CSA-SC is demon-

strated. This occurs due to the padding pattern and the state update functions

of both the initialisation and keystream generation processes. The highest proba-

bility to obtain slid pairs and shifted keystreams occurs after four clocking steps,

which is 2−43.65.
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1.3.4 Criteria for the Initialisation Process of Stream Ci-

phers

This contribution provides recommendations for designing the initialisation pro-

cess of shift-register based stream ciphers so as to achieve secure and efficient

stream ciphers. These recommendations are based on an in-depth analysis of

the initialisation processes of such stream ciphers, taking into account our own

contributions (as described in Sections 1.3.1, 1.3.2 and 1.3.3) as well as existing

results in the public literature.

In particular, our analysis identifies features and properties of the loading

and diffusion phases that can cause the flaws identified in our other contributions

and in the existing literature, while the recommendations provide guidelines for

avoiding these flaws and reducing the severity of their effects. In all, we provide

eight recommendations for the design of the stream cipher initialisation processes.

This contribution helps to achieve aims 2 and 3 from Section 1.2.

1.4 Thesis Outline

The organisation of this thesis is to present the literature review and then present

the results from analysing the initialisation processes of three different ciphers:

A5/1, Sfinks and CSA-SC. Each cipher is described and the initialisation process

analysed in a separate chapter. Following this, a discussion of common flaws and

possible mitigation strategies is provided. In more detail, this thesis is organised

as follows:

Chapter 2. This chapter reviews the literature and background information

that is the basis of this research. It introduces the terminology and nota-

tion used in this thesis. A general overview of stream ciphers and more

detail on the initialisation processes are provided. After that, examples of

initialisation processes from commonly used ciphers are discussed. Crypt-

analysis of stream ciphers, generic attacks, flaws and existing attacks on the

initialisation process are also discussed. It gives the necessary background

for an understanding of the stream cipher initialisation processes.

Chapter 3. This chapter describes the specification of A5/1 stream cipher and

the initialisation process thoroughly, and reviews the previous analysis on

the initialisation process of this cipher. It investigates three flaws in the
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initialisation process of A5/1 as follows: state convergence, the existence of

slid pairs and synchronisation attacks, and key-IV weaknesses. This chap-

ter represents the first major contribution by analysing the initialisation

process of the A5/1 stream cipher.

Chapter 4. This chapter describes the specification of the Sfinks stream cipher

and the initialisation process thoroughly. It investigates two flaws in the

initialisation process of Sfinks as follows: state convergence and the exis-

tence of slid pairs and synchronisation attacks. This chapter represents the

second major contribution by analysing the initialisation process of Sfinks

stream cipher.

Chapter 5. This chapter describes the specification of the Common Scrambling

Algorithm Stream Cipher (CSA-SC) and the initialisation process thor-

oughly. It investigates two flaws in the initialisation process of CSA-SC as

follows: state convergence and the existence of slid pairs and synchronisa-

tion attacks. This chapter is the third major contribution which analyses

the initialisation process of CSA-SC stream cipher.

Chapter 6. This chapter provides an in-depth discussion of flaws and attacks

on the initialisation process of stream ciphers. This discussion is based

on the literature analyses in Chapter 2 and the investigations presented in

Chapters 3, 4 and 5. This chapter discusses the causes of these flaws in

terms of design choices in the loading and diffusion phases, or the com-

bination of these phases. It also reviews briefly the weaknesses identified

in initialisation process in the existing literature. Finally, it gives some

recommendations for the initialisation processes to overcome or mitigate

these flaws.

Chapter 7. This chapter concludes the research and gives some directions for

future work in this area.
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Chapter 2

Background

This chapter presents an overview of the topics relevant to secure stream cipher

initialisation processes, including a review of the literature of stream ciphers,

concentrating on the initialisation processes. This review provides the necessary

information to support the research conducted in the thesis. It gives a general

view of stream ciphers and their initialisation (rekeying) process. Also, it reviews

the generic methods of attack that are used against stream ciphers and which

are also useful to attack the initialisation process. Finally, several examples of

initialisation processes from well known stream ciphers are provided, together

with some existing analysis of their weaknesses.

Section 2.1 gives a general overview of the terminology that is used in this

thesis. Following this, an overview of stream ciphers, types of stream ciphers

and properties of keystream sequences are presented in Section 2.2. Section 2.3

discusses the phases of the initialisation process and gives a brief overview of the

keystream generation process. Section 2.4 provides some examples of initialisa-

tion processes of stream ciphers. Section 2.5 gives an introduction to cryptanal-

ysis of stream ciphers. Some generic attacks that are used for stream ciphers and

applied to the initialisation process are discussed in Section 2.6. Section 2.7 dis-

cusses three generic flaws in the initialisation processes. Some existing attacks on

the initialisation processes of ciphers from Section 2.4 are shown in Section 2.8.

Section 2.10 presents a summary of this chapter.

11
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2.1 Terminology and Notation

The following terminology and notation are used in this research project:

• Plaintext: The original intelligible data, such as a conversation or any data.

• Keystream: The sequence of random or pseudorandom bits that are gen-

erated by a keystream generator using a secret key and (optionally) an

IV.

• Ciphertext: The output of the encryption algorithm for a given plain-

text. For most stream ciphers, it is the combination of a plaintext and a

keystream using the bitwise “XOR” operation. It is unintelligible informa-

tion.

• Encryption algorithm: The procedure or method used to convert a plain-

text to ciphertext using a secret key and (optionally) an IV.

• Decryption algorithm: The inverse of the encryption algorithm. It is the

procedure or method used to convert a ciphertext to a plaintext using a

secret key and (optionally) an IV.

• Internal state: Information stored within the components of a stream ci-

pher, this information is updated during the operation of the cipher and is

used to generate the keystream.

• State size: The total number of bits or words that can be held by a stream

cipher component.

• State space: The total number of states that can be held by the components

of the cipher is 2s, where s is the state size (length).

• Initialisation vector (IV): (or frame number). Publicly known information

which is used with the secret key (master key) to generate the session key

that is used in turn to generate the keystream.

• IV space: The set of all possible IVs that can be generated from a specific

number of bits (length of IV). If j is the length of IV, the IV space is 2j.

• Cryptographic keys:
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◦ Secret key (Master key): An input to the encryption and decryption

algorithms which is combined with the known IV to produce a session

key. It is assumed that this input is known only to the sender and

receiver.

◦ Initial state (Session key): The internal state immediately following

the initialisation process which is then used by the keystream generator

to generate the keystream sequences.

• Key Space (secret key space): The set of all possible secret keys that can

be generated from a specific number of bits (length of secret key). If the

secret key length is l, then the key space is 2l.

• State update function: The function that is used to update the content of

the internal state at each clock.

• Loading phase: The process of loading the secret key and sometimes the

IV also into the internal state of a stream cipher, resulting in a loaded state

. This is the first phase of the initialisation process.

• Diffusion phase: The process of diffusing, mixing and expanding the secret

key and IV over the internal state of a stream cipher. This is the second

phase of the initialisation process. Eventually, the diffusion phase produces

the initial state (session key). After that the keystream generation process

can begin.

2.2 Stream Ciphers

Stream ciphers are a security mechanism used in a wide range of real-time ap-

plications to provide confidentiality. Stream ciphers are symmetric key ciphers.

This means that the same secret key, IV and algorithm used for encryption must

also be used to perform decryption.

Stream ciphers are defined by Rueppel [89, p. 1] “stream ciphers divide the

plaintext into characters and encipher each character with a time-varying func-

tion whose time-dependency is governed by the internal state of stream cipher”.

Stream ciphers are defined by Menezes et al [83, p. 191] as “stream ciphers en-

crypt individual characters (usually binary digits) of a plaintext message one at a

time using an encryption transformation which varies with time”. Stallings [97, p.



14 Chapter 2. Background

189] reported that stream ciphers may be designed to operate on one bit at a

time or in units larger than a byte at a time.

Stream ciphers can be classified as bit-based or word-based depending on the

operation and output size of the key stream generator. The bit-based stream

ciphers process a single bit per clock. Some stream ciphers are bit-based but can

be modified to produce several keystream bits per clock, such as Grain stream

cipher [59]. (It seems to be word-based in the output function.) Bit-based

stream ciphers are the earliest design and implementation of stream ciphers [48]

and many bit-based stream ciphers are based on shift registers [54]. Bit-based

stream ciphers are more suitable for hardware implementation. Examples of

bit-based stream ciphers are A5/1 [54], Trivium [43], LEX [22] and Grain [59].

Word-based stream ciphers are designed for faster software implementation as

they can manipulate words per clock. Bit-based stream ciphers may be slower

in software implementation [32]. The word-based stream ciphers produce an n-

bit word at a time where the word size varies based on the structure of ciphers.

This type of stream cipher is efficient for software implementation and provides a

possible solution to the security efficiency trade-off [32]. There are several well-

known algorithms that are word-based stream ciphers; for example, RC4 [91]

commonly uses a word size of 8 bits, Turing [88] uses word size of 32 bits and

the Dragon stream cipher [32] uses 32-bit words in the operational stages and

generates 2 output words (64 bits) per clock. In software applications, the clock

frequency is generally constant for a given processor (related to the clock rate)

and the throughput is increased by increasing the word size.

The most common type of stream cipher is the binary additive stream cipher,

which uses the “XOR” operation to combine the plaintext mi and the keystream

zi to produce the ciphertext ci; and vice versa, by combining the ciphertext with

the keystream to recover the plaintext; as shown in Figure 2.1. This combining

feature has two major advantages: it is very fast and the same algorithm can

be used for both encryption and decryption without any modification. The

encryption and decryption equations are as follows.

For encryption, ci = zi ⊕mi, 1 ≤ i (2.1a)

For decryption, mi = zi ⊕ ci, 1 ≤ i (2.1b)
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where: zi is the individual keystream bit, mi: the individual plaintext bit, ci: the

individual ciphertext bit, ⊕ is the XOR Boolean operation (addition (mod 2))

and i is the time index.

Encryption Decryption

Keystream
Generation

Initialisation

Secret key

Insecure 
Channel

Public IV

Keystream
Generation

Initialisation

Figure 2.1: Binary additive stream cipher

Most recent stream ciphers consist of two main processes: initialisation pro-

cess and keystream generation process. Figure 2.2 shows a general construction

of recent stream ciphers using initialisation and keystream generation processes.

Keystream 
Generation
state-update 

function

Initial 
state

Initialisation
state-update 

function

Keystream
GenerationInitialisation

Figure 2.2: Stream cipher with initialisation and keystream generation processes

Most stream ciphers use a keystream generator to produce pseudorandom

keystream sequences. The security provided by the cipher depends on these

keystream sequences appearing to be random [20, 24]. Most modern keystream

generators utilise two inputs: a secret key and a sequence of initialisation vectors

(IVs) or frame numbers [67]. The IVs are assumed to be known information. The

keystream generator loads the secret key and IV and performs some initialisation

process in order to form the session key (initial state of the keystream generator)

before any keystream can be produced. Suppose a secret key, K, and IV are
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used to generate a keystream z. We can represent z as z = {zi}n1 = f(K, IV),

where n is the number of keystream bits and f is the cipher function.

2.2.1 Types of Keystream Generators

Keystream generators are commonly classified into synchronous and self-synchronous

keystream generators. This classification is related to the dependence of the

keystream sequences on the previous ciphertext as explained below.

A - Synchronous Stream Ciphers

Synchronous stream ciphers generate the keystream solely from the internal state

(formed from the secret key and IV) and an update function which are indepen-

dent of the plaintext or ciphertext [83, p. 193]. Encryption and decryption of

synchronous stream ciphers are described by the following equations and illus-

trated in Figure 2.3.

Keystream output {zi}n1 = f(K, IV)

Ciphertext ci = zi ⊕mi

where mi is plaintext bit, ci is ciphertext bit, zi is keystream bit, k is secret

key, v is initialisation vector, f is the cipher function and n is the number of

keystream bits.

Encryption Decryption

Keystream
Generation

Initialisation

Keystream
Generation

Initialisation

Figure 2.3: Encryption and decryption of synchronous stream cipher

A major advantage of synchronous stream ciphers is that there is no er-

ror propagation during the decryption processes, i.e. any bit/word errors that

may occur in the ciphertext during transmission affect only the corresponding

bit/word of the plaintext [37]. However, synchronous stream ciphers require both
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the sender and receiver to be synchronised to allow the message to be intelligi-

ble to the author and receivers; that is the keystream generator used by both

encryptor and decryptor have simultaneously the same internal state during the

encryption and decryption. If synchronisation is lost, the decryption processes

will fail and need an additional technique for resynchronisation. For example,

if bits/words are inserted or deleted from a ciphertext, then the decryption will

fail and the synchronisation is lost [83].

Frequent Rekeying (Re-initialisation)

Rekeying is the process of using the secret key and multiple IVs to generate

multiple keystream sequences. (That is to avoid using same keystream sequence

with multiple messages.) Rekeying or re-initialisation process is the method

that is used to solve the problem of synchronisation of the synchronous stream

ciphers, to diffuse the secret key across the entire internal state and to gener-

ate multiple keystream sequences from one secret key associated with multiple

IVs. It is used to avoid the requirement for a resynchronisation technique for

the synchronous stream cipher. If the synchronisation is lost and the interval is

small, then only that small amount of information before rekeying will be lost.

This should not cause any significant degradation in the recovery of the original

message. For example, A5/1 performs rekeying for a GSM conversation every

4.6 milliseconds [24]. This high performance rekeying stream cipher is compet-

itive in practical applications and is preferred for real-time applications, such

as mobile and wireless communications [32]. Rekeying is affected by the trans-

mission packet size. For example, the packet size of Digital Video Broadcasting

(DVB) is 184 bytes, Advanced Television Systems Committee (ATSC) is 208

bytes, General Packet Radio Service (GPRS) is 160, 240, 288 or 400 bits and

GSM mobile phone is 228 bits. Figure 2.4 shows the general concept of rekeying

for a keystream sequence using the same secret key, K, and multiple IVs.

. . . . . . . . . . . . .

Figure 2.4: A keystream generated using the same secret key, K, and multiple
IVs

Frequent rekeying process (re-initialisation) of stream ciphers must operate

with the transmission speed between parties (sender and the receivers). There-

fore, frequent rekeying of a system requires efficient initialisation process, espe-
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cially for real-time applications. If the rekeying process is slow, then the stream

cipher cannot encrypt or decrypt all the transmitted messages properly. How-

ever, the requirement of efficiency should not compromise the security of the

initialisation process.

B - Self-Synchronous Stream Ciphers

Self-synchronous (or asynchronous) stream ciphers generate keystream as a func-

tion of the secret key, IV and a number of bits from the previous ciphertext [91, p.

198]. Figure 2.5 shows the general concept of self-synchronous stream ciphers.

The self-synchronous stream cipher encryption function can be described as a

function of the secret key, IV and the feedback of the ciphertext.

Keystream output {zi}n1 = f((K, IV), σi)

Ciphertext ci = zi ⊕mi

where, σi = (ci−t, ci−t+1, . . . , ci−1). From the above equations, it is obvious that

the internal state is a function of the previous ciphertext, and the encryption

processes depend on the previous ciphertext.

Encryption Decryption

Keystream
Generation

Initialisation

Keystream
Generation

Initialisation

Keystream
Generation

Initialisation

Figure 2.5: Encryption and decryption of self-synchronous stream cipher

Self-synchronous stream ciphers have the ability to automatically resynchro-

nise themselves after a loss of synchronisation. That is, if ciphertext bits/words

are deleted or inserted, the cipher loses the synchronisation; however, self-synchronous

stream ciphers will automatically recover the synchronisation after several de-

cryption steps. Self-synchronous stream ciphers propagate errors for a limited

number of clocks. If a ciphertext bit is modified, then the decryption processes

will affect a number of ciphertext sequences before synchronising itself. The

drawback of the self-synchronous stream ciphers is that this type of cipher may

be vulnerable to chosen ciphertext attack [107].
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From the above argument, the characteristics of synchronous, self-synchronous

stream ciphers and the requirement for frequent rekeying are highlighted. Based

on the fact that the synchronous stream ciphers resist the chosen ciphertext at-

tack, this thesis focuses on analysis of the initialisation process of the synchronous

stream ciphers.

2.2.2 Properties of Keystream

Pseudorandom keystream sequences are intended to be indistinguishable from

truly random sequences. However, as Schneier comments, “it is impossible to

produce something truly random on a computer” [91, p. 44]. Therefore, stan-

dard properties of the keystream sequences are used to measure unpredictability

of the pseudorandom keystream sequences. These include criteria for period,

linear complexity and white noise statistics [41]. Meeting the relevant criteria

for these properties is a necessary (but not sufficient) condition for generating

pseudorandom keystream sequences. These properties and their effects on the

security of keystream sequences are explained in the rest of this section.

• Period. A deterministic keystream generator produces pseudorandom se-

quences or sequences that eventually become periodic. The period of the

keystream sequences should be longer than the length of the plaintext.

If the keystream is periodic or repeated for another plaintext, it may be

possible to recover the message by ciphertext-only attack [40].

• Linear complexity. Any periodic sequence can be constructed using a suit-

able chosen linear feedback shift register (LFSR). The linear complexity

L of a sequence is the length of the shortest binary LFSR that generates

the specified sequence. The details of the appropriate LFSR for a given

sequence can be determined from 2L bits of known output sequence using

the Berlekamp-Massey algorithm [14,80]. Therefore, the linear complexity

of the LFSR should be sufficiently large to avoid a reconstruction of the

internal state [41].

• White noise statistics. The output sequences of random generators are

statistically independent and unbiased [83]. A pseudorandom sequence

generated by a keystream generator should mimic this behaviour. That

is, it should be indistinguishable from a random sequence. In a pseudo-

random sequence, occurrence of single, pairs, triples bits etc are uniformly
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distributed. The keystream should appear to be random in short and long

subsequences. [41]. The output sequences should pass all the statistical

tests of randomness [91]. There are five commonly used statistical tests to

measure the security of pseudorandom keystream sequences as follows: (1)

frequency test: the number of ones and zeros in any sequences are approx-

imately the same; (2) serial test: (two-bit test), this test ensures that the

number of occurrences of 00, 01, 10 and 11 are approximately the same; (3)

poker test: if m is a positive integer and divides the keystream sequence Z

into n non-overlapping parts of length m, the poker test will determine if

the sequences of length m appear approximately the same number of times

in each keystream sequence; (4) runs test: in a specific period, half of the

runs should have a length of one (zero or one), a quarter of the runs should

have a length of two (zeros, ones) and so on; and (5) autocorrelation test

which checks the correlations within a sequence in a period p [83].

2.3 Initialisation Process

The initialisation process is a critical phase that must be performed before

keystream generation can begin [60]. After that, the keystream generator can be

used to produce keystream sequences. Figure 2.2 illustrates the sequencing of the

initialisation and the keystream generation processes. For security, the initiali-

sation process must not reveal any information about the secret key and must

be secure against at least the known generic attacks. The initialisation process

consists of two main phases, loading and diffusion and are described below.

2.3.1 Loading Phase

In most stream ciphers, in the loading phase the secret key and IV (if relevant)

are loaded into the internal state to produce the loaded state. In some ciphers

this is performed sequentially. For example the A5/1 stream cipher loads the

secret key first, followed by the IV. Alternatively, some stream ciphers such as

Grain and Trivium load both secret key and IV simultaneously into the internal

state. The loading phase itself may use either a linear or nonlinear function.

After the loading phase is performed, the diffusion phase is applied.

In some stream ciphers there is no specific format for the loaded state, such
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as the A5/1 stream cipher (so any internal state after a number of iterations

is a legitimate loaded state). Some other ciphers have specific format (padding

pattern), such as Trivium and Sfinks stream ciphers (so, any internal state after

α iterations can be counted as a legitimate loaded state, only if it meets the

loaded format). This padding system fills specific stages by predetermined val-

ues according to the cipher algorithm’s design. The padding system should be

considered in the security analysis.

2.3.2 Diffusion Phase

The diffusion phase consists of a specified number of iterations of the ini-

tialisation state update function to generate the initial state without producing

any keystream bits. The objective is to diffuse the secret key and IV across the

internal state. In some cases, the IV is loaded during the diffusion phase, such

as the Common Scrambling Algorithm Stream Cipher [104]. The state update

function during the diffusion phase is usually a nonlinear function. It may use

Boolean functions or other nonlinear functions such as S-boxes. The purpose of

this state update function is to make the derivation of the secret key from the

initial state mathematically hard.

In general, the initialisation process should prevent secret key recovery from

a known initial state (session key). In this case, if attackers have an ability to

construct the initial state (session key) of a stream cipher, then the initialisation

process should be sufficiently complicated to prevent the secret key recovery

attack (except by exhaustive key search). If the key recovery attack is impossible,

then the attackers must repeat their attack processes to find the session key each

time when the cipher is rekeyed. Conversely, if an attacker is able to obtain

the secret key, it can produce the keystream for any combination of the secret

key and the known IVs. Therefore, initialisation processes are critical for stream

ciphers.

2.3.3 Keystream Generation Process

Once the initialisation process is complete, the cipher is in its initial state that

is the session key has been generated, and the keystream generation can be-

gin. Keystream generation performs a specific number of clocks to generate a
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keystream sequence that should meet the required properties to be distinct and

unpredictable. Keystream generation process consists of a state update function

to update the content of the internal state and an output function to form the

output keystream bits or words. The state update function of the keystream

generation may be the same, different or have a degree of similarity to the state

update function of the initialisation process (diffusion phase).

2.4 Examples of Initialisation Processes

This section reviews some stream ciphers that were submitted to the NESSIE [68]

or eSTREAM [50] projects or that are well known for other reasons. This review

gives a description of the ciphers, concentrating on the initialisation process.

The initialisation processes of these stream ciphers have been analysed in the

literature as presented in Section 2.8. We consider in this section the stream

ciphers: RC4, Trivium, Grain, Dragon, MICKEY and LILI-II. As well, three

stream ciphers A5/1 [30], Sfinks [29] and CSA-SC [15] will be presented in more

detail in Chapters 3, 4 and 5 respectively. After we describe the other ciphers,

we will include an explanation of our reasons for choosing these three ciphers.

2.4.1 RC4

Description

RC4 was designed in 1987 [97, p.191] by Ron Rivest for RSA Data Security,

Inc. It is widely deployed in software applications such as secure sockets layer

(SSL) due to its efficiency. RC4 is a word-based stream cipher with words of

size n bits (mostly n = 8 bits) and a variable secret key-size. In the remaining

of this section, we assume each word of RC4 is one byte in length (i.e. n = 8)

as is commonly use. Let l denote the size of the secret key in bytes, commonly

between 1 and 256 bytes. Let K denote the key and let each key byte be denoted

as k[i] for i = 0, 1, . . . , l − 1. The key is used indirectly to form the contents of

an array, denoted S. The array S has size 2n words. So the most common size

of S is 256 bytes.

RC4 generates keystream sequences independently of the plaintext. The op-

eration requires performing two phases: the key scheduling algorithm (KSA)

and the pseudo random generator algorithm (PRGA). The KSA and PRGA are
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equivalent to the initialisation process for the internal state, S, and the keystream

generation process (where each clock of the PRGA produces a keystream byte),

respectively.

Key Scheduling Algorithm (KSA)

The initial process of RC4 is to fill the stages of array S with the integers

from 0 to 255 in ascending order; that is S[0] = 0, S[1] = 1, . . . , S[255] = 255. A

temporary vector, T , of size 256 bytes is created and filled with the secret key.

The secret key is transferred into the temporary vector T and may be repeated if

it is necessary (if the key size is less than T size). Following this, a key dependent

shuffling of S is performed. The secret key in the temporary array T is used to

form the permutation of the S array only. Algorithm 2.1 illustrates the shuffling

process of the key scheduling algorithm (KSA) in detail (which is applied on the

array S).

1: for i = 0 to 255 do
2: S[i] = i
3: T [i] = k[i mod l]
4: end for
5: j = 0
6: for i = 0 to 255 do
7: j = (j + S[i] + T [i]) mod 256
8: Swap (S[i], S[j])
9: end for

10: return S
Algorithm 2.1: RC4: Key Scheduling Algorithm (KSA)

Pseudo Random Generator Algorithm (PRGA)

After the key scheduling algorithm is complete, the pseudo random generator

algorithm starts. The state update function is shuffling the bytes and then the

output function selects a stage of S. The content of this stage is the output byte

of the keystream as shown in Algorithm 2.2 (state update function is steps 4-6

and output function is steps 7 and 8). The keystream byte S[u] is XORed with

a plaintext byte using bit level XORing to produce a ciphertext byte.
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Require: S
1: i = 0
2: j = 0
3: loop
4: i = (i+ 1) mod 256
5: j = (j + S[i]) mod 256
6: Swap (S[i], S[j])
7: u = (S[i] + S[j]) mod 256
8: print S[u]
9: end loop

Algorithm 2.2: RC4: keystream generation PRGA

2.4.2 Trivium

Description

The Trivium stream cipher was submitted to eSTREAM project, by De Cannière

and Preneel [43]. Trivium has been selected to be in the final portfolio of the

eSTREAM project. It is a hardware oriented bit-based synchronous stream

cipher. It aims to provide flexible speed and space trade-off. Trivium takes an

80-bit secret key, K and 80-bit initial vector, IV, as input to a 288-bit shift

register internal state as shown in Figure 2.6. It is designed to generate up to 264

bits of keystream before the rekeying process. It consists of nonlinear feedback

shift registers and a linear output function.

288
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9493929169661

Clock

Figure 2.6: Trivium construction
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Initialisation Process

During the loading phase, the 80-bit secret key and 80-bit IV are loaded into

the 288-bit internal state in a linear manner and the remaining stages are set to

zeros except the stages s286, s287 and s288 which are set to all ones. Let the secret

key bits be ki, 1 ≤ i ≤ 80, the IV bits be vi, 1 ≤ i ≤ 80 and the stages of internal

state S be si, 1 ≤ i ≤ 288. Algorithm 2.3 shows the loading and diffusion phases

of Trivium. During the diffusion phase, the initialisation process performs 4 full

cycles (4× 288) before producing any keystream.

Require: K and IV
1: (s1, s2, . . . , s93)← (k1, . . . , k80, 0, . . . , 0)
2: (s94, s95, . . . , s177)← (v1, . . . , v80, 0, . . . , 0)
3: (s178, . . . , s286, s287, s288)← (0, . . . , 0, 1, 1, 1)
4: for i = 1 to 4 · 288 do
5: t1 ← s66 ⊕ s91 · s92 ⊕ s93 ⊕ s171
6: t2 ← s162 ⊕ s175 · s176 ⊕ s177 ⊕ s264
7: t3 ← s69 ⊕ s243 ⊕ s286 · s287 ⊕ s288
8: (s1, s2, . . . , s93)← (t3, s1, . . . , s92)
9: (s94, s95, . . . , s177)← (t1, s94, . . . , s176)

10: (s178, s179, . . . , s288)← (t2, s178, . . . , s287)
11: end for
12: return S

Algorithm 2.3: Trivium initialisation process

Keystream Generation

The keystream generation uses 15 specific bits to update three bits. The output

keystream bit is generated by XORing six bits from the internal state using

a linear output function. This process is repeated until n ≤ 264, where the

maximum keystream bits that can be generated by a key-IV pair is 264 bits.

Algorithm 2.4 illustrates the keystream generation process.

2.4.3 Grain v1

Description

The Grain v1 stream cipher was submitted to eSTREAM project, by Hell, Jo-

hansson and Meier [59] and was selected in the final portfolio of the eSTREAM
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Require: S
1: for i = 1 to n do
2: t1 ← s66 ⊕ s93
3: t2 ← s162 ⊕ s177
4: t3 ← s243 ⊕ s288
5: zi ← t1 ⊕ t2 ⊕ t3
6: t1 ← t1 ⊕ s91 · s92 ⊕ s171
7: t2 ← t2 ⊕ s175 · s176 ⊕ s264
8: t3 ← t3 ⊕ s69 ⊕ s286 · s287
9: (s1, s2, . . . , s93)← (t3, s1, . . . , s92)

10: (s94, s95, . . . , s177)← (t1, s94, . . . , s176)
11: (s178, s179, . . . , s288)← (t2, s178, . . . , s287)
12: end for
13: print zi

Algorithm 2.4: Trivium keystream generation

project. It is a hardware oriented bit-based synchronous cipher. It aims to pro-

vide flexible speed up to 16 bit/clock based on the available hardware. Grain

takes an 80-bit secret key, K and 64-bit initial vector, IV, as input to a 160-bit

internal state as shown in Figure 2.7. The main components of Grain are two

feedback shift registers and one output function. One of the registers is a linear

feedback shift register (LFSR) with polynomial function f(x), and the second

register is a nonlinear feedback shift register (NFSR) with polynomial function

g(x). Each shift register has a size of 80 bits. The output function h(x) is a

nonlinear function with five-bit inputs (four bits from the LFSR and a bit from

the NFSR).

Initialisation Process

The Grain stream cipher performs the initialisation process before producing any

keystream bits. Let the secret key bits be denoted ki, 0 ≤ i ≤ 79 and the IV

bits be denoted vi, 0 ≤ i ≤ 64. Firstly, the loading phase is performed. The

80-bit secret key is loaded into the nonlinear feedback shift register (NFSR).

Let the stages of NFSR be bi where bi = ki for 0 ≤ i ≤ 79. The 64 bits of

IV are loaded into 64 bits of the linear feedback shift register (LFSR). Let the

stages of LFSR be si where si = vi for 0 ≤ i ≤ 63. The remaining bits of the

LFSR are filled by ones, si = 1 for 64 ≤ i ≤ 79. Secondly, the diffusion phase

proceeds by clocking the LFSR and NFSR registers 160 times before producing

any keystream, and the output bit zi is fed back and XORed to the input of both
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the LFSR and NFSR. The general concept of Grain is illustrated in Figure 2.7

with the polynomial functions of f(x) and g(x). The update function of the

LFSR and NFSR, h(x) and zi are defined as follows:

si+80 = si+62 ⊕ si+51 ⊕ si+38 ⊕ si+23 ⊕ si+13 ⊕ si
bi+80 = si ⊕ bi+62 ⊕ bi+60 ⊕ bi+52 ⊕ bi+45 ⊕ bi+37 ⊕ bi+33 ⊕ bi+28 ⊕ bi+21⊕

bi+14 ⊕ bi+9 ⊕ bi ⊕ bi+63bi+60 ⊕ bi+37bi+33 ⊕ bi+15bi+9⊕
bi+60bi+52bi+45 ⊕ bi+33bi+28bi+21 ⊕ bi+63bi+45bi+28bi+9⊕
bi+60bi+52bi+37bi+33 ⊕ bi+63bi+60bi+21bi+15⊕
bi+63bi+60bi+52bi+45bi+37 ⊕ bi+33bi+28bi+21bi+15bi+9⊕
bi+52bi+45bi+37bi+33bi+28bi+21

h(x) = x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3 ⊕ x3x4 ⊕ x0x1x2 ⊕ x0x2x3 ⊕ x0x2x4⊕
x1x2x4 ⊕ x2x3x4

zi =
∑

k∈A bi+kh(si+3, si+25, si+46, si+64, bi+63)

where x0, x1, x2, x3, x4 = si+3, si+25, si+46, si+64, bi+63

where A = (1, 2, 4, 10, 31, 43, 56)

NFSR LFSR

h(x)

g(x) f(x)

Figure 2.7: Grain construction

Keystream Generation

After the initialisation process is completed, the output bit is no longer used

as feedback into both NFSR and LFSR registers. Now Grain v1 is ready to

generate the keystream bits zi. Grain is a bit-based cipher, it generates a bit per

clock. Hell et al [59] reported that the period of Grain v1 is at least 280− 1 with

probability 1− 2−80.
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Comments on Grain v0 and Grain-128

Grain v1 [59] is released in response to several attacks [13,70,81] on Grain v0 [58].

Both Grain v0 and Grain v1 have the same internal state size (same registers

80-bit LFSR and 80-bit NFSR). They use an 80-bit secret key and a 64-bit IV

as input to the ciphers. So, the general structure and components are similar.

The bit positions of the feedback and output functions were adjusted according

to the new cipher. The actual clocking mechanism also remains unchanged.

Grain-128 [60] was designed later, by Hell, Johansson, Maximov and Meier

and submitted to the eSTREAM project as well as an enhancement of the Grain

stream cipher. Grain-128 uses 128-bit secret keys and 96-bit IVs. It was designed

with a larger secret key and IV length to resist time-memory-data trade-off attack

(as they mentioned the 128-bit key is a minimum key length in secure applica-

tions). It works similarly to the previous version except for some modifications

in the polynomial equations. One bit per clock is produced in the keystream

generation. The output can be increased up to 32 bits per clock by adding some

hardware components.

2.4.4 Dragon

Description

The Dragon stream cipher was submitted to eSTREAM project, by Chen, Hen-

ricksen, Millan, Fuller, Simpson, Dawson, Lee and Moon [32,39]. It is a sofware

oriented word-based synchronous stream cipher. Dragon aims to provide high

speed throughput by generating two words (64 bits) every clock. (It uses two

variable lengths of secret key and initialisation vector, with 256 bits or 128 bits

for both as input to a nonlinear feedback shift register (NFSR) 1024-bit internal

state.) Dragon is designed to use an F function which consists of three parts:

premixing, substitution and post-mixing using G and H functions, two S-boxes

(S1 and S2) and a 64-bit memory (M). The F function maps six input words to

six output words (each word is 32 bits). Algorithm 2.5 shows the specification

of the F function where ⊕ denotes XOR, � denotes addition (mod 232) and ‖
denotes concatenation. After that, Dragon starts the initialisation process before

producing any keystreams using the nonlinear function and multiple iterations

to give a high throughput and secure keystream generation.

The G and H functions are:
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Require: {a, b, c, d, e, f}
1: Pre-mixing Layer:
2: b = b⊕ a; d = d⊕ c; f = f ⊕ e
3: c = c� b; e = e� d; a = a� f
4: S-box Layer:
5: d = d⊕G1(a); f = f ⊕G2(c); b = b⊕G3(e)
6: a = a⊕H1(b); c = c⊕H2(d); e = e⊕H3(f)
7: Post-mixing Layer:
8: d′ = d� a; f ′ = f � c; b′ = b� e
9: c′ = c⊕ b; e′ = e⊕ d; a′ = a⊕ f

10: return {a′, b′, c′, d′, e′, f ′}
Algorithm 2.5: Dragon: F function

G1(x) =S1(x0)⊕ S1(x1)⊕ S1(x2)⊕ S2(x3)

G2(x) =S1(x0)⊕ S1(x1)⊕ S2(x2)⊕ S1(x3)

G3(x) =S1(x0)⊕ S2(x1)⊕ S1(x2)⊕ S1(x3)

H1(x) =S2(x0)⊕ S2(x1)⊕ S2(x2)⊕ S1(x3)

H2(x) =S2(x0)⊕ S2(x1)⊕ S1(x2)⊕ S2(x3)

H3(x) =S2(x0)⊕ S1(x1)⊕ S2(x2)⊕ S2(x3)

Initialisation Process

Dragon [32, 39] can use 256 bits or 128 bits for both the secret key and IV as

mentioned above. The 1024-bit internal state is formed by register containing

the secret key and IV plus the memory. The initialisation process uses the F

function extensively with 16 iterations. Rekeying (reinitialising) is performed at

least once every 264 bits of the output keystream. Algorithm 2.6 and Figure 2.8

illustrate all the initialisation process of the Dragon stream cipher. For the key-

IV in Algorithm 2.6, x̄ and x′ denote the complement and the swapping of the

upper half and the lower half of x respectively.

Keystream Generation

Dragon has an internal state with a size of 1024 bits divided into 32 words.

During each cycle, six words (word numbers 0, 9, 16, 19, 30, 31) are used as

input for the F . The memory is used as a counter. Each clock, Dragon produces
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Require: {K, IV } (256-bit) or {k, iv} (128-bit)
1: W0‖. . . ‖W7 = K‖K ⊕ IV ‖K ⊕ IV ‖IV (256-bit) or
2: W0‖. . . ‖W7 = k‖k′ ⊕ iv′‖iv‖k ⊕ iv′‖k′‖k ⊕ iv‖iv′‖k′ ⊕ iv (128-bit)
3: M = 0x0000447261676F6E
4: for i = 1 to 16 do
5: a‖b‖c‖d = (W0 ⊕W6 ⊕W7)
6: e‖f = M
7: (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f)
8: W0 = (a′‖b′‖c′‖d′)⊕W4

9: for i = 7 to 1 do
10: Wi = Wi−1
11: end for
12: M = e′‖f ′
13: end for
14: return {W0‖. . . ‖W7}

Algorithm 2.6: Dragon’s initialisation process

F

W0 W4 W6 W7

M

128 128 128 128

64

128 64

Figure 2.8: Initialisation of Dragon

an output word, z, (64 bits), updates the state and increases the value of memory

by one. Algorithm 2.7 shows the general principle of keystream generation.

2.4.5 MICKEY v1

Description

The MICKEY v1 stream cipher was submitted to eSTREAM project, by Bab-

bage and Dodd [6]. It is a hardware oriented bit-based synchronous cipher.

MICKEY v1 takes an 80-bit secret key, K and an IV between 0 and 80 bits

in length as inputs to a 160-bit internal state (two shift registers) as shown in

Figures 2.9. MICKEY is designed to generate up to 240 bits of keystream before
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Require: {B0‖. . . ‖B31,M}
1: (ML‖MR) = M
2: a = B0, b = B9, c = B16, d = B19, e = B30 ⊕ML, f = B31 ⊕MR

3: (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, f, e)
4: B0 = b′, B1 = c′

5: for i = 31 to 2 do
6: Bi = Bi−2
7: end for
8: M = M + 1
9: z = a′‖e′

10: return {k,B0‖. . . ‖B31,M}
Algorithm 2.7: Dragon’s keystream generator

the rekeying process.

MICKEY v1 consists of two shift registers R and S. Register R is a linear

feedback shift register that is clocked based on the value of CB R. If CB R is 0,

register R is clocked in the standard way. When CB R is 1, register R is clocked

240 − 23 times. Register S is a nonlinear shift register that is clocked based

on the value of CB S. Let r0, r1, . . . , r79 and r′0, r
′
1, . . . , r

′
79 denote the stages of

register R before clocking and after clocking respectively. Let s0, s1, . . . , s79 and

s′0, s
′
1, . . . , s

′
79 denote the stages of register S before clocking and after clocking

respectively. The feedback tap positions of register R is defined as: TAP R = {0,

2, 4, 6, 7, 8, 9, 13, 14, 16, 17, 20, 22, 24, 26, 27, 28, 34, 35, 37, 39, 41, 43, 49, 51, 52,

54, 56, 62, 67, 69, 71, 73, 76, 78, 79}. For the state update function fo register S,

Let ŝ0, ŝ1, . . . , ŝ79 denote intermediate variables. Define four sequences as follows:

COMP0i and COMP1i for 1 ≤ i ≤ 78, and FB0i and FB1i for 0 ≤ i ≤ 79, as

shown in Table 2.1.

Initialisation Process

MICKEY v1 performs the initialisation process before producing any keystream

bits. At the beginning, all stages are set to be zeros. Then, the IV (vj, for

0 ≤ j ≤ 80) and 80-bit secret key are loaded into the 160-bit internal state.

Let the secret key bits be denoted ki, 0 ≤ i ≤ 79 and the IV bits be denoted

vi, 0 ≤ i ≤ j − 1. Firstly using a nonlinear function, the IV bits are loaded

into both registers R and S. Following that the key bits are loaded in the same

manner. MICKEY v1 performs 80 clocks for both registers and the output bits

are discarded. The initialisation process is performed as follows:
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Table 2.1: The four sequences COMP0i, COMP1i, FB0i and FB1i

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

COMP0i 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0
COMP1i 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1
FB0i 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1
FB1i 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 0 0 1

i 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

COMP0i 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
COMP1i 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1
FB0i 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0
FB1i 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0

i 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

COMP0i 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0
COMP1i 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0
FB0i 1 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0
FB1i 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1

                   Register R

                   Register S0

0
Controls R
feedback

Controls S
feedback

Keystream bit

Figure 2.9: MICKEY stream cipher

• Loading phase:

– Initialise both registers R and S to all-zeros contents,

ri = si = 0 for 0 ≤ i ≤ 79.

– Load the IV bits to both registers R and S simultaneously,

CLOCK KG(R, S, 1, vi), for 0 ≤ i ≤ j − 1.

– Load the key bits to both registers R and S simultaneously,

CLOCK KG(R, S, 1, ki), for 0 ≤ i ≤ 79.

• Diffusion phase:

– CLOCK KG(R, S, 1, 0), for 0 ≤ i ≤ 79.
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Require: R and S to execute CLOCK KG(R, S,MIX, In B)
1: CB R = s27 ⊕ r53
2: CB S = s53 ⊕ r26
3: if MIX =1 then
4: IB R = In B ⊕ s40
5: else
6: IB R = In B
7: end if
8: IB S = In B
9: CLOCK R(R, IB R,CB R)

10: CLOCK S(S, IB S,CB S)
Algorithm 2.8: Clocking the overall generator

Require: R to execute CLOCK R(R, IB R,CB R)
1: FB R = r79 ⊕ IB R
2: for i = 1 to 79 do
3: r′i = ri−1
4: end for
5: r′0 = 0
6: for i = 0 to 79 do
7: if i ∈ TAP R then
8: r′i = r′i ⊕ FB R
9: end if

10: end for
11: if CB R = 1 then
12: for i = 0 to 79 do
13: r′i = r′i ⊕ ri
14: end for
15: end if

Algorithm 2.9: Clocking register R

Keystream Generation

During the keystream generation, the state update function no longer uses s40

for the feedback of register R. Each clock, MICKEY v1 generates a keystream

bit as follows: zi = r0 ⊕ s0.
CLOCK KG(R, S, 0, 0), for 0 ≤ i ≤ 79.

Comments on the MICKEY v2 and MICKEY-128

Hong and Kim [65] demonstrated a state entropy loss weakness (state conver-

gence) in MICKEY v1. To overcome this weakness, the designers proposed an
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Require: S to execute CLOCK S(S, IB S,CB S)
1: FB S = s79 ⊕ IB S
2: for i = 1 to 78 do
3: ŝi = si−1 ⊕ ((si ⊕ COMP0i) · (si+1 ⊕ COMP1i))
4: end for
5: ŝ0 = 0
6: ŝ79 = s78
7: if CB S = 0 then
8: for i = 0 to 79 do
9: s′i = ŝi ⊕ (FB0i · FB S)

10: end for
11: else
12: for i = 0 to 79 do
13: s′i = ŝi ⊕ (FB1i · FB S)
14: end for
15: end if

Algorithm 2.10: Clocking register S

improved cipher, referred to as Mickey v2 [8]. Mickey v2 is one of the stream ci-

phers in the final eSTREAM project portfolio, for the second profile (hardware).

Register lengths of R and S were increased to be 100 bits instead of 80 bits for

each register. The tap positions and the feedback and clocking were adjusted ac-

cording to the new proposal. The general structure and components are similar

to Mickey-v1 and the clocking mechanism remains unchanged.

MICKEY-128 v1 [5] was designed to use a 128-bit secret key. This cipher pro-

posal has similar design and clocking mechanism principles to MICKEY v1 with

two registers each 128-bit, where the clocking and feedback taps were relocated

accordingly. Later, another improvement of MICKEY-128 v1 was proposed and

referred as MICKEY-128 v2 [7]. MICKEY-128 v2 has increased register lengths

to be 160-bit for registers R and S instead of 128-bit each. This is the only

difference.

2.4.6 LILI-II

Description

The LILI-II stream cipher was designed by Clark, Dawson, Fuller, Golić, Lee,

Millan, Moon, and Simpson [35] which is from the LILI family together with

LILI [95] and LILI-128 [38] (was submitted to NESSIE project [68]). It is hard-
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ware and software oriented, and a bit-based synchronous cipher. LILI-II takes

128-bit key and 128-bit IV as input to a 255-bit internal state (two shift registers)

as shown in Figure 2.10. It was designed to have a period of 2255.

Let ki and vi denote the key and IV bits for 0 ≤ i ≤ 127. There are two

registers LFSRc and LFSRd of lengths 128 and 127 bits respectively. LFSRc is

clocked normally and the LFSRd is controlled by a function fc. This function fc

takes two inputs from the LFSRc to calculate the output c(t) at time t, where

c(t) ∈ {1, 2, 3, 4}. The output Boolean function fd takes twelve bits from register

LFSRd as inputs to produce the output bit. Let ci and dj denote the stages for

registers LFSRc and LFSRd for 0 ≤ i ≤ 127 and 0 ≤ j ≤ 126 respectively.

. . .

Figure 2.10: LILI-II stream cipher

Initialisation Process

LILI-II performs the initialisation process as follows:

• Loading LFSRc, the secret key, k, and the IV, v, are XORed to generate

the loaded state of LFSRc as follows, ci = ki ⊕ vi, for 0 ≤ i ≤ 127.

• Loading LFSRd, the secret key, k, and the IV, v, are XORed to generate

the loaded state of LFSRd by ignoring k0 and v79 as follows:, di = ki+1⊕vi,
for 0 ≤ i ≤ 126.

• Generates 255 keystream bits, the first 128 bits are loaded to register

LFSRc, and then 127 bits are loaded to register LFSRd.

• Generates another 255 keystream bits, the first 128 bits are loaded to reg-

ister LFSRc, and then 127 bits are loaded to register LFSRd.

Keystream Generation

Now, the LILI-II stream cipher has completed the initialisation process and the

keystream generation can begin. The keystream generation process uses the
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same state update function from the initialisation process. The keystream bit is

formed from the fd function as mentioned above:

zi = fd(d0, d1, d3, d7, d12, d20, d30, d44, d65, d80, d96, d122)

2.4.7 Why A5/1, Sfinks and CSA-SC

We first discuss the rationale behind the selection of the three ciphers A5/1,

Sfinks and the Common Scrambling Algorithm Stream Cipher (CSA-SC) as sub-

jects for in-depth analysis of the initialisation processes. These are all commonly

used ciphers which take different approaches to the loading and diffusion phases

of initialisation and there has been a limited analysis of security of their initiali-

sation processes. Also, these three ciphers use different state, key and IV sizes,

and perform different approaches of key and IV loading processes.

Most stream ciphers use shift registers in combination with non-linear func-

tions. So, we choose these ciphers because they have the same structure as

most other stream ciphers. In common with most stream ciphers, these three ci-

phers use shift registers with variety of structures and nonlinear functions. They

cover both cases when state size is less and larger than the total of the key

and IV sizes. They cover three different type of loading phases and initialisa-

tion processes: with majority clocking scheme, update function with delay and

loading the IV during the diffusion phase. Moreover, they cover autonomous

and non-autonomous operations for both loading process and update function.

Therefore, the recommendations and outcomes from these analyses are relevant

to most stream ciphers that are based on shift registers.

A5/1 Stream Cipher

The A5/1 [30] cipher is a well known stream cipher which is used widely to

provide confidentiality for GSM mobile phone communications. It is used by

about 130 million customers in Europe [24]. The keystream generation process

of A5/1 has been heavily analysed, (see [12,19,53,82]), but there was only limited

analysis of the initialisation process prior to this research [24,54]. The description

of A5/1 and its initialisation processes are given in Section 3.1.
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Sfinks Stream Cipher

The Sfinks stream cipher was submitted to eSTREAM project, the ECRYPT call

for stream cipher proposals in April 2005, by Braeken, Lano, Mentens, Preneel

and Verbauwhede [29]. The Sfinks initialisation process is not well studied in

the public literature. The individual components of the state update function of

Sfinks are one-to-one, but during the initialisation process their combination is

not one-to-one. This is the central point in choosing this cipher to be investigated.

The description of Sfinks and its initialisation processes are given in Section 4.1.

Common Scrambling Algorithm Stream Cipher

The Digital Video Broadcasting Common Scrambling Algorithm (DVB-CSA) is

specified by the European Telecommunications Standards Institute (ETSI) [51] .

It has been used for scrambling and encrypting the MPEG-2 transport stream

(digital television or pay TV) since 1994. The DVB-CSA consists of a cascade of

block and stream ciphers. In this thesis, we examine the stream cipher in DVB-

CSA which is referred to as CSA-SC [16]. There is some analysis of the keystream

generation process of the CSA-SC [74,96,104,105], but the initialisation process

of CSA-SC is not well studied in the public literature. The description of CSA-SC

and its initialisation processes are given in Section 5.1.

Table 2.2 presents the summary of characteristics of the ciphers that have

been discussed in this section. It also includes three ciphers A5/1, Sfinks and

CSA-SC which will be discussed and analysed in great detail in Chapters 3, 4

and 5. It shows some of the important components and comparison among these

ciphers.
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2.5 Cryptanalysis of Stream Ciphers

Attacking stream ciphers usually aims to either distinguish between stream ci-

phers, to find internal state, to recover secret key or message recovery. These

attacks are discussed in more detail in Section 2.5.2. Attackers exploit any avail-

able information, methods or tools that may assist the attacking process.

Certain assumptions are made when analysing any encryption algorithm.

From the general viewpoint of cryptanalysts, the stream cipher algorithms and

initial vectors (IVs) are assumed to be known. The challenge is to break a stream

cipher given the algorithm and also any IVs that are used but assuming that the

secret key is unknown.

For more specific situations there are some assumptions about each attack

method. For example, slide attacks assume the self-similarity of iterations of the

stream cipher [25]. In another example, the algebraic attack assumes the at-

tacker has gained knowledge of the stream cipher algorithm and some keystream

bits [3]. Consequently, there are general assumptions for cryptanalysis and spe-

cific assumptions for each cryptanalysis method as well as for each application.

The complexity of attacks and cryptanalysis of stream ciphers are usually

measured by the following parameters:

• Memory complexity. The amount of memory that is required to hold in-

formation for attacking. Memory may be required for pre-computation

and the attack itself such as in the Time Memory Time Trade-Off attack

(TMTO), which is discussed later.

• Time complexity. The required time to perform an attack.

• Data complexity. The amount of ciphertext/plaintext that is required to

execute an attack.

The main focus of a cryptanalyst is to develop and find an attack approach

with the lowest possible complexity (memory, time and amount of data). In

general, there are trade-offs between these parameters. For example, TMTO

attack is a good example of a trade-off attack.

2.5.1 Attacking Models

Attacking models specify the type of information which can help an attacker

to break a stream cipher. The model describes the information that can be ac-
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cessed by an attacker. The attacking models for stream ciphers are based on

Kerckhoffs’ [69] and Shannon’s principles [92] where the description of ciphers

are publicly known and the secrecy depends on the secret key only. The attack-

ing models are classified into the following types based on which information is

known.

• Ciphertext-only attack. An attacker is able to access only the ciphertext

from a stream cipher.

• Known-plaintext attack. In this model, an attacker has some pairs of

plaintext-ciphertext that use the same secret key.

• Chosen-plaintext attack. An attacker is able to choose a random plaintext

to be encrypted in order to obtain the corresponding ciphertext. The secret

key is assumed to be unknown.

• Chosen-ciphertext attack. An attacker is able to decrypt a chosen cipher-

text to obtain the corresponding plaintext assuming the secret key is un-

known.

A stream cipher which is broken by a ciphertext-only attack is considered a

weak stream cipher. Due to the rapid development of technology, stream ciphers

should be continually under analysis to ensure that they are still secure or to

determine their limitation of application.

2.5.2 Aims of Attackers

Attackers may have one or more of the attacking aims or goals. These aims can

be classified as follows.

• Distinguishing attack [87]: Since the keystream sequence, which is an out-

put of a stream cipher, is claimed to be random for a specific period,

distinguishing attack is a generic attack that is used to determine which

stream cipher has been used. Distinguishing attack exploits some secu-

rity flaws to build a relationship between a keystream sequence and the

stream cipher used. Even though a distinguishing attack alone does not

reveal information about the secret key or the initial state (session key),

it demonstrates some weakness in the stream cipher. It may be a part of
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an attacking process. It may be used with another attack (may be generic

attack) to reduce the complexity of attacking or reveal information about

the secret key or the initial state. Therefore, most stream cipher design

prescribes the maximum number of keystream bits to be generated before

rekeying the system by a new IV. This determines the maximum possible

keystream that can be generated from a single key-IV pair to reduce the

possibility of any attack.

• State recovery attack [94]: The state recovery attack aims to recover the ini-

tial state of a stream cipher, which is known as session key recovery attack.

If an attacker is able to recover the initial state, then the entire keystream

for this session can be generated easily. Attacker needs to perform the at-

tacking process for each session key. Ciphers which are vulnerable for state

recovery attack are considered to be insecure.

• Key recovery attack [31, 93]: Key recovery attack is the main purpose of

attackers. If an attacker is able to recover the secret key, then keystream

can be generated for any known IV easily and the stream cipher is com-

pletely broken. Therefore, modern stream ciphers designers aim to make

key recovery attack hard from a given session key recovery attack. So, the

initialisation process plays a role like a security guard.

• Message recovery attack [40]: In this type of attack, an attacker may have

the ability to recover the message without any knowledge of the secret key.

It is based on the properties of the massage, such as the redundancy and

XORing of messages as shown in [40].

2.6 Generic Attacks on the Initialisation Pro-

cess

This section presents some generic attacks for stream ciphers that are used also

to attack the initialisation process of stream ciphers.

2.6.1 Brute Force Attack

For the initialisation process, we aim to find the secret key (master key). Brute

force attack is a naive attack on ciphers, where all possible secret keys are tried
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until a secret key which produces the keystream is found. This is also known

as exhaustive search. However, most stream ciphers are designed so that it is

impractical to use the brute force attack due to the time required. In practice,

the average number of trials of brute force attack is half the size of the key space.

For example, if the secret key length is l then the total key space is 2l and half

of the key space is 2l−1.

Most attacks are claimed to be better than the brute force attack, that means

the time complexity of an attack is claimed to be less than the complexity of

the brute force attack. So, brute force attack is sometimes used to evaluate the

effectiveness of a new attack.

2.6.2 Time Memory Data Trade-Off Attack

Time-Memory Trade-off (TMTO) was introduced in 1980 by Hellman [62] as

a generic attack on block ciphers and applied to the Data Encryption Standard

(DES). TMTO is a general technique to invert the one-way function. The effort

required lies somewhere between exhaustive search of the search space and the

look-up table using two phases, a pre-computation phase and a real-time phase.

The pre-computation phase aims to build tables of random states xi and their

corresponding keystream sequences yi where f(x) = y, where xi represents either

the secret key or the internal state (as input), yi is the keystream (as output) and

f is the function that maps input to the output. This function f could be the

initialisation update function of the stream ciphers or the state update function

of the keystream generation and the output functions. These tables are sorted

into increasing order of the yi.

Time-Memory Trade-off (TMTO) has also been applied to stream ciphers. In-

dependent works by Golić [54] and Babbage [9] applied the TMTO to keystream

generators of stream ciphers to perform the internal state recovery attack. More-

over Biryukov and Shamir [23] applied the above works of Hellman and Golić-

Babbage to stream ciphers to recover the internal state as well. In these three

independent analyses, the researchers recommended that the internal state size

should be at least double the size of the secret key.

The complexity of the time memory data trade-off attack can be described

in terms of the pre-computation and online parameters. The pre-computation

terms are as follows: P is the time that is required to construct the lookup table

(pre-computation time), and M is the size of memory required to construct and
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store the lookup table. During the attacking time (online phase), D is the amount

of keystream that is required to perform the TMTO attack, and T is the online

time that is required to search in the lookup table. From the above notation,

the attack complexity is based on both T and M , where P is pre-computation

time and the attacker is assumed to have unlimited time for preparation.

Now, we will focus on the treatment of initialisation processes in TMTO.

Hong and Sarkar [66, 67] revised the TMTO to be applied for stream ciphers.

They aimed to perform secret key recovery attack for stream ciphers that use

secret key and initial vector (IV). Hong and Sarkar used the Biryukov and Shamir

TMTO for a search space N = 2l+j, where l and j are the key and IV sizes in

bits, respectively.

T = M = 2
1
2
(l+j) with D = 2

1
4
(l+j) (2.2)

Thus, if an attacker has access to a keystream of length D = 2
1
4
(l+j), then

that attacker can recover a single (k, v) pair with time and memory complexity

of T = M = 2
1
2
(l+j). If j < l then the time and memory complexity is less than

the exhaustive search. In order to resist Hong and Sarkar’s TMTO attack, the

IV size should be at least equal to the key size.

Dunkelman and Keller [46] applied the TMTO attacks for stream ciphers to

recover the secret key. They assumed that the IVs are publicly known infor-

mation. They proposed to construct lookup tables based on the IVs. So, an

attacker waits for a set of IVs to capture the keystream to perform the attack

according to the following trade-off curve:

22(l+j) = TM2D2 (2.3)

There is no restriction for the parameters of the Dunkelman and Keller TMTO

attack such as T ≥ D2. If T = M = D then the complexity of the attack is less

than the exhaustive search as long as 22j < 23l. In order to resist this attack,

they recommended that the IV size should be at least 1.5 times the key size,

j ≥ 1.5l.
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2.6.3 Differential Attacks

A differential attack is a generic cryptanalysis method introduced in 1990 by

Biham and Shamir in an attack on block ciphers [21]. It was applied to stream

ciphers in 2004 by Muller [85]. The attacker considers multiple keystreams ob-

tained with a slight difference in the inputs (usually a difference in the IVs).

The differential attack on stream ciphers examines the behavior of the ini-

tialisation and keystream generation processes for a differential in the inputs. It

analyses how differences in the inputs (either the key or IV, or internal state) af-

fect the output (either internal state or keystream). Biham and Dunkelman [20]

describe three situations as follows:

1. A difference in the key or IV generates a difference in the internal state, S,

(∆k,∆v) −→ ∆S, with probability of p1.

2. A difference in the internal state, S, generates a difference in the internal

state after α clocks, ∆St −→ ∆St+α.

3. A difference in the internal state, S, generates a difference in the keystream,

Z, ∆S −→ ∆Z with probability of p2.

Considering these inputs to the keystream generator and combining steps (1)

and (2) in the above, we obtain the following:

• A difference in the key or IV generates a difference in the keystream,

(∆k,∆v) −→ ∆Z, with probability of p1 · p2.

For the keystream generators for stream ciphers an important attack scenario

to consider is where an attacker can access multiple keystreams formed using the

same secret key but with different known IVs; as (k, v) and (k, v′), for ∆v. Then

the difference in the two keystreams is ∆Z. When ∆v and ∆Z are known, then

the relationship between the two keystreams may reveal some information about

the secret key.

Differential cryptanalysis involves choosing two different inputs to a keystream

generator or cipher system and observing the difference between the outputs.

The difference may be used to distinguish the stream cipher or to reveal some

information about the secret key or the internal state. Stream ciphers can be

protected against differential attacks by designing the initialisation, keystream
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generation processes and the output carefully. The IVs should be mixed correctly

with the secret key. These processes should result in unpredictable differences in

the internal state or keystream. Muller [85] stated that the initialisation process

can provide protection against differential attacks by mixing nonlinear and linear

functions.

2.7 Flaws in the Initialisation Process

In the following section, we present some potential flaws in the initialisation

process of stream ciphers that can be used with some known generic attacks

to disclose information about the secret key or the encrypted message. These

flaws are state convergence and the existence of slid pairs and of weak Key-IV

combinations. These three flaws are discussed and investigated because they

happen commonly in shift register based stream ciphers. They occur due to

some common structural features and properties in the initialisation processes

functions. Flaws in the initialisation processes need more research and investi-

gation. Although this research focuses on these three common flaws, there may

be other flaws or new forms of attacks exploit a specific type of flaw (which

may be discovered in the future). Moreover, other stream ciphers that are not

based on shift registers may also have weaknesses related to the initialisation.

For example a widely used stream cipher, RC4, is a stream cipher based on a

dynamic table. The initialisation process of other types of stream cipher design

should be analysed carefully. In this thesis, we investigate only shift registers

based designs.

2.7.1 State Convergence

Modern stream ciphers take a secret key and an IV as input to the initialisa-

tion process of the keystream generator to produce an initial state (session key).

If the state size is equal to or larger than the total of the key and IV sizes, then

each key-IV combination should map to a distinct internal state. If the state size

is shorter than the key and IV sizes, then there is a reduction of key-IV space

(compression). However even if a cipher satisfies this state size condition, it can

still experience a reduction of the effective state size during either or both of the
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initialisation and keystream generation processes. This effect is known as state

convergence.

State convergence occurs when two or more states are mapped to the same

state after α iterations for α > 0. That is, state convergence occurs when the

state update function is not one-to-one . State convergence may occur during

the initialisation process, during keystream generation, or both. This may reduce

the effective key-IV size and leave the stream cipher vulnerable to attacks such

as distinguishing attacks [87], time-memory-data trade-off attacks [23] or other

ciphertext-only attacks [40].

2.7.2 Analysis of State Convergence

State convergence can be investigated by examining the state update transition.

It may not be straightforward to decide whether the stream cipher experiences

state convergence or not. Therefore, in some cases more than one approach to

investigate the convergence is required. These approaches are described below:

Forward Direction

The forward direction follows the normal clocking operation (state update func-

tion) in the stream cipher initialisation process. This approach examines the

state space at time t + α, given the state space at time t, for α ≥ 1 iterations,

as shown in Figure 2.11a. If there are a number of states at time t that give

the same state at time t + α, then state convergence occurs. This approach is

applied for the investigation of state convergence during the initialisation and

keystream generation processes of the Common Scrambling Algorithm Stream

Cipher as outlined in Chapter 5.

Reverse Direction

This approach considers the inverse of the state update function, F−1, where F

denotes the state update function. If a state is given at time t, then the reverse

direction investigation examines the number of pre-images of this state at time

t − 1 (or more generally, t − α) as shown in Figure 2.11b. If the state update

function is one-to-one then there is only one pre-image for each state. If it is not

one-to-one then there could be none, one or multiple pre-images for some states.
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This approach is used to examine state convergence in the A5/1 stream cipher

in Chapter 3.

The theoretical analysis of state convergence contributes to determine the

relationship between the multiple states that result in the same state after α

iterations. Based on this relationship between these multiple states, it is possible

in some ciphers to identify the relationship between multiple key-IV pairs that

result in the same initial state (and same keystream). This analysis leads to

investigate the consequences of state convergence as shown later.

Internal state1

Internal state2

Internal state

Clock

Forward direction

Forward direction

time = t+1

time = t

(a) Forward direction

Internal state1

Internal state2

Internal state

Clock

Reverse direction

Reverse direction

time = t-1

time = t

(b) Reverse direction

Figure 2.11: Two states converge to one state

Experimental Work

Experimental work may be performed to investigate state convergence using

computer simulation for either the forward or reverse clocking. In most cases,

exploration of the entire state space or key-IV space is not feasible. Experimental

simulation gives an estimation of the number of distinct internal states for the

target cipher after a number of iterations (or distinct keystream sequences).

Simulation is performed using either randomly selected inputs to the real cipher

or exhaustive search over inputs of a scaled down version of the target stream

cipher.
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Simulation using the random inputs to the real ciphers requires a large ran-

dom number of inputs. For example, this approach has been used for 108 random

states of A5/1 to compute the number of distinct initial states obtainable after

100 iterations during the diffusion phase in [24] using the forward direction. Also,

it has been used previously in the reverse direction for 220 random states of the

MICKEY stream cipher, in [65].

The scaled down version of a cipher must represent most of the features and

properties of the target stream cipher. In this approach an exhaustive search

over all possible key-IV pairs is performed. This approach has been used for a

scaled version of the A5/1 stream cipher in [2].

Consequences of State Convergence

With respect to the key and IV used with the stream ciphers, there are three

cases of state convergence that can occur. These are as follows:

Case 1 Two input pairs have the same secret key but different IVs. During

initialisation sate convergence occurs and the pairs (K, IV) and (K, IV′)

produce the same initial state and consequently the same keystream.

Case 2 Two input pairs have different secret keys and different IVs. During

initialisation sate convergence occurs and the pairs (K, IV) and (K ′, IV′)

produce the same initial state and consequently the same keystream.

Case 3 Two input pairs have different secret keys but the same IV. During

initialisation sate convergence occurs and the pairs (K, IV) and (K ′, IV)

produce the same initial state and consequently the same keystream.

For an attacker the most beneficial of these is Case 1. The situation described

in Case 1 can occur between separate frames of a single message, particularly

on a frame based channel, where the same secret key is used with multiple IVs

in a communication between two parties. For practical attacks on synchronous

stream ciphers, Case 1 is the most important flaw, as it may leak information

about the secret key.



2.7. Flaws in the Initialisation Process 49

2.7.3 Slid Pairs and Shifted Keystream

The slide attacks are known-plaintext attacks against iterative ciphers in

which successive iterations of the state update function are identical. This prop-

erty means that the applicability of this attack is independent of the number of

iterations used. This generic attack was specified for block ciphers by Biryukov

and Wagner in 1999 [25] and 2000 [26]. The attack is based on the related key

attack, which was introduced by Biham in 1994 [18]. The first step in this di-

rection of attack was by Grossman and Tuckerman in 1978 [56]. Slide attacks

have also been applied to stream ciphers that are based on block ciphers such

as LEX [106] and WAKE-ROFB [25] and more recently to other stream ciphers,

such as Grain [42, 73, 108] and Trivium [86]. In the stream ciphers’ application,

slide attacks are sometimes revered to as slid pairs attacks, resynchronisation

attacks [73,106] or related key chosen IV attacks [76].

In the case of stream ciphers, during initialisation a key-IV pair is loaded

into an internal state, to form a loaded state. The state is then updated for α

iteration(s) during the diffusion phase of the initialisation process. The state

update function of the initialisation process defines a cycle of transitions of the

internal state. Therefore, some (K, IV) pair represents a point on such a cycle.

If a state that is obtained from this process can also be obtained as a loaded

state for another key-IV pair then the two loaded states form a slid pair that are

in the same cycle. Consequently, different key-IV pairs can be found for stream

ciphers that sometimes produce phase shifted keystream [25,42,73,86,108], since

stream ciphers use finite state machines (with predefined state update functions)

to perform the initialisation and keystream generation processes.

Figure 2.12 illustrates the initialisation and keystream generation processes

resulting in two keystream sequences shifted by α bit(s). The relationship be-

tween the two keystreams z and z′ is given by Equation 2.4.

(K, IV) =⇒ z (2.4)

(K ′, IV′) =⇒ z′, where z′ = z � ε · α

where ε is a positive constant that depends on the design of the output function

of the stream cipher. For bit based stream cipher, ε = 1.
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Figure 2.12: Slid pairs and stream ciphers

The probability of obtaining a slid pair that results in a correspondingly

shifted keystream depends on three probabilities; P1, P2 and P3. These are as

follows. The probability of getting a legitimate loaded state with (K ′, IV′) pair

after α iterations of the initialisation process is P1. To obtain a shifted version of

the keystream from a given slid pair, the state updates for the final t2− (t1 +α)

clocks of diffusion phase with (K, IV) must give the same result as the first

t2 − (t1 + α) clocks with (K ′, IV′) with probability of P2. Likewise, the state

updates of the initialisation process of the last α iterations for the (K ′, IV′)

should be same as the state update function during the keystream generation

process for (K, IV) with probability of P3. Therefore, the total probability for

obtaining shifted keystream from a randomly chosen key-IV is the product of

these three probabilities, as shown in Figure 2.12. For most stream ciphers,

P2 = 1.

When a key-IV pair (K ′, IV′) produces a loaded state that can also be ob-

tained from another key-IV pair (K, IV) after a number of iterations α of the

initialisation state update function, we refer to these two states as a slid pair.

The keystream generated by the pair (K ′, IV′) may then be a phase-shifted ver-

sion of the keystream generated by (K, IV), shifted by ε · α bits. This occurs

when the following properties hold for the initialisation process and key stream

generation:

a) Iterations of the initialisation process are the same as each other.

b) Iterations of the keystream generation process are the same as each other.

c) State update functions for both the initialisation and keystream generation

processes have a degree of similarity with one another.
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Most stream ciphers follow the (a) and (b) conditions above, but there is

a wide variety in the extent to which condition (c) applies. Slid pairs can be

expressed as (K, IV), (K ′, IV′), α}, where (K, IV) is a key-IV pair that pro-

duces another loaded state with key-IV pair (K ′, IV′) after α iterations of the

initialisation state update function.

2.7.4 Analysis of Slid Pairs and Shifted Keystream

Slid pairs may occur in stream ciphers. This can be investigated by exploring

the state update function using the forward or reverse directions as shown in

Figure 2.13.

Forward Direction:

For a given loaded state, the state update function is clocked (in the forward

direction) until the internal state is in the format required for a loaded state.

This new loaded state is generated after applying the clocking mechanism for

α ≥ 1 clock. If this occurs, the clocking for both loaded states must be further

examined to determine whether they give a shifted keystream. This type of

analysis should consider the similarity between the state update functions for

both the initialisation and keystream generation processes.

Reverse Direction:

In this analysis a bit shifted version of a keystream (shifted by one or more bits)

is given. Then the task is to clock the cipher in reverse direction to investigate

the corresponding loaded state. If the obtained state is a legitimate loaded state,

then the two pairs are slid pairs.

The theoretical analysis of slid pairs reveals the relationship between the

multiple key-IV pairs that generate slid pairs with a difference of α clocks (it-

erations). So, based on this analysis of slid pairs and shifted keystreams, it is

possible to identify the relationship between these multiple key-IV pairs that

result in shifted keystreams. This analysis leads to an investigation into the

consequences of slid pairs as outlined later.
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Figure 2.13: Slid pairs in stream ciphers

Experimental Work

The experimental work requires computer simulation for the initialisation and

keystream generation processes in either the forward or reverse clocking direction.

In most cases, simulation of the entire state space or key-IV space is not feasible.

Therefore, simulation can be applied using a large number of randomly selected

key-IV pairs. Experimental simulation gives a probabilistic estimation of the

actual number of slid pairs and shifted keystreams.

Consequences of of Slid Pairs

Slid pairs can be used as the basis of an attack on some stream ciphers. Similar

to the conditions for state convergence, there are three possible cases of key-IV

combinations that produce slid pairs in stream ciphers as follows:

Case 1 Two input pairs which have the same secret key but different IVs pro-

duce out-of-phase keystream sequences. That is (K, IV) and (K, IV′)

produce z and z′, respectively.

Case 2 Two input pairs which have different secret keys and different IVs pro-

duce out-of-phase keystream sequences. That is (K, IV) and (K ′, IV′)

produce z and z′, respectively.

Case 3 Two input pairs which have different secret keys but the same IV pro-

duce out-of-phase keystream sequences. That is (K, IV) and (K ′, IV)

produce z and z′, respectively.

where z′ = z � ε·α, for some positive number ε and α is the number of iterations

between the loaded states in the slid pairs.

Whenever slid pairs generate shifted keystream, the corresponding ciphertexts

can be combined to reveal some of the message content; for example, consider
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messages m1 and m2 where m1 is encrypted using z and a second message m2 is

encrypted using z′ to give encrypted frames, f1 and f2 respectively. Then:

(f1 � ε · α)⊕ f2 = (m1 � ε · α)⊕m2

As shown in [40], it is possible to attack an XOR combination of the form

(m1 � α)⊕m2 using the redundancy of the plaintext. Furthermore, when this

occurs for Case 1 (same secret key with different IVs) this may leak information

about the common secret key. This is the case for A5/1 cipher, as shown in

Section 3.3. From a cryptographic perspective, Case 1 is the most important

flaw for attackers, because this situation can occur between separate frames of

a single message on a frame based channel such as GSM, where the same secret

key is used for each frame in a communication with different IV’s.

2.7.5 Weak Key-IV Combinations

For some stream ciphers, certain key-IV pairs may lead to internal states in

which one or more of the component registers have all zero contents. It may

lead to constant or distinguishable keystream as will be shown for A5/1. If this

occurs at the end of the initialisation process and the component is autonomous

during the keystream generation, then the component may remain in an all-zero

state. Then the complexity of keystream generation is effectively reduced. This

may in turn lead to serious security flaws. Such key-IV pairs are known as weak

key-IV pairs. This phenomenon has previously been observed in Grain v0, v1

and 128 [108] and we will consider it in Chapter 3 for the A5/1 cipher.

2.7.6 Analysis of Weak Key-IV Pairs

Weak key-IV pairs may occur in stream ciphers due to the impact of external

inputs or feedbacks to a shift register. This can be investigated by exploring the

influence of the external inputs using the forward or reverse directions.

Forward Direction

For a given loaded state, the state update function is clocked forward until the

external input is completed (where there is no more external input). This inves-

tigation may end in a state where one or more registers contain all-zero values.
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This result may be at the end of the loading phase or diffusion phase of the

initialisation process. If a key-IV pair results in one or more registers containing

all-zero values, then this key-IV pair can be considered as a weak pair.

Reverse Direction

Analysis in the reverse direction, either a loaded state or initial state is specified

with one or more registers containing all-zero values. Then the task is to perform

reverse clocking for the total number of iterations to obtain the candidate key and

IV. If the candidate key and IV are correct, the loaded state format is obtained.

Then the key-IV can be considered as a weak pair.

The theoretical analysis of weak key-IV combination results in the identifica-

tion of the relationship between secret key bits and IV bits that generate one or

more components of a cipher containing all-zero values. Based on this relation-

ship between the key and IV bits, it is possible in some ciphers to distinguish

keystreams produced from weak key-IV pairs and can be attacked. This analysis

leads to investigate the consequences of weak key-IV pairs as discussed later.

Experimental Work

As discussed for the previous flaws, the experimental work requires computer

simulation related to both forward and reverse clocking direction. This can be

performed using a number of random inputs, or a scaled down version of the real

cipher. Such simulations will result in the estimation of the probability of weak

key-IV pairs that result in one or more registers containing all-zero values.

Consequences of Weak Key-IV Pairs

Any change in the properties of the keystream may leave the keystream vulner-

able to some attacks, such as guess and determine attacks. This keystream is

considered a weak keystream sequence. Weak key-IV pairs result in an initial

state that produces a weak keystream sequence: one that is distinguished easily,

it can be attacked with low complexity. This may reveal some or all of the secret

key bits.
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2.8 Existing Attacks on Initialisation Processes

This section presents some existing analysis of the initialisation processes stream

ciphers described in Section 2.4. Some of these analyses or flaws are used with

other generic attacks such as Time-Memory-Data Trade-off attacks. This section

presents some examples that have been reported in the literature. Some of these

examples show serious security attacks and flaws, and others demonstrate an

undesirable feature in the initialisation process, but cannot be considered as

serious attacks.

2.8.1 RC4 Analysis

Mantin and Shamir [79] discussed some statistical weaknesses of RC4 using the

second output byte of the RC4 system. The second output word of RC4 is

biased to have a value 0 with an approximate probability of N = 2n−1 and the

probability is 1/128 for n = 8. Denoting the first permutation or round during

the pseudo random generator algorithm (PRGA) of S[x] as S0[x], then they

show that if the S0[2] = 0 and S0[1] 6= 2, then the second output byte is 0 with

a probability of 1. The authors advise that, for future implementation of RC4

the first two output words be discarded and they recommend discarding the first

N output words for more security. Later, Klein proved that an attack will work

even if the first 256 bytes of the secret key stream are not used [72].

Fluhrer et al. [52] presented several weaknesses in the key scheduling algo-

rithm (KSA) of RC4. From a small known number of secret key bits, a large

number of states and output bits can be recovered. Therefore, RC4 has an un-

acceptable property in that these weak secret keys affect a large number of the

output bits. Furthermore, a high correlation between some bits of the secret key

and some bits of the output stream illustrates the propagation of a weak part of

the key to some part of the output.

Another weakness related to the initialisation processes of some applications

of RC4 [52] is when a secret key and initialisation vector (IV) are concatenated

and used as a secret key for the RC4 stream cipher in a wired equivalent privacy

(WEP) application. If an attacker can obtain the first word output corresponding

to each IV, then the attacker can construct the secret key. Finally, Fluhrer et

al. [52] stated that the RC4 is completely broken and it is not secure in most

operation modes.
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Based on the weaknesses that have been reported by Fluhrer et al. [52],

Stubblefield et al. [99] tried to capture real encrypted packets to apply the attack.

They claimed that they were able to recover the 128-bit secret key of RC4 that

is used to protect a network (WEP application). Based on [52], Mantin [78]

achieves a practical recovery attack of secret key and IV on RC4 stream cipher

using fault injection, where the IV is concatenated with the secret key to generate

the keystream for WEP application.

2.8.2 Trivium Analysis

For Trivium, the same state update function is used during both the initialisation

and keystream generation processes. This function is invertible. Therefore, if an

attacker can obtain the internal state at any time point, then the state update

function can be inverted and the generator clocked back until the loaded state is

obtained. The secret key can be directly extracted from the loaded state. This

property implies that the state recovery attacks on Trivium are also key recovery

attacks. As De Canniere and Preneel [43] report, there is not currently an attack

which obtains the internal state from the keystream.

Hojśık and Rudolf [63] applied differential fault analysis to the Trivium stream

cipher. Based on the chosen-chiphertext attack scenario, they supposed that an

attacker can alter a random bit in the internal state to observe the difference in

the keystream. Each bit fault in the internal state reveals a number of equations

that can be solved. They showed that an injection of 43 bits in random position

of the internal state can disclose the content of the internal state, and then the

secret key can be obtained, as outlined above.

In an improvement to the previous work, Hojśık and Rudolf [64] applied the

floating model for Trivium to transform the polynomial equations to linear equa-

tions. They found that an attack requires 3.2 one-bit fault injections on average

to recover the internal state using 800 keystream bits. In the best scenario, 2

one-bit fault injections are enough to reconstruct the internal state, and conse-

quently to obtain the secret key. They claim that if they inject 5 bits, they can

reveal the internal state with a probability of success equal to one.

Priemuth-Schmid and Biryukov [86] investigated slid pairs for Trivium, and

found that for a key-IV pair, (K, IV), there exists a related (K ′, IV′) pair which

generates a 111-bit shifted keystream, for more than 239 key-IV pairs. They

found slid pairs and solved the system of equations for 111, 112, 113, 114 and
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115-bit shifted keystreams. (The Trivium padding pattern used in the loading

phase ensures a slid pair may not occur until after 111 clocks.) To find the slid

pairs, they generated a system of equations in terms of the key and IV variables.

This system of equations is solved by guessing some variables and then checking

the solutions.

2.8.3 Grain Analysis

Kuçuk [73] demonstrated a weakness of the Grain stream cipher by applying a

slide attack on Grain 1.0 (Grain with secret key size 80) and called it a slide

resynchronization attack. For any key-IV pair (K, IV) there exists a related

(K ′, IV′) pair which generates a 1-bit shifted keystream with probability of 2−2.

The similarities of the state update functions of initialisation and keystream

generation processes showed a weakness in the initialisation process. As Kuçuk

mentioned, this attack does not achieve an efficient key recovery attack for Grain

1.0; it may need more research to recover the secret key. The attack is based on

the construction of Grain 1.0 as follows. Firstly, the initialisation process and

keystream generator are similar to each other. Secondly, the initialisation process

is similar to the keystream generation, except the output of the initialisation

process is fed back and XORed to the input of both the LFSR and NFSR. This

paper shows that the internal state of the LFSR and NFSR after one clock will be

equal to the previous states with a shift of one bit for both the LFSR and NFSR

if b1600 ⊕h(x) = 0, where b1600 is content of b0 of the NFSR after 160 clocking steps

of the initialisation process and h(x) is the value of the output function at the

same clocking steps (160) .

Lee et al [76] extended the work of Kuçuk [73] to attack Grain v1 and Grain-

128. This attack is performed for secret key recovery with 222.59 chosen IVs,

226.29 keystream and complexity of 222.90 for Grain v1. For Grain-128, the secret

key recovery attack requires 226.59 chosen IVs, 231.39 keystream and complexity

of 227.01.

De Cannière et al [42] reported a general form of the probability of slid pairs

for Grain stream cipher for a key-IV pair, (K, IV), there exists a related (K ′, IV′)

pair which generates an n-bit shifted keystream with probability of 2−2n. They

analysed Grain 1.0 using a generic differential attack. This analysis recovers one

key in 29 keys using two related keys and 255 chosen IV pairs.

Zhang and Wang [108] demonstrated some sliding weak key-IV combination
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that apply to Grain v0 [58], Grain v1 [59] and Grain-128 [60]. They define

weak key-IVs, that result in zeros for all the stages of the LFSR, during the

initialisation process. A reverse direction is used during the initialisation process

to examine the existence of weak key-IVs. The process starts from the initial

state (with LFSR contains zeros) and clocks backward using a specific algorithm

(it is called Algorithm 1) to find the loaded state at time t = 0. They used the

weak key-IVs to perform a distinguishing attack using 264, 264 and 296 weak key-

IVs, with 212.6, 244.2 and 286 keystream bits, and 215.8, 247.5 and 2104.2 operation,

respectively for Grain v0, Grain v1 and Grain-128. Then, they apply algebraic

attack with weak key IVs to recover the secret key for all of Grain v0, Grain v1

and Grain-128.

Bjørstad [27] uses Time-Memory/Data Trade-Off (TMTO) to attack Grain

with an internal state of 160 bits and secret key size of 80 bits. Due to this choice

of state size and key size, it is infeasible to apply the standard time-memory trade-

off directly to Grain v1. Firstly, Grain has a large complexity resistance against

TMTO and the computation complexity is not lower than the exhaustive search

O(280). Bjørstad incorporates the advantages of both the Biryukov, Shamir and

Wagner (BSW) [24] sampling and the properties of output function h(·). The

nonlinear function h(·) is computed and masked with seven bits from the NFSR.

The paper utilizes the distance between the two masking bits of the NFSR,

which are ni+10 and ni+31, to derive that the sampling resistance of Grain is

2−18. It shows that the TMTO recovers the state of Grain v1 in online time

and memory complexity O(271), precomputation complexity O(2106.5) and used

known keystream complexity O(253.5). These results show the precomputation

complexity is greater than the exhaustive secret key search complexity; however,

the complexity of the online computation is less than the complexity of the

exhaustive search.

Banik et al [10] reported some results on the related key-IV pairs (slid pairs)

on Grain v1 [59], Grain-128 [60] and Grain-128a [1]. They reported an algorithm

to find a related key-IV pair (K ′, IV′) given a key-IV pair (K, IV).

There are two recent papers: the first paper by Ding and Guan [45] has

shown a related key attack on Grain-128a [1]. Their result requires a complexity

of 296.322, 296 chosen IVs and 2103.613 keystream bits. As they reported, the

probability of success of this attack is 0.632. In a second paper by Banik et

al [11] demonstrated slid pairs in Grain-128a, which may occur after 32 clocks,
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which is expected, where the padding is all ones except one bit is zero. They

presented a key recovery attack with γ · 232 related keys and γ · 264 chosen IVs

to generate 32 · γ nonlinear equations, where γ can be estimated to be 28.

2.8.4 Dragon Analysis

The initialisation process and keystream generation use the F function with S-

boxes, H and G functions for ease of implementation, efficiency and high nonlin-

earity. Dragon has an internal state space of 1088 bits (which is the combination

of 1024-bit internal state and 64-bit memory) for high security [32, 39]. The

expected upper bound of the period is 2512+64 = 2576 and the lower bound is

264. The maximum interval of the keystream before rekeying is 264. Therefore,

Dragon’s design prevents collision attacks [32,39] as mentioned by the authors.

From the F function and its components, during the initialisation process,

four words from the output of the F function updates the internal state, and

two words form the memory value. During keystream generation, two words are

used to produce a 64-bit word of keystream. The F function using H and G

functions with 16 iterations gives high diffusion and prevents high probability of

differentials. [32, 39].

The size of the internal state is larger than double the secret key size; hence,

the TMTO is infeasible [49]. Dragon has been designed with consideration given

to the initialisation process. It uses a secret key with different IVs producing

different keystreams using 16 rounds and the nonlinear function F .

Since the F function is used during the initialisation and keystream generation

processes, there is a number of studies that tried to linearise the F function.

These studies tried to distinguish the Dragon stream cipher [33, 34, 49]. This is

the only analysis that is related to the initialisation process of Dragon stream

cipher. It is an attractive area for future work.

2.8.5 MICKEY Analysis

Hong and Kim reported a state entropy loss in the MICKEY v1 stream cipher

which is state convergence [65]. They report that the state update function is not

one-to-one and experimented with 220 randomly chosen states (which is based

on the C-language rand()) to find only about 70.63% have pre-images after one

clock. So, after one clock, there may be zero, one, two or four pre-images for any
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state. They did the examination for two consecutive clocks and they found that

about 56.17% have pre-image after two clocks.

Helleseth et al [61] continued the work of Hong and Kim [65] on MICKEY

v2 [8] and MICKEY-128 v2 [7] and examined the existence of slid pairs in

MICKEY v2. They performed reverse clocking to MICKEY v2 and MICKEY-

128 v2 to calculate the number of backward states for 0 to 15 clocks. They

demonstrated two key-IV pairs that generate shifted keystreams (shifted by 1

bit). Based on this analysis, they presented two scenarios of attack based on

some assumptions. For more details see [61].

2.8.6 LILI-II Analysis

Biham and Dunkelman [20] reported minor multiple Key-IV pairs result in one

loaded state during the loading phase in the initialisation process (which is Key-

IV compression). The operation of the loading phase is only XORing the secret

key and the IV as specified previously to produce the loaded state of the two

registers LFSRd and LFSRc, which is pure linear function. Based on this loading

process, Biham and Dunkelman [20] noted that if two key-IV pairs (K, IV) and

(K ′, IV′) that satisfy the relationship K⊕K ′ = IV⊕ IV′ = {1}128, then these two

key-IV pairs will produce the same loaded state for registers LFSRd and LFSRc

and consequently will result in the same keystream. Recently, Teo [100] reported

that state convergence does not exist in the LILI family of stream ciphers.

2.9 Tools

This section describes the tools used to implement the stream ciphers and to

investigate the flaws discussed in Section 2.7. In this thesis both the C program-

ming language and MAGMA software package are used as tools for computer

simulation and exploration.

C Programming Language

C programming or C-code is a computer language that is used to implement

many stream ciphers, such as the ciphers that were submitted to eSTREAM

project [50] and NESSIE project [68]. In this research, we make use of the

software implementations published by the authors of these ciphers. Additional
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software in C has been created for simulation and analysis to identify and demon-

strate particular flaws.

Analysis of the flaws may require specific inputs to the stream cipher, or

to some components, to study the impact on the internal state or keystream

sequence. Therefore, we have adapted some codes to enable examination of

specific key-IV pairs or internal states. This adaptation does not change the main

function or purpose of the stream cipher algorithm. Computer simulation is also

used for statistical analyses as a technique to study or monitor the behaviour of

the analysed ciphers under varying conditions.

MAGMA Package

Another tool that is used in this research is a computer algebra system known

as MAGMA [28]. MAGMA is a powerful tool for implementing the ciphers, gen-

erating systems of equations and solving the system of equations. As part of the

process of investigation, the computer simulations using the MAGMA computa-

tional algebra system require the support of the High Performance Computing

(HPC) facility at QUT due to the resources required to perform the computer

simulations.

2.10 Summary

Recently, specification of the initialisation process has became an essential part of

any stream cipher design. During the eSTREAM project, one of the requirements

for stream cipher submission is that the use of the IV as essential input to the

cipher [50]. In contrast, there are some traditional stream ciphers that include

initial value (IV) and initialisation process as part of the keystream generator

such as A5/1 and CSA-SC stream ciphers.

Initialisation process can introduce significant problems in stream cipher ap-

plications. This process may leak some information or be exploited by attackers.

It may make stream ciphers vulnerable by revealing some information about the

secret key. From the literature review, it is clear that the initialisation process

of stream ciphers have not yet been thoroughly studied. It is desirable to have a

secure and efficient initialisation process that resist at least the known attacks.

The initialisation process should possess desirable properties that make them

simultaneously secure and efficient.
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As mentioned above, there are three stream ciphers for which the initialisation

process will be discussed, and analysed in later chapters, as follows: Chapter 3

investigates the initialisation process of A5/1 stream cipher. Chapter 4 analyses

the initialisation process of Sfinks stream cipher. Chapter 5 considers the initial-

isation process of the Common Scrambling Algorithm Stream Cipher (CSA-SC).

Following that, Chapter 6 provides recommendations for the initialisation pro-

cess based on the three cases and previous analyses of initialisation processes of

stream ciphers.
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Analysis of A5/1 Stream Cipher

Initialisation Process

The privacy of mobile telephone communications is protected by the A5/1 stream

cipher. A5/1 is used by about 130 million customers in Europe. A general

structure of A5/1 was leaked in 1994 and the exact design was revealed in 1999,

when it was reverse engineered by Briceno [30]. Therefore, A5/1 has received

the attention of cryptographers and has been analysed in several papers such

as [12,19,24,53–55] but mainly looking at keystream generation rather than the

initialisation process.

A5/1 stream cipher is a bit-based cipher that takes a 64-bit secret key and

22-bit IV (frame number) as inputs into a 64-bit internal state (in three shift

registers). Each telephone conversation uses one secret key with multiple IVs.

Each IV is used to generate a 228-bit keystream. Then the initialisation process

(rekeying) is repeated with another IV to generate another 228-bit keystream

sequence. The telephone converstion is sent as a sequence of frames every 4.6

milliseconds. Each frame (228-bit keystream) represents the communication be-

tween two parties A and B, so each keystream frame consistes of 114 bits to

communicate from A to B and another 114 bits to communicate from B to A.

In Section 2.7, some aspects of the security flaws of initialisation process for

stream ciphers have been demonstrated theoretically. This chapter investigates

these flaws in A5/1; a cipher which uses a linear state update function during

loading phase and the same nonlinear state update function for both diffusion

63
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phase and keystream generation. The output function as well is a purely linear

function, namely the XOR function. The nonlinearity of the keystream is de-

rived from the nonlinear state update function during the diffusion phase and

keystream generation.

The initialisation process of A5/1 [30] is analysed with respect to the occur-

rence of the following problems: State convergence, slid pairs and weak key-IV

pairs. The results of these investigations are presented. Although some of these

problems also occur during keystream generation, the keystream generation pro-

cess is beyond the scope of this research.

This chapter is organized as follows. Section 3.1 describes the specification of

A5/1 and its initialisation process. Section 3.2 presents the analysis of the state

convergence during the initialisation process of A5/1. Section 3.3 shows the slid

pairs and synchronisation attacks in the A5/1 and presents results and examples

to support the theoretical analysis. Weak key-IV pairs are described with details

in Section 3.4. This chapter is summarised in Section 3.5 and presents the

security impact of this analysis.

3.1 Specification of A5/1 Stream Cipher

A5/1 [24, 30, 54] is a bit based stream cipher which uses three binary feedback

shift registers, denoted A, B and C, with lengths of 19, 22 and 23 bits respec-

tively, giving a state size of 64 bits. Each shift register has a primitive feedback

polynomial. Let S denote the internal state of A5/1 and let SA, SB and SC

denote the internal states for each register A, B and C, respectively. Let sia,t

denote the content of ith stage of register A at time t, for 0 ≤ i ≤ 18, sib,t denote

the content of ith stage of register B at time t, for 0 ≤ i ≤ 21 and sic,t denote the

content of ith stage of register C at time t, for 0 ≤ i ≤ 22.

A secret key of 64 bits is used for all frames in a given conversation, and a

22-bit frame number is used as the IV for each frame. Let ki denote the secret

key bit for 0 ≤ i ≤ 63 and vi denote the IV bit for 0 ≤ i ≤ 21. The three registers

are regularly clocked during loading of the key and IV (frame number), while a

majority clocking mechanism is used for the diffusion phase and for keystream

generation. The use of majority clocking implicitly introduces nonlinearity to

the keystream sequence. This is the only nonlinear operation performed.

To implement the majority clocking scheme, each register has a clocking tap:
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stages s8a,t, s
10
b,t and s10c,t. The contents of these stages determine which registers

will be clocked for the next iteration at time (t + 1): those registers for which

the clock control bits agree with the majority value are clocked. For example, if

s8a,t = 0, s10b,t = 1 and s10c,t = 0, then the majority value is 0 and registers A and

C are clocked at time (t + 1). Thus, either two or three registers are clocked

at each step. Overall, each register is clocked with probability of 3
4
. Figure 3.1

shows a pictorial diagram of the A5/1 stream cipher, with the clocking taps and

feedback functions indicated for each register.

Clocking tap

Clocking tap

Clocking tap

Register  A

Register  B

Register  C

Figure 3.1: A5/1 stream cipher

3.1.1 Initialisation Process

The initialisation process transfers the 64-bit secret key and 22-bit frame

number (IV) into the internal state and performs 100 iterations to produce the 64-

bit initial register state. Once this initial state is obtained, keystream generation

can begin. The initialisation process is performed in two phases, which we refer

to as loading and diffusion phases.

Loading Phase
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At the beginning, all stages of the three registers are set to zero. Each linear

feedback shift register is regularly clocked 64 times as each key bit, ki, is XORed

with the register feedback to form the new value of stages s0a, s
0
b and s0c . Following

this, each register is regularly clocked 22 times as the IV is loaded in the same

manner [24]. At the end of the loading phase, the registers are in the loaded

state. Note that the state update function during the loading phase is entirely

linear. That is, the contents of each stage in each register are independent linear

combinations of key and IV bits.

Diffusion Phase

The diffusion phase involves performing 100 iterations of the initialisation

state update function using the majority clocking scheme. At the end of diffusion

phase the cipher is in its initial state and is ready for keystream generation.

3.1.2 Keystream Generation

Keystream generation comprises 228 iterations using the same majority clock-

ing rule used during the diffusion phase. In each iteration, the keystream bit is

obtained by XORing the output bit of the three registers zt = s18a,t ⊕ s21b,t ⊕ s22c,t.
The analysis of the A5/1 stream cipher is based on the behaviour of the

majority clocking schema. The following sections show three cryptographic flaws

in the initialisation process of the A5/1.

3.2 State Convergence

The A5/1 stream cipher has a 64-bit internal state and uses a 64-bit secret

key and a 22-bit IV to form a loaded state. So, there are 264 possible internal

states. Since the loading phase is linear, it is clear that each loaded state can be

obtained from multiple key-IV pairs.

As the total size of the secret key and IV for A5/1 (64+22 = 86 bits) exceeds

the 64 bit state size, a degree of key-IV space reduction occurs during the loading

phase of initialisation. In fact, as the state-update function is linear during the



3.2. State Convergence 67

clock

Figure 3.2: A5/1 pre-image of Golić’s cases

loading phase, it can be shown that there are 222 key-IV pairs corresponding

to each possible loaded state. In addition to this issue, state convergence also

occurs during the diffusion phase and keystream generation process.

3.2.1 Previous Analysis

Few previous analyses of A5/1 focussed specifically on the effect of state con-

vergence during initialisation. Two papers that deal with this topic as part

of a broader analysis are Golić [55] (based on [54]) and Biryukov, Shamir and

Wagner [24].

Golić [55] considered the inverse mapping for the majority clocking function

and identified some states with no pre-image and which therefore cannot be

reached from any loaded state in a single iteration. He demonstrated that these

states comprise 3
8

of the loaded states of the system. Thus, the usable state

space shrinks by a factor of 5
8

(from 264 to 5× 261 ≈ 263.32) at the first iteration

of the diffusion phase. Golić also identified some states with unique pre-images

and others with up to four pre-image states. Figure 3.2 presents a graphical

summary of the six cases identified by Golić. In this figure, (Ri, Rj, Rk) is any

permutation of the set {A,B,C} of registers and the shaded stage in each register

is its clocking tap. The symbol × represents either 0 or 1, while # represents the

complement of ×; a blank square represents a bit which can take either value.

The proportion of loaded states for each case in Figure 3.2 is presented in

Table 3.1, along with the corresponding number of pre-images. Note that the

case identified as (i) cannot be clocked back to any valid state. That is, states

of this form cannot be reached after the first iteration of the initialisation state

update function.

Biryukov, Shamir and Wagner [24] also provide convergence estimates when

exploring the efficiency of their attack. They report that, of 108 randomly chosen
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Table 3.1: Proportions of states in each of Golić’s cases

Case (i) (ii) (iii) (iv) (v) (vi)

Proportion of states 3
8

3
8

1
32

3
32

3
32

1
32

Number of pre-images 0 1 1 2 3 4

states, only about 15% can be clocked back 100 times. That is, 85% of states

could not be reached by a 100 iteration forward clocking process.

Alhamdan [2] performed an exhaustive experimental evaluation for a scaled-

down version of the A5/1 stream cipher with three LFSRs and a majority clocking

arrangement, but only a 15-bit internal state (LFSR lengths of 4, 5 and 6 bits

were used). This scaled-down version uses a 15-bit secret key and a 5-bit IV

(as frame number) and is loaded in the same as manner A5/1 with majority

clocking performed for 100 iterations during the diffusion phase. All possible

loaded states were used and the number of remaining distinct states for each

iteration in the diffusion phase was recorded. The first three lines in Table 3.2

show the summary of the three previous works; Golić [55], Biryukov, Shamir and

Wagner [24] (labelled as BSW) and Alhamdan [2]. The table also includes figure

for two other analyses that are discussed in Section 3.2.2.

Table 3.2: Comparison between the analysis of inaccessible states

Cumulative proportion of state reduction
No of clock 1 2 3 4 5 6 10 100

Golić? [55] 0.375 - - - - - - -
BSW◦ [24] - - - - - - - 0.85

Alhamdan• [2] 0.375 0.422 0.439 - 0.466 - 0.524 0.81
KT? [71] 0.375 0.578 0.689 0.767 0.826 - - -

This work? 0.375 0.422 0.439 0.453 0.466 0.479 - 0.953

? Theoretical analysis
◦ based on 108 randomly simulated states
• Exhaustive search for a scaled-down version
3 based on exponential extrapolation
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3.2.2 Extension of Existing Work

In A5/1, nonlinear operations in the state-update function are introduced during

the diffusion phase via majority clocking. However, this majority clocking in-

troduces state convergence. Although this convergence continues into keystream

generation, in this research the focus is on the initialisation process only. As

noted above, this effect was reported by Golić [54,55] and quantified to some ex-

tent by Biryukov, Shamir and Wagner [24]. This research extends these results

to a larger number of iterations.

Golić’s results demonstrate that the majority clocking process is not one-to-

one and that state convergence can occur in one iteration. This work extends

Golić’s logic to identify the states which cannot be reached after each of the first

six iterations of the diffusion phase. It shows that state convergence continues

with each iteration, though not uniformly at each iteration, contrary to Golić’s

assumptions [55]. Some of the inaccessible states we identified for multiple it-

erations are presented in Figure 3.3. This work will use the previous notations

(Ri, Rj, Rk) is any permutation of the set {A,B,C} of registers in Figure 3.1 and

the shaded stage in each register is its clocking tap. The symbol × represents

either 0 or 1, while # represents the complement of ×; a blank square represents

a bit which can take either value.

Now, the reasoning used to identify states that are inaccessible after two

iterations is sketched. The term “downstream” is referred to the stages in Fig-

ure 3.2 and 3.3 that are to the left of the clocking stages. By reversing the logic

of the majority clocking process, the following conditions apply when we invert

an iteration:

1. A state obtained by clocking a pair of registers must have the contents of

the stages immediately downstream of the clocking bit in these registers

identical in value to one another, and different in value from the clocking

bit of the third register.

2. A state obtained by clocking all three registers must have the contents of

the stages immediately downstream of the clocking tap identical in all three

registers.

For Figure 3.2, we note that Condition 1 applies to Case (ii), Condition 2 applies

to Case (iii), both conditions apply to cases (iv), (v) and (vi), but neither applies
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1 step (        ) 2 steps 3 steps

clock

Figure 3.3: Inaccessible states for various numbers of iterations (steps)

to Case (i). In cases (iv), (v) and (vi), Condition 1 applies to different numbers

of the three possible pairs of registers.

Applying this logic to the pattern labelled “2 steps” in Figure 3.3 shows that

such a state can arise only by clocking a combination of registers that includes

register Rk in Figure 3.3. But this implies that any previous state belongs to Case

(i) of Figure 3.2 (possibly with additional values specified among the clocking

bits). Since Case (i) cannot be reached by the first clocking step, this “2 steps”

state cannot be reached at the subsequent clocking step. (Note: it can, however,

be reached by the first clocking step, since Case (i) is a valid loaded state.)

This pattern is the only inaccessible pattern at this step. Any state which is

inaccessible after two iterations must clock back only to states that were inacces-

sible after the first step. So all such states must be contained in the image space

(under clocking) of Case (i) above. This image space can be found by completing

the unspecified values in Case (i) in all possible ways and applying the clocking

rule to each (see Figure 3.4a). When this is done, we find that many of the

image states are accessible, as they have multiple pre-images, some of which are

accessible (see Figure 3.4b for an example). If we discard these states and retain

those which can clock back only to Case (i), we find that the pattern presented

above is indeed the only new inaccessible pattern at the second step.

A similar process can be followed to identify inaccessible patterns after α

iterations. There is a branching tree of patterns for these inaccessible states: as

well as the two “3 step” patterns presented in Figure 3.3, there are five distinct

patterns at the fourth iteration, 17 at the fifth iteration and many more at each

subsequent iteration. Table 3.3 presents the cumulative proportion of inaccessible

states (out of all possible loaded states) after each of the first six iterations,

together with the corresponding proportion and number of accessible states.

The process that is used to identify inaccessible patterns for α = 2 iterations
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clock

pattern: image:

(a) Results of clocking Case (i) forwards

pre-images: image:

(b) Possible pre-images for one of these results

Figure 3.4: Determining inaccessible states at the second step

Table 3.3: Proportion of available states after α iterations

α (number of iterations) 1 2 3 4 5 6

new proportion 3
8

3
64

9
512

57
4096

423
32768

6453
524288inaccessible

cumulative proportion
0.375 0.422 0.439 0.453 0.466 0.479

inaccessible
proportion accessible 0.625 0.578 0.561 0.547 0.534 0.521

number of accessible
263.322 263.209 263.165 263.129 263.094 263.061

states

is to clock the inaccessible pattern (i) in Figure 3.2 by one clock forward. This

will result in four states, then examine these four states for which one cannot

be obtained from another accessible pre-image. The state that has only one pre-

image ended with pattern (i) of Figure 3.2 will be inaccessible state at this clock

α = 2. This process is applied for any number of α to determine the inaccessible

patterns. Figures 3.5a and 3.5b show the inaccessible patterns for α = 4 and 5

respectively.

The number and complexity of the patterns obtained so far indicates that

obtaining a general expression for the number of accessible states after a given

number of iterations is not a simple task for large values. Extrapolating from

the known values in Table 3.3 provides an approximation. Using an exponential

extrapolation based on the proportion of accessible states as reported above

for 2–6 iterations, we obtain an approximation of the proportion of accessible
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clock

(a) For α = 4

clock

(b) For α = 5

Figure 3.5: Inaccessible patterns

states after 100 iterations of around 5% of the number of loaded states. The

extrapolation is based on a linear regression fit to the logarithm of the proportion

accessible [4]. Figure 3.6 presents the exponential extrapolation for the 100 steps

and the actual results for 0–6.

As a result of the extended work, for small numbers of iterations, Alhamdan’s

work for scaled-down version of A5/1 [2] aligns very closely with those reported

for this work on the acutal A5/1 cipher. Table 3.2 shows a summary of the pre-

vious works and the current work. As reported by Alhamdan [2], the proportion

of distinct states after 100 iterations is 19.2% of the original loaded state. This

is close to the experimental result of Biryukov, Shamir and Wagner’s which is

15% [24]. Our extrapolation based on the results in Table 3.3 for the proportion
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Figure 3.6: Exponential extrapolation for the proportion of accessible states after
100 steps

of accessible states is 5%.

Another Recent Work

A recent paper by Kiselev and Tokareva [71] analysed the reduction of key space

during the state-update function of A5/1 for additional clocks. They reported

on the reduction of the key space over up to 8 clocks. They tried to extend

Golić’s [55] work to determine the effective key space reduction in each of the

first 8 clocks. Their results are also reported in Table 3.2 (labelled as KT). Their

results for the number of inaccessible states after the first clock are consistent

with previously reported results, but the results for further clock steps do not

match the results presented above. Their results of further steps overestimate the

number of inaccessible states compared to the available results. This discrepancy

arises because these authors have assumed that any state accessible from the

first inaccessible state is also inaccessible, whereas many of these states can

actually be reached by clocking from other accessible states as well from the

inaccessible states. Thus, these authors have included many accessible states

in their claimed list of inaccessible states, for each clock step beyond the first

one. This is demonstrated in Figure 3.7, where state (a) is a sub-case of one

of Kiselev-Tokareva templates (the top left template of their Figure 4). This
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state can be obtained by clocking from the inaccessible state (b), as would be

expected from Kiselev-Tokareva construction. However, it can also be obtained

by clocking from the accessible state (c) (which corresponds to Figure 3.2 (v)).

Thus, state (a) is clearly accessible after 2 clocks and should not be counted in

their estimate of the number of inaccessible states after 2 clocks.

1 1

1 1

00 1

clock

(a) (b) (c)

11

11

10 0

11

11

00 1

Figure 3.7: Example of Kiselev and Tokareva’s template

3.3 Slid Pairs and Synchronisation Attacks

For stream ciphers, it is sometimes possible to find different key-IV pairs that

produce phase shifted keystream [42, 86, 108]. This is clearly the case for A5/1.

As the number of possible internal states is the same as the number of loaded

states, it is clear that any internal state obtained after any number of iterations

α, is also a legitimate loaded state. That is, for any key-IV pair and any α > 0,

it is always possible to find a second key-IV pair such that the loaded state from

the second pair can be obtained from the loaded state of the first pair by applying

α iterations of the (diffusion) state update function. That is, the loaded states

corresponding to these two key-IV pairs from a slid pair separated by α clocks.

Further, since the update functions during diffusion and keystream generation of

A5/1 are identical, this slid pair will always produce keystream sequences which

are out of phase by α bits.

Recall the operation of GSM system and A5/1 stream cipher, which use a sin-

gle secret key and up to 222 different IV’s for each conversation. The initialisation

process (rekeying process) is performed every 4.6 milliseconds with each initial

state then used to generate a 228-bit keystream. As noted in Section 2.7.3, slid

pairs can occur in three ways; the same secret key with distinct IVs, for distinct
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secret keys with distinct IVs, and for distinct secret keys with the same IV. For

a practical attack, the most important case is that with the same secret key and

multiple IVs, as this applies for a single conversation. Therefore, we restrict our

analysis to that; we look for slid pairs in which two loaded states were generated

from the same secret key but necessarily with different IV’s. From analysis of

this case, we show that it may be possible to perform a practical attack on A5/1

to determine the secret key used in encrypting the targeted conversation.

3.3.1 Analysis of Slid Pairs

During the Loading Phase

As the operation of the LFSRs during the loading phase is linear, it can easily be

represented in terms of matrix operations . An analysis of the matrices involved

then enables us to identify the conditions under which a slid pair can occur.

The autonomous operation of each LFSR can be described in terms of a

matrix equation [77] as follows. Suppose that the stages of the register are

denoted as s0, s1, . . . sd, the update coefficient are c0, c1, . . . cd and that the update

function can be represented as

s0t+1 = c0s
0
t ⊕ c1s1t ⊕ . . . cdsdt

sjt+1 = sj−1t 1 ≤ j ≤ d

Putting S = [s0 s1 . . . sd]ᵀ, the register update (clocking) operation can be

represented by the equivalent matrix equation

St+1 = TSt where T =



c0 c1 . . . . . . cd−1 cd

1 0 . . . . . . 0 0

0 1 . . . . . . 0 0
...

...
. . . . . .

...
...

0 0 . . . . . . 0 0

0 0 . . . . . . 1 0


is the state transition matrix of the register.

During the loading of the key into the register, the register state update

function is given by
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St+1 = TSt ⊕ σkt (3.1)

where σ = [1 0 . . . 0]ᵀ indicates that the new key bit is XORed into the feedback

of the LFSR. If we take t = τ to indicate the register state before loading

commences and iterate this process several times, from t = τ to t = τ + l (where

l denotes the key length), we have

Sτ+1 = TSτ ⊕ σk0
Sτ+2 = T (TSτ ⊕ σk0)⊕ σk1 = T 2Sτ ⊕ Tσk0 ⊕ σk1

...

Sτ+l = T lSτ ⊕ T l−1σk0 ⊕ T l−2σk1 ⊕ . . .⊕ Tσkl−2
⊕ σkl−1

= T lSτ ⊕NK

where N = [T l−1σ T l−2σ . . . Tσ σ] and K = [k0 k1 . . . kl−2 kl−1]
ᵀ.

The above analysis can be extended easily to cases such as A5/1, which have

three LFSRs, by denoting the states of the three registers as SA, SB and SC ,

and their state transition matrices as TA, TB and TC , and defining the state

transition matrix of the combined system in matrix block form as

T =

 TA 0 0

0 TB 0

0 0 TC

 acting on S =

 SA

SB

SC


Likewise, denoting the σ and N matrices of each register as σA, σB, σC and

NA, NB, NC , the combined σ and N matrices for the whole system can be

defined as

σ =

 σA

σB

σC

 and N =

 NA

NB

NC


With these modifications, the equation above, Sτ+l = T lSτ ⊕ NK, is also valid

for the combined system. Noting that Sτ = [0 0 . . . 0]ᵀ for the registers of A5/1,
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this equation reduces to Sτ+l = NK.

A similar analysis can also be undertaken for loading the IV bits into the

LFSRs. For a 64-bit key and a 22-bit IV, we have

Sτ+64 = NK

Sτ+86 = T 22NK ⊕MV (3.2)

where M = [T 21σ T 20σ . . . Tσ σ] and V = [v0 v1 . . . v20 v21]
ᵀ.

During the Diffusion Phase

Now set τ = −86, so that S0 represents the loaded state of the system, and

consider the behaviour of A5/1 during the diffusion phase. During this phase,

the registers of A5/1 are clocked using a majority clocking rule, so for a single

iteration, there are four different cases to be considered. These are:

Case 1 All registers are clocked

Case 2 Registers A and B are clocked

Case 3 Registers A and C are clocked

Case 4 Registers B and C are clocked

For each of these cases, there will be a different state transition matrix (Tx

say) for the system, as follows:

for Case 1: Tx = T , as defined previously

for Case 2: Tx = Tab =

 TA 0 0

0 TB 0

0 0 I



for Case 3: Tx = Tac =

 TA 0 0

0 I 0

0 0 TC


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for Case 4: Tx = Tbc =

 I 0 0

0 TB 0

0 0 TC


Now suppose that we are looking for slid pairs with a slide distance of α = 1

in which both loaded states arise from the same secret key. We have

S1 = TxS0 with S0 = T 22NK ⊕MV

Now if S1 is also a loaded state for the same key K and different IV, V ′ , we

have

S1 = T 22NK ⊕MV ′

and hence

MV ⊕MV ′ = S0 ⊕ S1

or M∆ = (I ⊕ Tx)S0

= (I ⊕ Tx)(T 22NK ⊕MV ) (3.3)

where ∆ = V ⊕ V ′ = [δ0 δ1 . . . δ21]
ᵀ.

For each of these cases, we can use Equation 3.3, together with the conditions

guaranteeing the relevant type of clocking, to determine a set of conditions on

the various bits of ∆, K and V that must be satisfied in order for a slid pair to

occur in the manner described above.

The state transition matrices form the new state contents of the three reg-

isters after α iteration(s) as shown by the following equations. There are 4

possible state transition matrices to transfer from the current state to the next

one. Therefore, the total number of possible state transition matrices from the

beginning of diffusion phase at t = 0 to the required number of iteration(s) α

can be determined as 22α.

For α = 1, M∆ = (Tx ⊕ I)S0
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where Tx can be T , Tab, Tac or Tbc for each of the four different cases respectively.

For α = 2, M∆ = (TxTy ⊕ I)S0 (3.4)

where each of the Tx and Ty can be T , Tab, Tac or Tbc, resulting in 16 cases

For α = 3, M∆ = (TxTyTz ⊕ I)S0

where each of the Tx, Ty and Tz can be T , Tab, Tac or Tbc, resulting in 64 cases

Equation 3.3 is analysed using Gaussian Elimination to find the conditions

mentioned above. We start with a matrix (M) with dimension (64 × 22) and a

vector (∆) of 22 elements in the left side and in the right side a matrix (T 22N ||M)

with dimension (64 × 86) and a vector (K||V ) of 86 elements. Gaussian Elimi-

nation is applied to the M matrix to determine the relationship between deltas

{δ0, δ1 . . . δ21} and the key-IV bits as shown in Appendix A.1. This is obtained

from the top 22 rows. This relationship forms the second IV′. The last 42 rows

are the bases of the conditions that are required to get slid pairs. It consists of

42 equations of 86 variables, with each equation equal to zero.

The following process was used to obtain the results presented below:

• Use MAGMA to generate the relationship between key bits and IV bits

(system of equations) that result in slid pairs and shifted keystreams, as

discussed above.

• Identify a single secret key and some of the corresponding IVs that result in

slid pairs and shifted keystream by 1 and 2 bits (can be applied for another

shifted bits)

• Use the A5/1 cipher to generate the keystreams using this secret key and

the corresponding IVs to demonstrate the practical shifted keystreams.

3.3.2 Result of Analysis

This section focuses on finding slid pairs of A5/1 for α = 1 and 2 only. The

analysis is performed by examining Equation 3.3 for each clocking case. For

each clocking case, we find slid pairs for the same secret key (where the secret
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key is fixed for both slid pairs) with different IV’s and describe the relationship

between the first IV and second IV′. This relationship is key dependent. In

addition, the secret key is expressed as a relationship between some key bits and

other bits from both the key and the first IV.

For α = 1

Keystream sequences shifted by one bit can be obtained from two different key-

IV pairs (same key with different IV’s). Based on the analysis of Equation 3.3

described above, Table 3.4 shows the number of key and IV bits that must be

specified to form a 64-bit secret key that results in 1-bit shifted keystream for

each of the four cases. Table 3.5 shows two examples of slid pairs (in hex) for

a secret key with two different IV’s that generate keystream sequences that are

shifted by one bit. Note: the bits {0} and {1} are the shifted bits (in binary)

between these two keystream sequences in each case. Note also that the final

byte of keystream only contains three or four bits, and that these are treated

as MSBs in each case. The keystream length is 228 bits and due to the one bit

shift, the two sequences contain a common 227-bit sequence.

Table 3.4: Slid pairs after 1 clock

cases 1 2 3 4

free key bits 20 22 21 20
Involved IV bits 4 22 22 22

Table 3.5: Two keystreams shifted by 1 bit generated from the same secret key
and different IVs

key 0x2D37B6F7292DFFFB
IV1 0x200000
IV2 0xE05A00
Keystream1 {0}0x5E449A6F3414F3CD76F567275D31CFE1A4F4AE4F4D3C954D3CB124D9A
Keystream2 0x5E449A6F3414F3CD76F567275D31CFE1A4F4AE4F4D3C954D3CB124D9A

key 0xF77832CC89EFFFFB
IV1 0x200000
IV2 0x4001A4
Keystream1 {1}0xF798818F32A6B4772F5B2E55B8808541301E49CA76B11BC46F65C1494
Keystream2 0xF798818F32A6B4772F5B2E55B8808541301E49CA76B11BC46F65C1494
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For Case 1, a 64-bit secret key is formed from 20 free key bits (k42, k44, k45,

k47 to k63) and 4 IV bits (v0, v3, v11 ⊕ v13). These 24 bits specify the remaining

44 key bits using the equation in Appendix A.1. The rest of the IV bits are free

to be chosen and do not affect the secret key. Therefore, by choosing all possible

values for the 20 free key bits and the 22 IV bits, the total number of slid pairs

for Case 1 is 242 and the probability that a randomly chosen key satisfies these

equations for a given IV is 2−44.

The total number of slid pairs in each of Cases 2, 3 and 4 can be calculated

similarly, and the total numbers of slid pairs are 244, 243 and 242 respectively.

Therefore, the total number of slid pairs after 1 clock (for the 4 cases combined) is

245. Likewise, the probability that a randomly chosen key satisfies the equations

for any of these cases (for a given IV) is found to be 2−41.

For α = 2

Keystream sequences that are shifted by two bits can again be obtained from

two different key-IV pairs (same key with different IV’s). We determine the

conditions under which this occurs by analysing Equation 3.4. As discussed

above, there are 16 possible alternatives for the term Tx Ty in Equation 3.4: we

denote the corresponding cases in the analysis by i j, where i refers to the case

associated with Ty (the first clock step) and j refers to the case associated with

Tx (the second clock step).

Based on the analysis of Equation 3.4, Table 3.6 shows the number of key

and IV bits that must be specified to form a 64-bit secret key that results in a

2-bit shifted keystream for each of these 16 cases. Table 3.7 shows an example of

a slid pair in hex for a secret key with two different IV’s that generate sequences

which are shifted by two bits. Note: the bits {01} are the shifted bits (in binary)

between these 2 keystream sequences. The keystream length is 228 bits and due

to the shift of two bits, the two keystream sequences contain a common 226 bit

sequence.

Table 3.6: Slid pairs after 2 clocks

cases 1 1 1 2 1 3 1 4 2 1 2 2 2 3 2 4 3 1 3 2 3 3 3 4 4 1 4 2 4 3 4 4

Free key bits 18 18 18 18 18 22 18 18 18 18 21 18 18 18 18 21
Involved IV bits 7 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
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Table 3.7: Two keystreams shifted by 2 bit generated from the same secret key
and different IVs

key 0x1DCCC463432BFFFB
IV1 0x200000
IV2 0xC36D70

Keystream1 {01}0x916F6D486AF626F3247A77C97846CAED1D6D35B95D712F89B6B11EEB0
Keystream2 0x916F6D486AF626F3247A77C97846CAED1D6D35B95D712F89B6B11EEB1

Slid pairs after 2 clocks can occur in 16 different cases as shown in Table 3.6.

Numbers of slid pairs can be calculated in a manner similar to that used for

α = 1. We found that the total number of slid pairs for α = 2 (for the 16 cases

combined) is 225+ 240+ 240+ 240+ 240+ 244+ 240+ 240+ 240+ 240+ 243+ 240+

240+ 240+ 240+ 243 ≈ 245.46. Likewise, the probability that a randomly chosen

key satisfies the equations for any of these cases (for a given IV) is found to be

2−40.54.

Similarly, this work can be extended for a greater number of iterations to

analyse the occurrence of the slid pairs in the A5/1 cipher such as for α = 3, 4, . . ..

The number of cases to be analysed increases as the value of α increases to 22α

as mentioned in Section 3.3.1.

3.3.3 Attack Procedure

Since A5/1 has a 64-bit key and a 64-bit internal state, it is not feasible

to simply guess the whole secret key that generates the keystream and check

whether the guess is correct or not. However, if it is possible to identify the

occurrence of a slid pair, the resulting relationship can be used to reduce the

number of key bits that need to be guessed, forming the basis for an attack. We

outline the procedure for such an attack.

For each conversation there is a secret key and a series of IV’s (frame num-

bers). Initialisation with a new IV (rekeying) is performed after every 228 bits

of keystream, that is, every 4.6 milliseconds. The total time elapsed to use all

222 possible frame numbers is around 5 hours and 22 minutes. The first example

in Table 3.5 shows that a slid pair for that specific secret key occurs after 2.51

minutes.

For the attack, we focus on the most useful attack scenario for an attacker:
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ciphertext-only. This scenario assumes the attacker is able to get enough en-

crypted speech (ciphertext) and also that the IV’s (frame numbers) are known.

We describe the algorithm for one bit shifted versions of keystream. However,

it can be extended to other shifts as well. The algorithm depends on identifying

where an unknown key K is used for two encrypted frames with known IV’s, IV

and IV′, such that the resulting keystreams are shifted versions of one another.

We want to identify this from knowledge of encrypted frames alone. If we XOR an

encrypted frame and a one-bit shifted version of a second encrypted frame where

the two keystreams are out of phase by one, the result is the XOR combination

of two plaintext frames. The XOR combination of plaintext frames can be easily

identified due to the redundancy of plaintext [40]. This is critical in Step 2 of the

four step algorithm presented below. Note that our aim is to find the secret key

rather than to decrypt an individual frame. The attack algorithm is as follows:

Attack Algorithm

Step 1: Divide the encrypted speech (ciphertext) into separate frames. Each

ciphertext frame corresponds to a different IV.

Step 2: Obtain fi ⊕ (fj � 1) for every available pair of frames for 0 ≤ i 6=
j ≤ 222 and use the redundancy of speech to determine whether a one bit

shifted keystream is present, where fi and fj are the ith and jth encrypted

frame respectively.

• If so, note the IV’s of the relevant frames.

• If not, the algorithm fails for α = 1 for the entire conversation.

Step 3: If shifted keystream has been identified, find a candidate key, k∗, by

guessing and checking each possible key, as follows:

For each of cases 1, 2, 3, and 4 do:

• Guess the free key bits in the relevant set of equations in Appendix A.1.

• Use these free key bits and the known IV’s to obtain the remaining

key bits using the equations of Appendix A.1.

• Use the candidate keyK∗ with any available IVs to generate keystreams

for several frames using the A5/1 algorithm.
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• Try to decrypt the frames from the previous step using the generated

keystreams.

– If decryption is successful, the candidate key for this conversation

is equivalent to the actual key.

– If not, repeat the process for another guess.

Step 4: Use the secret key with known IV’s to decrypt the entire intercepted

ciphertext.

Comments on algorithm:

In Step 2 : it is possible that multiple pairs of frames will be identified due

to the state convergence in A5/1.

In Step 3 : if two encrypted frames have been identified as shifted keystream,

then the guessing process should cover the four Cases 1, 2, 3 and 4 to find the

correct secret key. As shown in Table 3.4, it requires guessing 20, 22, 21, 20 bits

for Cases 1, 2, 3 and 4 respectively. For each guess, the guessed key bits should

be substituted into the relevant equations in Appendix A.1 to find the remaining

key bits. At this time, it is not clear whether the candidate key is correct or not.

The proposed key must be verified by decrypting an encrypted frame. Random

frames are chosen with known IVs to generate keystreams using the proposed

secret key. If the keystreams decrypt the frames correctly then the candidate key

is correct, if not use another guess until the correct key is found or all candidates

are exhausted.

Note that the above algorithm is for 1-bit shifts. If this fails, then it is possible

to try for α = 2 or greater. The process is the same with a slight modification

in Step 2 only, so that fi ⊕ (fj � α)

Attack Complexity

For Step 2 : The complexity of our attack depends essentially on the num-

ber of comparisons required in Step 2. If there are N frames in the targeted

conversation, then up to N · (N − 1) comparisons must be performed and each

comparison must be done in both directions (fi⊕ (fj � 1)) and ((fi � 1)⊕ fj).
For a conversation involving all 222 possible IVs (222 frames ≈ 5 hours 22

minutes), there will be up to 222(222 − 1) ≈ 244 comparisons and the success

probability (the probability that the secret key used in this conversation forms a
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slid pair using two of these IVs) is approximately 2−19. For a shorter conversation,

the probability that a slid pair will occur among the available frames decreases

in proportion to the number of comparisons performed, so with N frames of

conversation the probability of success will be approximately N · (N − 1) · 2−63.
Table 3.8 gives some examples of the number of comparisons and the probability

of success for various lengths of conversation.

For Step 3 : If Step 2 of the attack is successful in finding a slid pair of the

kind we are seeking, then Step 3 will require up to 44 × 223 ≈ 228.46 additional

calculations to find the correct secret key.

Table 3.8: Complexity of various length of conversation

No of Comparison Probability Guessing
frame time complexity of success required

214 1min 16sec 228 2−35 228.46

216 5min 2sec 232 2−31 228.46

218 20min 6sec 236 2−27 228.46

220 1h 21min 240 2−23 228.46

222 5h 22min 244 2−19 228.46

Similarly for α = 2, the probability that the secret key used in this conversa-

tion forms a slid pair using one of the 222 possible IVs is approximately 2−18.51.

For shorter conversation, the probability that a slid pair may occur among the

available frames is approximately N · (N − 1) · 2−62.51.
In a known-plaintext attack [47], the attacker has a number of plaintext and

ciphertext pairs, and the keystream sequences are known, z = m⊕ f . Therefore,

the attacker can check directly for the presence of shifted keystream instead of

using the redundancy property of the messages and Step 3 is unchanged. The

total complexity is almost the same as the ciphertext-only attack scenario, except

for the time for checking redundancy.

3.4 Weak Key-IV Combinations

The keystream generator of A5/1 can be considered to operate nonautonomously

during the loading phase, where the value of the new bit of each register during
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the loading phase depends on both the feedback and an external value (which

is the key or IV bit). During the diffusion phase and keystream generation pro-

cess, the operation can be considered as an autonomous operation, as there is

no external input to the shift registers. The nonautonomous operation during

the loading phase is the most crucial operation for this analysis. However, con-

sidering the operation of each register, they operate independently during the

loading phase. Therefore, they operate dependently during the diffusion phase

and keystream generation, where each register is clocked depending on the value

in the register clocking tap and the majority value for the clocking tap values of

the three registers.

After completing the loading phase, the loaded state may have one or more

registers which are all-zero values. If two or three registers contain all-zero values,

then the generated keystream during this specific initialisation will be constant

either zeros or ones. This flaw results in sending a message in clear text if the

keystream is zeros or the complement of the message if the keystream is all ones.

In the case where exactly one register is all-zero values, this will reduce the

effective size of state space. This section thoroughly analyses the flaw of having

one or more registers which are all-zero values to give the relationships between

key and IV and the probability of recovering the secret key.

Recalling Equation 3.2, we can set τ = −86, so that S0 represents the loaded

state of the system, and consider the behaviour of the loading phase of A5/1.

The terms T 22NK and MV are XORed together. So, they can be represented

by concatenating T 22N and M and multiplying by a new vector KV , where

KV = [k0 k1 . . . k62 k63 v0 v1 . . . v20 v21]
ᵀ as follows

S0 = [T 22N ||M ]KV (3.5)

We can apply Equations 3.2 and 3.5 to each register of the A5/1. Let SA, TA,

NA and MA represents the required matrices for register A. Similarly, matrices

can be written for registers B and C as follow SB, TB, NB, MB and SC , TC , NC ,

MC respectively. The new equations for each register can be written as follows:
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SA,τ+86 = T 22
A NAK ⊕MAV

SB,τ+86 = T 22
B NBK ⊕MBV

SC,τ+86 = T 22
C NCK ⊕MCV

and

SA,0 = [T 22
A NA||MA]KV

SB,0 = [T 22
B NB||MB]KV

SC,0 = [T 22
C NC ||MC ]KV

This analysis investigates the effect on the security when the loading phase

results in a loaded state with one or more registers containing all-zero values. If

the contents of any register is all-zero after the loading phase, it will remain so

for the whole of the diffusion and keystream generation phases since the register

has no external input during these phases. Thus, the register contents will not be

changed until the next rekeying. This leads us to consider three scenarios: three

registers containing all-zeros values, two registers containing all-zeros values and

one register containing all-zeros values, as discussed later. As a result, for each

scenario, the relationships between keys and IVs are identified to obtain the weak

key-IV pairs.

The procedures used to obtain the following result are:

• Use MAGMA to generate the relationship between key bits and IV bits

(system of equations) that result in one, two and three registers that contain

all-zero values at the end of the loading phase.

• Identify a secret key and one of its corresponding IVs that result in one,

two and three registers that contain all-zero values

• Use the real A5/1 cipher to generate the loaded, initial states, and keystream

sequence to illustrate the practical impact of the weak key-IV in the con-

tents of registers and the keystream sequences.

3.4.1 Three Registers all Zeros

This section focuses on the situation of three registers containing all-zero

values after completing the loading phase. These three registers will be clocked

and produce all zero keystream bits continuously until the next rekeying. Thus

the output keystream bit obtained by XORing these three zeros will also be zero.

From Equation 3.5, the behaviour of these three registers is expressed in three

terms T 22
A NA||MA, T 22

B NB||MB and T 22
C NC ||MC . Under the assumption that
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these three registers will have all-zero contents in each stage after performing the

loading phase, we analyse the system of equations. Equation 3.5 is analysed using

Gaussian Elimination to find the conditions mentioned above. We start with

assuming these three terms (T 22
A NA||MA, T 22

B NB||MB, T 22
C NC ||MC) are equal to

zeros. This process generates the relationship between key and IV bits that result

in freezing the three cipher’s registers. We have 64 equations with 86 variables,

and hence 22 variables can be chosen freely.

Based on the analysis of Equation 3.5, Table 3.9 shows an example of weak

key-IV that produces fixed keystream which contains all-zeros, where the keystream

is presented in hex. The three registers A, B and C contain all-zero values af-

ter performing the loading phase due to the nonautonomous operation. The

conditions and the probability of the weak key-IV’s depend on the 22 IV free

bits.

Table 3.9: Example of weak key-IV (to freeze three registers)

key 0010000000100000100111001101110110000001001101111001000000100011
IV 1110000000000000000000

loaded
state

A 0000000000000000000
B 0000000000000000000000
C 00000000000000000000000

initial
state

A 0000000000000000000
B 0000000000000000000000
C 00000000000000000000000

Keystream 0x000000000000000000000000000000000000000000000000000000000

A 64-bit secret key, which results in freezing the three registers, is formed

from 22 IV free bits (v0, v1 to v21). These 22 IV free bits specify the 64 key

bits using the system of equations in Appendix A.2. Therefore, by choosing all

possible values of the 22 IV free bits, the total number of weak key-IV pairs is

222 and the probability that a randomly chosen key satisfies these equations (for

a given IV) is 2−64 (For a set of 222 IVs, the probability is 2−42).

Attack Procedure

Since A5/1 has a 64-bit key and a 64-bit internal state, it is not feasible

to simply guess the whole secret key that generates the keystream and check

whether the guess is correct or not. However, if it is possible to identify the
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occurrence of a weak key-IV where the three registers are zeros, this enables an

attacker to calculate the exact secret key directly from the known IV. Note that

this procedure focuses on finding the secret key rather than on decrypting an

individual frame.

In the attack scenario, we focus on the most useful attack which is ciphertext-

only attack. This scenario requires getting enough length of the encrypted speech

(ciphertext) and assuming the IV’s (frame numbers) are known. The following

algorithm represents the attacking procedure for this scenario of the weak key-IV

of the A5/1.

Attack Algorithm

When the initial state of the three registers are all-zeros, the keystream is all

zeros as well. For this type of keystream, the required steps to identify the secret

key are as follows:

Step 1: Divide the encrypted speech (ciphertext) into separate frames. Each

ciphertext frame corresponds to a single IV.

Step 2: If any encrypted frame is intelligible and seems to be a plaintext, this

indicates that the keystream is all zeros.

Step 3: Run the following algorithm on this frame, assuming that the keystream

is generated by three registers containing all-zeros values.

• Use the known IV to calculate the potential secret key using the equa-

tions in Appendix A.2 for three registers containing all-zeros. In this

scenario there is no guessing.

• Use the potential secret key with other IV’s to generate keystreams

for the corresponding frames using the A5/1 algorithm.

• Combine the generated keystreams with decrypt the encrypted frames

that correspond to the IV’s.

– If the encrypted frames are decrypted successfully, then the secret

key has been identified, and can be used with the known IV’s to

decrypt the entire intercepted ciphertext.

– If not, apply the attack procedure outlined in Section 3.4.2, this

applies when two registers contain all-zero values.
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Attack Complexity, if the three registers contain all-zeros, then it is pos-

sible to directly calculate the secret key from the given IV using equations in

Appendix A.2 for three registers contain all-zeros. The probability of occurrence

of this type of keystream is 2−64.

3.4.2 Two Registers all Zeros

This section focuses on the situation in which two registers contain all-zero

values after performing the loading phase. As the clocking stage in each of these

two registers will contain a zero, the majority value will be zero. Hence, these

two registers will be clocked every time. The third register will be clocked until

the content of its clocking stage has value “1”. Since the diffusion phase consists

of 100 clocking steps before producing any keystream bits and the largest register

has only 23 stages, this process will ensure that the third register will be in its

steady state before the keystream generation begins.

The keystream bit z is obtained by XORing the contents of the left most

stage of each registers s18a , s21b and s22c for registers A, B and C respectively as

zt = s18a,t ⊕ s21b,t ⊕ s22c,t. The left most stage of the non-zero register will be fixed,

and could contain either 0 or 1, while the other two registers contain only zeros.

The value in this stage is the value of the key stream bit. Thus the keystream

has constant value for the entire frame.

Considering the operation of the LFSR during the loading phase is linear and

non-autonomous where the new bit depends on both the feedback and key or IV

bit, it is easy to relate the contents of the three registers after the loading phase

to the key and IV bits that were loaded into these registers. From Equation 3.5,

the behaviour of these three registers is expressed in three terms T 22
A NA||MA,

T 22
B NB||MB and T 22

C NC ||MC . Our analysis is conducted under the assumption

that we are looking for two registers which have zeros as content in each stage of

these two registers after performing the loading phase. Specifically in the three

cases:

Case 1 Registers A and B contain all-zeros

Case 2 Registers A and C contain all-zeros

Case 3 Registers B and C contain all-zeros
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Equation 3.5 is analysed using Gaussian Elimination to find the conditions

mentioned above. We start with the terms (T 22
A NA||MA, T 22

B NB||MB), (T 22
A NA

||MA, T 22
C NC ||MC) and (T 22

B NB||MB, T 22
C NC ||MC). Setting each term equal to

zeros and applying Gaussian Elimination will give us the conditions and rela-

tionships between key and IV bits that apply to these weak key-IV’s. For the

three scenarios, we have 41, 42, 45 equations respectively with 86 variables, and

hence 45, 44 and 41 variables can be chosen freely.

Conditions and probabilities of the weak key-IV pairs depend on the number

of available free bits. Table 3.10 shows the number of key and IV free bits that

must be chosen to form a 64-bit secret key that results in a weak key-IV. This

type of weak key-IV freezes two registers and produces fixed keystream for the

entire frame.

Table 3.10: Number of free bits for weak key-IV of each case of two register
all-zero

cases 1 2 3

key free bits 23 22 19
Involved IV bits 22 22 22

Case 1: It is possible to obtain a weak key-IV pair for A5/1 by freezing two

registers A and B. Based on the analysis of Equation 3.5 described above, Ta-

ble 3.11 shows two examples of weak key-IV that produce fixed keystream (either

zeros or ones) where the keystream is presented in hex. The two registers A and

B contain all zeros after performing the loading phase due to the nonautonomous

operation. The keystream bits are formed as a copy from the output bit (last

bit) of the register C. Note that the bold and underlined bits are the clocking

control bits and the output bits respectively of the content of registers A, B and

C.

For Case 1, a 64-bit secret key is formed from 23 key free bits (k41, k42, k43

to k63) and 22 IV bits (v0, v1 to v20, v21). These 45 bits specify the remaining 41

key bits using the system of equations in Appendix A.2. Therefore, by choosing

all possible values for the 23 key free bits and the 22 IV bits, the total number

of weak key-IV for Case 1 is 245 and the probability that a randomly chosen key

satisfies this system of equations (for a given IV) is 2−41. (For a 222 IVs, the
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Table 3.11: Two examples of weak key-IV (Case 1)

key 0110100101000010100110111011101001001011011111111111111111111001
IV 1110000000000000000000

loaded
state

A 0000000000000000000
B 0000000000000000000000
C 11111110110010110111001

initial
state

A 0000000000000000000
B 0000000000000000000000
C 11111111011001011011100

Keystream 0x000000000000000000000000000000000000000000000000000000000

key 1000001000101110111010101011001101100110111111111111111111111001
IV 1100000000000000000000

loaded
state

A 0000000000000000000
B 0000000000000000000000
C 11101101110111110100111

initial
state

A 0000000000000000000
B 0000000000000000000000
C 01110110111011111010011

Keystream 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

probability is 2−19).

Case 2: Similarly to Case 1, it is possible to freeze another pair of two registers

A and C. So, it is possible to obtain a weak key-IV pair for A5/1 from this

condition. Based on the analysis of Equation 3.5 described above, Table 3.12

shows two example of weak key-IV that produces fixed keystream either zeros or

ones, where the keystream is presented in hex. The two registers A and C became

zeros after performing the loading phase due to the nonautonomous operation.

The keystream bits are copied from the output bit of register B. Note that the

bold bits are the clocking tap and the underlined bits are the output bits.

For Case 2, a 64-bit secret key is formed from 22 key free bits (k42, k43 to

k63) and 22 IV bits (v0, v1 to v21). These 44 bits specify the remaining 42 key

bits using the system of equations in Appendix A.2. Therefore, by choosing all

possible values for the 22 key free bits and the 22 IV bits, the total number of

weak key-IV for Case 2 is 244 and the probability that a randomly chosen key

satisfies this system of equations (for a given IV) is 2−42. (For a range of 222 IVs,

the probability is 2−20).

Case 3: Similarly to Case 1 and 2, it is possible to freeze the last combination

of two registers B and C to obtain a weak key-IV. Based on the analysis of

Equation 3.5 described above, Table 3.13 shows two examples of weak key-IV
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Table 3.12: Two examples of weak key-IV (Case 2)

key 0101100010011111010111110101111001010101001111111111111110111001
IV 1110000000000000000000

loaded
state

A 0000000000000000000
B 0101010101110110001000
C 00000000000000000000000

initial
state

A 0000000000000000000
B 0101010101110110001000
C 00000000000000000000000

Keystream 0x000000000000000000000000000000000000000000000000000000000

key 0111111010110100000001110001110110001110101111111111111110111001
IV 1100000000000000000000

loaded
state

A 0000000000000000000
B 0001101100100110101011
C 00000000000000000000000

initial
state

A 0000000000000000000
B 0001101100100110101011
C 00000000000000000000000

Keystream 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

pairs that produce fixed keystream either zeros or ones, where the keystream

is presented in hex. The two registers B and C became zeros after performing

the loading phase due to the nonautonomous operation. The keystream bits are

formed from the output bit of the register A. Note that the bold bits are the

clocking tap and the underlined bits are the output bits.

Table 3.13: Two examples of weak key-IV (Case 3)

key 1011100011000000100000011000111111010011111111111111110111111001
IV 1100000000000000000000

loaded
state

A 0100000100010000001
B 0000000000000000000000
C 00000000000000000000000

initial
state

A 1010000010001000000
B 0000000000000000000000
C 00000000000000000000000

Keystream 0x000000000000000000000000000000000000000000000000000000000

key 1010011010110011010110100000010110000010010011111111110111111001
IV 1111000000000000000000

loaded
state

A 1011100001111110100
B 0000000000000000000000
C 00000000000000000000000

initial
state

A 1100101110000111111
B 0000000000000000000000
C 00000000000000000000000

Keystream 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
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For Case 3, a 64-bit secret key is formed from 19 key free bits (k45, k46 to

k63) and 22 IV bits (v0, v1 to v21). These 41 bits specify the remaining 45 key

bits using the system of equations in Appendix A.2. Therefore, by choosing all

possible values for the 19 key free bits and the 22 IV bits, the total number of

weak key-IV for Case 3 is 241 and the probability that a randomly chosen key

satisfies these equations (for a given IV) is 2−45. (For 222 IVs, the probability is

2−23).

As mentioned above, the number of weak key-IV pairs for each of cases 1, 2

and 3 are 245, 244 and 241 respectively. Therefore, the total number of weak key-

IV pairs, when two registers contain all-zeros, is 245.64. Likewise, the probability

that a randomly chosen key satisfies the equations for any of these cases (for

a given IV) is found to be 2−40.36. (For a set of 222 IVs with fixed key, the

probability is 2−18.36).

Attack Procedure

As described in Section 3.4.1, if a specific operation of A5/1 can be identified,

this reduces the required effort of attacking to obtain the secret key. This section

analyses when a keystream sequence is either all zeros or all ones. When a

keystream sequence is all zeros, it may be generated by either all three registers

are zeros or only two registers are zeros. Section 3.4.1 discussed the situation of

three registers are zeros. To remind the reader, the attacking algorithm assumes

the ciphertext-only attack to recover the secret key.

Attack Algorithm

The following algorithm can be applied when a keystream sequence is either

all zeros or all ones. When it is all zeros, firstly apply the algorithm presented

in Section 3.4.1, if it fails, apply the following algorithm.

Step 1: Divide the encrypted speech (ciphertext) into separate frames. Each

ciphertext frame corresponds to a single IV.

Step 2: If any encrypted frame is intelligible (seems to be plaintext) and fails

to the previous algorithm in Section 3.4.1, or if the complement of any
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encrypted frame is intelligible and seems to be plaintext, this indicates

that the keystream is all ones, then:

Step 3: Guess and check for each possible key of cases 1, 2 and 3 as follows:

• Guess the free key bits in the relevant set of equations in Appendix A.2

for two registers contain all-zeros.

• Use these guessed free key bits and the known IV to calculate the

remaining key bits using these equations in Appendix A.2.

• Use the generated potential secret key with other IV’s to generate

keystreams using A5/1 algorithm.

• Try to decrypt the encrypted frames using the generated keystream.

– If the encrypted frames are decrypted successfully, then the secret

key has been identified.

– If not, repeat the process for another guess.

Use the secret key with known IV’s to decrypt the entire intercepted ciphertext.

Attack Complexity : For the two registers contain all-zeros where the

keystream is either all zeros or all ones, it requires calculation up to 223.64 to

obtain the secret key. The probability of success for this type of keystreams is

2−40.36.

3.4.3 One Register all Zeros

It is possible to find key and IV pairs such that exactly one register contains

all-zero values after the loading phase. Whether this register is clocked or not

during the keystream generation, the contribution to the keystream bit form this

register is zero. In this situation at least one of the other two registers will be

clocked. The value of the keystream bits actually depends only on the content

of the last bit of these other two registers.

For the scenario where one register contains all-zeros, considering the opera-

tion of the LFSR during the loading phase is linear and non-autonomous where

the new bit depends on both the feedback and key or IV bit, it is easy to re-

late the contents of the three registers after the loading phase to the key and

IV bits that were loaded into these registers. From Equation 3.5, the behaviour



96 Chapter 3. Analysis of A5/1 Stream Cipher Initialisation Process

of these three registers is expressed in three terms T 22
A NA||MA, T 22

B NB||MB and

T 22
C NC ||MC . Our analysis is conducted under the assumption that we are looking

for a register which has zero contents in its stages after performing the loading

phase as shown in the three cases:

Case 4 Register A contains all-zero values

Case 5 Register B contains all-zero values

Case 6 Register C contains all-zero values

Equation 3.5 is analysed using Gaussian Elimination (GE) to find the con-

ditions mentioned above. We start with the term (T 22
A NA||MA) which is equal

to zero to find the relationship between key and IV bits. This process is applied

for the other two terms (T 22
B NB||MB) and (T 22

C NC ||MC). This process generates

the relationship between key and IV bits that result in freezing a register after

performing the loading phase. For the three cases (4, 5 and 6), we have 19, 22,

23 equations respectively. For each case, there are 86 variables, and hence 67, 64

and 63 variables can be chosen freely.

If a register contains all zeros at the end of the loading phase, it will remain

all-zero for the entire frame. The conditions and the probabilities of the weak

key-IVs depend on the number of free bits. Table 3.14 shows the number of key

and IV free bits that must be chosen to form a 64-bit secret key that results in

a weak key-IV that makes one register have all-zero values for the entire frame.

Table 3.14: Number of free bits for weak key-IV of each case of one register
containing all-zeros

cases 4 5 6

key free bits 45 42 41
Involved IV bits 22 22 22

Case 4: Based on the analysis of Equation 3.5 described above to freeze register

A, Table 3.15 shows an example of weak key-IV that makes register A contains

all-zero values until the next rekeying. The keystream is presented in hex and

depends only on two registers B and C. Register A contains all-zero values after

performing the loading phase due to the nonautonomous operation.
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Table 3.15: Example of weak key-IV (Case 4)

key 1001111011001000001111111111111111111110011111111111111111111001
IV 1110000000000000000000

loaded
state

A 0000000000000000000
B 0100000111000111010100
C 11010011010111101110110

initial
state

A 0000000000000000000
B 1011101101100100100111
C 11011011011011100110011

Keystream 0x507802ACC6711F53C436082322478AE8CB842631EA9CB9CC6869D6FCA

For Case 4, a 64-bit secret key is formed from 45 key free bits (k19, k20 to

k63) and 22 IV bits (v0, v1 to v21). These 67 bits specify the remaining 19 key

bits using the system of equations in Appendix A.2. Therefore, by choosing

all possible values for the 45 and 22 key and IV free bits respectively, the total

number of weak key-IV pairs for Case 4 is 267 and the probability that a randomly

chosen key satisfies these equations (for a given IV) is 2−19.

Case 5: Similarly to Case 4, it is possible to freeze register B. Based on the

analysis of Equation 3.5, Table 3.16 shows an example of weak key-IV that pro-

duces a keystream (in hex) from only two effective registers A and C. Register

B contains all-zero values after performing the loading phase due to the nonau-

tonomous operation.

Table 3.16: Example of weak key-IV (Case 5)

key 1000010110000110010111111110111101111110011111111111111111111001
IV 1110100000000000000000

loaded
state

A 0001110101010110110
B 0000000000000000000000
C 01111000000000100101011

initial
state

A 0111101111111010110
B 0000000000000000000000
C 11011010101110111010111

Keystream 0x22832052674272A5FE39A39A530A861AD7672C4976B4B4EBE5A3C7413

For Case 5, a 64-bit secret key is formed from 42 key free bits (k22, k23 to k63)

and 22 IV bits (v0, v1 to v21). These 64 key-IV bits specify the remaining 22 key

bits using the system of equations in Appendix A.2. Therefore, by choosing all

possible values for the 42 key free bits and the 22 IV free bits, the total number
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of weak key-IV for Case 5 is 264 and the probability that a randomly chosen key

satisfies these equations for a given IV is 2−22.

Case 6: Similarly to Case 4 and 5, it is possible to freeze the third register C.

Based on the analysis of Equation 3.5 as described above, Table 3.17 shows an

example of weak key-IV that produces a keystream (in hex) using two effective

registers A and B. Register C contains all-zero values after performing the

loading phase until the next rekeying due to the nonautonomous operation during

the loading phase.

Table 3.17: Examples of weak key-IV (Case 6)

key 0011110000100011100000111111111111111110011111111111111111111001
IV 1110000000000000000000

loaded
state

A 1001100111001111111
B 1011111011111010101110
C 00000000000000000000000

initial
state

A 0000101101110000000
B 1000011100111100110000
C 00000000000000000000000

Keystream 0x0F162408D5ACED21E25C9CD1B78E0E0A687BCE90F2643E52E99013206

For Case 6, a 64-bit secret key is formed from 41 key free bits (k23, k24 to k63)

and 22 IV bits (v0, v1 to v21). These 63 bits specify the remaining 23 key bits

using the equation in Appendix A.2. Therefore, by choosing all possible values

for the 41 key free bits and the 22 IV free bits, the total number of weak key-IV

pairs for Case 6 is 263 and the probability that a randomly chosen key satisfies

these equations for a given IV is 2−23.

As mentioned above, the number of weak key-IV pairs for each of cases 4,

5 and 6 are 267, 264 and 263 respectively. Therefore, the total number of weak

key-IV’s that result in freezing one register of A5/1 is 267.25 that means there are

245.25 weak keys. Likewise, the probability that a randomly chosen key satisfies

the equations for any of these cases (for a given IV) is 2−18.75.

Statistical analysis

From the above analysis, the complexity of recovering the secret key using

a keystream sequence which is generated by a weak key-IV such that a single
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register contains all-zeros is close to exhaustive search and the probability of

success is 2−18.75. The rest of the section focuses on statistical analyses to dis-

tinguish a keystream generated by two non-zero registers only (while the third

register contains all-zero values) from another keystream generated by non-zero

three registers.

A number of statistical tests available for testing randomness, see for ex-

ample Gustafson [57] and the National Institute of Standards and Technology

(NIST) [90]. We use three of these tests to check the randomness of sequences

generated by the above cases. These three tests are Balance, Runs tests and Lin-

ear Complexity to assess the randomness. Balance test measures the proportion

of zeros and ones for an entire sequence. The number of zeros and ones for a given

sequence should meet the conditions of the randomness test. So, the probability

is P (0) = P (1) = 1
2
. Runs test focuses on the total number of runs in a sequence.

Runs is an uninterrupted sequence for specific patterns of bits whether zeros or

ones. Linear Complexity determines the smallest LFSR that can generate the

whole keystream over the finite field Fn2 using Berlekamp-Massey algorithm [83].

Frames are generated for different scenarios of the targeted operation of the

A5/1 cipher as follows

• None of the registers A, B or C contain all-zero values (A, B and C all

participate to form the keystream bits)

• Register A contains all zeros (B and C participate to form the keystream

bits)

• Register B contains all zeros (A and C participate to form the keystream

bits)

• Register C contains all zeros (A and B participate to form the keystream

bits)

For each scenario, 100,000 228-bit frames are generated from 100,000 random

loaded states. The Balance and Runs test are applied for these generated frames.

Figure 3.8 demonstrates the Balance test for each scenario. Table 3.18 shows the

result of the Runs test. Figures 3.9 and 3.10 show the result of Linear Complexity

of A5/1 for frame length 228 bits and 2000 bits respectively.

From the above tests, the bits’ distributions and bit balancing for all scenarios

are alike. So we have not been able to distinguish a keystream generated by
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Figure 3.8: Result of the balance test for zeros bits
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2 registers (while the third register contains all-zeros) using Balance, Runs or

Linear Complexity tests. Since we have not determined a way to distinguish

such keystreams, we will not discuss further any method of attacking A5/1 in

this scenario.

3.5 Summary and Security Impact

This chapter examined the initialisation process of the A5/1 stream cipher. A5/1

has an internal state of 64 bits, that is shorter than the combined key-IV length
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Table 3.18: The average counts from the runs test for 4 scenarios based on 105

randomly simulated states

Runs A,B,C B,C A,C A,B

1 57.471 57.504 57.509 57.497
2 28.592 28.621 28.634 28.621
3 14.255 14.261 14.237 14.255
4 7.091 7.087 7.103 7.115
5 3.532 3.523 3.532 3.529
6 1.767 1.759 1.752 1.756
7 0.874 0.875 0.872 0.869
8 0.437 0.437 0.438 0.437
9 0.219 0.216 0.217 0.214
10 0.109 0.110 0.109 0.108
11 0.053 0.055 0.054 0.053
12 0.028 0.027 0.026 0.027
13 0.013 0.014 0.013 0.013
14 0.007 0.007 0.007 0.007
15 0.003 0.003 0.003 0.003
16 0.001 0.001 0.002 0.001
17 0.0 0.001 0.001 0.001
18 0.0 0.0 0.0 0.001
19 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0
21 0.0 0.0 0.0 0.0
22 0.0 0.0 0.0 0.0
23 0.0 0.0 0.0 0.0
24 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0

(64+22) of 86 bits. This leads to an effective reduction in the key-IV space

during the initialisation process. The initialisation process of A5/1 loads the

secret key and IV using a linear function, while the diffusion phase and keystream

generation both use the same nonlinear state update function. In this chapter

investigations into three flaws in the A5/1 initialisation process were described:

state convergence, slid pairs and weak key-IV pairs. These problems have been

discussed in detail in this chapter.
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A5/1 uses a majority clocking operation during both the diffusion phase and

keystream generation process to introduce non-linearity to the state update func-

tion. However, this results in an update function which is not one-to-one. As

previously shown by Golić in [54, 55], this leads to state convergence during the

diffusion phase of the A5/1 initialisation process (and similarly during keystream

generation, although that is beyond the scope of this research). This work ex-

tends Golić’s research [54, 55] from one step to six clocking steps. These results

show that the number of inaccessible patterns for each clocking step increases

non-uniformly, while the proportion of inaccessible states for each clocking step

decreases non-uniformly. The non-uniform rate makes it hard to analyse for

large value of α. During the first six iterations of the diffusion phase, the total

number of distinct internal states of A5/1 is reduced to approximately half of the

number of loaded states. As the number of iterations, α, increases then the num-

ber of distinct states decreases. After 100 iterations of the initialisation process,

the total number of distinct internal states is extrapolated, based on regression

analysis, to be 5% of the number of loaded states. So, there are effectively only

259.59 distinct initial states, and therefore less than 259.59 distinct keystreams can

be produced. This may make A5/1 more vulnerable to attacks such as TMTO

attack, where the distinct internal states are decreased.

Concurrent investigation as reported in Kiselev and Tokareva [71] also anal-

ysed extending the number of clocks. Their results disagree with the results

presented in this thesis. However, as shown in Section 3.2.2 these results are not

correct due to a logic error in their counting procedure.

As there is no specific format for the loaded state of A5/1 and the inter-

nal state is not larger than the key-IV space, every internal state is a legitimate

loaded state and hence forms a slid pair with any of its pre-images under repeated

iterations of the state update function. Thus, slid pairs occur ubiquitously during

the diffusion phase of initialisation process of A5/1. The state update functions

for both diffusion phase and keystream generation are identical, therefore, slid

pairs for A5/1 always lead to shifted keystream sequences. A particular case of

slid pairs which arise from the use of the same secret key and multiple IV’s was

investigated. This is a common scenario in real time applications, and only re-

quires access to frames from a single conversation, so can be used for a practical

secret key recovery attack. A ciphertext-only attack on A5/1 based on the redun-

dancy of the plaintext property and known IV’s was presented. Table 3.8 gives



3.5. Summary and Security Impact 103

a summary of the required ciphertext, complexity and the probability of success

for this attack. This attack (ciphertext-only) can reveal the secret key using

approximately 5 minutes of conversation with comparison complexity of 232 and

probability of success 2−31. Consequently, this problem leaves A5/1 vulnerable

for ciphertext-only attack to recover the secret key.

The nonautonomous loading phase of A5/1 also generates weak key-IV pairs.

Weak key-IV pairs result in one or more registers containing all zeroes at the end

of the loading phase. This chapter described three scenarios of the weak key-IV

pairs. These three scenarios are described as follows: Firstly, all three registers

containing all-zero values occurs with probability of 2−64. In this scenario, the

secret key can be derived directly from a given IV based on the ciphertext-only

attack. Secondly, the scenario where exactly two registers contain all-zeros can

also be attacked using ciphertext-only attack to retrieve the secret key with an

average probability of success 2−40.36. This requires guessing up to 23 bits to

calculate the remaining secret key bits, with complexity of 228.36. The last sce-

nario is where only one register contains all-zeros which occurs with probability

of 2−18.75. However, we have not determined a distinguisher for the keystream

in this case. Thus, we did not discuss any attack method for this case. Thereby,

A5/1 is vulnerable to ciphertext-only key recover attacks using both the first and

second scenarios. Equations relating the values of key bits and IV bits in case of

these scenarios are discussed in Section 3.4 and presented in Appendix A.2.
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Chapter 4

Analysis of Sfinks Stream Cipher

Initialisation Process

The Sfinks stream cipher was submitted to the eSTREAM project ; the ECRYPT

call for stream cipher proposals, in April 2005 [29]. Sfinks is a bit-based stream

cipher that takes an 80-bit secret key and 80-bit IV as inputs and has a 256-

bit internal state. Sfinks is categorized as PROFILE 2A, suitable for hardware

applications and associated authenticated encryption.

The Sfinks stream cipher was attacked by Courtois [36] using basic and fast

algebraic attacks. These algebraic attacks exploit the state update function used

during keystream generation, but do not make use of the initialisation process.

Courtois found that Sfinks can be broken with complexity of 271 computations

using 243 keystream bits, which is faster than the claimed security level of 280.

As noted above, the Sfinks stream cipher is broken as a keystream generator.

The purpose of this research is to investigate the strategy used for initialisation

process. We note that the state update functions are different during initial-

isation and keystream generation precesses. Using a modified version of the

keystream generation state update function during initialisation may produce

some security benefits. The objective of this chapter is to consider specifically

the properties of the initialisation process, rather than keystream generation, and

to consider interactions between these two processes that may result in security

flaws.

As shown in Chapter 3, the A5/1 internal state size is shorter than the sum

105
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of the sizes of the key and IV, the state update function is not one-to-one and the

state update functions during initialisation and keystream generation processes

are identical functions. This leads to some security flaws. In contrast, Sfinks has

internal state size larger than twice the size of the secret key, and the individual

components of the state update functions are one-to-one. As well, the state

update functions during initialisation and keystream generation processes are not

similar. In the following sections we show that despite this, state convergence

still occurs in the initialisation process and that slid pairs can occur and lead to

shifted keystream sequences.

This chapter is organised as follows: Section 4.1 describes the specification of

the Sfinks stream cipher. An analysis of state convergence during the initialisa-

tion process is presented in Section 4.2. In Section 4.3, slid pairs are presented

with some examples and an attacking procedure. Section 4.5 summarises this

chapter and presents the security impact of this analysis..

4.1 Specification of Sfinks Stream Cipher

The Sfinks stream cipher [29] has two main components: a shift register, S, and

a nonlinear one-to-one inversion function INV , as shown in Figures 4.1 and 4.2.

During the initialisation, it also uses a pipeline (memory) to delay the output of

the INV function before combining this output with the shift register content.

Additionally, another memory is used during keystream generation to delay the

output bit of the shift register by 7 clocking steps before combining it with a

specific bit of the INV function to generate a new keystream bit.

Let sit denote the contents of register stage i at time t, where i = 0, 1, . . . , 255

and t ≥ 0. Sfinks uses an 80-bit secret key k = k0, . . . , k79 and 80-bit initial value

v = v0, . . . , v79. The linear feedback function is described as follows.

(4.1)s255t+1 = s212t ⊕ s194t ⊕ s192t ⊕ s187t ⊕ s163t ⊕ s151t ⊕ s125t ⊕ s115t

⊕ s115t ⊕ s107t ⊕ s85t ⊕ s66t ⊕ s64t ⊕ s52t ⊕ s48t ⊕ s14t ⊕ s0t

The nonlinear function INV can be considered as a 16×16 bit S-box. The in-

version function is used during both initialisation and keystream generation, but

in different ways in each case. Let xt and y6,t denote the 16-bit input and output

of INV respectively at time t, where xt = (x16t , . . . , x
1
t ) and y6,t = (y156,t, . . . , y

0
6,t).

Let xit denote the i-th bit of the input of the S-box, yj,t denote the j-th word of 16
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bits (j = 0, 1, . . . , 6) in the pipeline (memory) and yij,t denote the i-th bit of yj,t,

all at time t. INV is an invertible function, F216 → F216 that calculates the in-

verse of the 16-bit input, modulo the primitive polynomial X16+X5+X3+X2+1.

The 16 input bits are taken from 16 register stages at time clock t as follows.

(x16t , . . . , x
1
t ) =(s255t , s244t , s227t , s193t , s161t , s134t , s105t , s98t , s

74
t , s

58
t ,

s44t , s
21
t , s

19
t , s

9
t , s

6
t , s

1
t ) (4.2)

The output word y6,t is delayed to become y0,t. The delayed version of the 16-

bit S-box output, y0,t, is treated as 16 bit values as y0,t = (y150,t, . . . , y
0
0,t). During

the initialisation, these bits are fed back to specified stages of the shift register.

During keystream generation, only one bit of the output of the INV is used, and

this bit contributes to the formation of the keystream bit.

During initialisation, the output of the S-box is stored in a pipeline (memory),

yj,t for 0 ≤ j ≤ 6, to manage the delay of 7 clocking steps. The total required

memory to store seven 16-bit output bits is 112 memory bits. Consequently, the

total effective state size during the initialisation process is the sum of shift register

size and the number of memory bits: 368 bits. During keystream generation, a

memory of only 7 bits, mi for 0 ≤ i ≤ 6, is used to perform a delay of 7 clocking

steps to stage s0 that is used to generate a new keystream bit, zt. The memory

stages, y0j,t are also used to delay y06,t for this purpose, but the remaining 15

bits of S-box from y1j,t to y15j,t for 0 ≤ j ≤ 6 are not used during the keystream

generation. Therefore, the total effective state size during keystream generation

is 270.

4.1.1 Initialisation Process

The initialisation process takes as input the 80-bit key and 80-bit IV and

performs 128 iterations to produce the 368-bit initial state. Once this initial

state is obtained, keystream generation can begin. The initialisation process is

performed in two phases, which we refer to as loading and diffusion.

Note: the reference implementation of Sfinks [29,75] uses t = −128 to denote

the start of the diffusion process but, for simplicity, we will use t = 0 to denote

this time point.
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S-Box (inversion)
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16-bits
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Figure 4.1: Keystream generator of Sfinks stream cipher

Loading Phase

Firstly, all of the register stages are set to zero. Then the 80-bit key and

80-bit IV are transferred to specified register positions s96+i0 = ki, for 0 ≤ i ≤ 79,

and s176+i0 = vi, for 0 ≤ i ≤ 79. The register stage s950 = 1 and the remaining

si0 = 0, for 0 ≤ i ≤ 94. The output of the S-box is set to all-zero for the first

seven 16-bit outputs, yij,0 = 0 for 0 ≤ j ≤ 6 and 0 ≤ i ≤ 15 (the initial value of

the pipeline). In [29] this process is described as necessary to clear the pipeline

stages in the hardware implementation and to provide the initial values of the

output of the S-box to allow for the delay of 7 clocking steps.

When both the secret key and IV have been transferred and the rest of

the state bits (the rest of shift register and the memory cells) are fixed to the

designated values, the Sfinks stream cipher is in its loaded state. Following this,

the diffusion phase begins.

Diffusion Phase
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The diffusion phase consists of 128 iterations of the initialisation state-update

function. Each iteration can be considered as a function which maps the state

space to itself. After the diffusion phase is completed, the keystream generator

is said to be in its initial state.
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feedback to shift register

Clock

Figure 4.2: Initialisation processes of Sfinks stream cipher

The state update function for the diffusion process uses Equation 4.1 and

the output of the nonlinear S-box function. The S-box output feeds back into

16 specified stages of the shift register with a time delay of 7 clocking steps

as detailed below. Figure 4.2 gives a general overview of state update function

during the diffusion phase of the Sfinks stream cipher.

sit = si+1
t−1 ⊕ yi mod 16

0,t−1 (4.3)

for i = {11, 17, 41, 52, 66, 80, 111, 118, 142, 154, 173, 179, 204, 213, 232, 247}.
All other bits are shifted normally, i.e. sit = si+1

t−1 for all other i’s. At each

iteration, the shift register is clocked and then the INV function is called to

calculate the inverse of the 16-bit input to the S-box. This is stored as the S-

box output in the memory where the first input is the first output. The 16-bit

output of the memory is XORed with the contents of the 16 specified stages of

the shift register to form the contents of another 16 stages of the shift register.
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The S-box function is the only nonlinear component in the initialisation process.

A complete description of the state update function during diffusion phase is:

sit =



si+1
t−1 for i = {0, 1, . . . , 254} except {11, 17, 41, 52, 66, 80,

111, 118, 142, 154, 173, 179, 204, 213, 232, 247}

si+1
t−1 ⊕ yi mod 16

0,t−1 for i = {11, 17, 41, 52, 66, 80, 111, 118, 142, 154,

173, 179, 204, 213, 232, 247}

⊕
j s

j
t−1 for i = 255

for j = {0, 14, 48, 52, 64, 66, 85, 107, 115, 125, 151,

163, 187, 192, 194, 212}

yj,t =



yj+1,t−1 for j = {0, 1, 2, 3, 4, 5}

INV (x16, . . . , x1) for j = 6

(x16, . . . , x1) = (s255t , s244t , s227t , s193t , s161t , s134t ,

s105t , s98t , s
74
t , s

58
t , s

44
t , s

21
t , s

19
t , s

9
t , s

6
t , s

1
t )

4.1.2 Keystream Generation

At t = 128, the Sfinks stream cipher has completed the initialisation processes

and is ready for keystream generation. A memory component of 7 stages is used

to apply a delay of 7 clocking steps to the rightmost bit in the shift register s0t .

During keystream generation, the output of the INV function is not fed back to

shift register, S, and so the register feedback is linear. The rightmost bit in the

shift register s0t is shifted to a memory stage m6
t at time t. The least significant

bit of the 16-bit output value of the S-box, y00,t is XORed with the value of stage

m0
t to produce each keystream bit zt. The output equation is, zt = m0

t−1⊕ y00,t−1.
where

mi
t =


mi+1
t−1 for i = {0, 1, 2, 3, 4, 5}

s0t−1 for i = 6
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4.2 State Convergence

State convergence occurs when two or more states at time t are mapped

to the same state after α iterations (at time t + α), for some α > 0 and the

states do not diverge after this point. That is state convergence occurs when

the state update function is not one-to-one. State convergence may occur during

the initialisation process and/or keystream generation. This may reduce the

effective key-IV size and leave the stream cipher vulnerable to attacks such as

distinguishing attacks [87] or time-memory-data trade-off attacks [23].

Analysis of the Sfinks stream cipher initialisation process is complicated by

the delay of 7 clocking steps in feeding the S-box output back into the register.

However we observe that the correspondence between this delay of seven steps

and the difference between certain input and output taps leads to state conver-

gence as shown below. In the remainder of this section, we refer to stages of S

which provide inputs to the S-box as input stages and stages of S which receive

outputs from the S-box as output stages, respectively.

From Figure 4.2, note that the distance between some input and output stages

is equal to the delay time. Specifically, there is one case where sit is an output

stage and si+7
t−7 is an input stage. In this case, recall from Equation 4.3 that

sit = si+1
t−1 ⊕ yi mod 16

0,t−1 , and note that if we complement both si+1
t−1 and yi mod 16

0,t−1

then the same value of sit will be obtained. However, si+1
t−1 = si+7

t−7 under regular

clocking, and the S-box output yi mod 16
0,t−1 depends on the contents of the input

stage si+7
t−7. That is,

sit = si+7
t−7 ⊕ yi mod 16

0,t−1 = si+7
t−7 ⊕ yi mod 16

0,t−1 (4.4)

where s and y represent the complements of s and y respectively.

It is possible that complementing the contents of the input stage si+7
t−7 may

cause the required change in the S-box output bit yi mod 16
0,t−1 . This situation pro-

vides the basis of a search for states which converge.

4.2.1 States Which Converge

An examination of the Sfinks register shows there is only one input stage with a

distance to the next output stage equal to 7 clocking steps. That input stage is

s161 and the output stage is s154. The contents of s161 correspond to the S-box
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161 154 161 154

S-Box

Clock

Figure 4.3: Input and output stages have 7 steps delay

input x12, and the S-box output y100 is fed back to s154. Specifically, s161t−7 = x12t−7

and s154t = s155t−1 ⊕ y100,t−1. According to Equation 4.4, the value of s154t will not

be changed if complementing the input bit s161t−7 = x12t−7 results in the output bit

y100,t−1 being complemented as well. Therefore, we look for pairs of S-box inputs

(x16, . . ., x1) which differ only in bit x12 and for which the corresponding pair of

outputs (y150 , . . ., y00) differ in bit y100 .

Consider firstly the input pair for which the output pair differs only in y100 ,

as illustrated in Figure 4.3. Such a pair of S-box inputs (and corresponding

output) exists, and is presented in Table 4.1. For emphasis, x12 is underlined

and bold font, as is y100 . Table 4.2 gives an example of two 256-bit register states

SAt−7 and SBt−7 which converge to the same state after 7 iterations. For efficient

presentation the hex representation of the 256-bit binary state is given. Note

that all register stages except s161 are the same. SAt−7 and SBt−7 both converge to

St.

Since the register S is 256 bits long, and there are 16 stages used as input to

the S-box, if we fix the contents of these 16 stages to the pattern given in Table

4.1, we are free to choose any values for the remaining 240 stages. Therefore,

there are 2240 pairs of states which converge after 7 iterations. One such pair is

presented in Table 4.2.

For the S-box pair in Table 4.1 discussed in the illustration above the inputs

differed only in position x12 and the outputs differed only in position y100 . In

general, however, it is not necessary to apply such a strict condition on the

output bits. Referring to Equation 4.3, and considering 6 consecutive steps of

regular clocking, we have sit = si+1
t−1 ⊕ yi mod 16

0,t−1 = si+7
t−7 ⊕ yi mod 16

0,t−1 for any output

bit. If complementing the input bit s161t−7 (which is x12t−7) causes yi mod 16
0,t−1 to be

changed, it may be possible to complement si+7
t−7 to obtain a second state that



4.2. State Convergence 113

Table 4.1: A special S-box pair which differ in x12 and y100 only

Input Output
S-box sequence x16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x1 y15

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y0
0

Stage No. 2
5
5

2
4
4

2
2
7

1
9
3

1
6
1

1
3
4

1
0
5

9
8

7
4

5
8

4
4

2
1

1
9

9 6 1 1
1
1

1
4
2

1
7
3

2
0
4

1
1

1
5
4

4
1

2
3
2

2
4
7

1
1
8

2
1
3

5
2

1
7
9

6
6

1
7

8
0

1st value 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1
2nd value 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1

Table 4.2: Two states (hex) differing only in stage s161 which converge

SA
t−7 F19B7E15AF4FF1338DDF0800AD8C56A42913E4B90CBEEFD3A4075AFD3351E5C1

SB
t−7 F19B7E15AF4FF1338DDF0802AD8C56A42913E4B90CBEEFD3A4075AFD3351E5C1

St BBE336FC2B7E9FE2671B9E10055B58AD481227C972187DDFA7580EB5FA66ABCB

gives the same value for sit. Recall that 16 stages of the shift register S receive

the output of the S-box at each iteration of the state update function. Of these

16 output stages, there are only six (s11t−7, s
17
t−7, s

41
t−7, s

52
t−7, s

80
t−7, s

111
t−7) which

directly or indirectly affect an input stage during the six consecutive clocks. For

example, the output y90 of the S-box is fed back to s41 and there is an input to

the S-box within the delay time at stage s44. Allowing this bit to change, may

result in divergence in later steps. Note also that if an input bit of the shift

register feedback is complemented at time t − 7, we also need the stage s0t−7 to

be complemented to assure that the new bit s255t−6 will not be changed. Therefore,

when considering pairs of inputs and outputs of the S-box for which convergence

occurs the values of the six S-box outputs (y00, y10, y40, y90, y110 and y150 ) must be

fixed. Therefore, we look for pairs of the S-box inputs which differ only in x12

and for which the output bits differ in y100 and possibly in any bit of y20, y30, y50,

y60, y70, y80, y100 , y120 , y130 and y140 .

We used an exhaustive computer search to look for pairs of S-box inputs that

satisfy the conditions described above, and found 273 pairs of the S-box inputs

(and corresponding outputs) with such patterns. Table 4.3 gives three different

examples of these S-box input and output pairs. Note that the only difference in

each input pair is the underlined bold bit x12. In the output pair, the underlined
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bold bits are the bits which differ in each pair (which must include y100 ) and the

bits y00, y10, y40, y90, y110 and y150 (shown in italics) should be the same in each pair.

For each pair in Table 4.3, Table 4.4 provides an example of two states based on

that pattern that converge to the same state after 7 iterations.

Table 4.3: Examples of complying pairs of S-box inputs and outputs

Input Output
S-box sequence x16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x1 y15

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y0
0

Stage No. 2
5
5

2
4
4

2
2
7

1
9
3

1
6
1

1
3
4

1
0
5

9
8

7
4

5
8

4
4

2
1

1
9

9 6 1 1
1
1

1
4
2

1
7
3

2
0
4

1
1

1
5
4

4
1

2
3
2

2
4
7

1
1
8

2
1
3

5
2

1
7
9

6
6

1
7

8
0

1
st
p
a
ir 1st value 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0

2nd value 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0

2
n
d
p
a
ir

1st value 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1
2nd value 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1

3
rd
p
a
ir

1st value 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1
2nd value 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1

Table 4.4: Three examples; each two states which converge to the same state

1
st
p
a
ir SA1

t−7 318B7E15AF4FF1318DDF0800ADAC56A42913E4B90CBEEFD3A0075AFD3351E7C3

SA2
t−7 718BFE15BF4FF1318DDF0802AD8C56A40913E4B90CBEEFD3A0075AFD3351E7C2

St BAE316FC2B5E9FE2631BBE10055B18AD485227C972197DDFA7500EB5FA64A3CF

2
n
d
p
a
ir SB1

t−7 718B7E15AF4FF1318DCF0800AD8C56A42913E4B90CBEEFD3A4075AFD3359E7C1

SB2
t−7 718B7E15AF4FF1318DDF0802AD8C56A42913E4B90CBEEFD3A4075AFD3359E7C1

St 7E6317FC2B5E9FE26313BE10055B18AD481227C972187DDBA7480CB5FA64B3CF

3
rd
p
a
ir SC1

t−7 318B7E15AF4FF1318DCF0800ADAC56A42913E4BD0CBEEFD3A0074AFD3379E5C3

SC2
t−7 718BFE15AF47F1318DDF0802AD8C56A42913E4BD0CBEEFD3A0074AFD3379E5C3

St FAE316FC2B7E9FE2631BBE10055B18AD4812A7C97A187DDFA7500E95FA66FBCB

From above, there are 273 pairs of S-box inputs satisfying the convergence

conditions out of the 215 possible input pairs. If we assume the possible values

for the S-box input bits are distributed randomly and independently, this state
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convergence has a probability of 273
215

= 2−6.9.

4.2.2 State Convergence Across the Initialisation Process

Recall from the loading phase Section, that the loaded state of Sfinks has a

defined format, with s950 = 1 and si0 = 0 for i = 0, . . . , 94. This slightly reduces

the occurrence of state convergence for the first few iterations of the diffusion

process but does not prevent it altogether.

According to the reference implementation of Sfinks [75], the S-box first re-

ceives live inputs from the input stages at t = 1 (after the first clock of the shift

register). Convergence cannot occur until 7 clocking steps after this, at t = 8.

Based on the general case discussed above, however, state convergence can

occur immediately after these 7 iterations. All that is required to impose the

additional condition that y2 also remain unchanged when x12 is complemented.

Table 4.5 shows a pair of input and output bits of the S-box that can occur

after the first iteration and converge after 7 iterations. This pair satisfies the

condition discussed above, and therefore will lead to convergence after 7 clocking

steps at t = 8. A pair of converging states based on this pattern is presented as

an example in Table 4.6.

Table 4.5: A pair of S-box inputs and outputs that can occur at t = −120

Input Output
S-box sequence x16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x1 y15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y0

Stage No. 2
5
5

2
4
4

2
2
7

1
9
3

1
6
1

1
3
4

1
0
5

9
8

7
4

5
8

4
4

2
1

1
9

9 6 1 1
1
1

1
4
2

1
7
3

2
0
4

1
1

1
5
4

4
1

2
3
2

2
4
7

1
1
8

2
1
3

5
2

1
7
9

6
6

1
7

8
0

1st value 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1
2nd value 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1

Thus, we see that state convergence can occur throughout the diffusion pro-

cess of Sfinks cipher. There are 120 iterations that may carry a state convergence

during the initialisation. Based on the probability of convergence detemined

above, an approximate estimate for the proportion of distinct states remaining

after 128 iterations is (1 − 2−6.9)120 = 0.9963. Thus, the number of reachable

distinct states is approximately (1 − 2−6.9)120 × 2160 = 2158.55. This can be re-

garded as an approximate upper bound as there may be other mechanisms of
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Table 4.6: Two states (hex) which converge to the same state at t = −120

SA
−127 319B7E15AF4FF13189DF0800ADAC56A40913E4B90CBEEBD3A0074AFD3351E580

SB
−127 719B7E15AF4FF1318DCF0802AD8C56A42913E4B90CBEEBD3A0074AFD3351E581

S−120 3EE336FC2B7E9FE2631BBE10015B18AD485227C972187DD3A7500C95FA64A3CB

convergence in addition to these we have identified.

4.3 Slid Pairs and Synchronisation Attacks

As discussed in Chapter 3, for stream ciphers, it is sometimes possible to

find different key-IV pairs that produce phase shifted keystreams [25, 42, 73, 86,

108]. The state update function for the initialisation process defines a cycle of

transitions of the internal state. Therefore, each (K, IV) pair represents a point

on such a cycle. If it is possible to find a second loaded state generated by a pair

(K ′, IV′) as a slid pair of the key-IV pair (K, IV) after a number of iterations,

α, then, the (K ′, IV′) pair is in the same cycle as the (K, IV) pair. As discussed

previously, the probability of obtaining shifted keystream sequences from such

a pair depends on the distance between (K ′, IV′) and (K, IV) and the degree

of similarity of the state update functions used during the initialisation process

and the keystream generation process.

4.3.1 Slid Pairs Using Sfinks

The main purpose of this analysis is to identify conditions under which a slid

key-IV pair of the Sfinks cipher is obtained from a specific loaded key-IV after

a number of iterations α. Comparing the properties listed in Section 2.7.3 with

the Sfinks cipher, we note that properties (a) and (b) apply, but the state up-

date functions during the initialisation and keystream generation processes are

somewhat different. The format of the loaded state is specified. For a given

particular key-IV pair, the task is to identify when the next loaded state may

occur during the initialisation process. Moreover, it is important to determine a

relationship between the original loaded key-IV pair (K, IV) and the next slid
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key-IV pair (K ′, IV′), which is derived from the original key-IV after a given

number of iterations α.

Analysis of the Sfinks stream cipher initialisation process is complicated by

the delay of 7 clocking steps in feeding the S-box output back into the shift

register, S. However, we observe that the correspondence between the content

of stage s95 = 1 and the next output feedback stage from the S-box s80 may lead

to slid pairs after a number of iterations α.

Some conditions need to be met for loaded state of Sfinks to produce a slid pair

after α iterations. Slid pairs can occur after α iterations if the content of the stage

s95α is 1 and the stages from s94α to s0α are all zeros (to follow the Sfinks’ loading

format). The input bits to the S-box from (x10t to x1t ) should be zeros except

some cases as shown below. The output of the S-box (y110,t, y
9
0,t, y

4
0,t, y

2
0,t, y

1
0,t, y

0
0,t)

should also be zeros except y00,15 at t = 15 and other special cases as shown later.

The content of stage s95−αα can become 0 by flipping the content of the stage

s950 to 0 during the α iterations. The content of the stage s95α should be 1. These

can be achieved by two steps. Firstly, the content of the stage s950 can be flipped

after 15 iterations, due to the next output stage of the S-box s8015. That requires

that the S-box output y00,15 = 1, so that s8015 ⊕ y06,15 = 0. Secondly, to ensure the

content of stage s95α is 1 after α iterations, the content of the stage s95+α0 should

be 1. The content of stages s95+α−10 to s960 should be zeros and the output stages

that lie between s95 and s0 should be maintained to meet the required contents,

zeros, during the α iterations. Based on these requirements, it is impossible to

get slid pairs before t < 15.

For α ≥ 15 iterations, it may be possible that slid pairs occur. If α = 15,

then the content of stage s1100 should be 1 as it will be shifted to s9515 after 15

iterations. Note that this value of 1 will pass the input stages s105 at t = 5 and

s98 at t = 12. The input stage s105 should be considered where the output stages

(y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) are zeros. The content of the input stage s98 will be

1 at t = 12 and its output will feed back at t = 19. This is after getting the

required slid pair but will affect the content of the pipeline.

We applied exhaustive search over the inputs and outputs of the S-box to find

appropriate inputs and outputs to meet the required conditions. For α = 15,

there is no input value to the S-box with (x9t , . . . , x
1
t ) = (0, . . . , 0) and x10t = 1

that gives (y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0). Therefore more iterations are

required to obtain a slid pair. Additionally, the only input to the S-box that
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satisfies the condition (x10t , . . . , x
1
t ) = (0, . . . , 0) is the 16 zeros (0, . . . , 0) inputs

that gives 16 output of zeros (0, . . . , 0) at any time t. So, this type of input cannot

flip the content of s80. Likewise, it is not possible to satisfy the conditions for a

slid pair to occur at t = 16.

However, for α ≥ 17 iterations, slid pairs are possible using specific conditions

between the outputs of the S-box. In this case we look for two output stages with

the shortest distance between them, namely s11 and s17. These conditions are

applied to the input and output of the S-box during the α iterations. According

to the Sfinks’ format pattern, the input of the S-box (x10t , . . . , x
1
t ) must be zeros

(0, . . . , 0) during the affected iterations (from 0 ≤ t ≤ (α − 7) except some

iterations). For example, the content of the input stage s105α−10 will be 1, which

is the input bit of S-box x10α−10 = 1. These conditions of the input of the S-box

apply up to t = α − 7. The output of the S-box during the α iterations should

maintain the Sfinks’ pattern at t = α. Therefore, the output bit of the S-box

(y110,t, y
9
0,t, y

4
0,t, y

2
0,t, y

1
0,t, y

0
0,t) should be zeros. There are some exceptions for these

conditions. For example, at time t = 15 the y00,15 should have 1 to flip the value

of s8015 to 0. As well, it may be required to flip some bits and flip them again to 0

during the α iterations. This process is according to the available input-output

pairs of the S-box that follow the required conditions as shown later.

The new-bit of the shift register s255t is an input of the S-box, x16t . Therefore, it

introduces another condition for the linear feedback function of the shift register.

If the required new-bit of the shift register is 0 and the real new-bit is 1, there

is freedom to flip any tap-bit of the linear feedback function to get the required

bit without changing any other condition.

The cases α = 17, 18 and 19 are investigated in the following section. A

general method of generating slid pairs can be applied until α = 23 (by fixing

56 key bits and 45 IV bits). After that, the situation becomes more complicated

because the interaction between the linear feedback function and the S-box out-

put stages is more complex. Another method may be required to identify slid

pairs for higher values of α.

Limitations of this work. The analysis above considered only the contents

of the shift register, S, and neglected the content of the pipeline. However the

format for the loaded state of Sfinks includes the pipeline that contains all zeros.

It is impossible to obtain a slid pair with all zeros in the pipeline. To clarify this

issue, note that if a slid pair occurs at t = α then s95 must be 1 at t = α and
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hence s98 will be 1 at t = α − 3. However, the stage s98 is an input stage for

S-box, and therefore, the S-box output at t = α− 3 cannot be all zeros. Thus at

least one entry in the pipeline at t = α must be non-zero.

4.3.2 Analysis of Slid Pairs

Procedures

This section describes the procedures used to obtain the first occurrence of slid

pairs, and the simulation of the Sfinks cipher to obtain slid pairs at time α = 17,

18 and 19. This simulation requires an exhaustive search over the inputs and

outputs of the S-box. The procedures used to obtain the following result are:

• Use the published C source code of Sfinks [75] to identify the required

inputs and outputs of the S-box to satisfy the conditions for α = 17, 18

and 19, as shown later.

• Based on the output of the previous point, generate the two internal state

with difference of α steps.

• Based on the output of the previous point, determine the specifc values of

the the first key-IV pair, (K, IV).

• Generate the relationship between the first key-IV, (K, IV), and second

key-IV, (K ′, IV′), pairs.

slid pair at α = 17.

As described above the first slid pair can occur at α = 17. The following steps

and processes are required to obtain the second pair.

• A specific input is applied to the S-box at t = 1 to obtain y16,1 = 1. So, the

input to the S-box satisfies (x101 , . . . , x
1
1) = (0, . . . , 0) and the output must

have (y116,1, y
9
6,1, y

4
6,1, y

2
6,1, y

0
6,1) = (0, . . . , 0) and y16,1 = 1. This will flip s178 to

1.

• For 2 ≤ t ≤ 6, the input to the S-box must satisfy (x10t , . . . , x
1
t ) = (0, . . . , 0)

and give (y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• The value of s178 = 1 will be shifted to s1114 after 6 iterations.
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• At time t = 7, a specific input to the S-box is required so that its output will

flip the value of s1114 to 0 at t = 14 with the input to the S-box (x97, . . . , x
1
7) =

(0, . . . , 0) and x107 = 1 and the output (y96,7, y
4
6,7, y

2
6,7, y

1
6,7, y

0
6,7) = (0, . . . , 0)

and y116,7 = 1. This output will result in flipping the s1114 to 0.

• At t = 8, the input to the S-box should be specified to be (x18, . . . , x
10
8 ) =

(0, . . . , 0). This input must result in the output (y116,8, y
9
6,8, y

4
6,8, y

2
6,8, y

1
6,8) =

(0, . . . , 0) and y06,8 = 1. At t = 15, it will flip the value of s8015 to 0.

• For 9 ≤ t ≤ 10, the following input to the S-box is applied to insure

(x10t , . . . , x
1
t ) = (0, . . . , 0) that should result in (y116,t, y

9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) =

(0, . . . , 0).

• After t = 10, it is not important to restrict the input to the S-box.

• To maintain the new-bit, s255t for t ≥ 1, it requires 10 tap-bits of the linear

feedback function to be manipulated as necessary. The tap-bits are chosen

to be s1250 to s1340 that carry k29 to k38, respectively.

Table 4.7 shows an exhaustive search of the required input/output pairs of

the S-box that satisfy the above procedure. The c1, c2, c3, b1 and b2 are for later

reference in the next section.

Table 4.7: Input/output of the S-box to get the slid pairs at α = 17

Input Output
time Value time Value

1 0011110000000000 =⇒ 8 0110000100000010

7
c1 = 0001101000000000

=⇒ 14
0000110001101000

c2 = 1010111000000000 1000110011000000
c3 = 1100111000000000 0011110100100000

8
b1 = 1000000000000000

=⇒ 15
1010000101101001

b2 = 0111100000000000 0011000010000001
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slid pair at α = 18.

As presented above for the slid pairs at α = 17, it is possible to obtain other slid

pairs at α = 18. The following steps and processes are applied to get the slid

pair.

• From t = 1, the following input to the S-box is applied to insure the

(x101 , . . . , x
1
1) = (0, . . . , 0) that will insure (y116,1, y

9
6,1, y

4
6,1, y

2
6,1, y

1
6,1, y

0
6,1) =

(0, . . . , 0).

• Specific inputs are applied to the S-box at t = 2 to obtain y16,2 = 1, at

t = 9 the input to the S-box is (x10t , . . . , x
1
t ) = (0, . . . , 0) and the output is

(y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

0
6,t) = (0, . . . , 0) and y16,t = 1. This will flip s179 to 1.

• The value of s179 = 1 will be shifted to s1115 after 6 iterations.

• For 3 ≤ t ≤ 7, the following inputs are applied to the S-box to insure

(x10t , . . . , x
1
t ) = (0, . . . , 0) to obtain (y116,t, y

9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• At time t = 8, a specific input to the S-box is required so that its output

will flip the value of s1115 and s8015 to 0 at t = 15 with the input to the S-box

(x98, . . . , x
1
8) = (0, . . . , 0) and x108 = 1 and the output (y96,8, y

4
6,8, y

2
6,8, y

1
6,8) =

(0, . . . , 0) y06,8 = 1 and y116,8 = 1. This output will result in flipping s1115 and

s8015 to 0.

• For 9 ≤ t ≤ 11, the following input is applied to the S-box to insure

(x10t , . . . , x
1
t ) = (0, . . . , 0) that will result in (y116,t, y

9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) =

(0, . . . , 0).

• After t = 11, it is not important to restrict the input to the S-box.

• To maintain the new-bit, s255t for t ≥ 1, it requires 11 tap-bits of the linear

feedback function to be manipulated as necessary. The tap-bits are chosen

to be s2120 to s2220 that carry v36 to v46, respectively.

Table 4.8 gives a result of an exhaustive search of the required input/output

pairs of the S-box that satisfy the above procedure.
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Table 4.8: Input/output of the S-box to get the slid pairs at α = 18

Input Output
time Value time Value

2 0011110000000000 =⇒ 9 0110000100000010

8
d1 = 1011011000000000

=⇒ 15
1000100000001001

d2 = 0000111000000000 1010100101001001

slid pair at α = 19.

This case is similar to the slid pair at α = 17 with some difference in the tap

positions. It is possible to obtain slid pairs at time α = 19 as follow.

• For 1 ≤ t ≤ 2, the zeros inputs are applied to the S-box to insure (x10t , . . . , x
1
t ) =

(0, . . . , 0) to obtain (y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• A specific input is applied to the S-box at t = 3 to obtain y16,3 = 1. So

, the input to the S-box is (x103 , . . . , x
1
3) = (0, . . . , 0) and the output is

(y116,3, y
9
6,3, y

4
6,3, y

2
6,3, y

0
6,3) = (0, . . . , 0) and y16,3 = 1. This will flip s1710 to 1 at

time t = 10.

• For 4 ≤ t ≤ 7, the zeros inputs are applied to the S-box to insure (x10t , . . . , x
1
t ) =

(0, . . . , 0) to obtain (y116,t, y
9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).

• At t = 8, the input to the S-box should be specified to be (x18, . . . , x
10
8 ) =

(0, . . . , 0). This input will result in the output (y116,8, y
9
6,8, y

4
6,8, y

2
6,8, y

1
6,8) =

(0, . . . , 0) and y06,8 = 1. At t = 15, it will flip the value of s8015 to 0.

• The value of s1710 = 1 will be shifted to s1116 after 6 iterations.

• At time t = 9, a specific input to the S-box is required so that its output

will flip the value of s1116 to 0. The input to the S-box are (x99, . . . , x
1
9) =

(0, . . . , 0) and x109 = 1 and the output (y96,9, y
4
6,9, y

2
6,9, y

1
6,9, y

0
6,9) = (0, . . . , 0)

and y116,9 = 1. This output will result in flipping s1116 to 0 at time t = 16.

• For 10 ≤ t ≤ 12, the zeros input is applied to the S-box to insure that

(x10t , . . . , x
1
t ) = (0, . . . , 0) to get (y116,t, y

9
6,t, y

4
6,t, y

2
6,t, y

1
6,t, y

0
6,t) = (0, . . . , 0).
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• After t = 12, it is not important to restrict the input to the S-box.

• To maintain the new-bit, s255t for t ≥ 1, it requires 12 tap-bits of the linear

feedback function to be manipulated as necessary. The tap-bits are chosen

to be s2120 to s2230 that carry v36 to v47, respectively.

As shown above, Table 4.9 shows all the possible input/output values to the

S-box using an exhaustive search of the required of the S-box that satisfy the

above procedure.

Table 4.9: Input/output of the S-box to get the slid pairs at α = 19

Input Output
time Value time Value

3 0011110000000000 =⇒ 10 0110000100000010

8
b1 = 1000000000000000

=⇒ 15
1010000101101001

b2 = 0111100000000000 0011000010000001

9
e1 = 0001101000000000

=⇒ 16
0000110001101000

e2 = 1010111000000000 1000110011000000
e3 = 1100111000000000 0011110100100000

4.3.3 Findings and Results

This section focuses on the result of the analysis of slid pairs according to the

previous procedures that are applied to the Sfinks cipher. The findings of slid

pairs are presented after different number of iterations at t = 17, 18 and 19.

At each specific number of iterations, the slid pairs have specific conditions and

relationship between these slid key-IV pairs. To remind the reader, yij,t denotes

the i-th bit of j-th word of the memory at time t, for i ∈ {0, 1, . . . , 15}.

slid pair at t = 17.

The slid pair is found for a key-IV with conditions. These conditions to get

another key-IV pair at α = 17 are to have specific values for some key-IV bits.

There are 40 key bits and 30 IV bits respectively which should have specific

values as shown below.
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ki = 0, i ∈ {75, 74, 71, 70, 69, 68, 67, 48, 47, 46, 44, 43,

42, 41, 40, 19, 18, 17, 15, 14, 13, 12, 11,

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}

ki = 1, i ∈ {72, 66, 39, 16}

(k73, k45) =



(0, 0) for x8 = b1 and x7 = c1

(0, 1) for x8 = b1 and x7 = c2

(0, 1) for x8 = b1 and x7 = c3

(1, 0) for x8 = b2 and x7 = c1

(1, 1) for x8 = b2 and x7 = c2

(1, 1) for x8 = b2 and x7 = c3

vi = 0, i ∈ {78, 77, 74, 73, 72, 71, 70, 69, 61, 60, 57, 56,

55, 54, 53, 27, 26, 23, 22, 21, 20, 19}

vi = 1, i ∈ {52, 18}

(v76, v75, v59, v58, v25, v24) =



(0, 0, 0, 0, 0, 1) for x8 = b1 and x7 = c1

(0, 0, 0, 1, 0, 0) for x8 = b1 and x7 = c2

(0, 1, 0, 0, 0, 0) for x8 = b1 and x7 = c3

(1, 0, 1, 0, 1, 1) for x8 = b2 and x7 = c1

(1, 0, 1, 1, 1, 0) for x8 = b2 and x7 = c2

(1, 1, 1, 0, 1, 0) for x8 = b2 and x7 = c3

There are 40 and 50 free key and IV bits respectively as shown below.

ki, i ∈ {79, 78, 77, 76, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56,

55, 54, 53, 52, 51, 50, 49, 38, 37, 36, 35, 34, 33,

32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20}
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vi, i ∈ {79, 68, 67, 66, 65, 64, 63, 62, 51, 50, 49, 48, 47, 46,

45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32,

31, 30, 29, 28, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7,

6, 5, 4, 3, 2, 1, 0}

There are 6 possibilities of the input to the S-box to satisfy the required

condition to get slid pairs at t = 17. The second key-IV, (K ′, IV′), pair can be

expressed in the form of the first key-IV, (K, IV), pair as follow. Note: Terms

printed in boldface are known bits, the values of which depend on the input of

the S-box as shown in Table 4.10.
v′79 = v52 ⊕ y5

6,8 ⊕ v34 ⊕ v32 ⊕ v27 ⊕ v3 ⊕ k71 ⊕ k45 ⊕ k35 ⊕ k27 ⊕ k5
v′78 = v51 ⊕ y5

6,7 ⊕ v33 ⊕ v31 ⊕ v26 ⊕ v2 ⊕ k70 ⊕ k44 ⊕ k34 ⊕ k26 ⊕ k4
v′77 = v50 ⊕ v32 ⊕ v30 ⊕ v25 ⊕ v1 ⊕ k69 ⊕ k43 ⊕ k33 ⊕ k25 ⊕ k3
v′76 = v49 ⊕ v31 ⊕ v29 ⊕ v24 ⊕ v0 ⊕ k68 ⊕ k42 ⊕ k32 ⊕ k24 ⊕ k2
v′75 = v48 ⊕ v30 ⊕ v28 ⊕ v23 ⊕ k79 ⊕ k67 ⊕ k41 ⊕ k31 ⊕ k23 ⊕ k1
v′74 = v47 ⊕ v29 ⊕ v27 ⊕ v22 ⊕ k78 ⊕ k66 ⊕ k40 ⊕ k30 ⊕ k22 ⊕ k0 ⊕ 1

v′73 = v46 ⊕ v28 ⊕ v26 ⊕ v21 ⊕ k77 ⊕ k65 ⊕ k39 ⊕ k29 ⊕ k21 ⊕ 1

v′72 = v45 ⊕ v27 ⊕ v25 ⊕ v20 ⊕ k76 ⊕ k64 ⊕ k38 ⊕ k28 ⊕ k20 = 0

v′71 = v44 ⊕ v26 ⊕ v24 ⊕ v19 ⊕ k75 ⊕ k63 ⊕ k37 ⊕ k27 ⊕ k19 ⊕ 1 = 0

v′70 = v43 ⊕ v25 ⊕ v23 ⊕ v18 ⊕ k74 ⊕ k62 ⊕ k36 ⊕ k26 ⊕ k18 = a1

v′69 = v42 ⊕ v24 ⊕ v22 ⊕ v17 ⊕ k73 ⊕ k61 ⊕ k35 ⊕ k25 ⊕ k17 = a2

v′68 = v41 ⊕ v23 ⊕ v21 ⊕ v16 ⊕ k72 ⊕ k60 ⊕ k34 ⊕ k24 ⊕ 1 = 0

v′67 = v40 ⊕ v22 ⊕ v20 ⊕ v15 ⊕ k71 ⊕ k59 ⊕ k33 ⊕ k23 ⊕ k15 = 0

v′66 = v39 ⊕ v21 ⊕ v19 ⊕ v14 ⊕ k70 ⊕ k58 ⊕ k32 ⊕ k22 ⊕ k14 = 0

v′65 = v38 ⊕ v20 ⊕ v18 ⊕ v13 ⊕ k69 ⊕ k57 ⊕ k31 ⊕ k21 ⊕ k13 = 0

v′64 = v37 ⊕ v19 ⊕ v17 ⊕ v12 ⊕ k68 ⊕ k56 ⊕ k30 ⊕ k20 ⊕ k12 = 0

v′63 = v36 ⊕ v18 ⊕ v16 ⊕ v11 ⊕ k67 ⊕ k55 ⊕ k29 ⊕ k19 ⊕ k11 = 0

v′62 = v79

v′61 = v78 = 0

v′60 = v77 = 0

v′59 = v76

v′58 = v75

v′57 = v74 = 0

v′56 = v73 = 0

v′55 = v72 = 0

v′54 = v71 ⊕ y8
6,8

v′53 = v70 ⊕ y8
6,7

v′52 = v69 = 0

v′51 = v68

v′50 = v67

v′49 = v66

v′48 = v65

v′47 = v64 ⊕ 1

v′46 = v63

v′45 = v62

v′44 = v61 = 0

v′43 = v60 = 0

v′42 = v59

v′41 = v58

v′40 = v57 = 0

v′39 = v56 = 0

v′38 = v55 = 0

v′37 = v54 = 0

v′36 = v53 = 0

v′35 = 1⊕ y5
6,8

v′34 = v51 ⊕ y5
6,7

v′33 = v50

v′32 = v49

v′31 = v48

v′30 = v47

v′29 = v46

v′28 = v45

v′27 = v44
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v′26 = v43 ⊕ y12
6,8

v′25 = v42 ⊕ y12
6,7

v′24 = v41

v′23 = v40

v′22 = v39

v′21 = v38

v′20 = v37

v′19 = v36

v′18 = v35

v′17 = v34

v′16 = v33

v′15 = v32

v′14 = v31

v′13 = v30

v′12 = v29

v′11 = v28

v′10 = v27 = 0

v′9 = v26 = 0

v′8 = v25

v′7 = v24

v′6 = v23 = 0

v′5 = v22 = 0

v′4 = v21 = 0

v′3 = v20 = 0

v′2 = v19 = 0

v′1 = 1⊕ y3
6,8

v′0 = v17 ⊕ y3
6,7

k′79 = v16

k′78 = v15

k′77 = v14

k′76 = v13

k′75 = v12 ⊕ 1

k′74 = v11 ⊕ y13
6,7

k′73 = v10

k′72 = v9

k′71 = v8

k′70 = v7

k′69 = v6

k′68 = v5 ⊕ 1

k′67 = v4

k′66 = v3

k′65 = v2

k′64 = v1

k′63 = v0

k′62 = k79

k′61 = k78

k′60 = k77

k′59 = k76

k′58 = k75 = 0

k′57 = k74 = 0

k′56 = k73

k′55 = k72 ⊕ 1 = 0

k′54 = k71 = 0

k′53 = k70 = 0

k′52 = k69 = 0

k′51 = k68 = 0

k′50 = k67 = 0

k′49 = k66 = 1

k′48 = k65

k′47 = k64

k′46 = k63

k′45 = k62

k′44 = k61

k′43 = k60

k′42 = k59

k′41 = k58

k′40 = k57

k′39 = k56

k′38 = k55

k′37 = k54 ⊕ 1

k′36 = k53

k′35 = k52

k′34 = k51

k′33 = k50

k′32 = k49

k′31 = k48 = 0

k′30 = k47 = 0

k′29 = k46 = 0

k′28 = k45

k′27 = k44 = 0

k′26 = k43 = 0

k′25 = k42 = 0

k′24 = k41 = 0

k′23 = k40 = 0

k′22 = k39 = 1

k′21 = k38

k′20 = k37 ⊕ y6
6,8

k′19 = k36 ⊕ y6
6,7

k′18 = k35

k′17 = k34

k′16 = k33

k′15 = k32

k′14 = k31

k′13 = k30 ⊕ y15
6,8

k′12 = k29 ⊕ y15
6,7

k′11 = k28

k′10 = k27

k′9 = k26

k′8 = k25

k′7 = k24

k′6 = k23

k′5 = k22

k′4 = k21

k′3 = k20

k′2 = k19 = 0

k′1 = k18 = 0

k′0 = k17 = 0

Note that 32 bits of v′ and 23 bits of k′ are fixed by the above relations.

slid pair at α = 18.

For slid pair at α = 18, the conditions to get another key-IV pair are to have

specific values for some key-IV bits at t = 0. There are 43 and 33 bits of key and

IV respectively which must have fixed values as shown below.
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Table 4.10: Six alternative inputs and outputs to the S-box at α = 17

Conditions Input
x8 x7 a1 v76 v59 v25 k73 a2 v75 v58 v24 k45

b1 c1 1 0 0 0 0 0 0 0 1 0
b1 c2 1 0 0 0 0 1 0 1 0 1
b1 c3 1 0 0 0 0 1 1 0 0 1 . . .
b2 c1 0 1 1 1 1 0 0 0 1 0
b2 c2 0 1 1 1 1 1 0 1 0 1
b2 c3 0 1 1 1 1 1 1 0 0 1

Output
y5
6,8 y8

6,8 y12
6,8 y3

6,8 y6
6,8 y15

6,8 y5
6,7 y8

6,7 y12
6,7 y3

6,7 y13
6,7 y6

6,7 y15
6,7

1 1 0 1 1 1 1 0 0 1 0 1 0
1 1 0 1 1 1 0 0 0 0 0 1 1

. . . 1 1 0 1 1 1 1 1 1 0 1 0 0
0 0 1 0 0 0 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 1 1 1 0 1 0 0

ki = 0, i ∈{76, 75, 74, 72, 71, 70, 69, 68, 66, 49, 48, 47, 45, 44,

43, 42, 41, 39, 20, 19, 18, 16, 15, 14, 13, 12, 11, 10,

9, 8, 7, 6, 5, 4, 3, 2, 1, 0}

ki = 1, i ∈{67, 46, 40, 17}

k73 =

{
0 for x8 = d1

1 for x8 = d2

vi = 0, i ∈{79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 62, 61, 60

58, 57, 56, 55, 54, 52, 28, 27, 26, 24, 23, 22,

21, 20, 18}

vi = 1, i ∈{53, 19}
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(v59, v25) =

{
(1, 1) for x8 = d1

(0, 0) for x8 = d2

There are 37 and 47 free key and IV bits respectively as shown.

ki, i ∈ {79, 78, 77, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54,

53, 52, 51, 50, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28,

27, 26, 25, 24, 23, 22, 21}

vi, i ∈ {68, 67, 66, 65, 64, 63, 51, 50, 49, 48, 47, 46, 45, 44, 43,

42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 17,

16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}

There are two possibilities of the input to the S-box to satisfy the required

conditions to get a slid pair at α = 18. The second key-IV pair, (K ′, IV′), can

be expressed in term of the first key-IV, (K, IV), as follow. Note: terms printed

in boldface are known bits, the values of which depend on the input of the S-box

as shown in Table 4.11.
v′79 = v53 ⊕ v35 ⊕ v33 ⊕ v28 ⊕ v4 ⊕ k72 ⊕ k46 ⊕ k36 ⊕ k28 ⊕ k6
v′78 = v52 ⊕ v34 ⊕ v32 ⊕ v27 ⊕ v3 ⊕ k71 ⊕ k45 ⊕ k35 ⊕ k27 ⊕ k5
v′77 = v51 ⊕ v33 ⊕ v31 ⊕ v26 ⊕ v2 ⊕ k70 ⊕ k44 ⊕ k34 ⊕ k26 ⊕ k4
v′76 = v50 ⊕ v32 ⊕ v30 ⊕ v25 ⊕ v1 ⊕ k69 ⊕ k43 ⊕ k33 ⊕ k25 ⊕ k3
v′75 = v49 ⊕ v31 ⊕ v29 ⊕ v24 ⊕ v0 ⊕ k68 ⊕ k42 ⊕ k32 ⊕ k24 ⊕ k2
v′74 = v48 ⊕ v30 ⊕ v28 ⊕ v23 ⊕ k79 ⊕ k67 ⊕ k41 ⊕ k31 ⊕ k23 ⊕ k1 ⊕ 1

v′73 = v47 ⊕ v29 ⊕ v27 ⊕ v22 ⊕ k78 ⊕ k66 ⊕ k40 ⊕ k30 ⊕ k22 ⊕ k0
v′72 = v46 ⊕ v28 ⊕ v26 ⊕ v21 ⊕ k77 ⊕ k65 ⊕ k39 ⊕ k29 ⊕ k21 ⊕ 1 = 0

v′71 = v45 ⊕ v27 ⊕ v25 ⊕ v20 ⊕ k76 ⊕ k64 ⊕ k38 ⊕ k28 ⊕ k20 = 0

v′70 = v44 ⊕ v26 ⊕ v24 ⊕ v19 ⊕ k75 ⊕ k63 ⊕ k37 ⊕ k27 ⊕ k19 = 0

v′69 = v43 ⊕ v25 ⊕ v23 ⊕ v18 ⊕ k74 ⊕ k62 ⊕ k36 ⊕ k26 ⊕ k18 = a3

v′68 = v42 ⊕ v24 ⊕ v22 ⊕ v17 ⊕ k73 ⊕ k61 ⊕ k35 ⊕ k25 ⊕ k17 ⊕ 1 = 0

v′67 = v41 ⊕ v23 ⊕ v21 ⊕ v16 ⊕ k72 ⊕ k60 ⊕ k34 ⊕ k24 ⊕ k16 = 0

v′66 = v40 ⊕ v22 ⊕ v20 ⊕ v15 ⊕ k71 ⊕ k59 ⊕ k33 ⊕ k23 ⊕ k15 = 0

v′65 = v39 ⊕ v21 ⊕ v19 ⊕ v14 ⊕ k70 ⊕ k58 ⊕ k32 ⊕ k22 ⊕ k14 = 0

v′64 = v38 ⊕ v20 ⊕ v18 ⊕ v13 ⊕ k69 ⊕ k57 ⊕ k31 ⊕ k21 ⊕ k13 = 0

v′63 = v37 ⊕ v19 ⊕ v17 ⊕ v12 ⊕ k68 ⊕ k56 ⊕ k30 ⊕ k20 ⊕ k12 = 0

v′62 = v36 ⊕ v18 ⊕ v16 ⊕ v11 ⊕ k67 ⊕ k55 ⊕ k29 ⊕ k19 ⊕ k11 = 0
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v′61 = v79 = 0

v′60 = v78 = 0

v′59 = v77 = 0

v′58 = v76 = 0

v′57 = v75 = 0

v′56 = v74 = 0

v′55 = v73 = 0

v′54 = v72 = 0

v′53 = v71 ⊕ y8
6,8

v′52 = v70 = 0

v′51 = v69 = 0

v′50 = v68

v′49 = v67

v′48 = v66

v′47 = v65 ⊕ 1

v′46 = v64

v′45 = v63

v′44 = v62 = 0

v′43 = v61 = 0

v′42 = v60 = 0

v′41 = v59

v′40 = v58 = 0

v′39 = v57 = 0

v′38 = v56 = 0

v′37 = v55 = 0

v′36 = v54 = 0

v′35 = v53 = 1

v′34 = v52 = 0

v′33 = v51

v′32 = v50

v′31 = v49

v′30 = v48

v′29 = v47

v′28 = v46

v′27 = v45

v′26 = v44

v′25 = v43

v′24 = v42

v′23 = v41

v′22 = v40

v′21 = v39

v′20 = v38

v′19 = v37

v′18 = v36

v′17 = v35

v′16 = v34

v′15 = v33

v′14 = v32

v′13 = v31

v′12 = v30

v′11 = v29

v′10 = v28 = 0

v′9 = v27 = 0

v′8 = v26 = 0

v′7 = v25

v′6 = v24 = 0

v′5 = v23 = 0

v′4 = v22 = 0

v′3 = v21 = 0

v′2 = v20 = 0

v′1 = v19 = 1

v′0 = v18 ⊕ 1 = 1

k′79 = v17

k′78 = v16

k′77 = v15

k′76 = v14

k′75 = v13

k′74 = v12 ⊕ y13
6,8

k′73 = v11

k′72 = v10

k′71 = v9

k′70 = v8

k′69 = v7

k′68 = v6 ⊕ 1

k′67 = v5

k′66 = v4

k′65 = v3

k′64 = v2

k′63 = v1

k′62 = v0

k′61 = k79

k′60 = k78

k′59 = k77

k′58 = k76 = 0

k′57 = k75 = 0

k′56 = k74 = 0

k′55 = k73

k′54 = k72 = 0

k′53 = k71 = 0

k′52 = k70 = 0

k′51 = k69 = 0

k′50 = k68 = 0

k′49 = k67 = 1

k′48 = k66 = 0

k′47 = k65

k′46 = k64

k′45 = k63

k′44 = k62

k′43 = k61

k′42 = k60

k′41 = k59

k′40 = k58

k′39 = k57

k′38 = k56

k′37 = k55 ⊕ 1

k′36 = k54

k′35 = k53

k′34 = k52

k′33 = k51

k′32 = k50

k′31 = k49 = 0

k′30 = k48 = 0

k′29 = k47 = 0

k′28 = k46 = 1

k′27 = k45 = 0

k′26 = k44 = 0

k′25 = k43 = 0

k′24 = k42 = 0

k′23 = k41 = 0

k′22 = k40 = 1

k′21 = k39 = 0

k′20 = k38

k′19 = k37 ⊕ y6
6,8

k′18 = k36

k′17 = k35

k′16 = k34

k′15 = k33

k′14 = k32

k′13 = k31

k′12 = k30 ⊕ 1

k′11 = k29

k′10 = k28

k′9 = k27

k′8 = k26

k′7 = k25

k′6 = k24

k′5 = k23

k′4 = k22

k′3 = k21

k′2 = k20 = 0

k′1 = k19 = 0

k′0 = k18 = 0

Note that 43 bits of v′ and 25 bits of k′ are fixed by the above relations.

slid pair at α = 19.

For the slid pair at α = 19, there are 47 and 36 bits of key and IV respectively

which must take fixed value as follow.
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Table 4.11: Two alternative inputs and outputs to the S-box at α = 18

Condition Input Output
x8 a3 v59 v25 k73 y13

8 y8
8 y6

8

b1 1 1 1 0 0 0 0
b2 0 0 0 1 1 1 1

ki = 0, i ∈{77, 76, 75, 74, 72, 71, 70, 69, 67, 66, 50, 49, 48,

46, 45, 44, 43, 42, 40, 39, 21, 20, 19, 17, 16, . . . , 0}

ki = 1, i ∈{68, 41, 18, 17}

(k73, k47) =



(0, 0) for x8 = b1 and x9 = e1

(0, 1) for x8 = b1 and x9 = e2

(0, 1) for x8 = b1 and x9 = e3

(1, 0) for x8 = b2 and x9 = e1

(1, 1) for x8 = b2 and x9 = e2

(1, 1) for x8 = b2 and x9 = e3

vi = 0, i ∈{79, 78, 76, 75, 74, 73, 72, 71, 70, 69, 63, 62, 61, 58,

57, 56, 55, 53, 52, 29, 28, 27, 24, 23, 22, 21, 19, 18}

vi = 1, i ∈{54, 20}

(v77, v76, v60, v59, v26, v25) =



(0, 0, 0, 0, 1, 0) for x8 = b1 and x9 = e1

(0, 0, 1, 0, 0, 0) for x8 = b1 and x9 = e2

(1, 0, 0, 0, 0, 0) for x8 = b1 and x9 = e3

(0, 1, 0, 1, 1, 1) for x8 = b2 and x9 = e1

(0, 1, 1, 1, 0, 1) for x8 = b2 and x9 = e2

(1, 1, 0, 1, 0, 1) for x8 = b2 and x9 = e3

As for the cases α = 17 and 18, expressions can again be determined for (K ′,

IV′) in terms of (K, IV). These are not reported in this thesis.
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All the slid pairs are obtained using computer simulation for all possible

inputs and outputs of the S-box. As shown previously, slid pairs occur according

to specific conditions at time t ≥ 17. Slid pairs occur with a limitation, where

the pipeline cannot be reset to all zeros.

Shifted Keystream

We now consider the additional constraints which must be satisfied in order for

slid pair (K, IV) and (K ′, IV′) to generate shifted keystream sequences. These

constraints depend on the degree of the similarity between the state update

functions during the initialisation and keystream generation processes.

To obtain a shifted keystream from the slid pairs at α = 17, all the output

of the S-box for the last 17 iterations of the initialisation process (from t = 111

to t = 128) should be all zeros to get the linear feedback during these iterations

of the initialisation process. Therefore, the input of the S-box from t = 104 to

t = 121 should be zeros. To ensure all the relevent input bits are zeros, there

are 187 bits which should be fixed and another 17 bits to be fixed for the linear

feedback function. The total fixed bits are 204 bits. The probability of satisfying

204 independent constraints is 2−204. In this case, the free bits at the loaded state

are 90 bits. Hence, there are 290 possible slid pairs and the probability of slid

pair gives an out of phase keystream is 2−204. Therefore, the expected number

of shifted keystream sequences from these slid pairs = 2−204× 290 = 2−114. So, it

seems extremely unlikely that any shifted keystream will result from any of the

slid pairs.

Similarly, for the slid pairs at α = 18 and 19, the last 18 and 19 outputs of

the S-box should be zeros respectively. The total fixed bits in these cases are 211

and 218 bits. The probability of satisfying 211 and 218 independent constraints

are 2−211 and 2−218 respectively. In this case, the free bits at the loaded state

are 84 and 79 bits. Therefore expected number of keystream out of phase shifted

by 18 and 19 bits from any of the relevant slid pairs are 2(−211+84) = 2−127 and

2(−218+79) = 2−139.

4.3.4 Attack Procedure

Since Sfinks has an 80-bit key and a 256-bit shift register, it is not feasible

to simply guess the whole secret key and then generate the keystream to check
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whether the guess is correct. However, if it is possible to identify the occurrence of

a slid pair (extremely unlikely as discussed previously), this enables us to use the

resulting relationship to reduce the number of key bits that need to be guessed,

forming the basis for an attack on the cipher. The attack presented in this

research uses the properties of the slide attacks. We assume a known-plaintext

attack scenario. The following algorithm outlines the attacking procedure.

This algorithm is described for 17-bit shifted versions of keystream. How-

ever, it can be extended to other shifts as well. The algorithm depends on two

keystreams with unknown secret keys and known IV’s such that the resulting

keystreams are shifted versions of one another. Note that we are interested here

to find the secret keys.

Recalling the specification of the loading phase of Sfinks in Section 4.1, it is

impossible to find two shifted keystreams generated by a secret key with different

IV’s. Therefore, in this case, we are focusing on two keystreams generated by

diferent key-IV pairs, (K, IV) and (K ′, IV′). (K, IV)

Attacking Algorithm

Inputs: Pairs of plaintext and ciphertext.

Step 1: From the known-plaintext-ciphertext attack, XOR the plaintext with

the corresponding ciphertext to get the keystream sequence.

Step 2: Divide each keystream sequence into separate keystreams. Each keystream

corresponds to a different key-IV combination based on the rekying process.

Step 3: Check the similarity of keystreami and keystreamj � 17 for every

available key-IV pair, using keystreami ⊕ keystreamj � 17.

• If identical, note the key-IV pairs (K, IV) and (K ′, IV′).

• If not, the algorithm fails for this 17-bit shift.

Step 4: If shifted keystream has been identified, guess and check each possible

key, as follows

• Using the relevant equations for t = 17 as shown above, where the

IV’s (IV and IV′) are known.
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• Due to the slid pairs, there are 40 and 23 bits of the K and K ′ are

known and fixed,

• Guess the 40 free key bits of K in the relevant set of equations as

shown above.

• Use these free key bits and the known IV’s to calculate the remaining

key bits of K ′ using the related equations as shown above.

• Use the generated secret keyK ′ with the corresponding IV′ to generate

its keystream using the Sfinks algorithm.

• Compare between the generated keystream and the known keystream.

– If they are identical, the secret keys K and K ′ have been found.

– If not, repeat the process for another guess of K and calculate

the K ′.

Step 5: Use the secret key K and K ′ with known IV’s to decrypt the entire

related ciphertexts.

Outputs: The secret keys K and K ′.

Comments on algorithm:

In Step 3, if two keystreams have been identified as shifted keystream by 17

bits, then the guessing process should cover the 40 free key bits instead of the 80

key bits. For each guess, it requires to substitute the guessed key bits into the

relevant equations as mentioned above to find the secret key K ′. At this time, it

is not clear whether the guessed key is correct or not. The proposed key must be

verified by generating a keystream that should be same as the known keystream.

If the generated keystream is identical to the known keystream then the

secret key is correct, if not use another guess. Note that the above algorithm is

for 17-bit shifts. If it fails, then it is possible to try for 18-bit shifts or more.

Attack Complexity: In Step 3, the comparison depends on the available

length of the plaintext and its corresponding ciphertext. If an attacker has

enough plaintext-ciphertext pairs, it is possible to check the shifted keystreams.

As mentioned previously, the probability of obtaining shifted keystreams from a

given slid pair is 2−204, and the total number of possible slid pairs is 290. Then

the expected number of shifted keystreams from slid pairs is 2−114. Thus this

cipher appears to be secure against slid attacks, but the presence of slid pairs is

still a concern.
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4.3.5 Analysis of Sfinks with Slight Modification

This section analyses a slightly modified version of Sfinks, where the modifi-

cation is applied to the padding format of Sfinks during the loading phase. This

analysis shows that the effect of a minor change in the padding increases the

probability of occurrence of slid pairs and the probability of obtaining shifted

keystreams from given slid pairs.

In this modification, we change the pattern of the padding to be zeros for all

stages (s95 to s90). In other words, we set the content of stage s95 to 0 instead

of 1. The slid pairs may now occur after only one clock under two conditions.

Firstly, the 16-bit input to the S-box must be zero at time t = 1. This requires

us to fix the values of 8 stages (s2551 ,s2441 , s2271 , s1931 , s1611 , s1341 , s1051 , s981 ) to be

zeros to ensure that the pipeline is still in the initial condition to having a zero

pipeline (this avoid the limitation in the analysis of actual design of Sfinks). The

last seven of these stages can be expressed in terms of key and IV bits as (k66,

k39, k10, k3, v69, v52, v18). In addition, since s255 = x16 must be zero, the linear

feedback function imposes a condition that the XOR of the following bits must

be zero: (k68, k56, k30, k20, k12, v34, v19, v17, v12), so that s2551 = 0. Secondly, the

content of s960 must be similar to the padding, that is s960 = s950 = 0.

Thus, a slid pair with a zeroed pipeline can be obtained by fixing 9 bits out of

the 160 key-IV bits. Therefore, the proportion of valid key-IV pairs which leads

to these slid pairs is 2−9. Hence there are 2160−9 = 2151 slid pairs for α = 1.

A slid pair can lead to an out-of-phase keystream by fixing another 16 bits

to ensure that the last iteration of the initialisation process at t = 128 is linear.

Specifically, we require that all 16 input bits of the S-box at time t = 121 should

be zeros. The probability of satisfying these 16 independent constraints is 2−16.

Therefore, the expected proportion of Key-IV pairs that leads to phase shifted

keystream with 1 step is 2−9 × 2−16 = 2−25 and the expected number of out of

phase keystream sequences is 2151 × 2−16 = 2135.

We see that a small change in the padding format during the loading phase of

the initialisation has hugely increased the probability of obtaining both slid pairs

and corresponding shifted keystream. Moreover, the condition of maintaining a

zero pipeline is also satisfied in the modified version. As expressed in this section

and the analysis of slid pairs of Sfinks stream cipher, there are 2151 and 290 out

of 2160 possible slid key-IV pairs for the modified version and current cipher
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respectively. The probabilities of a slid pair that gives a shifted keystream are

2−16 and 2−204 for these versions respectively.

4.4 Weak Key-IV Combinations

Sfinks stream cipher transfers the secret key and IV into the internal state

simultaneously and applies a specific padding format. The padding pattern sets

stages not filled by key and IV bits to zeros except one specific stage (which is set

to one). Therefore, the loaded state will start with a non-zero state. Because of

this format, we argue that the probability of obtaining an all-zero internal state

(including the memory pipeline) will be very small. In particular, the one in stage

s950 cannot be cancelled until it reaches s8015, by which time it will have passed s8510

and contributed to the feedback to s25511 . In order to cancel s8015, y
80
14 must equal

1, as there must be at least one non-zero input xi7 for some i = 1, . . . , 16. But

the input stage which contains a one at that time will also need to be canceled

by the S-box output at some late time. Although this argument is not exact, it

clearly shows that any conditions which lead to an all-zero state in Sfinks must

be complex and the likelihood of this occurring must therefore be very low. An

exact analysis of this problem is left for future work.

4.5 Summary and Security Impact

This chapter examined the initialisation process of the Sfinks stream cipher.

Sfinks uses a 256-bit internal state which is larger than the key-IV size (80+80 =

160 bits). The initialisation process of Sfinks loads the secret key and IV into

specific stages and fills the remaining stages with pre-determined values. The

key-IV is diffused across the entire internal state through a 128 iterations (clocks)

using the nonlinear state update function. During this process, each iteration

updates the contents of 17 stages of the internal state. During the keystream

generation process, the state update function is the linear feedback shift register

only, and the output function is nonlinear using one bit from the shift register and

another bit from the S-box to form a keystream bit. This chapter investigated

two flaws in the Sfinks initialisation process: state convergence and slid pairs.

These problems have been discussed in detail in this chapter and are summarized
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below.

The individual components of the state update function of Sfinks are one-

to-one but their combination is not, which results in state convergence during

the initialisation process. State convergence occurs during the diffusion phase

of Sfinks as a result of the combination of the delay in feeding the S-box output

back to the shift register and the shift register tap spacing. Specifically, this

is caused by the correspondence between the 7-clock feedback delay and the

distance of 7 clocking steps between certain input and output stages of the S-

box. The combination of these components of the state update function results

in an initialisation state update function that is not one-to-one and leads to

state convergence. These results show that the state convergence can occur after

the first seven iterations of initialisation and the probability of obtaining state

convergence is estimated to be 2−6.9.

Sfinks is designed for use with an 80-bit key and 80-bit IV with specific

pattern of loaded state. As the state size (256 bits) is greater than the sum of

the key and IV size, it seems reasonable to assume that 2160 different keystream

could be produced. However, the state converges problem demonstrated in this

chapter reduces the number of distinct keystream. We estimate the number of

distinct keystream is less than 2158.55. Although the impact of this convergence

on the security of Sfinks is minor (an approximate reduction of 1.45 bit after 128

iterations), it can be avoided entirely by more careful design.

The similarity of iterations of state update function during initialisation pro-

cess and the format of the loaded state results in slid pairs in the internal state.

Although the state update functions of the initialisation and keystream genera-

tion processes are different, slid pair which do occur, although with low probabil-

ity. Thus, slid pairs occur during the diffusion phase of the initialisation process

of Sfinks. The padding pattern and the format of the state update function defer

the first slid pair to 17 iterations (α = 17). A known-plaintext attack is applied

when α = 17 by fixing 70 bits out of 160 key-IV bits with proportion of valid

key-IV pairs is 290 out of 2160. The expected probability of shifted keystream

sequences from 290 slid pairs (for α = 17) is 2−114. Similar result also apply for

α = 18 and α = 19. For the current design of Sfinks, the security impact of

slid pairs and shifted keystream is negligible. However, we have shown that the

design of padding is essential to achieve this result.

We have also shown that the format specified for the loaded state of cipher
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can have a strong impact on the probability of obtaining slid pairs and shifted

keystreams. Specifically, we considered a minor variation of Sfinks in which the

padding used in the loaded state consists entirely of zeros. Note that this format

only differs from the actual specification for Sfinks in one bit position. Using this

modified loading format, we showed that genuine slid pairs (with a zero pipeline)

can occur after one clock, the probability of obtaining a slid pair increases to 2−9

and the corresponding probability of obtaining shifted keystream increases to

2−16 for a given slid pair. Thus, a small change in the loading format leads to

a huge increase in susceptibility to slid pairs compared to the actual version.

Therefore, the padding format may result in a dramatic security impact on the

cipher.
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Chapter 5

Analysis of CSA-SC Initialisation

Process

The Digital Video Broadcasting Common Scrambling Algorithm (DVB-CSA)

is specified by the European Telecommunications Standards Institute (ETSI) [51].

It has been used for scrambling and encrypting the MPEG-2 transport stream

(digital television) since 1994. The algorithm specification was initially protected

by a non-disclosure agreement from the ETSI. However, in 2002 the CSA was

reverse-engineered and published on the Internet.

The Common Scrambling Algorithm consists of a cascade of block and stream

ciphers. To encrypt, the block cipher is applied first followed by the stream

cipher. To decrypt, the stream cipher is applied first followed by the block cipher.

Both block and stream ciphers use the same 64-bit key. The scope of this research

is limited to the initialisation process of the stream cipher. The stream cipher

component of the Digital Video Broadcasting Common Scrambling Algorithm is

referred to as CSA-SC [16].

The CSA-SC has been described in several different ways, with equivalent

representations having different internal state sizes. In Simon’s patents [15–17]

the internal state consists of 107 bits. Weinmann and Wirt [104] reduced the

CSA-SC to a 103-bit internal state by cutting down a memory by 4 bits. Simpson

et al [96] presented a model with an 89-bit internal state, by shifting the positions

of the inputs to the S-boxes by 1 stage, to remove additional redundant storage

memories. All of these models are functionally equivalent. In this research, we

139
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use the 89-bit model described in [96].

Analysis of the Common Scrambling Algorithm (CSA) has been presented

in a number of papers; some analysed the block cipher [74, 101, 105] and others

analysed the stream cipher [96, 104]. Weinmann and Wirt [104] presented an

attack based on their reduced model and claimed the complexity of 244 to find

the value of the register A. Simpson et al [96] analysed the keystream generation

process and showed that the state update function during this phase is invertible

and that there exist distinct state cycles for the register A. Their results con-

tradict the claim in [104] and they state directly “the complexity of that state

recovery attack is not around 245, as claimed, but in fact worse than exhaus-

tive key search” with a revised estimate for Weinmann and Wirt approach of

266.7. Simpson et al [96] then applied the generic Time-Memory trade-off attacks

to the 89-bit state representation and demonstrated state recovery attacks with

complexity of O(250) and key recovery attacks with complexity of O(253).

The previous analyses are conducted on the keystream generation process

alone and do not analyse the initialisation process. By contrast, this analysis

considers the initialisation process of the CSA-SC. In this chapter, we investigate

two aspects of the initialisation process of the CSA-SC: state convergence and

slid pairs.

This chapter is outlined as follows. Section 5.1 describes CSA-SC and its

initialisation process, based on the 89-bit state representation given in [96]. Sec-

tion 5.2 presents the analysis of the initialisation process of CSA-SC and also

investigates state convergence during both the initialisation and keystream gen-

eration processes. Analysis of slid pairs is discussed in Section 5.3. Section 5.5

summarises this chapter and presents the security impact of this analysis.

5.1 Specification of CSA-SC

The CSA-SC [44,84,96,104] keystream generator uses word based registers (with

a 4-bit word size) and bit based state update functions. The structure consists of

two feedback shift registers (FSRs) denoted A and B, a combiner with memory

formed from memory stages denoted E, F and c and 7 S-boxes. Registers A

and B have ten stages each, and each stage stores a nibble (4-bit word). The

combiner memories E and F each store a 4-bit word, and c stores only 1 bit.

For analysis at the bit level, the 7 S-boxes and a modular addition operation
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which updates memories F and c are the only nonlinear functions used during

the initialisation and keystream generation processes. Figure 5.1 illustrates the

CSA-SC during the keystream generation and the initialisation process (dashed

lines are used only during initialisation).

Let Ati and Bt
i denote the ith stage of registers A and B respectively, for

i ∈ {0, . . . , 9}, at time t. Let ati,j and bti,j represent the content of the jth bit of

the ith stage at time t for registers A and B, respectively, for i ∈ {0, . . . , 9} and

j ∈ {0, . . . , 3}. Let Et, F t and ct represent the contents of the memory stages E

F and c at time t respectively. Let eti and f ti represent the ith bit of the memories

E and F at time t.

CSA-SC uses a 64-bit secret key K = k0, . . . , k63, where ki is the ith key bit,

and a 64-bit initial value IV = v0, . . . , v63, where vi is the ith IV bit. During

the initialisation process these key-IV values are spread across the entire internal

state. Let I tA and I tB denote 4-bit words taken from the IV, and used at time

t as input to registers A and B respectively (details are given in the following

section). Let itA,j represent the jth bit of I tA for j ∈ {0, 1, 2, 3} and similarly itB,j
represent the jth bit of the I tB for j ∈ {0, 1, 2, 3}.

In the previous representations of the CSA-SC, seven nonlinear S-boxes are

used during both the initialisation and keystream processes. Each S-box takes 5

bits as input from register A and produces 2 output bits. The total number of

distinct input and output bits of the S-boxes are 35 and 14, respectively. In this

analysis, we treat these seven S-boxes as 14 Boolean functions, so the analysis of

14 Boolean functions is easier than the previous representation of S-boxes, where

each S-box takes 5 bits as input to generate 2 output bits. Each Boolean function

takes 5 bits as input and produces 1 output bit. Let Sj(i0, i1, i2, i3, i4) represent

the jth Boolean function with respect to 5 inputs, which are i0, i1, i2, i3, i4, For

more detail, see Appendix B, where Table B.1 presents the algebraic form of the

14 Boolean functions and Table B.2 shows the truth table of these 14 Boolean

functions.

Twelve of the Boolean function outputs are used directly to update the con-

tents of A0, B0 and (conditionally) F and c, while the other two Boolean function

outputs determine the manner in which B0, F and c are updated. The output

bits of the Boolean functions at time t can be grouped in terms of the compo-

nents they are used to update. We use notation corresponding to the previous

references [96, 104] as follows: four bits xt0, x
t
1, x

t
2, x

t
3 are labeled as X, four bits
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yt0, y
t
1, y

t
2, y

t
3 are labeled as Y , four bits zt0, z

t
1, z

t
2, z

t
3 are labeled as Z, one bit is

labeled as pt and last bit is labeled as qt; all of these output bits are represented

at time t as shown in Table 5.1. Note that the least significant bit or stage of

each nibble is indexed by 0, ⊕ denotes bitwise XORs, � denotes addition modulo

24 and ROLi represents a left rotation by i bits.

0 6 90 9

14 Boolean 
functions

35
bits

16
bits

RegisterRegister

4 4 

4 

4 

4 

2 

1 

4 

4 

4 4 

4 

4 

4 

Output

if q = 0
swap (E, F )
c = c

else
E = F
F = (E � Z � c) mod 24

c = (E � Z � c) div 24

≪ 1
if p = 1

4 1 

Figure 5.1: Common Scrambling Algorithm Stream Cipher (CSA-SC)

5.1.1 Initialisation process

The initialisation process uses a 64-bit secret key and a 64-bit IV and performs

32 iterations (starting at t = −31) [104] to produce the 89-bit initial state. Once

the initial state is obtained, keystream generation can begin. The initialisation

process occurs in two phases: key loading phase and diffusion phase. Note that

loading of the IV is performed during the diffusion phase.
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Table 5.1: Input and output bits of the 14 Boolean functions

X Y Z
Functions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Output bits xt0 xt1 xt2 xt3 yt0 yt1 yt2 yt3 zt0 zt1 zt2 zt3 pt qt

it0 a3,3 a1,3 a2,1 a4,0 a3,1 a5,2 a3,3 a1,3 a2,1 a4,0 a3,1 a5,2 a2,2 a2,2
Input it1 a1,1 a2,0 a3,2 a1,2 a4,1 a4,3 a1,1 a2,0 a3,2 a1,2 a4,1 a4,3 a3,0 a3,0
bits it2 a2,3 a5,1 a6,3 a6,1 a5,0 a6,0 a2,3 a5,1 a6,3 a6,1 a5,0 a6,0 a7,1 a7,1

it3 a4,2 a5,3 a7,0 a7,3 a7,2 a8,1 a4,2 a5,3 a7,0 a7,3 a7,2 a8,1 a8,2 a8,2
ti4 a8,0 a6,2 a9,1 a9,0 a9,3 a9,2 a8,0 a6,2 a9,1 a9,0 a9,3 a9,2 a8,3 a8,3

Key loading phase

In the loading phase, firstly, all of the registers A and B and memories E,

F and c are set to zeros. Then the 64-bit secret key is transferred to specified

positions in the shift registers as follows:

ai,j =

k4·i+j for i ∈ {0, . . . , 7}

0 for i ∈ {8, 9}

bi,j =

k32+4·i+j for i ∈ {0, . . . , 7}

0 for i ∈ {8, 9}

Diffusion phase

The diffusion phase consists of 32 iterations of the initialisation state-update

function. During each iteration two different nibbles (4 bits) of the IVs I tA and

I tB are loaded into stages At0 and Bt
0 at time t. These I tA and I tB can be described

as follows:
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I tA =

vx, vx+1, vx+2, vx+3 for t ∈ {−31,−29, . . .}

vx+4, vx+5, vx+6, vx+7 for t ∈ {−30,−28, . . .}

I tB =

vx+4, vx+5, vx+6, vx+7 for t ∈ {−31,−29, . . .}

vx, vx+1, vx+2, vx+3 for t ∈ {−30,−28, . . .}

for x = 8 · [7 + dt/4e]

Every byte of the IV is used in four consecutive iterations of the state update

function, as described above. Each byte consists of two nibbles: high and low,

(H,L). For odd t, I tA and I tB take the H and L values respectively. For even t

the nibbles are used in the other order, so I tA and I tB take the L and H values

respectively.

The state update functions for registers A and B during the initialisation

process (in Figure 5.1) are described as follows:

Ati =At−1i−1 for i ∈ {1, . . . , 9} (5.1a)

At0 =At−19 ⊕X t−1 ⊕Dt−1 ⊕ I tA (5.1b)

Bt
i =Bt−1

i−1 for i ∈ {1, . . . , 9} (5.2a)

Bt
0 =(Bt−1

6 ⊕Bt−1
9 ⊕ Y t−1 ⊕ I tB)ROLpt−1 (5.2b)

The state update functions for memories E, F and c during the initialisation

process and keystream generation are described as follows:

Et = F t−1 (5.3a)

F t =

Et−1 if qt−1 = 0

Et−1 � Zt−1 � ct−1 mod 24 if qt−1 = 1
(5.3b)

ct =

ct−1 if qt−1 = 0

(Et−1 � Zt−1 � ct−1) div 24 if qt−1 = 1
(5.3c)
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During the initialisation, the output of the combiner memories is also XORed

with the output of register B and 4 bits of the Boolean function outputs (Z) to

give a 4-bit output at time t denoted Dt as shown in Figure 5.1.

Dt = Et ⊕ Zt ⊕Bt
out (5.4)

where

Bt
out =(bt0,out ‖ bt1,out ‖ bt2,out ‖ bt3,out)

=(bt8,2 ⊕ bt5,3 ⊕ bt2,1 ⊕ bt7,0 ‖ bt4,3 ⊕ bt7,2 ⊕ bt3,0 ⊕ bt4,1 ‖

bt5,0 ⊕ bt7,1 ⊕ bt2,3 ⊕ bt3,2 ‖ bt2,0 ⊕ bt5,1 ⊕ bt6,2 ⊕ bt8,3)

After the diffusion phase is completed, the keystream generator is said to be

in its initial state. Following this, the keystream generation process begins.

5.1.2 Keystream generation

At t = 0, the CSA-SC has completed the initialisation processes and is ready for

keystream generation. During keystream generation, there is no feedback from

pre-output word D to the register A, and there is no input IV to the registers A

and B. During this phase, the state update function for the registers A and B

is as follows:

At0 =At−19 ⊕X t−1 (5.5a)

Bt
0 =(Bt−1

6 ⊕Bt−1
9 ⊕ Y t−1)ROLpt−1 (5.5b)

The keystream generator generates two output bits zt at each clock time t

from the 4 bits D, by combining pairs of bits as follows: zt = (dt2 ⊕ dt3||dt0 ⊕ dt1).

5.2 State Convergence in CSA-SC

CSA-SC uses a 64-bit secret key and a 64-bit IV to form an 89-bit internal
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state. Thus, there are 2128 possible key-IV combinations but only 289 possible

internal states. When the 2128 possible key-IV combinations are mapped to at

most 289 possible internal states, there is clearly a compression of multiple key-IV

pairs to the same internal state. As the state-update function is nonlinear during

the diffusion phase, the degree of compression may not be uniform. However,

on average, there are 239 key-IV pairs corresponding to each internal state (even

before we consider the effect of state convergence).

In addition to this compression, state convergence occurs during initialisation

specifically during the IV loading-diffusion phase. Our analysis of the state

convergence that occurs during the initialisation process of CSA-SC is based on

assuming that the entire state contents are known at time t and considering the

possible contents of At−19 . At−19 is used as input to the state update function to

form the new values of At0, B
t
0, and for the case when q = 1 the values of F t

and ct, and then At−19 is shifted out of the internal state. We show below that

multiple distinct values for the contents of At−19 may result in the same value for

each of At0, B
t
0, F

t and ct. Figure 5.2 shows the interaction between the contents

of stages At0, B
t
0 and At−19 .

0 1 2 3 0 1 2 3 0 1 2 3

Figure 5.2: State convergence and stages’ interaction during initialisation process

5.2.1 Initialisation State Update Equations

Equations 5.1a to 5.4 describe the state update function of the initialisation pro-

cess in terms of 4-bit words. However, in this section, the state update equations

of the initialisation process are described at the bit level. This representation

helps to analyse and identify aspects of the initialisation process such as the

existence of converging state and slid pairs.

The bit values for pt and qt obtained from S13 and S14 determine the state

update processes for Bt
0, F

t and ct via Equations 5.2b, 5.3b and 5.3c. The
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contents of register B and memories F and c can thus be written as follows:

Register B

It is possible to rewrite the first nibble of the register B as a function of the

Boolean function S13 (pt). To simplify the notation, we write B′0 = (b′0, b
′
1, b
′
2, b
′
3)

for the transient value of B0 before the left rotation is applied; we have:

B′t0 = Bt−1
6 ⊕Bt−1

9 ⊕ Y t−1 ⊕ I tB

so

b′t0 = bt−16,0 ⊕ bt−19,0 ⊕ yt0 ⊕ itB,0 (5.6a)

b′t1 = bt−16,1 ⊕ bt−19,1 ⊕ yt1 ⊕ itB,1 (5.6b)

b′t2 = bt−16,2 ⊕ bt−19,2 ⊕ yt2 ⊕ itB,2 (5.6c)

b′t3 = bt−16,3 ⊕ bt−19,3 ⊕ yt3 ⊕ itB,3 (5.6d)

and

Bt
0 = (B′t0 )ROLpt−1

The individual new bits for register B are described as follows:

bt0,0 = b′t0 (1⊕ pt−1)⊕ b′t1 (pt−1) (5.7a)

bt0,1 = b′t1 (1⊕ pt−1)⊕ b′t2 (pt−1) (5.7b)

bt0,2 = b′t2 (1⊕ pt−1)⊕ b′t3 (pt−1) (5.7c)

bt0,3 = b′t3 (1⊕ pt−1)⊕ b′t0 (pt−1) (5.7d)

Memories F and c

From Equations 5.3b and 5.3c, we have:

F t = Et−1(1⊕ qt−1)⊕ (Et−1 � Zt−1 � ct−1 mod 24)(qt−1) (5.8a)

ct = ct−1(1⊕ qt−1)⊕ ((Et−1 � Zt−1 � ct−1) div 24)(qt−1) (5.8b)
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To express the integer addition in Equations 5.8a and 5.8b as binary addition,

we introduce new intermediate terms (h0, h1, h2, h3) as follows:

ht0 = et−10 zt−10 ⊕ et−10 ct−1 ⊕ zt−10 ct−1 (5.9a)

ht1 = et−11 zt−11 ⊕ et−11 ht0 ⊕ zt−11 ht0 (5.9b)

ht2 = et−12 zt−12 ⊕ et−12 ht1 ⊕ zt−12 ht1 (5.9c)

ht3 = et−13 zt−13 ⊕ et−13 ht2 ⊕ zt−13 ht2 (5.9d)

The system of equations for the memory stages F can then be written using

Equations 5.9 as follows:

f t0 = et−10 (1⊕ qt−1)⊕ (et−10 ⊕ zt−10 ⊕ ct−1)(qt−1) (5.10a)

f t1 = et−11 (1⊕ qt−1)⊕ (et−11 ⊕ zt−11 ⊕ ht0)(qt−1) (5.10b)

f t2 = et−12 (1⊕ qt−1)⊕ (et−12 ⊕ zt−12 ⊕ ht1)(qt−1) (5.10c)

f t3 = et−13 (1⊕ qt−1)⊕ (et−13 ⊕ zt−13 ⊕ ht2)(qt−1) (5.10d)

and similarly, we have

ct = ct−1(1⊕ qt−1)⊕ ht3(qt−1) (5.10e)

The new 4-bit words At0 and Bt
0 of both registers A and B, respectively, can

also be expressed in terms of individual bits as follows:

For register A:

at0,0 = at−19,0 ⊕ S1(a
t−1
3,3 . . . a

t−1
8,0 )⊕ S9(a

t−1
2,1 . . . a

t−1
9,1 )⊕ et−10 ⊕ bt−10out ⊕ itA,0 (5.11a)

at0,1 = at−19,1 ⊕ S2(a
t−1
1,3 . . . a

t−1
6,2 )⊕ S10(a

t−1
4,0 . . . a

t−1
9,0 )⊕ et−11 ⊕ bt−11out ⊕ itA,1 (5.11b)

at0,2 = at−19,2 ⊕ S3(a
t−1
2,1 . . . a

t−1
9,1 )⊕ S11(a

t−1
3,1 . . . a

t−1
9,3 )⊕ et−12 ⊕ bt−12out ⊕ itA,2 (5.11c)

at0,3 = at−19,3 ⊕ S4(a
t−1
4,0 . . . a

t−1
9,0 )⊕ S12(a

t−1
5,2 . . . a

t−1
9,2 )⊕ et−13 ⊕ bt−13out ⊕ itA,3 (5.11d)
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For register B:

b′t0 = bt−19,0 ⊕ bt−16,0 ⊕ S5(a
t−1
3,1 . . . a

t−1
9,3 )⊕ itB,0 (5.12a)

b′t1 = bt−19,1 ⊕ bt−16,1 ⊕ S6(a
t−1
5,2 . . . a

t−1
9,2 )⊕ itB,1 (5.12b)

b′t2 = bt−19,2 ⊕ bt−16,2 ⊕ S7(a
t−1
3,3 . . . a

t−1
8,0 )⊕ itB,2 (5.12c)

b′t3 = bt−19,3 ⊕ bt−16,3 ⊕ S8(a
t−1
1,3 . . . a

t−1
6,2 )⊕ itB,3 (5.12d)

5.2.2 State Convergence During Initialisation Process

We examine these individual update equations for each bit position in At0 and Bt
0

to determine if it is possible for any state to have multiple pre-images. Our focus

is on the update of A and B through the values of At−19 affecting new values of

At0 and Bt
0. From Equations 5.11a to 5.11d, we see that At−19 affects At0 in two

different ways: both directly and through the Boolean functions S3, S4, S9, S10,

S11 and S12 (xt2, x
t
3, z

t
0, z

t
1, z

t
2 and zt3). Similarly, the values of At−19 affect the

new values of Bt
0 through the Boolean functions S5, S6, S7 and S8 (yt0, y

t
1, y

t
2

and yt3) and S13 (p) as presented by Equations 5.12a to 5.12d. We note that the

contents of At−10 to At−18 and Bt−1
0 to Bt−1

8 are present in the subsequent state as

At1 to At9 and Bt
1 to Bt

9 and are therefore assumed to be known. Likewise, we can

treat any term in the initialisation state update functions which depends only on

these values as fixed: these terms are S1, S2, S7, S8, b
t−1
0out to bt−13out and bt−16,0 to bt−16,3 .

We also assume that itA,0 to itA,3 and itB,0 to itB,3 are given and therefore fixed as

well. By doing this, we can introduce constants C0, C1, C2, C3, C4, C5, C6, C7 to

simplify Equations 5.11a to 5.11d and 5.12a to 5.12d as follows:
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Defining

C0 = S1(a
t−1
3,3 . . . a

t−1
8,0 )⊕ bt−10out ⊕ itA,0

C1 = S2(a
t−1
1,3 . . . a

t−1
6,2 )⊕ bt−11out ⊕ itA,1

C2 = bt−12out ⊕ itA,2
C3 = bt−13out ⊕ itA,3
C4 = bt−16,0 ⊕ itB,0
C5 = bt−16,1 ⊕ itB,1
C6 = bt−16,2 ⊕ S7(a

t−1
3,3 . . . a

t−1
8,0 )⊕ itB,2

C7 = bt−16,3 ⊕ S8(a
t−1
1,3 . . . a

t−1
6,2 )⊕ itB,3

we have

at0,0 =C0 ⊕ at−19,0 ⊕ S9(a
t−1
2,1 . . . a

t−1
9,1 )⊕ et−10 (5.14a)

at0,1 =C1 ⊕ at−19,1 ⊕ S10(a
t−1
4,0 . . . a

t−1
9,0 )⊕ et−11 (5.14b)

at0,2 =C2 ⊕ at−19,2 ⊕ S3(a
t−1
2,1 . . . a

t−1
9,1 )⊕ S11(a

t−1
3,1 . . . a

t−1
9,3 )⊕ et−12 (5.14c)

at0,3 =C3 ⊕ at−19,3 ⊕ S4(a
t−1
4,0 . . . a

t−1
9,0 )⊕ S12(a

t−1
5,2 . . . a

t−1
9,2 )⊕ et−13 (5.14d)

and

b′t0 =(C4 ⊕ bt−19,0 ⊕ S5(a
t−1
3,1 . . . a

t−1
9,3 )) (5.15a)

b′t1 =(C5 ⊕ bt−19,1 ⊕ S6(a
t−1
5,2 . . . a

t−1
9,2 )) (5.15b)

b′t2 =(C6 ⊕ bt−19,2 ) (5.15c)

b′t3 =(C7 ⊕ bt−19,3 ) (5.15d)

During the first two clocks of the initialisation process, the values of At9 are

zero, according to the loading format. Therefore, there are no multiple pre-

images for the internal state at t = −31 or t = −30. State convergence cannot

occur before the 3rd clock step.

Equations 5.14a to 5.14d and 5.15a to 5.15d can be rearranged to evaluate

the previous state at time t− 1 in terms of the state at time t, as follows:
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at−19,0 =C0 ⊕ at0,0 ⊕ S9(a
t−1
2,1 . . . a

t−1
9,1 )⊕ et−10 (5.16a)

at−19,1 =C1 ⊕ at0,1 ⊕ S10(a
t−1
4,0 . . . a

t−1
9,0 )⊕ et−11 (5.16b)

at−19,2 =C2 ⊕ at0,2 ⊕ S3(a
t−1
2,1 . . . a

t−1
9,1 )⊕ S11(a

t−1
3,1 . . . a

t−1
9,3 )⊕ et−12 (5.16c)

at−19,3 =C3 ⊕ at0,3 ⊕ S4(a
t−1
4,0 . . . a

t−1
9,0 )⊕ S12(a

t−1
5,2 . . . a

t−1
9,2 )⊕ et−13 (5.16d)

bt−19,0 =C4 ⊕ b′t0 ⊕ S5(a
t−1
3,1 . . . a

t−1
9,3 ) (5.17a)

bt−19,1 =C5 ⊕ b′t1 ⊕ S6(a
t−1
5,2 . . . a

t−1
9,2 ) (5.17b)

bt−19,2 =C6 ⊕ b′t2 (5.17c)

bt−19,3 =C7 ⊕ b′t3 (5.17d)

Note that the bits of At−19 still appear implicitly on the right hand sides of

these equations and also that the values of bt−19,0 to bt−19,3 are determined uniquely

once at−19,2 and at−19,3 are known. (That is, every distinct solution for At−19 yields a

unique corresponding solution for Bt−1
9 .)

Now, we examine the set of Equations 5.16a to 5.16d to identify state con-

vergence in the CSA-SC. Let x denote the complement of x. In this section, for

any of the Boolean functions S3, S4, S9, S10, S11 and S12, the function is said to

have even parity with respect to i4 if S(i0, i1, i2, i3, i4) = S(i0, i1, i2, i3, i4), and

to have odd parity with respect to i4 if S(i0, i1, i2, i3, i4) = S(i0, i1, i2, i3, i4) (For

the remainder of this section, we will refer to these parity conditions by saying

that S is even or odd respectively). From Equations 5.16a to 5.16d, the values

of at0,0 to at0,3 are assumed to be fixed to investigate whether solutions for at−19,0

to at−19,3 exist which satisfy Equation 5.16a to 5.16d. We consider the analysis

separately for the two possible values of qt−1. For a randomly chosen state, the

probability that q is equal to 0 or 1 is 1
2
, since the Boolean function S14 is a

balanced function.

The procedures used to obtain the following result are:

• Use MAGMA to generate the system of equations after 1 clock as shown

in Appendix B.

• Use the real CSA-SC cipher to generate the truth table of the 14 Boolean
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functions to determine the even parity and odd parity functions with re-

spect to the fifth input, i4.

• Based on the theoretical analysis (as shown later), use specific number of

states that are applied to the CSA-SC cipher to generate the next states

that are identical states (to demonstrate state convergence practically).

State Convergence when qt−1 = 0

When qt−1 = 0, Et−1 = F t is known, so the bits et−10 to et−13 can be absorbed into

the constants C0 to C3. Consider this modified version of the Equations 5.16a

and 5.16b for at−19,0 and at−19,1 : If S9 is even, then the value of at−19,0 is determined

uniquely by Equation 5.16a, and Equation 5.16b then determines a unique value

for at−19,1 (whether S10 is even or odd, since the inputs (i0, i1, i2, i3, i4) of S10 are

then fully specified). Similarly, if S10 is even, the value of at−19,1 is determined

uniquely and leads to a unique solution for at−19,0 as well. Thus at−19,0 and at−19,1 are

both uniquely determined if either or both S9 and S10 is even.

For an example of a system of equations that has unique solutions, suppose

the following set of conditions holds:

1. at0,0 = at0,1 = C0 = C1 = 0.

2. The inputs (i0, i1, i2, i3) = (0, 1, 1, 0) for both S9 and S10.

From Table B.2 in Appendix B, it is clear that S9 is even since S9(0, 1, 1, 0, a
t−1
9,1 )

= 0 whether at−19,1 = 0 or 1; likewise, it can be seen that S10 is odd. Now Equa-

tion 5.16a and Condition 1 (above) imply that at−19,0 = S9(0, 1, 1, 0, a
t−1
9,1 ) = 0, and

from Equation 5.16b, at−19,1 = S10(0, 1, 1, 0, 0) = 1. So, the value of at−19,0 is 0 which

leads to a unique value of at−19,1 that is 1. Therefore, both at−19,0 = 0 and at−19,1 = 1

have unique values.

Conversely, if S9 and S10 are both odd, then the pair of Equations 5.16a

and 5.16b may be either inconsistent or consistent. If the equations are inconsis-

tent, there is no solution for at−19,0 and at−19,1 , but if they are consistent, then there

are two valid solutions (a, b) and (a, b) for (at−19,0 , a
t−1
9,1 ).

For example, if

1. at0,0 = C0 = C1 = 0 and at0,1 = 1, S9(. . . , a
t−1
9,1 ) = at−19,1 .

2. S10(. . . , a
t−1
9,0 ) = at−19,0 .
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Then Equation 5.16a and 5.16b imply respectively that at−19,0 ⊕ at−19,1 = 0 and

at−19,0 ⊕ at−19,1 = 1, so there is no solution for at−19,0 and at−19,1 .

The solutions of at−19,0 and at−19,1 have been determined. Now, consider Equa-

tions 5.16c and 5.16d for at−19,2 and at−19,3 . For any particular solution of Equa-

tions 5.16a and 5.16b, the given value of at−19,0 and at−19,1 will determine the values

of S3(. . . , a
t−1
9,1 ) and S4(. . . , a

t−1
9,0 ). These values can be included in the constants

C2 and C3 then the situation of the third and fourth equations are identical to

that discussed above for at−19,0 and at−19,1 . A similar argument and analysis can be

used to draw the following conclusion for at−19,2 and at−19,3 :

• If either S11 or S12 is even, then the values of at−19,2 and at−19,3 are determined

uniquely from the related equations.

• If S11 and S12 are both odd, then there is either no solution for at−19,2 and

at−19,3 or there are two complementary solution pairs for these variables.

Combining the above arguments, we see that there can be between zero and

four solutions to the full equation set 5.16a to 5.16d. We now discuss these

outcomes in more detail.

If there is no solution for at−19,0 and at−19,1 , then it is not possible to obtain a valid

solution set for the full set of variables at−19,0 to at−19,3 . However, if there is a unique

solution for at−19,0 and at−19,1 , then there will be either no, one or two solutions for

the full set of variables exactly when at−19,2 and at−19,3 have no, one or two solutions.

Now, we consider the case when there are two valid solution pairs for at−19,0 and

at−19,1 . If either S11 or S12 is even, then each of these will have a unique solution

for at−19,2 and at−19,3 . Then, there will be exactly two solutions for the full set of

variables at−19,0 to at−19,3 (these sets will differ in at−19,0 and at−19,1 and may or may not

differ in the other two variables at−19,2 and at−19,3 ). If S11 and S12 are both odd, then

the equations for at−19,2 and at−19,3 may have zero or two solutions. Therefore, each

of at−19,0 and at−19,1 solutions will have either no or two solutions for at−19,2 and at−19,3 .

By considering S3 or S4 further as follows, we find:

• If S3 and S4 are both even, then both solutions for at−19,0 and at−19,1 lead to the

same pair of equations for at−19,2 and at−19,3 and therefore, one of the following

points is valid:

– There is no solution for at−19,2 and at−19,3 in either case.
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– There are two solutions for at−19,2 and at−19,3 in both cases and the same

solution applies in both cases.

• If S3 and S4 are both odd, the two solutions for at−19,0 and at−19,1 lead to

different pairs of equations for at−19,2 and at−19,3 , but either both pairs are

consistent or both pairs are inconsistent. Therefore, either of the following

descriptions is valid:

– There is no solution for at−19,2 and at−19,3 in either case.

– There are two solutions for at−19,2 and at−19,3 in each case, but the pair

of solutions for one case is different from the pair of solutions in the

other case.

• If one of S3 or S4 is odd and the other is even, then the two solutions of

at−19,0 and at−19,1 lead to pairs of equations with one common equation in each

pair. In this case, one pair of equations will be consistent and the other

must be inconsistent. So, one case will have no solution for at−19,2 and at−19,3

and the other will have two solutions for at−19,2 and at−19,3 .

Putting these results together, then:

• If S3 and S4 are both even, there are either zero or four solution sets for

at−19,0 to at−19,3 , which differ in at−19,0 and at−19,1 but have the same two solutions

for at−19,2 and at−19,3 .

• If S3 and S4 are both odd, there are either zero or four solution sets for

at−19,0 to at−19,3 , which differ in at−19,0 and at−19,1 and also in at−19,2 and at−19,3 .

• If one of S3 and S4 is even and the other is odd, there are exactly two

solution sets for at−19,0 to at−19,3 .

By examining the truth tables for S3, S4, S9, S10, S11 and S12 (presented in

Appendix B, Table B.2), we can determine the probabilities that each of the

above Boolean function is even or odd, assuming a uniform distribution over all

possible contents forA0 toA8 in registerA. Also, assuming a uniform distribution

of the content of A9, the probability of consistent and inconsistent equations

when both of the relevant functions are odd will be 1
2
. From Figure 5.3, the total

probability for each branch can be calculated.

The number of solutions presented above for the variable set at−19,0 to at−19,3

also represents the number of pre-images for each case. Table 5.2 collates the
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Figure 5.3: Branching of number of solutions (pre-images)

proportion and number of pre-images for each case. Tables 5.3 and 5.4 show

examples of states with two and four pre-images respectively. Note that the only

difference between the pre-image states is the bold bits a9,0 to a9,3 and b9,0 to

b9,3.

Table 5.2: Proportions and number of pre-images for cases when qt−1 = 0

Case (i) (ii) (iii) (iv)

Number of pre-images 0 1 2 4

Proportion 5085
16384

833
2048

2205
8192

225
16384

Proportion (decimal) 0.31 0.407 0.269 0.014

As mentioned above, state convergence can occur from the third clock in the

diffusion phase of initialisation. Now, if we assume that the state convergence

occurs after the 64 key bits and 8 IV bits are loaded, and we have a 72 bits of

information in the internal state. Then the number of distinct internal states

after the first clock with state convergence is (1 − 5085
16384

) · 272 = 271.46 states

(when q = 0), where the proportion of 0 pre-image in Table 5.2 represents the

proportion of inaccessible patterns at this clock, which is 5085
16384

≈ 0.31.

As the secret key is loaded to the registers A and B, we assume the content
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of register A is approximately independent identically distributed random bits

during the clocks from the 3rd to 10th. From this assumption, the probabilities

of state convergence apply approximately for the 8 clocks during diffusion phase

(considering the output bit of the Boolean functions), that start from the 3rd

clock. Therefore, we argue that the inaccessible patterns for each clocking step

is quite similar across these 8 clocks. We can estimate the upper bound of

the accessible states (for only qt−1 = 0) is (2−0.54)8 ≈ 2−4.29, based on this

assumption, the accessible states decreases approximately by 4 bits after the

10th clock of the initialisation process. After that, the contents of registers A

and B are generated from the feedback and the output of Boolean functions, so

we cannot assume the contents of registers A and B are independent identically

distributed random form.

Table 5.3: Two pre-images for a given state when qt−1 = 0

A

State 1110010101010101000100001101010101010001
1st pre-image 0101010101010001000011010101010100010100 . . .
2nd pre-image 0101010101010001000011010101010100010111

B E F c

0010111001011110010101101110110101010011 0010 1100 1
. . . 1110010111100101011011101101010100110111 1100 0010 1

1110010111100101011011101101010100110111 1100 0010 1

State Convergence when qt−1 = 1

In the case of q = 1, from Equations 5.9a to 5.9d and 5.10a to 5.10e, the contents

of the memories F t and ct are computed using addition modulo 24 of the values

of Et−1, Zt−1 and ct−1. The investigation of the case q = 1 requires to solve

the relevant equations, Equations 5.10a to 5.10e and 5.11a to 5.11d in term of

the set of variables at−19,0 to at−19,3 , et−10 to et−13 , ct−1 and the intermediate variables

ht0 to ht3. They will result in the number of valid solutions, which represent the

number of pre-images.

Equations 5.10a to 5.10e are quintic equations. We expect multiple solutions
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Table 5.4: Four pre-images for a given state when qt−1 = 0

A

State 0100010101010001000101010101010001110101
1st pre-image 0101010100010001010101010100011101010000
2nd pre-image 0101010100010001010101010100011101010011 . . .
3rd pre-image 0101010100010001010101010100011101011110
4th pre-image 0101010100010001010101010100011101011101

B E F c

1001111001011110010101101110110101010011 0010 0001 1
1110010111100101011011101101010100110100 1100 0010 1

. . . 1110010111100101011011101101010100111000 1100 0010 1
1110010111100101011011101101010100110000 1100 0010 1
1110010111100101011011101101010100111100 1100 0010 1

for these set of variables at−19,0 to at−19,3 . Table 5.5 shows an example of two pre-

images of one state when qt−1 = 1. The complexity of solving this set of equations

is the degree of these equations (fifth) and considering the behaviour of the

Boolean functions S1 to S4 and S9 to S12 during the update function. The

analysis of qt−1 = 1 will be left for future work.

Table 5.5: Two pre-images for a given state when qt−1 = 1

A

State 0010010101010111000100001101110101010001
1st pre-image 0101010101110001000011011101010100010111 . . .
2nd pre-image 0101010101110001000011011101010100010100

B E F c

1001111001011110010101101110110101110011 0010 0011 1
. . . 1110010111100101011011101101011100111000 0101 0010 0

1110010111100101011011101101011100111100 0101 0010 1
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5.2.3 State Convergence During Keystream Generation

This section describes the investigation to determine whether state convergence

can occur during keystream generation. Figure 5.4 illustrates the interaction

between At−19 with both of At0 and Bt
0 at the same time. The state update

function during the keystream generation of CSA-SC can be described as follows:

At0 =At−19 ⊕X t−1

Bt
0 =(Bt−1

6 ⊕Bt−1
9 ⊕ Y t−1)ROLpt−1

0 1 2 3 0 1 2 3 0 1 2 3

Figure 5.4: State convergence and stages’ interaction during keystream genera-
tion

The new values of stages At0 and Bt
0 can be considered in terms of their

individual bits as follows:

at0,0 =at−19,0 ⊕ S1(a
t−1
3,3 . . . a

t−1
8,0 ) (5.18a)

at0,1 =at−19,1 ⊕ S2(a
t−1
1,3 . . . a

t−1
6,2 ) (5.18b)

at0,2 =at−19,2 ⊕ S3(a
t−1
2,1 . . . a

t−1
9,1 ) (5.18c)

at0,3 =at−19,3 ⊕ S4(a
t−1
4,0 . . . a

t−1
9,0 ) (5.18d)

b′t0 =(bt−19,0 ⊕ bt−16,0 ⊕ S5(a
t−1
3,1 . . . a

t−1
9,3 )) (5.18e)

b′t1 =(bt−19,1 ⊕ bt−16,1 ⊕ S6(a
t−1
5,2 . . . a

t−1
9,2 )) (5.18f)

b′t2 =(bt−19,2 ⊕ bt−16,2 ⊕ S7(a
t−1
3,3 . . . a

t−1
8,0 )) (5.18g)

b′t3 =(bt−19,3 ⊕ bt−16,3 ⊕ S8(a
t−1
1,3 . . . a

t−1
6,2 )) (5.18h)

Equations 5.18a to 5.18h can be treated in a similar way to Equations 5.11a

to 5.11d and 5.12a to 5.12d. By considering anything which depends only on
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the values of stages At−10 to At−18 and Bt−1
0 to Bt−1

8 to be fixed, we can introduce

constants C ′0, C
′
1, C

′
2, C

′
3, C

′
4 and C ′5 to simplify these equations as follows:

C ′0 = S1(a
t−1
3,3 . . . a

t−1
8,0 )

C ′1 = S2(a
t−1
1,3 . . . a

t−1
6,2 )

C ′2 = bt−16,0

C ′3 = bt−16,1

C ′4 = bt−16,2 ⊕ S7(a
t−1
3,3 . . . a

t−1
8,0 )

C ′5 = bt−16,3 ⊕ S8(a
t−1
1,3 . . . a

t−1
6,2 )

at0,0 =C ′0 ⊕ at−19,0 (5.20a)

at0,1 =C ′1 ⊕ at−19,1 (5.20b)

at0,2 =at−19,2 ⊕ S3(a
t−1
2,1 . . . a

t−1
9,1 ) (5.20c)

at0,3 =at−19,3 ⊕ S4(a
t−1
4,0 . . . a

t−1
9,0 ) (5.20d)

b′t0 =C ′2 ⊕ bt−19,0 ⊕ S5(a
t−1
3,1 . . . a

t−1
9,3 ) (5.20e)

b′t1 =C ′3 ⊕ bt−19,1 ⊕ S6(a
t−1
5,2 . . . a

t−1
9,2 ) (5.20f)

b′t2 =C ′4 ⊕ bt−19,2 (5.20g)

b′t3 =C ′5 ⊕ bt−19,3 (5.20h)

Equations 5.20a and 5.20b have unique solutions for the variables at−19,0 and

at−19,1 . Using Equations 5.20c and 5.20d, these solutions lead to unique solutions

for at−19,2 and at−19,3 , and hence from Equations 5.20e to 5.20h there are unique

solutions for bt−19,0 to bt−19,3 also. As a result, there is only one pre-image for each

state of register A. Hence, there is no state convergence in CSA-SC during the

keystream generation process. Thus, the state convergence occurs only during

the initialisation process of CSA-SC.
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5.3 Analysis of Slid Pairs

In this section we investigate the possibility of finding multiple pairs (K, IV)

and (K ′, IV′) which produce a phase shifted version of the same keystream. For

the CSA-SC, the loaded state corresponds to loaded keys only since the IV is

loaded during the diffusion phase. Because of this, the second state of a slid pair

depends only on the associated key, K ′, and we only need to consider the cor-

responding IV′, when determining whether the slid pair gives shifted keystream.

Therefore, we can classify the steps that are required to obtain slid pairs and

shifted keystream as follows:

i) The constraints that are required to obtain slid pairs.

ii) The constraints that are required to obtain slid pairs.

iii) The constraints that are required to obtain shifted keystream from slid pairs.

Note that Condition (ii) applies because the diffusion phase in CSA-SC is

non-autonomous (there is an external input to the internal state); this condition

does not apply to most other stream ciphers.

The purpose of this analysis is to identify the constraints that are required to

obtain slid pairs and shifted keystream for the CSA-SC in the same cycle after

α iterations. Comparing the properties listed in Section 2.7.3 with the operation

of the CSA-SC, we note that properties (a) and (b) apply, but the state update

functions during the initialisation and keystream generation processes have a

degree of difference from one another.

Now, for a given key-IV pair, the first task is to identify the next key loaded

state that may occur during the diffusion phase and to be in the same cycle (to

satisfy the key loaded state of CSA-SC). Moreover, it is important to determine

the relationship between the first key-IV pair, (K, IV), and the second key, K ′,

which is obtained from the first key-IV after α iterations.

As presented in the above argument, there are some general conditions that

are required to obtain slid pairs to meet the key loaded state format of the CSA-

SC after α iterations. Slid pairs can occur after α iterations if the contents of

stages Aα8 , Aα9 , Bα
8 and Bα

9 become zeros, and the memories Eα, Fα and cα are

still zeros to follow the CSA-SC’s key loading format (Note from Equations 5.3a

to 5.3c that Et, F t and ct cannot become zero simultaneously once any of them



5.3. Analysis of Slid Pairs 161

has a non-zero content). The contents of stages Aα8 , Aα9 , Bα
8 and Bα

9 can be zeros

as follows:

1) If α = 1, it requires 8 key bits to be zeros. These key bits are k28 − k31 and

k60 − k63.

2) For 2 ≤ α ≤ 8, two key bytes, k32−4α − k39−4α and k64−4α − k71−4α, are zeros

and separated by 32 bits.

3) For α = 9, the key bits k0 − k3 and k32 − k35 should be zeros, and Equa-

tions 5.21a and 5.21b (below) should be satisfied at t = −31.

4) For α ≥ 10, Equations 5.21a and 5.21b (below) should be satisfied for two

successive iterations to generate two consecutive stages of zeros for registers

A and B at the same time.

At−19 ⊕X t−1 ⊕Dt−1 ⊕ I tA = 0 (5.21a)

(Bt−1
6 ⊕Bt−1

9 ⊕ Y t−1 ⊕ I tB)ROLpt−1 = 0 (5.21b)

In addition, the output bits of either the Boolean functions S9 to S12 (Z) or

the function S14 (q) should be zeros for 0 ≤ t ≤ α to ensure that the contents

of the memories Eα, Fα and cα are zeros. In all the above cases, note that the

second key, k′, is uniquely determined by the first key, k, and the first dα
4
e bytes

of the first IV. The second IV′, is uniquely determined based on the first IV, and

the number of shifted steps.

Because the registers are not autonomous during the diffusion phase, we

must also consider the conditions that IV and IV′ must satisfy in order for the

states resulting from (K, IV) and (K ′, IV′) to remain in step for the rest of the

diffusion phase. The required specific conditions depend on the value of α and

are discussed below in further detail.

To obtain shifted keystream from a slid pair that has remained in step, the

following equations (Equations 5.22a and 5.22b) should be satisfied for the last

α iterations of the second key-IV pair, (K ′, IV′).
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Dt−1 ⊕ I tA = 0 (5.22a)

I tB = 0 (5.22b)

If all of the above equations are satisfied, the second keystream will be shifted

from the first keystream by 2α bits.

Recall the IV loading format of the CSA-SC. The IV is loaded during the dif-

fusion phase and each IV byte is loaded into registers A and B for four successive

iterations. If α is not a multiple of 4, this operation imposes significant restric-

tions on the form of the IVs for the states of a slid pair to remain in step with one

another. For this reason, we will describe slid pairs for α = 1, 2 and 3 iterations

briefly. Then, we will examine and focus on slid pairs for α = 4 iterations (which

have reasonable result for attacks).

The following process was used to obtain the result presented below:

• Use the above theoretical analysis to determine which key and IV pairs

that result in slid pairs

• Use the real CSA-SC cipher to generate two keystream sequences using the

two key-IV pairs to demonstrate practically the shifted keystream .

For α = 1 iteration

Recalling the three steps that are mentioned in the beginning of this section, slid

pairs and shifted keystream may occur with the following conditions:

i) 8 key bits (k28 to k31 and k60 to k63) must be zeros (with probability 2−8).

Either the value of q−32 or the output of Boolean functions S9 to S12 (z−320

to z−323 ) are zeros (with probability 17
32
≈ 2−0.913).

ii) The bytes of the first IV, are identical and the low nibbles of IV′ equal to

the high nibbles of IV, v′L = vH and vice versa vL = v′H . This condition

restricts IV to 28 values of the potential 264 and determines v′ uniquely in

terms of v.

iii) Shifted keystream may occur if the v′H is zeros (with probability 2−4). More-

over, Equation 5.22a must be satisfied for the last iteration of the diffusion

phase (with probability 2−4).
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In summary, the probability of a randomly chosen key leading to a slid pair

is 2−8.913 and the probability of a valid IV which will allow the slid pair to

propagate and lead to shifted keystream, is 28

264
· 2−4 = 2−60. There is also

a further probability of 2−4 that (K ′, IV′) will satisfy Equation 5.22a at time

t = 0. The second key K ′ is determined uniquely from K bits and some IV

bits using Equations 5.11a to 5.11d to find k′0 − k′3, Equations 5.12a to 5.12d to

find k′32 − k′35 and the remaining key bits of K ′ are shifted by 4, K ′ = K � 4.

The IV′ is determined directly from IV. Table 5.6 demonstrates two key-IV pairs

which generate two keystreams shifted by 2 bits. These two keystreams are

identical except the first two bits from the first keystream, that is keystream2 =

keystream1 � 2.

Table 5.6: For α = 1, two key-IV pairs generate two keystreams shifted by 2 bits

key1 FFD7FFF0FFFFFFF0
IV1 7070707070707070
keystream1 {10} A914DA57A7CF11B65B00EEFDA9F7ABB8635E2DD117

04348B7FBFF30076BA92AC1893E9DDB2332F0949FCB24
648C61E34C7581A5624D2507AD6BFACEB6168C32

key2 6FFD7FFFCFFFFFFF
IV2 0707070707070707
keystream2 A914DA57A7CF11B65B00EEFDA9F7ABB8635E2DD117

04348B7FBFF30076BA92AC1893E9DDB2332F0949FCB24
648C61E34C7581A5624D2507AD6BFACEB6168C32

For α = 2 iterations

Recalling the three steps that are presented in the beginning of this section, slid

pairs and shifted keystream may occur with the following conditions:

i) 16 key bits from K must be zeros (k24 to k31 and k56 to k63) with probability

2−16. The memories E, F and c should be zeros for t = −31 and t = −30

(with probability (17
32

)2 ≈ 2−1.825).

ii) The bytes of first IV should be identical and IV = IV′. This condition again

restricts IV to 28 values of the potential 264.
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iii) To obtain shifted keystream, the last byte of second IV′, should be zero

(with probability 2−8), so the entire bytes of IVs, IV and IV′ should be

zeros. Equation 5.22a must be satisfied for (K ′, IV′) at time t = −1 and

t = 0, which happens with probability 2−8.

The probability of a randomly chosen key leading to a slid pair is 2−17.825.

The probability of a valid IV which will allow slid pairs to propagate and lead

to shifted keystream becomes 2−56 · 2−8 = 2−64. There is a further probability of

2−8 for Equation 5.22a to be satisfied for two clocking steps. The second key-IV

pair, (K ′, IV′), can be determined uniquely from the first key-IV pair, (K, IV),

by extension of the method shown for α = 1.

For α = 3 iterations

Similarly to α = 1 or 2, and recalling the three steps for occurrence of slid pairs

and shifted keystream, we require

i) 16 key bits must be zeros (k20 to k27 and k52 to k59) with probability 2−16.

The memories E, F and c should be zeros for the three clock steps (with

probability (17
32

)3 ≈ 2−2.738). Thus the probability of a randomly chosen key

leading to a slid pair is 2−18.738.

ii) The valid IV that is required to keep slid pairs in step for this case is similar

to the case of α = 1, and occurs with probability of 2−56.

iii) To obtain shifted keystream from slid pairs, the last byte of the second

IV′ should be zero (with probability of 2−8) and Equation 5.22a should be

satisfied for the last 3 clocks (with probability 2−12).

Thus, the total probability of a valid IV which will allow slid pairs to propagate

and lead to shifted keystream becomes 2−64 with an additional probability of

2−12 that Equation 5.22a is satisfied for time t = −2, t = −1 and t = −0. The

second key-IV pair, (K ′, IV′), can again be determined uniquely and directly

from (K, IV).

These cases when α = 1, 2 and 3, seem to be impractical due to the very

small range of IV values for the which the slid pairs will lead to shifted keystream.

Likewise other cases when α 6≡ 0 (mod 4) e.g. α = 5, 6 and 7 have the same

probabilities and process of obtaining valid IV as for α = 2 and 3. Moreover, the

probabilities of possible valid keys, which is required to obtain slid pairs, and the
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conditions of shifted keystreams are successively lower, as are the probabilities

of satisfying Equation 5.22a to guarantee shifted keystream.

For α = 4 iterations

In this case, the three steps that are required for slid pairs and shifted keystream

are as follows:

i) Two bytes of the first key, K, must be zeros, namely k16 to k23 and k48

to k55 (with probability of 2−16). Either the values of q or the output of

Boolean functions S9 to S12 are zeros for the first four clocks to ensure

that the memories E, F and c are in the initial condition (with probability

(17
32

)4 = 2−3.65).

ii) This case works with any IV (the first IV) and the second IV′ is a 1-byte

shifted version of the first IV.

iii) Shifted keystream from slid pairs may occur if the last byte of second IV′

is zero which happens with probability of 2−8. Equation 5.22a must be

satisfied for the last four iterations of the diffusion phase (the 29th, 30th,

31st and 32nd clocks) and has probability of 2−16.

If a specific second IV′ is found (256 out of 264 IVs) then a slid pair may occur

with probability of 2−19.65 and this slid pair may lead to shifted keystream with

probability of 2−16. Therefore, the total probability to obtain shifted keystream

from all the key-IV set is 2−43.65. In this case, the keystreams are out of phase

by 8 bits.

We do not provide an example for this case of α = 4, since the previous

example of α = 1 is enough to demonstrate the work of the slid pairs and shifted

keystreams. For this case of α = 4, if the key-IV pairs (K, IV) and (K ′, IV′) are

predetermined then slid pairs and shifted keystream may occur with probabilities

2−3.65 and 2−19.65 respectively.

The second key-IV pair, (K ′, IV′), can be determined directly from the first

key-IV pair, (K ′, IV′), as mentioned above in the case of α = 1. The second IV′

is a shifted version of the first IV by one byte where (IV′ =IV� 1(byte)), and

its last byte should be zero. The second key K ′ can be determined directly from

Equations 5.11a to 5.11d and 5.12a to 5.12d for four clocks with the remainder

of K ′ again being a shifted copy of K. For each clock, 8 bits from K ′ can be

expressed in term of key-IV pair, (K, IV).
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The principle of slid pairs for α = 4 can be applied for multiples of 4 for

α = 4, 8, . . . 28. The probability of slid pairs and shifted keystreams of these

cases of multiples of 4 can be calculated as follows:

• Obtaining two bytes of zeros in the first key, K, for probability of 2−16.

• The memories E, F and c to be in the initial condition (zeros), the proba-

bility is (17
32

)α.

• The last (α/4) bytes of the second IV′ should be zeros (with probability

2−2α).

• Equation 5.22a should be satisfied for α clocks (it has probability of 2−4α).

Thus, the combined probability of obtaining shifted keystream when α is a

multiple of 4 is 2−16−0.913α−2α−4α = 2−16−6.913α. This analysis shows that the best

probability that can be found to obtain slid pairs and shifted keystream is for

α = 4.

The probabilities of obtaining slid pairs and shifted keystream are shown

Table 5.7, for the previous cases when α = 1, 2, 3, 4 and also for α = 8. This

table sets out the probabilities for the three steps discussed above:

i) The probability that a randomly chosen key, K, will lead to a slid pair.

ii) The proportion of the first IV for which the states of the slid pair will

remain in step during the rest of the diffusion phase.

iii) The combined probability of Equation 5.22a and the condition on IV′ being

satisfied, so that shifted keystream is obtained.

Table 5.7: Probabilities of obtaining slid pairs and shifted keystreams for α clocks

α 1 2 3 4 8

(i) To obtain slid pairs 2−8.913 2−17.825 2−18.738 2−19.65 2−23.3

(ii) To keep slid pairs in step 2−56 2−56 2−56 20 20

(iii) To obtain shifted keystream 2−8 2−16 2−20 2−24 2−48

Total probabilities 2−72.913 2−89.825 2−94.738 2−43.65 2−71.3
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5.4 Weak Key-IV Combinations

The CSA-SC transfers the secret key directly into the internal state and

applies specific padding. The IV is loaded during the diffusion phase using the

state update function. So, the IV loading operation makes the state update

function during the diffusion phase a non-autonomous operation. Therefore, the

weak key-IV combination seems possible to happen at the end of the initialisation

process. The registers A and B can reset to contain all-zero values at the end

of the initialisation process. But the memories c, E and F cannot be reset

to contain all-zero values if any of them gain value other than zero during the

diffusion phase. Therefore, the weak key-IV problem (as defined in Section 2.7.5)

may occur in CSA-SC but it is hard to keep the memory c, E and F contain

all-zero values during all the iterations of the diffusion phase. This problem is

left for future work.

5.5 Summary and Security Impact

The initialisation process of the CSA-SC stream cipher was examined in this

chapter. We based our analysis on the description of CSA-SC from [96], which

uses an internal state of 89 bits. The initialisation process of CSA-SC loads

the secret key into the internal state using a linear function to form a specific

key loaded state (where some stages are filled by zeros). Following this, the

IV is loaded during the diffusion phase. There are 32 iterations (clocks) during

the diffusion phase and each IV byte is used for four consecutive iterations.

The diffusion phase and keystream generation both use nonlinear state update

functions with a degree of difference as shown in Figure 5.1.

This internal state is shorter than the combined key-IV length (64+64) of 128

bits. This leads to an effective reduction in the key-IV space during initialisation

process, so that on average 239 key-IV pairs correspond to each internal state.

In this chapter, investigations into two flaws in the CSA-SC initialisation

process were described: state convergence and slid pairs. These problems have

been discussed in detail in this chapter and are summarized below.

During the initialisation process (specifically during the diffusion phase), the

state update function of CSA-SC is not one-to-one due to a combination of the

linear feedback and the output of the 14 Boolean functions. This results in state
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convergence during the diffusion phase only of the CSA-SC initialisation process.

Precisely, the content of stage At−19 , which is shifted out of the internal state at

time t, affects the contents of stages At0 in two different ways: through the linear

feedback function and through the output of seven Boolean functions namely S3,

S4, S9, S10, S11, S12 and S14. State convergence cannot occur in the first two

iterations of the diffusion phase due to the specified format of the key loaded

state. State convergence may start to occur from the third iteration of diffusion

phase once At9 is not constrained to be zero.

We identify two distinct cases, qt−1 = 0 and qt−1 = 1, each occurring with

probability of 1
2
. In the case of qt−1 = 0, as a result of the state convergence,

after the third iteration of the diffusion phase, the state space is reduced by at

least 5085
16384

≈ 0.31. Therefore, the overall proportion of states lost in this way is

half of this value, that is approximately 0.155. In the case when qt−1 = 1, we

have demonstrated by an example in Table 5.5 that state convergence occurs,

but the exact degree of convergence is yet to be determined; this case is left

for future work. We argue that the proportion of inaccessible states in the case

qt−1 = 0 is approximately 0.31 for each clocking step from 3rd to 10th clocks, as

the assumption of independent identically distributed random bits in register A

is valid for these 8 clocks. After that, the assumption may not be valid. Based

on our analysis when qt−1 = 0, there is a significant reduction in the state space

that could be exploited by attackers for example using TMTO attacks.

The similarity of the iterations of the state update function during initial-

isation process (diffusion phase) and the format of key loaded state results in

slid pairs in the internal state. For randomly chosen keys, slid pairs occur with

probability that depends on the value of α. Slid pairs may lead to shifted version

of the same keystream provided certain conditions on IV and IV′ are satisfied,

along with additional conditions relating IV′ to the output D. However the state

update functions of the initialisation and keystream generation processes have a

degree of difference. Therefore, slid pairs may lead to shifted keystreams with

a specific probability. Thus, slid pairs may occur during the diffusion phase of

the initialisation process of CSA-SC and may lead to shifted version of the same

keystream. From this investigation, the best result to find slid pairs is at α = 4,

where the key-IV pair (K, IV) generates a key loaded state after 4 iterations.

This case has a probability of 2−19.65 of obtaining slid pairs. These slid pairs may

lead to shifted key stream with a probability of 2−24, as presented in Table 5.7
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for α = 4. Slid pairs and shifted keystream may help attackers to perform key

recovery attack.
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Chapter 6

Security Issues in the

Initialisation Process of Stream

Ciphers

Keystream generator of stream ciphers produces pseudorandom sequence aim-

ing to mimic the one-time-pad (OTP). OTP uses a keystream which is ran-

domly chosen and whose length is equal to the length of the messages and never

used again for another encryption [98, p.27] [102, 103]. It is a secure cipher and

proved by Shannon [92]. Keystream generator takes secret key and IV as in-

put to form an initial state before keystream generation begin. A well-designed

initialisation process should ensure that each key-IV pair generates a distinct

and unpredictable session key (initial state), and then from this a distinct and

unpredictable keystream. The analyses in Chapters 3, 4 and 5 and other results

reported in the existing literature demonstrate flaws in both the loading and

diffusion phases of the initialisation processes of several ciphers as discussed in

Chapter 2, so it is clear that this aim is not always achieved.

Flaws may appear during either the loading phase, the diffusion phase or both.

Examination of the flaws, based on the phases in which they occur, gives the

ability to identify and understand the causes. From this detailed examination,

we provide design guidelines to enable these flaws to be avoided or to at least

reduce significantly the probability of occurrence.

Initialisation processes must be secure against at least the known generic

171
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attacks. The initialisation process should prevent secret key recovery attacks

even when the session key (initial state) has been obtained (for example, through

a state recovery attack). Therefore, the initialisation process should play a role

like a security guard.

Other aspects to be considered when using stream ciphers are factors that

can affect the efficiency of the initialisation process, especially for real-time ap-

plications. Although they are not our major focus. It is important to avoid

processes which simultaneously decrease both efficiency and security. Some fur-

ther observations about the security and efficiency of the initialisation process

are provided in the remaining sections of this chapter. Within this context, the

number of iterations for each specific design should be considered in terms of

both the security and efficiency perspectives.

Table 6.1 summarises the results that have been found related flaws which

are investigated in Chapters 3, 4 and 5. These flaws are compression, conver-

gence, slid pairs, shifted keystream and weak Key-IV pairs. In this table, we

considered our results related to A5/1, Sfinks and CSA-SC, and we also listed

similar results from the literature for other ciphers. Concerns of these flaws are

that may increase the vulnerability to some attacks such as TMTO attacks, dif-

ferential attacks or ciphertext-only attack to recover the secret key as discussed

in Chapters 3, 4 and 5. For example shifted slid pairs and weak Key-IV lead to

key recovery attacks, and convergence can increase the vulnerability to TMTO

attacks. Therefore, these flaws can make easy to use these attacks.

Table 6.1 shows the ciphers investigated in this thesis are highlighted in the

table in bold font. The check-marks (X) and XXX indicate that the flaws have been

identified: in the existing literature, and in our work in this research, respectively.

The (x) mark indicates that the flaw does not exist for the particular cipher. The

absence of a mark for a specific flaw means that the particular cipher has not

yet been analysed for this flaw.

Chapter 6 is organised as follows: Section 6.1 describes flaws that have been

identified in the initialisation processes of shift-register stream ciphers. Security

aspects during the loading and diffusion phases are presented in Section 6.2 and

Section 6.3, respectively. Section 6.4 presents recommendations for new proposals

of initialisation processes. Section 6.5 summarises and concludes this chapter.
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Table 6.1: Security flaws in the initialisation processes of specific stream ciphers
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Compression x x x x X8 XXX 10 x X12

Convergence x x X6 x9 XXX 10 XXX 11 XXX 13

Slid pairs X2 X3 X7 XXX 10 XXX 11 XXX 13

Shifted keystream X2 X3 X7 XXX 10 XXX 11 XXX 13

Weak key-IV X1 X4 ? XXX 10 � ?

? theoretically, weak key-IV pairs exist due to the non-autonomous
feedback during the initialisation process.
� further investigation is required to clarify weak Key-IV in Sfinks

as discussed in Section 4.4.
1 Based on the observation in [79] and [52]. They described a weakness in the second

output of RC4 which is based on the secret key.
2 Priemuth-Schmid and Biryukov [86] demonstrated slid pairs and shifted keystream

in the Trivium cipher.
3 Kuçuk [73] and Banik et al [10] demonstrated slid pairs and shifted keystream in

Grain v1.
4 Zhang and Wang [108] demonstrated some sliding weak key-IV combination.
6 Hong and Kim [65] reported a state entropy loss in the MICKEY v1.
7 Helleseth et al [61] examined the existence of slid pairs and shifted keystream.
8 Biham and Dunkelman [20] reported Key-IV compression in LILI-II during the

loading phase.
9 Teo [100] reported that state convergence does not exist in the LILI family of

stream ciphers.
10 For A5/1, compression and State convergence are investigated in Section 3.2, Slid

pairs and shifted keystream are examined in Section 3.3, weak Key-IV Combina-
tions is discussed in Section 3.4, and the key recovery is covered in each of the
previous sections.

11 For Sfinks, State convergence is analyzed in Section 4.2, Slid pairs and shifted
keystream are examined in Section 4.3, weak Key-IV Combinations is considered
in Section 4.4, and the key recovery is covered in each of the previous sections.

12 Simpson et al [96] commented on the compression of the Key-IV in the CSA-SC
13 For the CSA-SC, State convergence is investigated in Section 5.2, and Slid pairs

and shifted keystream are analyzed in Section 5.3,

6.1 Security Flaws in Initialisation Process

In this research, we investigated the initialisation processes of three stream

ciphers, namely A5/1, Sfinks and CSA-SC. These ciphers have the same structure
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as most other stream ciphers, in that they use shift registers in combination

with non-linear functions. They consist of a variety of structures and non-linear

functions. Therefore, the recommendations and outcomes from these analyses

are relevant to most stream ciphers that are based on shift registers. Moreover,

the recommendations are considered based on our work and the literature.

The investigation focuses on the security of the initialisation process and

flaws. There are some security flaws identified and discussed in this chapter.

This section focuses in the identified security flaws and their causes in brief as

follows:

Compression. Compression occurs when the sum of the key and IV sizes is

greater than the internal state size and result in two or more Key-IV pairs

generating the same loaded state.

Convergence. This condition occurs when two or more internal states map to

the same internal state after applying a state update function for α ≥ 1

iterations. State convergence may result from using a state update function

that is not one-to-one .

Slid pairs. Slid pairs may occur due to the similarity of the state update func-

tion during successive iterations of the initialisation process and is also

affected by the form of the padding pattern. If any used when the key and

IV bits are loaded into the internal state during the initialisation process.

Shifted keystream. Shifted keystream may occur for an identified slid pair due

to the similarity or partial similarity between the state update functions

during both the initialisation and keystream generation processes.

Weak Key-IV combinations. Non-autonomous operation for either loading

or diffusion phases may result in one or more shift registers containing

all-zero after the relevant phase.

The following sections (Sections 6.2 and 6.3) discuss more the properties and

features of the loading and diffusion phases of the initialisation process thor-

oughly that could cause the above flaws.

6.2 Loading Phase and Security Flaws
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The loading phase is the process of transferring the secret key and IV into the

internal state of the keystream generator for a stream cipher. Note however that

this does not happen in every case: for some stream ciphers, the IV is loaded

during the diffusion phase (e.g. CSA-SC [104]). During the loading phase, the

secret key and IV may be directly transferred to pre-determined stages of the

internal state (e.g. Sfinks [29] and Trivium [43]), or the transfer may be achieved

by using a linear state update function (e.g. A5/1 [30]), or a non-linear state

update function (e.g. MICKEY [6–8]).

6.2.1 Padding Pattern Weaknesses

For ciphers in which the secret key, of length l and IV of length j are transferred

directly to the internal state S of size s, where l + j < s, then some stages of

S remain unfilled. Padding is required to fill these remaining stages. A specific

padding pattern must be prescribed in the cipher proposal to obtain the loaded

state. For example, Sfinks [29] uses a padding pattern which is all-zeros except

one specific bit (which is one), and Grain [58–60] uses all-ones as the padding

pattern.

The choice of padding pattern may affect the security of the initialisation

process as, for some ciphers, this increases the ease with which slid pairs can

occur and these in turn may result in shifted keystreams. Appropriate padding

may defer the occurrences of slid pairs to further clocking steps and increase

constraints that are required to obtain slid pairs and shifted keystream. This

can clearly be seen for ciphers such as Trivium, Sfinks and Grain, as discussed

below.

In the case of Trivium, as reported by Priemuth-Schmid and Biryukov in [86],

slid pairs can not occur for less than 111 clocks. If the padding pattern was

changed so that the last 3 stages are filled with zeros rather than ones, (identical

pattern), then slid pairs could occur after only one clock, with probability of 1/2.

The Sfinks stream cipher is another example where the padding pattern and

the state update function defer the first slid pair; in this case to after the 17th

iteration. If the content of the stage s40 in Sfinks is changed to one in the padding

format, then the occurrence of a slid pair will be deferred until the 24th iteration

and the relevant conditions on the state contents will also be more complicated.

In contrast, if the padding is all zeros (identical pattern), then slid pairs may

occur after one iteration with high probability as shown in Section 4.3.
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In another example, for the Grain cipher, the padding pattern is identical

(all of them are ones) and the state update functions of the initialisation process

and keystream generation have a degree of similarity. As shown by Zhang and

Wang [108], a slid pair can be found after one clock and gives shifted keystream

by one bit with probability of 2−2. If the first bit or last bit of the 16-bit padding

pattern, which is (1111111111111111), is changed to such as (0111111111111111)

or (1111111111111110), then the slid pair will not occur until after 16 iterations,

which would generate a shifted keystream with a 16 bit shift with probability of

2−32. In summary, careful design of the padding patterns may defer the occur-

rence of the slid pairs and reduce its probability.

If the padding system is carefully designed (using extensive analysis), then

it may make slid pairs that are generated by either the same secret key with

different IVs, different secret keys with the same IV, or both, more complicated

or need additional constraints to occur. For example, Priemuth-Schmid and

Biryukov [86] discussed the search to find these two cases (same secret key and

different IVs, or different secret keys and same IV) for the analysis of slid pairs of

Trivium. They checked for clock-shifts from 111 to 142 and they could not find

a solution for this system. Recall that the occurrence of slid pairs for the case of

the same secret key with multiple IVs is the most important flaw for practical

attacks, as shown in Section 2.7.3.

6.2.2 Loading Process and Flaws

Loading may be performed in a linear or non-linear manner. If the loading

is performed using a linear function, then the loading function is one-to-one and

there is no convergence during this phase. For example, A5/1 [30] loads the secret

key and IV using a linear state update function (the LFSR feedback functions

alone), so there is no state convergence during this phase. If the loading function

is nonlinear, then the loading function must be examined to determine whether

it is one-to-one or not. For example, MICKEY v1 [6] uses a nonlinear state

update function to load the IV and secret key. MICKEY v1 suffers from state

convergence during the loading and diffusion phases, as discussed by Helleseth

et al [61].

Loading the secret key and IV into the internal state can be performed in one

of these ways:
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1. Loading the key then IV. The secret key is loaded first and then the IV using

a state update function as shown in A5/1 stream cipher in Section 3.1.

This loading process may result in state compression. If the state update

function during the loading phase is not one-to-one, state convergence may

occur during this phase. Each internal state may be a legitimate loaded

state and that may lead to slid pairs after each clocking step. Another

problem, it may end by all-zeros in one or more components of the cipher

that is produced by weak key-IV combinations. For example, as shown in

Section 3.4, the loading phase of A5/1 stream cipher may end by one, two

or three registers containing all-zeros values.

2. Loading the IV then secret key. The IV is loaded first and then the secret

key as shown in MICKEY stream cipher [6]. This loading process may

result in some flaws: state compression, state convergence, slid pairs and

weak key-IV combinations. Each internal state may be a legitimate loaded

state and slid pairs may occur after each clocking step.

3. Transferring the secret key and IV into the internal state simultaneously. This

loading process does not require more operations for the loading process.

It transfers the key and IV bits directly into specific stages in the internal

state such as Grain [58–60], Trivium [43] and Sfinks [29] stream ciphers.

Provided the state space is large enough and the key and IV are loaded

into different parts of the state, state compression and convergence cannot

occur during this phase. Slid pairs may still occur. If a padding pattern

is used, it should be considered carefully as discussed in Section 6.2.1, so

all-zeros components in the loaded state may not occur during this phase

and the occurrence of the slid pairs may be deferred to further clocking

steps.

6.2.3 Autonomy in Loading Phase and Flaws

Ciphers are made up of several components, which can operate either inter-

dependently or autonomously. Many of the security properties of the sequences

produced by the components are only guaranteed under the condition that the

components are operating autonomously. When this is not the case, more care

needs to be taken to ensure that security problems are not introduced. For ex-
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ample, the well known properties of LFSR sequences depend on the LFSR being

autonomous, having a primitive feedback function and a non-zero initial state.

When a register is not autonomous then the possibility of an all-zero state can

not be discounted and its properties can no longer be guaranteed.

Lack of autonomy during the initialisation process can arise in two ways:

through non-autonomous feedback and through the use of non-autonomous clock-

ing mechanisms. Non-autonomous feedback occurs when the content of the new

stage of an internal state depends on an external input. Non-autonomous clock-

ing mechanism is the situation when the clocking of any component of a ci-

pher is governed by the contents of another component. These two types of

non-autonomous mechanisms affect the security of the initialisation process in

different ways.

During the loading phase, the non-autonomous feedback is more common

than the use of non-autonomous clocking mechanisms. For example, the secret

key and IV are transferred using state update function to form the loaded state

using a non-autonomous feedback mechanism. This non-autonomous feedback

mechanism of the loading phase is used in the A5/1 stream cipher [30]. It is a

one-to-one function and there is no state convergence as shown in Section 3.2,

but it introduces the weak key-IV problems as shown in Section 3.4. As another

example, MICKEY v1 [6] uses a non-autonomous feedback mechanism in the

loading phase. The non-autonomous function results in a non one-to-one state

update function. So, state convergence may occur during the loading phase

of MICKEY, as reported by Helleseth et al [61]. We defer discussion of non-

autonomous clocking to Section 6.3 (Diffusion phase).

In non-autonomous feedback mechanism, the loading phase may load the

secret key and IV using a state update function as mentioned above in the first

and second loading methods of the loading process in Section 6.2.2. For each

of these two loading methods, it is important to consider the behavior of the

loading function to avoid any possibility of weak key-IV combinations that may

occur at the end of the loading phase. For example, at the end of the loading

phase of the A5/1 stream cipher, weak key-IV combination may result in all zero

contents for one or more of the registers. Consequently, during the keystream

generation process, those registers will generate a sequence of all zeros, resulting

in a keystream that is either zeros or ones (when two or three registers contain

all-zero values) as discussed in Section 3.4. Note that it is not practical to test
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this condition for each key-IV pair, due to the short time frame. Applying such

a test for this condition will reduce the efficiency of the cipher.

In the case of transferring the key and IV directly into the internal state, weak

key-IV can be avoided with non-zero key, IV or padding pattern that should be

carefully designed to mix ones and zeros. This will prevent obtaining a zero

internal state as the loaded state. For example, in Sfinks [29] there is one stage

in the padding pattern that contains the value one. As well Trivium [43] contains

three stages from the padding pattern that contains ones.

6.3 Diffusion Phase and Security Flaws

In the diffusion phase of the initialisation process, a number of iterations of

the state update function are performed. The purpose of this phase is to diffuse

the secret key and IV across the entire internal state. This section examines the

required number of iterations and investigates the properties of the state update

function that may affect the security of the diffusion phase.

Most stream ciphers use non-linear state update functions to perform the

diffusion phase. This is important to prevent the secret key recovery attack for

a given initial state (session key). Diffusion phases should be secure at least

against the generic known attacks. For example, the diffusion phase should dif-

fuse the key-IV across the entire internal state to provide resistance to differential

attacks [20,85]. This may be achieved by increasing the number of iterations.

6.3.1 Number of Iterations and Security

A common belief in symmetric key cryptography is that if the number of

iterations during a nonlinear initialisation process is increased then the security

of the cipher is increased. This belief is based on the concept that performing

more mixing of the key-IV to prevent some attacks such as differential attacks.

However, if state convergence occurs during the initialisation process, then in-

creasing the number of iterations may decrease the number of obtainable initial

states and may actually decrease the security and leave the stream cipher vul-

nerable to attacks such as TMTO attacks. This is the case of the A5/1 stream

cipher as described in Section 3.2.
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Increasing the number of iterations decreases the efficiency of the initialisation

process. The qualitative curves in Figure 6.1 illustrate this concept of the impact

of the number of iterations on the effective state space size due to the existence

of state convergence, the complexity of attacks such as differential attacks and

the efficiency of the initialisation process.
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Figure 6.1: Qualitative effects of the state convergence

For each stream cipher, the optimal number of iterations during the initialisa-

tion process should be chosen carefully through extensive security analysis. It is

necessary to determine the lower bound for complexities of attacks (e.g. differen-

tial, fault and algebraic attacks) at each iteration to draw the attack’s complexity

curve. State convergence and efficiency curves should be identified as a function

of the number of iterations. Then these multidimensional curves should be drawn

to decide the required number of iterations as a trade-off between these security

and efficiency aspects.

If slid pairs and shifted keystreams occur during the initialisation process,

then this may reduce the effective number of iterations during the diffusion phase

and leave the stream cipher vulnerable to attack. For example, we illustrated

slid pairs and shifted keystream in both A5/1 (in Section 3.3) and Sfinks (in

Section 4.3) that may allow attackers to exploit this flaw to perform secret key

recovery attacks.
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6.3.2 Properties of State Update Function and Flaws

Properties of the state update function in the diffusion phase may affect the

security of the initialisation process. These properties may introduce some secu-

rity flaws such as state convergence, slid pairs and weak key-IV as shown in Chap-

ters 3 to 5. This may reveal some information about the secret key given some

keystream obtained from a particular session key (initial state). This section

highlights the main points that have been identified in this research for the diffu-

sion phase operation. These properties are: autonomous and non-autonomous,

importance of one-to-one and the similarity in functions.

Autonomous Function

As discussed in Section 6.2.3, the components of stream ciphers can operate

interdependently or autonomously during the loading phase. Also they can op-

erate as well interdependently or autonomously during the diffusion phase based

on the state update function and the structure of the initialisation process.

During diffusion phase, there are two reasons for lack of autonomy in stream

ciphers: non-autonomous feedback and non-autonomous clocking mechanisms.

Either both or one of these two types of non-autonomous mechanisms may occur

in the diffusion phase of the initialisation process of some stream ciphers.

The non-autonomous feedback mechanism occurs during the diffusion phase

of the initialisation process of stream ciphers when an external value is used

as input to a component of the internal state. The external value may be a

value which is from another component of stream cipher (such as another shift

register, memory or output function). For example, for the Grain [58–60] stream

cipher, during the diffusion phase the output bit of the h (output) function is

fed back to both registers LFSR and NFSR and another external input into the

NFSR which is from the LFSR register. In another example, CSA-SC as shown

in Section 5.1 uses four output bits to feedback into register A, as well four bits

from four Boolean functions are used as input to register B.

The non-autonomous feedback mechanism may result in undesirable initial

state (session key) at the end of the diffusion phase. It may result in all zeros con-

tents for the register that uses a non-autonomous feedback function. Therefore,

this non-autonomous feedback mechanism may result in some key-IV combina-

tions which are referred to as weak key-IV. A weak key-IV may be exploited
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by an attacker to perform secret key recovery. For example, in Grain stream

cipher, Zhang and Wang [108] demonstrated some weak key-IV pairs that result

in zeros contents in one register (LFSR) for the session key. Therefore, during

the initialisation process, weak key-IV should be considered.

The non-autonomous clocking mechanism may occur during the diffusion

phase of the initialisation process of stream ciphers where the clocking mechanism

of a register depends of values from another component. For example, the A5/1

cipher as shown in Section 3.2 uses a majority clocking mechanism, where each

register is clocked based on the whether a specific bit agrees with the majority

value. This clocking mechanism may lead to a non one-to-one state update

function which is discussed in the following section.

One-To-One Functions

A one-to-one state update function is a function where each distinct state

maps to a distinct state after the update. That is, every state has a unique pre-

image. In contrast, if many-to-one state update functions are used, the cipher

may suffer from state convergence during the iteration of this function. State

convergence may leave stream ciphers vulnerable to the attacks discussed in

Section 2.7.1. Hence, state convergence from this point of view is an undesirable

property of the initialisation process. To avoid the problem of state convergence,

the state update function should be one-to-one. It is not only the individual

components but also the combination of these components which should be one-

to-one, as shown in Section 4.2. The disadvantage of the one-to-one function is

that state recovery leads to the key recovery.

The many-to-one state update function can be caused by different ways. It

can be caused by a non-autonomous clocking mechanism as illustrated in Sec-

tion 3.2 for A5/1 stream cipher. It can be caused by the interaction between the

components of the state update function which result in non one-to-one state

update function while the individual components are one-to-one. This problem

is discussed in Section 4.2 for the Sfinks stream cipher.

The one-to-one function during the initialisation and keystream generation

processes has a advantage to prevent state convergence. Conversely, it has a

draw back which is that state recovery may lead to key recovery. This is seen

clearly in the Trivium stream cipher.
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Similarity of Functions

The similarity of functions means that iterations of the state update functions

of both the initialisation and keystream generation processes have commonalities.

Similarity between the iterations of the state update function means that each

iteration is identical. This similarity may lead to slid pairs after one or more of

iterations. The similarity between the state update functions of the initialisation

and keystream generation processes may lead to shifted keystream for given slid

pairs.

Slid pairs and shifted keystreams can be obtained due to the similarity as

mentioned above. This section discusses the effect of the diffusion phase on the

similarity that may result in slid pairs and shifted keystreams. There are three

conditions of similarity that are considered in Section 2.7.3 as follows:

a) similarity between iterations of the initialisation process.

b) similarity between iterations of the keystream generation process.

c) similarity between the state update functions for the initialisation and keystream

generation processes.

Most stream ciphers satisfy conditions (a) and (b), but there is a wide variety in

the extent to which condition (c) is satisfied.

As a result of similarity, the slid pairs can occur if a second loaded state is

obtained from the first loaded state after a number of iterations. Therefore, slid

pairs depends on both the loading and diffusion phases where the condition (a) is

satisfied. Shifted keystream may occur if all three of the previous conditions are

satisfied. So, shifted keystream for given slid pairs depends on the state update

functions of both the diffusion phase and the keystream generation process. For

example, the A5/1 stream cipher, as shown in Section 3.3, satisfies all the three

conditions of similarity, so slid pairs and shifted keystream may occur after each

clock and each slid pair produce a shifted keystream. Other examples include

Sfinks (discussed in Section 4.3), CSA-SC (discussed in Section 5.3), Grain [10,

11,45,73,76,108], MICKEY [61] and Trivium [86] stream ciphers that satisfy the

conditions (a) and (b). The third condition (c) is satisfied with some constraints

for these stream ciphers. However, if the three conditions are satisfied for any

cipher then this cipher may be vulnerable to slid pairs attacks.
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6.4 Recommendations

It is an important that the initialisation process is secure and efficient for

stream ciphers. A well-designed initialisation process should reduce the effect

of security flaws and prevent attacks. Based on the ciphers examined in this

thesis (Chapters 3, 4 and 5) and on previous analyses (Chapter 2), we present

here some recommendations for the design of the initialisation process. These

recommendations are for both the loading and diffusion phases as follows:

1- State, key and IV sizes. State size should be larger than 2.5 times the

key size. Golić [54] reported that the internal size should be larger than the

key size to prevent TMTO, and Babbage [9], and Biryukov and Shamir [23]

stated that the state size should be twice the key size to prevent TMTO.

After that Hong and Sarkar [66,67] in their revised TMTO attacks, reported

that the IV size should be at least equal to the key size. Later on, Dunkelman

and Keller [46] shown that the IV size should be at least 1.5 times the key

size to prevent TMTO attacks.

Based on the consideration in the 2nd recommendation (the next point),

the total state size should be larger than the combined key and IV sizes to

include a large padding pattern. So, the large padding pattern will reduce

the probability of slid pairs to an acceptable level. To sum up the scattered

recommendations in the literature, the state size should be more than 2.5

times the key size.

2- Padding pattern. The padding pattern should not be identical or cyclic.

Identical means that the padding is all-zeros or all-ones, and cyclic means

that the padding consists of repeated specific pattern. It is important to avoid

these patterns in order to ensure that the same pattern can not be reproduced

with fewer clocking steps than the maximum length of the padding pattern.

This condition will then defer the occurrence of slid pairs to the maximum

possible shift. In most cases, this will thereby reduce the chance of finding

slid pairs and also reduce the probability of obtaining shifted keystreams.

3- One-to-one functions. The state update function should be one-to-one.

Both the individual components and the combination of these components

should be one-to-one. This is required to prevent the occurrence of state
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convergence. Conversely, this leads to another problem: inversion can be

used in the case of state recovery to effect key recovery.

4- Similarity of functions. The similarity of the state update functions within

and between the initialisation and keystream generation processes should be re-

duced. If this similarity is reduced then the occurrence of the slid pairs and

shifted keystream will be reduced also. This reduction of the degree of sim-

ilarity should be considered along with consideration for efficiency. It may

affect efficiency negatively. De Cannière et al [42] recommended involving a

counter in each step of the iterations. A degree of difference between the state

update functions of the initialisation and keystream generation processes is

recommended for stream ciphers. This recommendation is based on the ac-

cepted probability of the occurrence of slid pairs and shifted keystreams, and

also on efficiency. If the initialisation state update function differs from that

of the keystream generation process, then this may prevent shifted keystream

and key recovery for a given state recovery but it may affect negatively the

efficiency of the cipher. Therefore, the trade-off between these aspects is

important.

5- Non-autonomous feedback functions. The use of non-autonomous feed-

back functions should be avoided or add another mechanism to prevent weak

state. This consideration should prevent weak key-IV combination during

the loading or diffusion phases. Weak session keys may leave the cipher

vulnerable to attacks.

6- Diffusion process. The diffusion process should ensure that the key and IV

bits are both diffused and distributed across the entire the state in a non-linear

way. An appropriate diffusion process provides resistance against specific

attacks which depend on the diffusion process, such as differential and fault

attacks.

7- Number of iterations. Number of iterations, during the diffusion phase,

should be in the optimal range. Increasing the number of iterations may in-

crease the resistance to some attacks such as differential attacks but may

leave the cipher vulnerable for another potential attack such as TMTO at-

tacks (e.g. if state convergence is present). Increasing the number of iter-

ations also decreases the efficiency of the cipher. Therefore, the number of
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iterations during the initialisation process should be based on extensive secu-

rity analysis and the accepted efficiency. This process is a trade-off between

the security aspects and efficiency.

8- Integration between these features. A trade-off between the previous

features and properties must be considered. The study of these features and

properties may have a degree of conflict (advantages and disadvantages).

Therefore, the trade-off between these features and properties should be con-

sidered by the designers of initialisation process.

6.5 Summary

Stream cipher proposals usually include both design specifications and an analy-

sis section outlining resistance against generic attacks. The focus of the security

analysis is generally on the keystream generation function. Less attention is

paid to the analysis of the initialisation process, though it is considered in some

proposals. We recommend that stream cipher designers consider carefully the

initialisation process, and perform sufficient analysis to ensure that both the

loading and diffusion phases of this process are secure against at least the known

attacks and prevent the known flaws discussed above.

Based on discussion above, we have provide a series of recommendations on

the following aspects of stream cipher initialisation processes:

• State, key and IV sizes. State size should be larger than 2.5 times the

key size.

• Padding pattern. The padding pattern should not be identical or cyclic.

• One-to-one functions.The state update function should be one-to-one.

• Similarity of functions. The similarity of the state update functions

within and between the initialisation and keystream generation processes

should be reduced.

• Non-autonomous feedback functions. The use of non-autonomous

feedback functions should be avoided or add another mechanism to prevent

weak state.



6.5. Summary 187

• Diffusion process. The diffusion process should ensure that the key and

IV bits are both diffused and distributed across the entire the state in a

non-linear way.

• Number of iterations during diffusion process. Number of iterations,

during the diffusion phase, should be in the optimal range.

• Integration between these properties and features. A trade-off be-

tween the previous features and properties must be considered.
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Chapter 7

Conclusion and Future Work

A well-designed initialisation process (comprising both loading and diffusion

phases) should not reveal any information about the secret key, or possess proper-

ties that may help to facilitate attacks. The initialisation process should ensure

that performing a key recovery attack is hard even if state recovery has oc-

curred, because the mathematical relationships between the key-IV pair and the

keystream are hard to establish. For real-time applications, efficient initialisation

processes are required particularly since the initialisation process or rekeying is

performed frequently. Thus, the initialisation process is significant with respect

to both the security and efficiency of stream ciphers.

As expressed in Section 1.2, the main aim and objective of this research

project was to examine the initialisation processes of shift-register based stream

ciphers and identify features which might reduce the security of ciphers. This

examination was performed by investigating the features and properties of the

initialisation processes of three specific stream ciphers: A5/1, Sfinks and CSA-

SC. From this perspective, specific features and properties of the loading and

diffusion phases (the phases of the initialisation process) of these ciphers were

investigated. The final aim of the research project was to use both the literature

review and the results of the investigations outlined in this thesis to propose

design criteria and recommendations for improved initialisation processes for

shift-register based stream ciphers.

This research was conducted using both theoretical analysis and computer

simulations. The theoretical analysis is based on the mathematical and statistical

189
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analysis of the initialisation processes of these three ciphers. The computer

simulation is performed using C codes and the MAGMA software package. It is

used to implement and examine the flaws in the initialisation processes and also

to work with relevant systems of equations.

This chapter is organised as follows: Section 7.1 reviews the contributions of

this thesis. Section 7.2 explores some directions for future work in the security

and efficiency of the initialisation process of stream ciphers.

7.1 Review of Contributions

This section summarises the contributions to knowledge regarding the initial-

isation process of stream ciphers presented in this thesis. We have examined

the initialisation process of three stream ciphers: A5/1, Sfinks and the Com-

mon Scrambling Algorithm Stream Cipher (CSA-SC). These three ciphers are

all based on shift registers, and each cipher has its own specific features and

properties. From this analysis and existing public literature, design criteria and

recommendations of the initialisation processes of stream ciphers are provided.

7.1.1 Analysis of the Initialisation Process of A5/1

This contribution focused on the analysis of the initialisation process of a well-

known stream cipher, A5/1 [30], which is used to provide confidentiality for GSM

mobile phone communications. We have identified two new security flaws in this

initialisation process: slid pairs and weak key-IVs, and further quantified the

extent of a third flaw, namely state convergence,.

State Convergence in the A5/1 Stream Cipher

We extended Golić’s work [54,55] for a further 5 iterations and gave an extrapo-

lation of the number of distinct internal states after 100 iterations (at the end of

the initialisation process). We show that the total number of distinct states after

six iterations was reduced to approximately half of the total number of internal

states, and estimate the number of the distinct states at the end of initialisation

process to be approximately 5%, which is equivalent to a reduction in the key

size by 4.3 bits.
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Slid Pairs in the A5/1 Stream Cipher

In this cipher, the same state update function is used for both the initialisation

and keystream generation processes. We showed that slid pairs may occur after

each clocking step of the initialisation process and that each slid pair generates

shifted keystream. In this work, we considered slid pairs after 1 and 2 clocking

steps and showed that there are around 245 and 245.49 slid pairs after 1 and 2

clocking steps respectively. Moreover, we presented a ciphertext-only attack for

the A5/1 stream cipher based on the slid pairs attacks that can recover the secret

key.

Weak Key-IV pairs in the A5/1 Stream Cipher

This work focused on the non-autonomous feedback mechanism during the load-

ing phase, where the secret key and IV bits are loaded sequentially using the

state update function. The impact of the non-autonomous feedback mechanism

on the content of the registers results in the possibility that one, two or three

registers containing all-zeros. In the case where two or three registers contain

all-zeros, the output keystream will be all-zeros or all-ones. We demonstrated a

ciphertext-only attack on A5/1 in these cases.

7.1.2 Analysis of the Initialisation Process of Sfinks

This contribution analysed the initialisation process of the Sfinks stream ci-

pher [29] submitted to the eSTREAM project [50] in PROFILE 2A. To our

knowledge, analysis of the initialisation process of Sfinks has not appeared in the

public literature. We have identified two security flaws in the Sfinks initialisation

process: state convergence and slid pairs.

State Convergence in the Sfinks Stream Cipher

We showed that state convergence can occur even if the individual components

of the state update function are one-to-one. The combination of the individual

components should also be one-to-one to prevent the state convergence. However,

this is not the case for the Sfinks stream cipher. We have demonstrated a state

space reduction of Sfinks at the end of the initialisation process. Although the

impact of this convergence on the security of Sfinks is minor, it can be avoided
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entirely by more careful design of the tap positions (so that the distance between

any input and output of the S-box does not match the number of the delay steps).

Slid pairs in the Sfinks Stream Cipher

This work demonstrated the effect of the properties of the padding pattern and

the state update functions of both the initialisation and keystream generation

processes on the slid pairs attacks. The specification of padding pattern and the

state update function of the initialisation process defer the occurrences of slid

pairs in Sfinks to occur only after 17 iterations. For a given slid pair, shifted

keystream may be obtained with a probability that is based on the similarity of

these two state update functions.

This work also demonstrated the effect of the padding pattern on the slid

pairs. We have examined two modified versions of the padding pattern of Sfinks.

If the padding pattern is identical, which is all zeros (just change the content of

one bit, s95), then slid pairs may occur after any clocking step. This means slid

pairs may occur after the 1st clocking step instead of the 17th and also with less

constraints and higher probability. Conversely, if the content of the stage s40 in

the padding format is changed to one, then the occurrence of slid pair will be

deferred to 24 iterations and the relevant constraints on the state contents will

also be more complicated.

7.1.3 Analysis of the Initialisation Process of CSA-SC

This research concentrated on the analysis of the initialisation process of a well-

known stream cipher for the digital TV: CSA-SC [104]. Based on the public

literature, there is no existing analysis of the initialisation process of CSA-SC.

So, this is the first analysis of the initialisation process of the CSA-SC. The

CSA-SC is word based in its operation (using 4-bit words). The IV bits are

loaded during the diffusion phase. We have identified two security flaws in this

initialisation process: state convergence and slid pairs.

State Convergence in the CSA-SC

We have demonstrated that the state update function during the initialisation

process is not one-to-one, although the keystream generation process is one-to-

one. So state convergence occurs only during the initialisation process. This is
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due to the non-autonomous feedback mechanism during the initialisation process,

where the output bits from the output function are fed back into one of the

registers. The state convergence may occur from the 3rd clocking step until the

end of the diffusion phase, as the padding pattern prevents the state convergence

for the 1st and 2nd clocking steps.

Slid Pairs in the CSA-SC

We have demonstrated the existence of slid pairs and shifted keystream in the

CSA-SC. In this cipher, slid pairs may occur after the first clocking step. The

word based operation affects the complexity of obtaining the slid pairs and shifted

keystream. We have demonstrated that the highest probability of slid pairs

occurs when the shifted steps are four (due to the matching of the number of

insertion of IV words which is four times).

7.1.4 Criteria for the Initialisation Process of Stream Ci-

phers

An in-depth analysis of the features and properties of the loading and diffusion

phases of the initialisation processes of shift-register based stream ciphers was

presented. This analysis was based on the previous analysis in the literature

as shown in Chapter 2 and our work in Chapters 3, 4 and 5. Based on this

analysis, we also presented eight recommendations for the initialisation process

that should minimise the occurrence of the flaws identified in this analysis and

reduce the severity of their effects. These recommendations cover topics such as

the size of the cipher’s state space, the format of the loaded state and desirable

properties of the state update functions used during the initialisation process.

These recommendations should enhance the ability of future designers to design

stream ciphers that are both secure and efficient.

7.2 Future Work

The initialisation process of stream ciphers has not been analysed thoroughly in

the literature. Many stream cipher proposals seem to use an ad-hoc approach to

the initialisation process and less attention has been paid to the security analysis

of the initialisation process than to the keystream generation process. However,
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the security and efficiency of the initialisation process are important aspects,

with potentially serious impact. This research area needs more attention. An

outline of possible future research work is given in this section.

The case when one register of A5/1 contains all-zeros could be exploited in

an attack if it can be distinguished efficiently. As presented in Section 3.4.3 the

standard statistical tests applied to A5/1 were not able to distinguish between

the case where a single register contains all-zeros and the case where no register

contain all-zeros. Further analysis into this may find a possible distinguisher

where a weak key-IV combination of this sort is used.

The flaw of weak Key-IV pairs in Sfinks cipher needs further investigation.

At the end of the initialisation process of Sfinks may or may not end with zero

state (including the memory pipeline) as discussed in Section 4.4. As we argue,

it may occur with negligible probability and complicated conditions. Further

investigation is required to clarify the occurrence of weak Key-IV.

The analysis of the state convergence of the CSA-SC when qt−1 = 1 is left for

future work. It is a potential research point to perform theoretical analysis to

find out the proportion of state convergence when qt−1 = 1. It is recommended to

perform theoretical analysis and computer simulation using a number of random

key-IV combinations to find out the number of distinct initial states (session

keys). This will be the total number of distinct states for the random key-IVs

(for both qt−1 = 0 and 1).

For a state update function, we have recommended this function to be one-

to-one to avoid state convergence. Moreover, this function should be nonlinear

to increase the complexity of inverting. This difficult to invert property ensures

that the performing of the key recovery attack is hard even the if state recovery

has occurred. Now, the open problem is to construct a one-to-one function which

is difficult to invert and which can be used for the state update process during

the diffusion phase of stream ciphers.

The initialisation processes of stream ciphers requires more analysis. This

investigation may add more knowledge for types of flaw identified in this thesis or

identify other flaws and their causes that have not yet been addressed. Therefore,

we recommend further investigation into the initialisation processes of the stream

ciphers that are presented in Table 6.1.

Security and efficiency are not always independent properties. Therefore, the

analysis of the initialisation process should be considered in terms of security
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and efficiency (trade-off between them). We recommend to consider the analysis

of the efficiency in the loading and diffusion phases.

The security of the diffusion phase depends on the state update function

and the number of iterations performed before the keystream generation begins.

Increasing the number of iterations may prevent some generic attacks such as

differential attacks. From this research, we have demonstrated that increasing

the number of iterations may reduce the state space if state convergence exists,

which may leave the cipher vulnerable to TMTO attacks. Increasing the number

of iterations also reduces the efficiency of the initialisation process. The optimal

number of iterations in the diffusion phase for each cipher is another recom-

mended area for further research. From this point of view, development of a tool

to help estimate the optimal number of iterations performed during the diffusion

phase would be a worthwhile goal.

Studying the impact of flaws such as state convergence and the existence of

slid pairs on other generic attacks is another significant area related to the anal-

ysis of initialisation processes. Theses flaws may facilitate some generic attacks;

for example state convergence may reduce the complexity of TMTO attacks. On

the other hand, some properties may reduce the occurrence or the impact of

some flaws in the same time these properties may leave the cipher vulnerable for

other attacks.

The flaws that have been studied in this thesis are: state convergence, slid

pairs and weak key-IV combinations. It is important to investigate their impact

if they occur in the same cipher at the same operation (for example, for the same

conversation of the GSM system). For example state convergence and slid pair

may occur in the same cipher during the initialisation process. This may cause a

further reduction of the attack complexity of the cipher and may leave the cipher

vulnerable to other attacks.

This research investigated flaws during the initialisation processes of the shift-

register based stream ciphers. Other ciphers that are not based on shift-register

(e.g. RC4 stream cipher) need investigation to identify flaws that may occur

during the initialisation processes.
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Appendix A

A5/1 Algebraic Representation

A.1 The Key and IV Relationship for Slid Pairs

The key-IV combinations of the first and second states are described for the

operation cases of A5/1 stream cipher as shown in Section 3.3 as follows:

Clocking A, B and C registers (case 1)

This case assumes that the contents of the three stages s8a, s
10
b and s10c are the same

(s8a = s10b = s10c ). This assumption is included in the key dependent calculation

that is presented later.

The secret key for both pairs are the same (according to our assumption).

The relationship between the first IV, v, and the second IV, v′ is computed and

shown as follows.

Note: c0, c1 . . . c21 are secret key dependent constants (each ci is obtained by

XORing some of key bits). They can be calculated easily using the Gaussian

elimination of the system of equations.

197
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δ0 = c0 ⊕ v1
δ1 = c1 ⊕ v0 ⊕ v1 ⊕ v2
δ2 = c2 ⊕ v2 ⊕ v3
δ3 = c3 ⊕ v3 ⊕ v4
δ4 = c4 ⊕ v4 ⊕ v5
δ5 = c5 ⊕ v5 ⊕ v6
δ6 = c6 ⊕ v6 ⊕ v7
δ7 = c7 ⊕ v7 ⊕ v8
δ8 = c8 ⊕ v8 ⊕ v9
δ9 = c9 ⊕ v9 ⊕ v10
δ10 = c10 ⊕ v10 ⊕ v11
δ11 = c11 ⊕ v11 ⊕ v12
δ12 = c12 ⊕ v12 ⊕ v13
δ13 = c13 ⊕ v0 ⊕ v13 ⊕ v14
δ14 = c14 ⊕ v0 ⊕ v14 ⊕ v15
δ15 = c15 ⊕ v0 ⊕ v15 ⊕ v16
δ16 = c16 ⊕ v0 ⊕ v16 ⊕ v17
δ17 = c17 ⊕ v17 ⊕ v18
δ18 = c18 ⊕ v0 ⊕ v18 ⊕ v19
δ19 = c19 ⊕ v19 ⊕ v20
δ20 = c20 ⊕ v0 ⊕ v20 ⊕ v21
δ21 = c21 ⊕ v21

From the Gaussian elimination of the remaining system equations of the

matrix representation, there are 20 free key bits which are free to be chosen.

These bits are {k42, k44, k45, k47, k48, k49, k50, k51, k52, k53, k54, k55, k56, k57, k58,
k59, k60, k61, k62, k63}. Therefore, 44 bits are dependent on the 20 key bits and 4

IV bits, {v0, v3, v11, v13, }. Therefore, there is a slid pair shifted by one bit for the

same key and two different IV’s with probability of 2−44.The following equations

show how to form the 44 key bits from other 20 key bits and 4 IV bits.
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k0 =k44 ⊕ k45 ⊕ k47 ⊕ k50 ⊕ k51 ⊕ k54 ⊕ k57 ⊕ k62 ⊕ v11 ⊕ v13
k1 =k42 ⊕ k45 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v0
k2 =k44 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62⊕

k63 ⊕ v0 ⊕ v3 ⊕ v11 ⊕ v13
k3 =k42 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k56 ⊕ k59 ⊕ k62 ⊕ k63 ⊕ v11 ⊕ v13
k4 =k42 ⊕ k47 ⊕ k48 ⊕ k53 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v3
k5 =k45 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k57 ⊕ k59 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v3 ⊕ v11 ⊕ v13
k6 =k42 ⊕ k45 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k62 ⊕ v11 ⊕ v13
k7 =k42 ⊕ k44 ⊕ k45 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ v0 ⊕ v3 ⊕ v11 ⊕ v13
k8 =k42 ⊕ k49 ⊕ k50 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v3⊕

v11 ⊕ v13
k9 =k42 ⊕ k44 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ v0 ⊕ v3
k10 =k44 ⊕ k45 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k55 ⊕ k57 ⊕ k63 ⊕ v3
k11 =k49 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k57 ⊕ k58 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v11 ⊕ v13
k12 =k42 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0
k13 =k44 ⊕ k45 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k55 ⊕ k57 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v3 ⊕ v11 ⊕ v13
k14 =k42 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k62 ⊕ v11 ⊕ v13
k15 =k42 ⊕ k47 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k56 ⊕ k57 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v3
k16 =k45 ⊕ k47 ⊕ k50 ⊕ k51 ⊕ k54 ⊕ k61 ⊕ v3 ⊕ v11 ⊕ v13
k17 =k42 ⊕ k45 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k55 ⊕ k57 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v11 ⊕ v13
k18 =k42 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k56 ⊕ k61 ⊕ v3
k19 =k45 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k52 ⊕ k54 ⊕ k58 ⊕ v0 ⊕ v3 ⊕ v11 ⊕ v13
k20 =k42 ⊕ k45 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k59 ⊕ k60 ⊕ v0 ⊕ v11 ⊕ v13
k21 =k42 ⊕ k44 ⊕ k45 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k58 ⊕ k61 ⊕ v3 ⊕ v11 ⊕ v13
k22 =k42 ⊕ k44 ⊕ k45 ⊕ k49 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ k62 ⊕ v3
k23 =k44 ⊕ k45 ⊕ k47 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v3
k24 =k49 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k57 ⊕ k59 ⊕ k63 ⊕ v11 ⊕ v13
k25 =k42 ⊕ k47 ⊕ k50 ⊕ k51 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v0
k26 =k44 ⊕ k45 ⊕ k48 ⊕ k52 ⊕ k53 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k61 ⊕ k63 ⊕ v3 ⊕ v11 ⊕ v13
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k27 =k42 ⊕ k44 ⊕ k45 ⊕ k48 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k63 ⊕ v0
k28 =k45 ⊕ k48 ⊕ k49 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v3
k29 =k45 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k57 ⊕ k58 ⊕ k62 ⊕ v11 ⊕ v13
k30 =k42 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ k63 ⊕ v0
k31 =k44 ⊕ k45 ⊕ k51 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k61 ⊕ v3 ⊕ v11 ⊕ v13
k32 =k42 ⊕ k44 ⊕ k45 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k61 ⊕ k63
k33 =k45 ⊕ k47 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v3
k34 =k44 ⊕ k47 ⊕ k49 ⊕ k55 ⊕ k58 ⊕ k62 ⊕ k63
k35 =k45 ⊕ k48 ⊕ k50 ⊕ k56 ⊕ k59 ⊕ k63 ⊕ v0
k36 =k44 ⊕ k45 ⊕ k47 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ v0⊕

v11 ⊕ v13
k37 =k42 ⊕ k44 ⊕ k48 ⊕ k49 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v11 ⊕ v13
k38 =k42 ⊕ k44 ⊕ k48 ⊕ k50 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k62 ⊕ v0 ⊕ v3 ⊕ v11 ⊕ v13
k39 =k42 ⊕ k44 ⊕ k45 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v3
k40 =k44 ⊕ k45 ⊕ k47 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v3
k41 =k47 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v11 ⊕ v13
k43 =k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v3
k46 =k47 ⊕ k48 ⊕ k50 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v0

Clocking A and B registers (case 2)

This case assumes that the contents of the two stages s8a and s10b are the same

but differ from s10c , (s8a = s10b 6= s10c ). This assumption is included in the key

dependent calculation that is presented later.

The secret key for both pairs are the same (according to our assumption).

The relationship between the first IV, v, and the second IV, v′ is computed and

shown as follows.

Note: c′0, c
′
1 . . . c

′
21 are secret key dependent constants (each c′i is obtained by

XORing some of key bits). They can be calculated using the Gaussian elimination

of the system of equations.
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δ0 =c′0 ⊕ v1
δ1 =c′1 ⊕ v0 ⊕ v1 ⊕ v2
δ2 =c′2 ⊕ v2 ⊕ v3
δ3 =c′3 ⊕ v3 ⊕ v4
δ4 =c′4 ⊕ v4 ⊕ v5
δ5 =c′5 ⊕ v5 ⊕ v6
δ6 =c′6 ⊕ v6 ⊕ v7
δ7 =c′7 ⊕ v7 ⊕ v8
δ8 =c′8 ⊕ v8 ⊕ v9
δ9 =c′9 ⊕ v9 ⊕ v10
δ10 =c′10 ⊕ v10 ⊕ v11
δ11 =c′11 ⊕ v11 ⊕ v12
δ12 =c′12 ⊕ v12 ⊕ v13
δ13 =c′13 ⊕ v0 ⊕ v13 ⊕ v14
δ14 =c′14 ⊕ v0 ⊕ v14 ⊕ v15
δ15 =c′15 ⊕ v0 ⊕ v15 ⊕ v16
δ16 =c′16 ⊕ v0 ⊕ v16 ⊕ v17
δ17 =c′17 ⊕ v17 ⊕ v18
δ18 =c′18 ⊕ v0 ⊕ v18 ⊕ v19
δ19 =c′19 ⊕ v19 ⊕ v20
δ20 =c′20 ⊕ v0 ⊕ v20 ⊕ v21
δ21 =c′21 ⊕ v21

From the Gaussian elimination of the remaining system equations, there are

22 free key bits which are free to be chosen. These bits are {k42, k43, k44, k45, k47,
k48, k49, k50, k51, k52, k53, k54, k55, k56, k57, k58, k59, k60, k61, k62, k63}. Therefore,

there are 42 key bits that are dependent on other 22 key bits and 22 IV bits.

So, there is a slid pair shifted by one bit for the same key and two different IV’s

with probability of 2−42.The following equations show how to form the 42 key

bits from other 22 key bits and 22 IV bits.



202 Appendix A. A5/1 Algebraic Representation

k0 =k42 ⊕ k44 ⊕ k45 ⊕ k51 ⊕ k53 ⊕ k55 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v4⊕

v6 ⊕ v7 ⊕ v9 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v21 ⊕ 1

k1 =k42 ⊕ k45 ⊕ k47 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k63⊕

v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v20 ⊕ v21
k2 =k43 ⊕ k46 ⊕ k48 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v0⊕

v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v20 ⊕ v21
k3 =k44 ⊕ k47 ⊕ k49 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v1⊕

v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v18 ⊕ v21
k4 =k45 ⊕ k48 ⊕ k50 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v2⊕

v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v19
k5 =k46 ⊕ k49 ⊕ k51 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v3⊕

v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v20
k6 =k47 ⊕ k50 ⊕ k52 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v4⊕

v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v20 ⊕ v21
k7 =k48 ⊕ k51 ⊕ k53 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v5⊕

v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v21
k8 =k49 ⊕ k52 ⊕ k54 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v8⊕

v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19
k9 =k50 ⊕ k53 ⊕ k55 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v9⊕

v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20
k10 =k51 ⊕ k54 ⊕ k56 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v10⊕

v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k11 =k52 ⊕ k55 ⊕ k57 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v11⊕

v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v19 ⊕ v20 ⊕ v21
k12 =k53 ⊕ k56 ⊕ k58 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v12⊕

v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v20 ⊕ v21
k13 =k54 ⊕ k57 ⊕ k59 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v13⊕

v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v21
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k14 =k42 ⊕ k44 ⊕ k45 ⊕ k51 ⊕ k53 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v10 ⊕ v12 ⊕ v17⊕

v18 ⊕ v21 ⊕ 1

k15 =k42 ⊕ k45 ⊕ k47 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60⊕

k63 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v12 ⊕ v13 ⊕ v17 ⊕ v18 ⊕ v20 ⊕ v21
k16 =k43 ⊕ k46 ⊕ k48 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61⊕

v0 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v18 ⊕ v19 ⊕ v21
k17 =k42 ⊕ k45 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v3⊕

v4 ⊕ v6 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v16 ⊕ v19 ⊕ v20 ⊕ v21 ⊕ 1

k18 =k44 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k55 ⊕ k56 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v2⊕

v5 ⊕ v6 ⊕ v7 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v21 ⊕ 1

k19 =k43 ⊕ k44 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v2 ⊕ v4⊕

v7 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v19 ⊕ 1

k20 =k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54⊕

k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v7⊕

v9 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v19 ⊕ v21
k21 =k42 ⊕ k43 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k62⊕

v0 ⊕ v1 ⊕ v3 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v15 ⊕ v18 ⊕ v20 ⊕ v21 ⊕ 1

k22 =k45 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63⊕

v0 ⊕ v1 ⊕ v3 ⊕ v6 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v20 ⊕ v21 ⊕ 1

k23 =k42 ⊕ k43 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k61 ⊕ v2 ⊕ v4 ⊕ v8⊕

v9 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20
k24 =k43 ⊕ k44 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ k62 ⊕ v3 ⊕ v5 ⊕ v9⊕

v10 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k25 =k44 ⊕ k45 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k60 ⊕ k63 ⊕ v4 ⊕ v6 ⊕ v10⊕

v11 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k26 =k45 ⊕ k46 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k61 ⊕ v0 ⊕ v5 ⊕ v7 ⊕ v11⊕

v12 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
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k27 =k46 ⊕ k47 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k62 ⊕ v1 ⊕ v6 ⊕ v8 ⊕ v12⊕

v13 ⊕ v14 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k28 =k47 ⊕ k48 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v2 ⊕ v7 ⊕ v9 ⊕ v13⊕

v14 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k29 =k48 ⊕ k49 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v3 ⊕ v8 ⊕ v10 ⊕ v14⊕

v15 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k30 =k49 ⊕ k50 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v1 ⊕ v4 ⊕ v9 ⊕ v11 ⊕ v15⊕

v16 ⊕ v17 ⊕ v19 ⊕ v20 ⊕ v21
k31 =k50 ⊕ k51 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v5 ⊕ v10 ⊕ v12 ⊕ v16⊕

v17 ⊕ v18 ⊕ v20 ⊕ v21
k32 =k51 ⊕ k52 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v3 ⊕ v6 ⊕ v11 ⊕ v13 ⊕ v17⊕

v18 ⊕ v19 ⊕ v21
k33 =k52 ⊕ k53 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v4 ⊕ v7 ⊕ v12 ⊕ v14 ⊕ v18⊕

v19 ⊕ v20
k34 =k53 ⊕ k54 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v5 ⊕ v8 ⊕ v13 ⊕ v15 ⊕ v19 ⊕ v20 ⊕ v21
k35 =k42 ⊕ k44 ⊕ k45 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v4 ⊕ v7⊕

v15 ⊕ v20 ⊕ 1

k36 =k44 ⊕ k47 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2⊕

v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v19 ⊕ v20 ⊕ v21 ⊕ 1

k37 =k42 ⊕ k43 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k51 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ v1 ⊕ v2 ⊕ v3⊕

v4 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19
k38 =k42 ⊕ k43 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k59 ⊕ v1⊕

v5 ⊕ v10 ⊕ v12 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21 ⊕ 1

k39 =k42 ⊕ k44 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k62⊕

k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v18
k40 =k43 ⊕ k45 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k63⊕

v0 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v18 ⊕ v19
k41 =k42 ⊕ k45 ⊕ k46 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0⊕

v6 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v11 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21 ⊕ 1
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Clocking A and C registers (case 3)

This case assumes that the contents of the two stages s8a and s10c are the same

but differ from s10b , (s8a = s10c 6= s10b ). This assumption is included in the key

dependent calculation that is presented later.

The secret key for both pairs are the same (according to our assumption).

The relationship between the first IV, v, and the second IV, v′ is computed, and

the relationship between the first IV, v, and the second IV, v′ is as follows.

Note: e0, e1 . . . e21 are secret key dependent constants (each ei is obtained by

XORing some of key bits). They can be calculated using the Gaussian elimination

of the system of equations.

δ0 =e0 ⊕ v0 ⊕ v1 ⊕ v19 ⊕ v21
δ1 =e1 ⊕ v0 ⊕ v2 ⊕ v19 ⊕ v20 ⊕ v21
δ2 =e2 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v19
δ3 =e3 ⊕ v3 ⊕ v4
δ4 =e4 ⊕ v4 ⊕ v5
δ5 =e5 ⊕ v5 ⊕ v6
δ6 =e6 ⊕ v6 ⊕ v7
δ7 =e7 ⊕ v7 ⊕ v8
δ8 =e8 ⊕ v8 ⊕ v9
δ9 =e9 ⊕ v9 ⊕ v10
δ10 =e10 ⊕ v10 ⊕ v11
δ11 =e11 ⊕ v11 ⊕ v12
δ12 =e12 ⊕ v12 ⊕ v13
δ13 =e13 ⊕ v0 ⊕ v13 ⊕ v14
δ14 =e14 ⊕ v14 ⊕ v15 ⊕ v19 ⊕ v21
δ15 =e15 ⊕ v0 ⊕ v1 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v20 ⊕ v21
δ16 =e16 ⊕ v1 ⊕ v16 ⊕ v17 ⊕ v19
δ17 =e17 ⊕ v0 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v21
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δ18 =e18 ⊕ v1 ⊕ v18 ⊕ v19 ⊕ v20
δ19 =e19 ⊕ 0

δ20 =e20 ⊕ 0

δ21 =e21 ⊕ v0 ⊕ v1 ⊕ v19 ⊕ v21

From the the Gaussian elimination of the remaining system equations, there

are 21 free key bits which are free to be chosen. These key bits are {k42, k44,
k45, k47, k48, k49, k50, k51, k52, k53, k54, k55, k56, k57, k58, k59, k60, k61, k62, k63}.
Therefore, 43 key bits are dependent on other 21 key bits and 22 IV bits. So,

there is a slid pair shifted by one bit for the same key and two different IVs with

probability of 2−43. The following system of equations show how to form the 43

key bits from other 21 key bits and 22 IV bits.

k0 =k42 ⊕ k44 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v4 ⊕ v5 ⊕ v7⊕

v12 ⊕ v14 ⊕ v17 ⊕ v19 ⊕ v20 ⊕ v21
k1 =k44 ⊕ k45 ⊕ k46 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k57 ⊕ k58 ⊕ v3 ⊕ v6 ⊕ v11 ⊕ v12 ⊕ v14⊕

v17 ⊕ v20 ⊕ v21 ⊕ 1

k2 =k44 ⊕ k46 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v9⊕

v14 ⊕ v16 ⊕ v19 ⊕ v21
k3 =k45 ⊕ k47 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k63 ⊕ v0 ⊕ v3 ⊕ v7 ⊕ v8 ⊕ v10⊕

v15 ⊕ v17 ⊕ v20
k4 =k46 ⊕ k48 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ v0 ⊕ v1 ⊕ v4 ⊕ v8 ⊕ v9 ⊕ v11⊕

v16 ⊕ v18 ⊕ v21
k5 =k47 ⊕ k49 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ v1 ⊕ v2 ⊕ v5 ⊕ v9 ⊕ v10 ⊕ v12⊕

v17 ⊕ v19
k6 =k48 ⊕ k50 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ v2 ⊕ v3 ⊕ v6 ⊕ v10 ⊕ v11 ⊕ v13⊕

v18 ⊕ v20
k7 =k49 ⊕ k51 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ v3 ⊕ v4 ⊕ v7 ⊕ v11 ⊕ v12 ⊕ v14⊕

v19 ⊕ v21
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k8 =k42 ⊕ k44 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60⊕

k62 ⊕ v0 ⊕ v7 ⊕ v8 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v19 ⊕ v21
k9 =k44 ⊕ k45 ⊕ k46 ⊕ k49 ⊕ k50 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v3 ⊕ v5 ⊕ v9

⊕ v11 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v20 ⊕ 1

k10 =k44 ⊕ k46 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0
⊕ v2 ⊕ v9 ⊕ v10 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v21

k11 =k45 ⊕ k47 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1
⊕ v3 ⊕ v10 ⊕ v11 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v20

k12 =k46 ⊕ k48 ⊕ k51 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v2
⊕ v4 ⊕ v11 ⊕ v12 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v21

k13 =k47 ⊕ k49 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v3
⊕ v5 ⊕ v12 ⊕ v13 ⊕ v18 ⊕ v19 ⊕ v20

k14 =k42 ⊕ k44 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k63 ⊕ v1 ⊕ v2
⊕ v5 ⊕ v6 ⊕ v7 ⊕ v12 ⊕ v13 ⊕ v17

k15 =k44 ⊕ k45 ⊕ k46 ⊕ k50 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1
⊕ v2 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v11 ⊕ v12 ⊕ v15 ⊕ v17 ⊕ 1

k16 =k44 ⊕ k46 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ v1 ⊕ v3 ⊕ v4
⊕ v7 ⊕ v8 ⊕ v9 ⊕ v14 ⊕ v15 ⊕ v19

k17 =k42 ⊕ k44 ⊕ k45 ⊕ k49 ⊕ k52 ⊕ k53 ⊕ k57 ⊕ k58 ⊕ k62 ⊕ v0 ⊕ v2 ⊕ v7 ⊕ v8 ⊕ v9
⊕ v10 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v21

k18 =k42 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62⊕

k63 ⊕ v0 ⊕ v4 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v21 ⊕ 1

k19 =k42 ⊕ k44 ⊕ k45 ⊕ k51 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v7
⊕ v9 ⊕ v10 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v21 ⊕ 1

k20 =k47 ⊕ k48 ⊕ k50 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v5 ⊕ v7 ⊕ v9
⊕ v10 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ 1

k21 =k42 ⊕ k45 ⊕ k48 ⊕ k49 ⊕ k55 ⊕ k56 ⊕ k60 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11
⊕ v13 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
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k22 =k44 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k62 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v5
⊕ v6 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21 ⊕ 1

k23 =k42 ⊕ k49 ⊕ k53 ⊕ k54 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v4 ⊕ v9 ⊕ v10 ⊕ v11
⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v19

k24 =k44 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k57 ⊕ k59 ⊕ k63 ⊕ v3 ⊕ v8 ⊕ v10 ⊕ v13
⊕ v16 ⊕ v18 ⊕ v20 ⊕ 1

k25 =k42 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v4
⊕ v5 ⊕ v6 ⊕ v7 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v20

k26 =k42 ⊕ k46 ⊕ k47 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k58 ⊕ k63 ⊕ v1 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v11 ⊕ v12
⊕ v13 ⊕ v14 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ 1

k27 =k42 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k60 ⊕ k63 ⊕ v1
⊕ v3 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17
⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21 ⊕ 1

k28 =k53 ⊕ k55 ⊕ k59 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v8 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v18
⊕ v20 ⊕ v21 ⊕ 1

k29 =k44 ⊕ k45 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k53 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1
⊕ v11 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v21

k30 =k45 ⊕ k46 ⊕ k48 ⊕ k50 ⊕ k51 ⊕ k54 ⊕ k56 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2
⊕ v12 ⊕ v15 ⊕ v17 ⊕ v19

k31 =k46 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k55 ⊕ k57 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v3
⊕ v13 ⊕ v16 ⊕ v18 ⊕ v20

k32 =k47 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k56 ⊕ k58 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v4
⊕ v14 ⊕ v17 ⊕ v19 ⊕ v21

k33 =k48 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k57 ⊕ k59 ⊕ k62 ⊕ k63 ⊕ v0
⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v15 ⊕ v18 ⊕ v20

k34 =k49 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6
⊕ v16 ⊕ v19 ⊕ v21

k35 =k42 ⊕ k44 ⊕ k47 ⊕ k49 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ k60 ⊕ v1 ⊕ v2 ⊕ v6 ⊕ v12⊕

v14 ⊕ v19 ⊕ v21
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k36 =k42 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k51 ⊕ k52 ⊕ k56 ⊕ k58 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1
⊕ v2 ⊕ v4 ⊕ v8 ⊕ v11 ⊕ v18 ⊕ v19 ⊕ v21 ⊕ 1

k37 =k42 ⊕ k44 ⊕ k45 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k54 ⊕ k56 ⊕ k60 ⊕ k62 ⊕ v0 ⊕ v5
⊕ v6 ⊕ v7 ⊕ v8 ⊕ v11 ⊕ v14 ⊕ v16 ⊕ v19 ⊕ v21 ⊕ 1

k38 =k42 ⊕ k44 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ k60 ⊕ k61
⊕ v0 ⊕ v2 ⊕ v3 ⊕ v11 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v21 ⊕ 1

k39 =k46 ⊕ k47 ⊕ k48 ⊕ k51 ⊕ k54 ⊕ k55 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v5 ⊕ v6
⊕ v8 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v15 ⊕ v18 ⊕ v19 ⊕ 1

k40 =k42 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k58 ⊕ k59 ⊕ k62 ⊕ v2 ⊕ v3 ⊕ v5
⊕ v10 ⊕ v12 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v21

k41 =k44 ⊕ k50 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v4
⊕ v5 ⊕ v6 ⊕ v8 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v20 ⊕ 1

k43 =k44 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k61 ⊕ k62 ⊕ v1
⊕ v3 ⊕ v5 ⊕ v8 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ 1

Clocking B and C registers (case 4)

This case assumes that the contents of the two stages s10b and s10c are the same

but differ from s8a, (s8a 6= s10b = s10c ). This assumption is included in the key

dependent calculation that is presented later.

The secret key for both pairs are the same (according to our assumption).

The relationship between the first IV, v, and the second IV, v′ is computed and

shown as follows: Note: e′0, e
′
1 . . . e

′
21 are secret key dependent constants (each

e′i is obtained by XORing some of key bits). They can be calculated using the

Gaussian elimination of the system of equations.
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δ0 =e′0 ⊕ v0 ⊕ v19 ⊕ v21
δ1 =e′1 ⊕ v1 ⊕ v19 ⊕ v20 ⊕ v21
δ2 =e′2 ⊕ v0 ⊕ v1 ⊕ v19
δ3 =e′3 ⊕ 0

δ4 =e′4 ⊕ 0

δ5 =e′5 ⊕ 0

δ6 =e′6 ⊕ 0

δ7 =e′7 ⊕ 0

δ8 =e′8 ⊕ 0

δ9 =e′9 ⊕ 0

δ10 =e′10 ⊕ 0

δ11 =e′11 ⊕ 0

δ12 =e′12 ⊕ 0

δ13 =e′13 ⊕ 0

δ14 =e′14 ⊕ v0 ⊕ v19 ⊕ v21
δ15 =e′15 ⊕ v1 ⊕ v19 ⊕ v20 ⊕ v21
δ16 =e′16 ⊕ v0 ⊕ v1 ⊕ v19
δ17 =e′17 ⊕ v0 ⊕ v19 ⊕ v21
δ18 =e′18 ⊕ v0 ⊕ v1 ⊕ v20
δ19 =e′19 ⊕ v19 ⊕ v20
δ20 =e′20 ⊕ v0 ⊕ v20 ⊕ v21
δ21 =e′21 ⊕ v0 ⊕ v1 ⊕ v19

From the Gaussian elimination of the remaining system equations, there are

20 free key bits which are free to be chosen. These key bits are {k44, k45, k47, k48,
k49, k50, k51, k52, k53, k54, k55, k56, k57, k58, k59, k60, k61, k62, k63}. Therefore, there

are 42 key bits are dependent on other 22 key bits and 22 IV bits. Therefore,

there is a slid pair shifted by one bit for the same key and two different IVs with

probability of 2−42. The following system of equations show how to form the 42

key bits from other 22 key bits and 22 IV bits.
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k0 =k44 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k60 ⊕ k61 ⊕ k62⊕

k63 ⊕ v4 ⊕ v5 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v18
k1 =k44 ⊕ k46 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k60 ⊕ v0 ⊕ v4 ⊕ v6⊕

v12 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v19
k2 =k44 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v4 ⊕ v7 ⊕ v12 ⊕ v13 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20
k3 =k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ v0 ⊕ v3 ⊕ v7 ⊕ v8⊕

v9 ⊕ v11 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ 1

k4 =k44 ⊕ k45 ⊕ k46 ⊕ k49 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v1 ⊕ v2⊕

v4 ⊕ v7 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ 1

k5 =k45 ⊕ k46 ⊕ k47 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k60 ⊕ k62 ⊕ v3 ⊕ v4 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v11⊕

v15 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ 1

k6 =k51 ⊕ k54 ⊕ k57 ⊕ k60 ⊕ k63 ⊕ v3 ⊕ v5 ⊕ v11 ⊕ v19 ⊕ v20
k7 =k44 ⊕ k45 ⊕ k46 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v6⊕

v7 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v16 ⊕ 1

k8 =k45 ⊕ k48 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v7 ⊕ v14⊕

v16 ⊕ v17 ⊕ v18 ⊕ v21
k9 =k44 ⊕ k45 ⊕ k49 ⊕ k53 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v0 ⊕ v3 ⊕ v4 ⊕ v7⊕

v8 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21 ⊕ 1

k10 =k45 ⊕ k46 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v7⊕

v11 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v21 ⊕ 1

k11 =k44 ⊕ k45 ⊕ k46 ⊕ k48 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k56 ⊕ k57 ⊕ k60 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v7⊕

v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ 1

k12 =k44 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k61 ⊕ k62 ⊕ k63⊕

v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v20 ⊕ v21
k13 =k44 ⊕ k47 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v6 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17⊕

v19 ⊕ v21
k14 =k45 ⊕ k46 ⊕ k47 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k56 ⊕ k57 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v4⊕

v5 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v21 ⊕ 1

k15 =k52 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v14 ⊕ v21
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k16 =k53 ⊕ k56 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v15
k17 =k44 ⊕ k45 ⊕ k46 ⊕ k52 ⊕ k53 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v6 ⊕ v8 ⊕ v9⊕

v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v20 ⊕ v21 ⊕ 1

k18 =k45 ⊕ k46 ⊕ k47 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63
⊕ v0 ⊕ v5 ⊕ v8 ⊕ v15 ⊕ v20 ⊕ v21 ⊕ 1

k19 =k56 ⊕ k59 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v18
k20 =k57 ⊕ k60 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v19
k21 =k44 ⊕ k45 ⊕ k46 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v4 ⊕ v5

⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v21 ⊕ 1

k22 =k45 ⊕ k46 ⊕ k47 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k60 ⊕ k62 ⊕ v1 ⊕ v2 ⊕ v4
⊕ v6 ⊕ v12 ⊕ v13 ⊕ v17 ⊕ v20 ⊕ 1

k23 =k44 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k61 ⊕ k62 ⊕ v2
⊕ v7 ⊕ v8 ⊕ v10 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v18

k24 =k45 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v2
⊕ v5 ⊕ v7 ⊕ v8 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21 ⊕ 1

k25 =k47 ⊕ k50 ⊕ k53 ⊕ k56 ⊕ k59 ⊕ k62 ⊕ k63 ⊕ v4 ⊕ v6 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v14⊕

v19 ⊕ v20
k26 =k48 ⊕ k51 ⊕ k54 ⊕ k57 ⊕ k60 ⊕ k63 ⊕ v0 ⊕ v5 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v15⊕

v20 ⊕ v21
k27 =k44 ⊕ k45 ⊕ k46 ⊕ k49 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1

⊕ v2 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v13 ⊕ v14 ⊕ v20 ⊕ 1

k28 =k45 ⊕ k46 ⊕ k47 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k60 ⊕ k62 ⊕ v1 ⊕ v3 ⊕ v11 ⊕ v12 ⊕ v13⊕

v20 ⊕ v21 ⊕ 1

k29 =k46 ⊕ k47 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k59 ⊕ k61 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v9
⊕ v10 ⊕ v11 ⊕ v15 ⊕ v20 ⊕ v21 ⊕ 1

k30 =k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v2
⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v20 ⊕ v21 ⊕ 1

k31 =k46 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k63 ⊕ v0 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7
⊕ v10 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v18
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k32 =k47 ⊕ k48 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k56 ⊕ k59 ⊕ v0 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8
⊕ v11 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v19

k33 =k44 ⊕ k45 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ v1 ⊕ v3
⊕ v4 ⊕ v6 ⊕ v8 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v19 ⊕ v21 ⊕ 1

k34 =k44 ⊕ k47 ⊕ k49 ⊕ k52 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v2 ⊕ v3 ⊕ v4
⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v16 ⊕ v18 ⊕ v20 ⊕ v21

k35 =k45 ⊕ k46 ⊕ k47 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k60 ⊕ k62 ⊕ v2 ⊕ v4 ⊕ v7 ⊕ v8 ⊕ v10
⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ 1

k36 =k44 ⊕ k45 ⊕ k46 ⊕ k51 ⊕ k53 ⊕ k55 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v3
⊕ v5 ⊕ v7 ⊕ v10 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v21 ⊕ 1

k37 =k45 ⊕ k46 ⊕ k47 ⊕ k50 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v2
⊕ v3 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ 1

k38 =k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k62 ⊕ v1 ⊕ v6 ⊕ v7 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14⊕

v17 ⊕ v19 ⊕ v21
k39 =k44 ⊕ k45 ⊕ k46 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v3

⊕ v4 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v21 ⊕ 1

k40 =k45 ⊕ k46 ⊕ k47 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v2 ⊕ v7
⊕ v8 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v20 ⊕ 1

k41 =k44 ⊕ k45 ⊕ k46 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k60 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v7
⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v21 ⊕ 1

k42 =k44 ⊕ k46 ⊕ k48 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ v3 ⊕ v4 ⊕ v7
⊕ v9 ⊕ v10 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v20 ⊕ 1

k43 =k44 ⊕ k46 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62
⊕ v3 ⊕ v4 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v17
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A.2 The Key and IV Relationship for Weak

Key-IV

The weak Key-IV combinations as described in Section 3.4 are expressed in the

three scenarios of the operation of A5/1 as follows.

First scenario: The relationship between key and IV bits

To freeze the three registers A, B and C, the conditions for the system of equa-

tions that are required to result in registers A, B and C containing all-zero values

can be described as follows:

k0 =v0 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v11 ⊕ v18
k1 =v1 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v12 ⊕ v19
k2 =v2 ⊕ v3 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v13 ⊕ v20
k3 =v3 ⊕ v4 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v14 ⊕ v21
k4 =v4 ⊕ v5 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v15
k5 =v5 ⊕ v6 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v16
k6 =v6 ⊕ v7 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v17
k7 =v7 ⊕ v8 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v18
k8 =v0 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v19
k9 =v1 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v10 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v19 ⊕ v20
k10 =v2 ⊕ v3 ⊕ v7 ⊕ v8 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v20 ⊕ v21
k11 =v3 ⊕ v4 ⊕ v8 ⊕ v9 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v21
k12 =v4 ⊕ v5 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v20
k13 =v5 ⊕ v6 ⊕ v10 ⊕ v11 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v21
k14 =v0 ⊕ v1 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v12 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20
k15 =v1 ⊕ v2 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v13 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k16 =v2 ⊕ v3 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v14 ⊕ v17 ⊕ v19 ⊕ v20 ⊕ v21
k17 =v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v10 ⊕ v15 ⊕ v20 ⊕ v21
k18 =v0 ⊕ v2 ⊕ v4 ⊕ v7 ⊕ v8 ⊕ v16 ⊕ v18 ⊕ v21
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k19 =v0 ⊕ v3 ⊕ v6 ⊕ v9 ⊕ v11 ⊕ v17 ⊕ v18 ⊕ v19
k20 =v1 ⊕ v4 ⊕ v7 ⊕ v10 ⊕ v12 ⊕ v18 ⊕ v19 ⊕ v20
k21 =v2 ⊕ v5 ⊕ v8 ⊕ v11 ⊕ v13 ⊕ v19 ⊕ v20 ⊕ v21
k22 =v0 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v18 ⊕ v20 ⊕ v21
k23 =v0 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v18 ⊕ v19 ⊕ v21
k24 =v1 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v19 ⊕ v20
k25 =v0 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v18⊕

v20 ⊕ v21
k26 =v0 ⊕ v2 ⊕ v3 ⊕ v9 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v21
k27 =v0 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v10 ⊕ v11 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v20
k28 =v1 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v21
k29 =v0 ⊕ v1 ⊕ v2 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v20
k30 =v0 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v20 ⊕ v21
k31 =v1 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v7 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v21
k32 =v2 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v19
k33 =v3 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v20
k34 =v4 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v21
k35 =v5 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v11 ⊕ v17 ⊕ v18 ⊕ v19
k36 =v6 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v18 ⊕ v19 ⊕ v20
k37 =v0 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k38 =v1 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v19 ⊕ v20 ⊕ v21
k39 =v2 ⊕ v3 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v20 ⊕ v21
k40 =v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v21
k41 =v0 ⊕ v2 ⊕ v4 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19
k42 =v1 ⊕ v3 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20
k43 =v0 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19⊕

v20 ⊕ v21
k44 =v0 ⊕ v2 ⊕ v3 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v20 ⊕ v21
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k45 =v0 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v21
k46 =v0 ⊕ v4 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v14 ⊕ v15
k47 =v1 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v15 ⊕ v16
k48 =v2 ⊕ v6 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v16 ⊕ v17
k49 =v0 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v17
k50 =v1 ⊕ v2 ⊕ v4 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v18
k51 =v2 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v19
k52 =v3 ⊕ v4 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v20
k53 =v4 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v17 ⊕ v21
k54 =v5 ⊕ v6 ⊕ v8 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v18
k55 =v6 ⊕ v7 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v19
k56 =v0 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v18⊕

v19 ⊕ v20
k57 =v1 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v19⊕

v20 ⊕ v21
k58 =v2 ⊕ v3 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v20⊕

v21

k59 =v3 ⊕ v4 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v20 ⊕ v21
k60 =v0 ⊕ v1 ⊕ v4 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v21
k61 =v0 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v20
k62 =v0 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v16 ⊕ v17 ⊕ v21
k63 =v0 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v10 ⊕ v17
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Second scenario: the relationship between key and IV bits

Case 1: to freeze two registers A and B, the required conditions to the system

of equations that result in these two registers A and B containing all-zero values

at the end of loading phase can be described as follows:

k0 =k41 ⊕ k44 ⊕ k46 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ v0⊕

v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v19 ⊕ v20
k1 =k42 ⊕ k45 ⊕ k47 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v1⊕

v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v20 ⊕ v21
k2 =k43 ⊕ k46 ⊕ k48 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v2⊕

v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v20 ⊕ v21
k3 =k44 ⊕ k47 ⊕ k49 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v3⊕

v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v18 ⊕ v21
k4 =k45 ⊕ k48 ⊕ k50 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v2 ⊕ v4⊕

v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v19
k5 =k46 ⊕ k49 ⊕ k51 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v5⊕

v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v20
k6 =k47 ⊕ k50 ⊕ k52 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v6⊕

v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v20 ⊕ v21
k7 =k48 ⊕ k51 ⊕ k53 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v7⊕

v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v21
k8 =k49 ⊕ k52 ⊕ k54 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v8⊕

v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19
k9 =k50 ⊕ k53 ⊕ k55 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v9⊕

v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20
k10 =k51 ⊕ k54 ⊕ k56 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v10⊕

v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k11 =k52 ⊕ k55 ⊕ k57 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v11⊕

v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v19 ⊕ v20 ⊕ v21
k12 =k53 ⊕ k56 ⊕ k58 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v12⊕

v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v20 ⊕ v21
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k13 =k54 ⊕ k57 ⊕ k59 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v14⊕

v15 ⊕ v16 ⊕ v17 ⊕ v21
k14 =k41 ⊕ k44 ⊕ k46 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59⊕

k62 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v11 ⊕ v12 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v20
k15 =k42 ⊕ k45 ⊕ k47 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60⊕

k63 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v12 ⊕ v13 ⊕ v17 ⊕ v18 ⊕ v20 ⊕ v21
k16 =k43 ⊕ k46 ⊕ k48 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ v0⊕

v8 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v18 ⊕ v19 ⊕ v21
k17 =k41 ⊕ k46 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k61 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v4⊕

v8 ⊕ v18
k18 =k41 ⊕ k42 ⊕ k44 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k54 ⊕ k57 ⊕ k60 ⊕ v0 ⊕ v2 ⊕ v5 ⊕ v8 ⊕ v10⊕

v11 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v20
k19 =k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53⊕

k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v2 ⊕ v4 ⊕ v6 ⊕ v8⊕

v10 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v20 ⊕ v21
k20 =k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54⊕

k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v9⊕

v11 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v19 ⊕ v21
k21 =k41 ⊕ k43 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k55 ⊕ k58 ⊕ k61 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v6 ⊕ v9⊕

v11 ⊕ v12 ⊕ v15 ⊕ v16 ⊕ v19
k22 =k41 ⊕ k42 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k57 ⊕ k60 ⊕ v1 ⊕ v3 ⊕ v7 ⊕ v8⊕

v9 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19
k23 =k42 ⊕ k43 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k61 ⊕ v2 ⊕ v4 ⊕ v8 ⊕ v9⊕

v10 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20
k24 =k43 ⊕ k44 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ k62 ⊕ v3 ⊕ v5 ⊕ v9 ⊕ v10⊕

v11 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k25 =k44 ⊕ k45 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k60 ⊕ k63 ⊕ v4 ⊕ v6 ⊕ v10 ⊕ v11⊕

v12 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
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k26 =k45 ⊕ k46 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k61 ⊕ v0 ⊕ v5 ⊕ v7 ⊕ v11 ⊕ v12⊕

v13 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k27 =k46 ⊕ k47 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k62 ⊕ v1 ⊕ v6 ⊕ v8 ⊕ v12 ⊕ v13⊕

v14 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k28 =k47 ⊕ k48 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v2 ⊕ v7 ⊕ v9 ⊕ v13 ⊕ v14⊕

v15 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k29 =k48 ⊕ k49 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v3 ⊕ v8 ⊕ v10 ⊕ v14 ⊕ v15⊕

v16 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k30 =k49 ⊕ k50 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v1 ⊕ v4 ⊕ v9 ⊕ v11 ⊕ v15 ⊕ v16⊕

v17 ⊕ v19 ⊕ v20 ⊕ v21
k31 =k50 ⊕ k51 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v5 ⊕ v10 ⊕ v12 ⊕ v16 ⊕ v17⊕

v18 ⊕ v20 ⊕ v21
k32 =k51 ⊕ k52 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v3 ⊕ v6 ⊕ v11 ⊕ v13 ⊕ v17 ⊕ v18⊕

v19 ⊕ v21
k33 =k52 ⊕ k53 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v4 ⊕ v7 ⊕ v12 ⊕ v14 ⊕ v18 ⊕ v19 ⊕ v20
k34 =k53 ⊕ k54 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v5 ⊕ v8 ⊕ v13 ⊕ v15 ⊕ v19 ⊕ v20 ⊕ v21
k35 =k41 ⊕ k44 ⊕ k46 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k61⊕

v4 ⊕ v6 ⊕ v8 ⊕ v10 ⊕ v11 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v21
k36 =k41 ⊕ k42 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k50 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v3⊕

v4 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18
k37 =k42 ⊕ k43 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k51 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v4⊕

v5 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19
k38 =k41 ⊕ k43 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k61⊕

k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v11 ⊕ v12 ⊕ v15 ⊕ v16 ⊕ v17
k39 =k42 ⊕ k44 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k62⊕

k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v18
k40 =k43 ⊕ k45 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k63⊕

v0 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v18 ⊕ v19
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Case 2: to freeze two registers A and C, the conditions for the system of

equations that are required to result in these two registers A and C containing

all-zero values after completing loading phase can be expressed as follows:

k0 =k42 ⊕ k44 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v4 ⊕ v5 ⊕ v7⊕

v12 ⊕ v14 ⊕ v17 ⊕ v19 ⊕ v20 ⊕ v21
k1 =k43 ⊕ k45 ⊕ k48 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k61 ⊕ k62 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v8⊕

v13 ⊕ v15 ⊕ v18 ⊕ v20 ⊕ v21
k2 =k44 ⊕ k46 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v9⊕

v14 ⊕ v16 ⊕ v19 ⊕ v21
k3 =k45 ⊕ k47 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k63 ⊕ v0 ⊕ v3 ⊕ v7 ⊕ v8 ⊕ v10⊕

v15 ⊕ v17 ⊕ v20
k4 =k46 ⊕ k48 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ v0 ⊕ v1 ⊕ v4 ⊕ v8 ⊕ v9 ⊕ v11⊕

v16 ⊕ v18 ⊕ v21
k5 =k47 ⊕ k49 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ v1 ⊕ v2 ⊕ v5 ⊕ v9 ⊕ v10 ⊕ v12⊕

v17 ⊕ v19
k6 =k48 ⊕ k50 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ v2 ⊕ v3 ⊕ v6 ⊕ v10 ⊕ v11 ⊕ v13⊕

v18 ⊕ v20
k7 =k49 ⊕ k51 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ v3 ⊕ v4 ⊕ v7 ⊕ v11 ⊕ v12 ⊕ v14⊕

v19 ⊕ v21
k8 =k42 ⊕ k44 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60⊕

k62 ⊕ v0 ⊕ v7 ⊕ v8 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v19 ⊕ v21
k9 =k43 ⊕ k45 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61⊕

k63 ⊕ v1 ⊕ v8 ⊕ v9 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v20
k10 =k44 ⊕ k46 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62⊕

v0 ⊕ v2 ⊕ v9 ⊕ v10 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v21
k11 =k45 ⊕ k47 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63⊕

v1 ⊕ v3 ⊕ v10 ⊕ v11 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v20
k12 =k46 ⊕ k48 ⊕ k51 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0⊕

v2 ⊕ v4 ⊕ v11 ⊕ v12 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v21
k13 =k47 ⊕ k49 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1⊕

v3 ⊕ v5 ⊕ v12 ⊕ v13 ⊕ v18 ⊕ v19 ⊕ v20
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k14 =k42 ⊕ k44 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k63 ⊕ v1⊕

v2 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v12 ⊕ v13 ⊕ v17
k15 =k43 ⊕ k45 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ v0 ⊕ v2 ⊕ v3⊕

v6 ⊕ v7 ⊕ v8 ⊕ v13 ⊕ v14 ⊕ v18
k16 =k44 ⊕ k46 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ v1 ⊕ v3 ⊕ v4⊕

v7 ⊕ v8 ⊕ v9 ⊕ v14 ⊕ v15 ⊕ v19
k17 =k42 ⊕ k44 ⊕ k45 ⊕ k49 ⊕ k52 ⊕ k53 ⊕ k57 ⊕ k58 ⊕ k62 ⊕ v0 ⊕ v2 ⊕ v7 ⊕ v8 ⊕ v9⊕

v10 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v21
k18 =k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63⊕

v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16⊕

v18 ⊕ v19 ⊕ v21
k19 =k42 ⊕ k43 ⊕ k45 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k59 ⊕ k62 ⊕ v1 ⊕ v2⊕

v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v21
k20 =k43 ⊕ k44 ⊕ k46 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k60 ⊕ k63 ⊕ v2 ⊕ v3⊕

v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v17
k21 =k42 ⊕ k45 ⊕ k48 ⊕ k49 ⊕ k55 ⊕ k56 ⊕ k60 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11⊕

v13 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k22 =k43 ⊕ k46 ⊕ k49 ⊕ k50 ⊕ k56 ⊕ k57 ⊕ k61 ⊕ v4 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12⊕

v14 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v20 ⊕ v21
k23 =k42 ⊕ k49 ⊕ k53 ⊕ k54 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v4 ⊕ v9 ⊕ v10 ⊕ v11⊕

v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v19
k24 =k43 ⊕ k50 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v5 ⊕ v10 ⊕ v11 ⊕ v12⊕

v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v20
k25 =k42 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v4⊕

v5 ⊕ v6 ⊕ v7 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v20
k26 =k42 ⊕ k43 ⊕ k44 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v3⊕

v4 ⊕ v6 ⊕ v8 ⊕ v15 ⊕ v16
k27 =k42 ⊕ k43 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k51 ⊕ k53 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63⊕

v9 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v19 ⊕ v20 ⊕ v21
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k28 =k43 ⊕ k44 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k52 ⊕ k54 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0⊕

v10 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v20 ⊕ v21
k29 =k44 ⊕ k45 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k53 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1⊕

v11 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v21
k30 =k45 ⊕ k46 ⊕ k48 ⊕ k50 ⊕ k51 ⊕ k54 ⊕ k56 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2⊕

v12 ⊕ v15 ⊕ v17 ⊕ v19
k31 =k46 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k55 ⊕ k57 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v3⊕

v13 ⊕ v16 ⊕ v18 ⊕ v20
k32 =k47 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k56 ⊕ k58 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v4⊕

v14 ⊕ v17 ⊕ v19 ⊕ v21
k33 =k48 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k57 ⊕ k59 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5⊕

v15 ⊕ v18 ⊕ v20
k34 =k49 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6⊕

v16 ⊕ v19 ⊕ v21
k35 =k42 ⊕ k44 ⊕ k47 ⊕ k49 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ k60 ⊕ v1 ⊕ v2 ⊕ v6 ⊕ v12 ⊕ v14⊕

v19 ⊕ v21
k36 =k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ v0⊕

v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v19 ⊕ v21
k37 =k42 ⊕ k43 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58⊕

k60 ⊕ k61 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v6 ⊕ v7 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v21
k38 =k42 ⊕ k43 ⊕ k46 ⊕ k48 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ v0⊕

v1 ⊕ v2 ⊕ v5 ⊕ v8 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v18 ⊕ v21
k39 =k43 ⊕ k44 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v1⊕

v2 ⊕ v3 ⊕ v6 ⊕ v9 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v19
k40 =k42 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k58 ⊕ k59 ⊕ k62 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v10⊕

v12 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v21
k41 =k43 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v11⊕

v13 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v20
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Case 3: to freeze two registersB and C, the system of equations that is required

to result in these two registers B and C containing all-zero values requires some

constraints as follow:
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k0 =k45 ⊕ k48 ⊕ k51 ⊕ k54 ⊕ k57 ⊕ k61 ⊕ k63 ⊕ v5 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v17 ⊕ v18
k1 =k46 ⊕ k49 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k62 ⊕ v0 ⊕ v6 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v19
k2 =k47 ⊕ k50 ⊕ k53 ⊕ k56 ⊕ k59 ⊕ k63 ⊕ v1 ⊕ v7 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v20
k3 =k48 ⊕ k51 ⊕ k54 ⊕ k57 ⊕ k60 ⊕ v0 ⊕ v2 ⊕ v8 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v20 ⊕ v21
k4 =k49 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k61 ⊕ v1 ⊕ v3 ⊕ v9 ⊕ v17 ⊕ v18 ⊕ v20 ⊕ v21
k5 =k50 ⊕ k53 ⊕ k56 ⊕ k59 ⊕ k62 ⊕ v2 ⊕ v4 ⊕ v10 ⊕ v18 ⊕ v19 ⊕ v21
k6 =k51 ⊕ k54 ⊕ k57 ⊕ k60 ⊕ k63 ⊕ v3 ⊕ v5 ⊕ v11 ⊕ v19 ⊕ v20
k7 =k52 ⊕ k55 ⊕ k58 ⊕ k61 ⊕ v0 ⊕ v4 ⊕ v6 ⊕ v12 ⊕ v20 ⊕ v21
k8 =k45 ⊕ k48 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v7 ⊕ v14⊕

v16 ⊕ v17 ⊕ v18 ⊕ v21
k9 =k46 ⊕ k49 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v2 ⊕ v8 ⊕ v15⊕

v17 ⊕ v18 ⊕ v19
k10 =k47 ⊕ k50 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v9 ⊕ v16⊕

v18 ⊕ v19 ⊕ v20
k11 =k48 ⊕ k51 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v10 ⊕ v17⊕

v19 ⊕ v20 ⊕ v21
k12 =k49 ⊕ k52 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v11 ⊕ v18⊕

v20 ⊕ v21
k13 =k50 ⊕ k53 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v12 ⊕ v19 ⊕ v21
k14 =k51 ⊕ k54 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v13 ⊕ v20
k15 =k52 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v14 ⊕ v21
k16 =k53 ⊕ k56 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v15
k17 =k54 ⊕ k57 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v16
k18 =k55 ⊕ k58 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v17
k19 =k56 ⊕ k59 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v18
k20 =k57 ⊕ k60 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v19
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k21 =k58 ⊕ k61 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v20
k22 =k59 ⊕ k62 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v21
k23 =k45 ⊕ k48 ⊕ k51 ⊕ k54 ⊕ k57 ⊕ k60 ⊕ k61 ⊕ v2 ⊕ v4 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v12 ⊕ v17 ⊕ v18
k24 =k46 ⊕ k49 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k61 ⊕ k62 ⊕ v3 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v18 ⊕ v19
k25 =k47 ⊕ k50 ⊕ k53 ⊕ k56 ⊕ k59 ⊕ k62 ⊕ k63 ⊕ v4 ⊕ v6 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v14 ⊕ v19 ⊕ v20
k26 =k48 ⊕ k51 ⊕ k54 ⊕ k57 ⊕ k60 ⊕ k63 ⊕ v0 ⊕ v5 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v20 ⊕ v21
k27 =k49 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k61 ⊕ v0 ⊕ v1 ⊕ v6 ⊕ v8 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v21
k28 =k50 ⊕ k53 ⊕ k56 ⊕ k59 ⊕ k62 ⊕ v1 ⊕ v2 ⊕ v7 ⊕ v9 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v17
k29 =k45 ⊕ k48 ⊕ k60 ⊕ k61 ⊕ v2 ⊕ v3 ⊕ v5 ⊕ v8 ⊕ v10 ⊕ v17
k30 =k45 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k54 ⊕ k57 ⊕ k62 ⊕ k63 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v9⊕

v11 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v17
k31 =k46 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k63 ⊕ v0 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v10⊕

v12 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v18
k32 =k47 ⊕ k48 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k56 ⊕ k59 ⊕ v0 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v11⊕

v13 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v19
k33 =k48 ⊕ k49 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k57 ⊕ k60 ⊕ v1 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v12⊕

v14 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v20
k34 =k49 ⊕ k50 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k58 ⊕ k61 ⊕ v2 ⊕ v3 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v13⊕

v15 ⊕ v17 ⊕ v18 ⊕ v20 ⊕ v21
k35 =k50 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k59 ⊕ k62 ⊕ v3 ⊕ v4 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v14⊕

v16 ⊕ v18 ⊕ v19 ⊕ v21
k36 =k51 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k60 ⊕ k63 ⊕ v4 ⊕ v5 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v15⊕

v17 ⊕ v19 ⊕ v20
k37 =k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k61 ⊕ v0 ⊕ v5 ⊕ v6 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v16⊕

v18 ⊕ v20 ⊕ v21
k38 =k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k62 ⊕ v1 ⊕ v6 ⊕ v7 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v17⊕

v19 ⊕ v21
k39 =k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k63 ⊕ v2 ⊕ v7 ⊕ v8 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v20
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k40 =k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ v0 ⊕ v3 ⊕ v8 ⊕ v9 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v21
k41 =k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ v1 ⊕ v4 ⊕ v9 ⊕ v10 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v20
k42 =k45 ⊕ k48 ⊕ k51 ⊕ k54 ⊕ k58 ⊕ k60 ⊕ v2 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v21
k43 =k46 ⊕ k49 ⊕ k52 ⊕ k55 ⊕ k59 ⊕ k61 ⊕ v3 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v16
k44 =k47 ⊕ k50 ⊕ k53 ⊕ k56 ⊕ k60 ⊕ k62 ⊕ v4 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17
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Third scenario: the relationship between key and IV bits

Case 4: to freeze register A, there are some constraints for the system of equa-

tions that are required to result in register A containing all-zero values at the

end of the loading phase as follows:

k0 =k19 ⊕ k20 ⊕ k22 ⊕ k23 ⊕ k24 ⊕ k25 ⊕ k28 ⊕ k33 ⊕ k34 ⊕ k36 ⊕ k37 ⊕ k39 ⊕ k40 ⊕ k42⊕

k44 ⊕ k46 ⊕ k47 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2⊕

v3 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v19
k1 =k20 ⊕ k21 ⊕ k23 ⊕ k24 ⊕ k25 ⊕ k26 ⊕ k29 ⊕ k34 ⊕ k35 ⊕ k37 ⊕ k38 ⊕ k40 ⊕ k41 ⊕ k43⊕

k45 ⊕ k47 ⊕ k48 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v4⊕

v5 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v20
k2 =k21 ⊕ k22 ⊕ k24 ⊕ k25 ⊕ k26 ⊕ k27 ⊕ k30 ⊕ k35 ⊕ k36 ⊕ k38 ⊕ k39 ⊕ k41 ⊕ k42 ⊕ k44⊕

k46 ⊕ k48 ⊕ k49 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5⊕

v6 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v21
k3 =k22 ⊕ k23 ⊕ k25 ⊕ k26 ⊕ k27 ⊕ k28 ⊕ k31 ⊕ k36 ⊕ k37 ⊕ k39 ⊕ k40 ⊕ k42 ⊕ k43 ⊕ k45⊕

k47 ⊕ k49 ⊕ k50 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6⊕

v7 ⊕ v8 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v16
k4 =k23 ⊕ k24 ⊕ k26 ⊕ k27 ⊕ k28 ⊕ k29 ⊕ k32 ⊕ k37 ⊕ k38 ⊕ k40 ⊕ k41 ⊕ k43 ⊕ k44 ⊕ k46⊕

k48 ⊕ k50 ⊕ k51 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7⊕

v8 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v17
k5 =k24 ⊕ k25 ⊕ k27 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k33 ⊕ k38 ⊕ k39 ⊕ k41 ⊕ k42 ⊕ k44 ⊕ k45 ⊕ k47⊕

k49 ⊕ k51 ⊕ k52 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8⊕

v9 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v18
k6 =k25 ⊕ k26 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k34 ⊕ k39 ⊕ k40 ⊕ k42 ⊕ k43 ⊕ k45 ⊕ k46 ⊕ k48⊕

k50 ⊕ k52 ⊕ k53 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9⊕

v10 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v19
k7 =k26 ⊕ k27 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k35 ⊕ k40 ⊕ k41 ⊕ k43 ⊕ k44 ⊕ k46 ⊕ k47 ⊕ k49⊕

k51 ⊕ k53 ⊕ k54 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10⊕

v11 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v20
k8 =k27 ⊕ k28 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k36 ⊕ k41 ⊕ k42 ⊕ k44 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k50⊕

k52 ⊕ k54 ⊕ k55 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11⊕

v12 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v20 ⊕ v21
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k9 =k28 ⊕ k29 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k37 ⊕ k42 ⊕ k43 ⊕ k45 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k51⊕

k53 ⊕ k55 ⊕ k56 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12⊕

v13 ⊕ v14 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v21
k10 =k29 ⊕ k30 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k38 ⊕ k43 ⊕ k44 ⊕ k46 ⊕ k47 ⊕ k49 ⊕ k50⊕

k52 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11⊕

v12 ⊕ v13 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v19 ⊕ v20
k11 =k30 ⊕ k31 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k39 ⊕ k44 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k50 ⊕ k51⊕

k53 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12⊕

v13 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v20 ⊕ v21
k12 =k31 ⊕ k32 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k40 ⊕ k45 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k52⊕

k54 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13⊕

v14 ⊕ v15 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v20 ⊕ v21
k13 =k32 ⊕ k33 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k41 ⊕ k46 ⊕ k47 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k53⊕

k55 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14⊕

v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v20 ⊕ v21
k14 =k19 ⊕ k20 ⊕ k22 ⊕ k23 ⊕ k24 ⊕ k25 ⊕ k28 ⊕ k38 ⊕ k40 ⊕ k44 ⊕ k46 ⊕ k48 ⊕ k50⊕

k52 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v4 ⊕ v5 ⊕ v10 ⊕ v14⊕

v15 ⊕ v16 ⊕ v17 ⊕ v18 ⊕ v21
k15 =k20 ⊕ k21 ⊕ k23 ⊕ k24 ⊕ k25 ⊕ k26 ⊕ k29 ⊕ k39 ⊕ k41 ⊕ k45 ⊕ k47 ⊕ k49 ⊕ k51⊕

k53 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v11 ⊕ v15⊕

v16 ⊕ v17 ⊕ v18 ⊕ v19
k16 =k21 ⊕ k22 ⊕ k24 ⊕ k25 ⊕ k26 ⊕ k27 ⊕ k30 ⊕ k40 ⊕ k42 ⊕ k46 ⊕ k48 ⊕ k50 ⊕ k52⊕

k54 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0 ⊕ v1 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v12 ⊕ v16⊕

v17 ⊕ v18 ⊕ v19 ⊕ v20
k17 =k19 ⊕ k20 ⊕ k24 ⊕ k26 ⊕ k27 ⊕ k31 ⊕ k33 ⊕ k34 ⊕ k36 ⊕ k37 ⊕ k39 ⊕ k40 ⊕ k41⊕

k42 ⊕ k43 ⊕ k44 ⊕ k46 ⊕ k49 ⊕ k52 ⊕ k55 ⊕ k58 ⊕ k60 ⊕ v4 ⊕ v5 ⊕ v9 ⊕ v10 ⊕ v12⊕

v17 ⊕ v18 ⊕ v20 ⊕ v21
k18 =k19 ⊕ k21 ⊕ k22 ⊕ k23 ⊕ k24 ⊕ k27 ⊕ k32 ⊕ k33 ⊕ k35 ⊕ k36 ⊕ k38 ⊕ k39 ⊕ k41⊕

k43 ⊕ k45 ⊕ k46 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v0⊕

v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v18 ⊕ v21



A.2. The Key and IV Relationship for Weak Key-IV 229

Case 5: to freeze register B, there are some constraints for the system of

equations that are required to result in register B containing all-zero values at

the end of loading phase, as follows:
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k0 =k22 ⊕ k23 ⊕ k24 ⊕ k25 ⊕ k26 ⊕ k27 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35⊕

k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k45 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k55⊕

k57 ⊕ k59 ⊕ k61 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v5 ⊕ v6 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v18 ⊕ v21
k1 =k23 ⊕ k24 ⊕ k25 ⊕ k26 ⊕ k27 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36⊕

k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k46 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k56⊕

k58 ⊕ k60 ⊕ k62 ⊕ v0 ⊕ v2 ⊕ v3 ⊕ v6 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v19
k2 =k24 ⊕ k25 ⊕ k26 ⊕ k27 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37⊕

k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k55 ⊕ k57⊕

k59 ⊕ k61 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v4 ⊕ v7 ⊕ v8 ⊕ v11 ⊕ v12 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v20
k3 =k25 ⊕ k26 ⊕ k27 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38⊕

k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k58⊕

k60 ⊕ k62 ⊕ v0 ⊕ v2 ⊕ v4 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v20 ⊕ v21
k4 =k26 ⊕ k27 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39⊕

k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k55 ⊕ k57 ⊕ k59⊕

k61 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v6 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v18 ⊕ v21
k5 =k27 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40⊕

k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k58 ⊕ k60⊕

k62 ⊕ v0 ⊕ v2 ⊕ v4 ⊕ v6 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v19
k6 =k28 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41⊕

k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k51 ⊕ k53 ⊕ k55 ⊕ k57 ⊕ k59 ⊕ k61⊕

k63 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v11 ⊕ v12 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v20
k7 =k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41⊕

k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k58⊕

k60 ⊕ k62 ⊕ v0 ⊕ v2 ⊕ v4 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v20 ⊕ v21
k8 =k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42⊕

k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k55 ⊕ k57 ⊕ k59⊕

k61 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v18 ⊕ v21
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k9 =k31 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43⊕

k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k58 ⊕ k60⊕

k62 ⊕ v0 ⊕ v2 ⊕ v4 ⊕ v6 ⊕ v8 ⊕ v10 ⊕ v11 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v19
k10 =k32 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44⊕

k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k57 ⊕ k59 ⊕ k61⊕

k63 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v20
k11 =k33 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45⊕

k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k58 ⊕ k60 ⊕ k62⊕

v0 ⊕ v2 ⊕ v4 ⊕ v6 ⊕ v8 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v16 ⊕ v17 ⊕ v20 ⊕ v21
k12 =k34 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46⊕

k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k59 ⊕ k61 ⊕ k63⊕

v1 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v17 ⊕ v18 ⊕ v21
k13 =k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47⊕

k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k60 ⊕ k62 ⊕ v0⊕

v2 ⊕ v4 ⊕ v6 ⊕ v8 ⊕ v10 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v18 ⊕ v19
k14 =k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48⊕

k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k61 ⊕ k63 ⊕ v1⊕

v3 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v19 ⊕ v20
k15 =k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49⊕

k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k62 ⊕ v0 ⊕ v2⊕

v4 ⊕ v6 ⊕ v8 ⊕ v10 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v17 ⊕ v20 ⊕ v21
k16 =k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50⊕

k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v5⊕

v7 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v21
k17 =k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51⊕

k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ v0 ⊕ v2 ⊕ v4 ⊕ v6⊕

v8 ⊕ v10 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v19
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k18 =k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52⊕

k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v7⊕

v9 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v19 ⊕ v20
k19 =k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53⊕

k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v2 ⊕ v4 ⊕ v6 ⊕ v8⊕

v10 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v20 ⊕ v21
k20 =k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54⊕

k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v9⊕

v11 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v19 ⊕ v21
k21 =k22 ⊕ k23 ⊕ k24 ⊕ k25 ⊕ k26 ⊕ k27 ⊕ k28 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k34⊕

k35 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k44 ⊕ k46 ⊕ k48 ⊕ k50 ⊕ k52⊕

k54 ⊕ k56 ⊕ k58 ⊕ k60 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v4 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v12 ⊕ v13 ⊕ v16⊕

v17 ⊕ v20 ⊕ v21
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Case 6: to freeze register C, there are some constraints for the system of

equations that are required to result in register C containing all-zero values at

the end of the loading phase as follows:

k0 =k23 ⊕ k24 ⊕ k26 ⊕ k27 ⊕ k29 ⊕ k30 ⊕ k32 ⊕ k33 ⊕ k35 ⊕ k36 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42⊕

k45 ⊕ k47 ⊕ k51 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k63 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10⊕

v12 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v20 ⊕ v21
k1 =k24 ⊕ k25 ⊕ k27 ⊕ k28 ⊕ k30 ⊕ k31 ⊕ k33 ⊕ k34 ⊕ k36 ⊕ k37 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43⊕

k46 ⊕ k48 ⊕ k52 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ v0 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11⊕

v13 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v21
k2 =k25 ⊕ k26 ⊕ k28 ⊕ k29 ⊕ k31 ⊕ k32 ⊕ k34 ⊕ k35 ⊕ k37 ⊕ k38 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44⊕

k47 ⊕ k49 ⊕ k53 ⊕ k56 ⊕ k57 ⊕ k60 ⊕ v1 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12⊕

v14 ⊕ v16 ⊕ v17 ⊕ v19
k3 =k26 ⊕ k27 ⊕ k29 ⊕ k30 ⊕ k32 ⊕ k33 ⊕ k35 ⊕ k36 ⊕ k38 ⊕ k39 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45⊕

k48 ⊕ k50 ⊕ k54 ⊕ k57 ⊕ k58 ⊕ k61 ⊕ v2 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13⊕

v15 ⊕ v17 ⊕ v18 ⊕ v20
k4 =k27 ⊕ k28 ⊕ k30 ⊕ k31 ⊕ k33 ⊕ k34 ⊕ k36 ⊕ k37 ⊕ k39 ⊕ k40 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46⊕

k49 ⊕ k51 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k62 ⊕ v3 ⊕ v6 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v12 ⊕ v13⊕

v14 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v21
k5 =k28 ⊕ k29 ⊕ k31 ⊕ k32 ⊕ k34 ⊕ k35 ⊕ k37 ⊕ k38 ⊕ k40 ⊕ k41 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47⊕

k50 ⊕ k52 ⊕ k56 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v4 ⊕ v7 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v13 ⊕ v14⊕

v15 ⊕ v17 ⊕ v19 ⊕ v20
k6 =k29 ⊕ k30 ⊕ k32 ⊕ k33 ⊕ k35 ⊕ k36 ⊕ k38 ⊕ k39 ⊕ k41 ⊕ k42 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48⊕

k51 ⊕ k53 ⊕ k57 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v5 ⊕ v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v15⊕

v16 ⊕ v18 ⊕ v20 ⊕ v21
k7 =k30 ⊕ k31 ⊕ k33 ⊕ k34 ⊕ k36 ⊕ k37 ⊕ k39 ⊕ k40 ⊕ k42 ⊕ k43 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49⊕

k52 ⊕ k54 ⊕ k58 ⊕ k61 ⊕ k62 ⊕ v1 ⊕ v6 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v16⊕

v17 ⊕ v19 ⊕ v21
k8 =k23 ⊕ k24 ⊕ k26 ⊕ k27 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k33 ⊕ k34 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k42⊕

k43 ⊕ k44 ⊕ k45 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k53 ⊕ k54 ⊕ k58 ⊕ k59 ⊕ k62 ⊕ v3 ⊕ v4⊕

v5 ⊕ v8 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v21
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k9 =k24 ⊕ k25 ⊕ k27 ⊕ k28 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k34 ⊕ k35 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k43⊕

k44 ⊕ k45 ⊕ k46 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k54 ⊕ k55 ⊕ k59 ⊕ k60 ⊕ k63 ⊕ v4 ⊕ v5⊕

v6 ⊕ v9 ⊕ v10 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v19
k10 =k25 ⊕ k26 ⊕ k28 ⊕ k29 ⊕ k31 ⊕ k32 ⊕ k33 ⊕ k35 ⊕ k36 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k44⊕

k45 ⊕ k46 ⊕ k47 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k55 ⊕ k56 ⊕ k60 ⊕ k61 ⊕ v0 ⊕ v5 ⊕ v6⊕

v7 ⊕ v10 ⊕ v11 ⊕ v13 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v20
k11 =k26 ⊕ k27 ⊕ k29 ⊕ k30 ⊕ k32 ⊕ k33 ⊕ k34 ⊕ k36 ⊕ k37 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k45⊕

k46 ⊕ k47 ⊕ k48 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k61 ⊕ k62 ⊕ v1 ⊕ v6 ⊕ v7⊕

v8 ⊕ v11 ⊕ v12 ⊕ v14 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v21
k12 =k27 ⊕ k28 ⊕ k30 ⊕ k31 ⊕ k33 ⊕ k34 ⊕ k35 ⊕ k37 ⊕ k38 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k46⊕

k47 ⊕ k48 ⊕ k49 ⊕ k52 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k57 ⊕ k58 ⊕ k62 ⊕ k63 ⊕ v2 ⊕ v7 ⊕ v8⊕

v9 ⊕ v12 ⊕ v13 ⊕ v15 ⊕ v17 ⊕ v18 ⊕ v20
k13 =k28 ⊕ k29 ⊕ k31 ⊕ k32 ⊕ k34 ⊕ k35 ⊕ k36 ⊕ k38 ⊕ k39 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k47⊕

k48 ⊕ k49 ⊕ k50 ⊕ k53 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k58 ⊕ k59 ⊕ k63 ⊕ v0 ⊕ v3 ⊕ v8 ⊕ v9⊕

v10 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v18 ⊕ v19 ⊕ v21
k14 =k29 ⊕ k30 ⊕ k32 ⊕ k33 ⊕ k35 ⊕ k36 ⊕ k37 ⊕ k39 ⊕ k40 ⊕ k42 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k48⊕

k49 ⊕ k50 ⊕ k51 ⊕ k54 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k59 ⊕ k60 ⊕ v0 ⊕ v1 ⊕ v4 ⊕ v9 ⊕ v10⊕

v11 ⊕ v14 ⊕ v15 ⊕ v17 ⊕ v19 ⊕ v20
k15 =k30 ⊕ k31 ⊕ k33 ⊕ k34 ⊕ k36 ⊕ k37 ⊕ k38 ⊕ k40 ⊕ k41 ⊕ k43 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k49⊕

k50 ⊕ k51 ⊕ k52 ⊕ k55 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k60 ⊕ k61 ⊕ v1 ⊕ v2 ⊕ v5 ⊕ v10 ⊕ v11⊕

v12 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v20 ⊕ v21
k16 =k31 ⊕ k32 ⊕ k34 ⊕ k35 ⊕ k37 ⊕ k38 ⊕ k39 ⊕ k41 ⊕ k42 ⊕ k44 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k50⊕

k51 ⊕ k52 ⊕ k53 ⊕ k56 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k61 ⊕ k62 ⊕ v2 ⊕ v3 ⊕ v6 ⊕ v11 ⊕ v12⊕

v13 ⊕ v16 ⊕ v17 ⊕ v19 ⊕ v21
k17 =k32 ⊕ k33 ⊕ k35 ⊕ k36 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k42 ⊕ k43 ⊕ k45 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k51⊕

k52 ⊕ k53 ⊕ k54 ⊕ k57 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k62 ⊕ k63 ⊕ v3 ⊕ v4 ⊕ v7 ⊕ v12 ⊕ v13⊕

v14 ⊕ v17 ⊕ v18 ⊕ v20
k18 =k33 ⊕ k34 ⊕ k36 ⊕ k37 ⊕ k39 ⊕ k40 ⊕ k41 ⊕ k43 ⊕ k44 ⊕ k46 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k52⊕

k53 ⊕ k54 ⊕ k55 ⊕ k58 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k63 ⊕ v0 ⊕ v4 ⊕ v5 ⊕ v8 ⊕ v13 ⊕ v14⊕

v15 ⊕ v18 ⊕ v19 ⊕ v21
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k19 =k34 ⊕ k35 ⊕ k37 ⊕ k38 ⊕ k40 ⊕ k41 ⊕ k42 ⊕ k44 ⊕ k45 ⊕ k47 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k53⊕

k54 ⊕ k55 ⊕ k56 ⊕ k59 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v1 ⊕ v5 ⊕ v6 ⊕ v9 ⊕ v14 ⊕ v15⊕

v16 ⊕ v19 ⊕ v20
k20 =k35 ⊕ k36 ⊕ k38 ⊕ k39 ⊕ k41 ⊕ k42 ⊕ k43 ⊕ k45 ⊕ k46 ⊕ k48 ⊕ k49 ⊕ k50 ⊕ k51 ⊕ k54⊕

k55 ⊕ k56 ⊕ k57 ⊕ k60 ⊕ k61 ⊕ k62 ⊕ k63 ⊕ v1 ⊕ v2 ⊕ v6 ⊕ v7 ⊕ v10 ⊕ v15 ⊕ v16⊕

v17 ⊕ v20 ⊕ v21
k21 =k23 ⊕ k24 ⊕ k26 ⊕ k27 ⊕ k29 ⊕ k30 ⊕ k32 ⊕ k33 ⊕ k35 ⊕ k37 ⊕ k41 ⊕ k43 ⊕ k44 ⊕ k45⊕

k46 ⊕ k49 ⊕ k50 ⊕ k52 ⊕ k54 ⊕ k56 ⊕ k57 ⊕ k61 ⊕ k62 ⊕ v0 ⊕ v4 ⊕ v5 ⊕ v9 ⊕ v10⊕

v11 ⊕ v12 ⊕ v14 ⊕ v15 ⊕ v16 ⊕ v18 ⊕ v20
k22 =k23 ⊕ k25 ⊕ k26 ⊕ k28 ⊕ k29 ⊕ k31 ⊕ k32 ⊕ k34 ⊕ k35 ⊕ k38 ⊕ k39 ⊕ k40 ⊕ k41⊕

k44 ⊕ k46 ⊕ k50 ⊕ k53 ⊕ k54 ⊕ k57 ⊕ k62 ⊕ v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v6 ⊕ v7 ⊕ v8⊕

v9 ⊕ v11 ⊕ v13 ⊕ v14 ⊕ v16 ⊕ v19 ⊕ v20
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Appendix B

Common Scrambling Algorithm

Stream Cipher

B.1 The Boolean Functions of the CSA-SC

The following two tables summaries 14 Boolean functions that are used in Chap-

ter 5 for the Common Scrambling Algorithm Stream Cipher (CSA-SC) as re-

ported in [96,104].
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Table B.1: Algebraic Normal Forms of the 14 Boolean functions

x0 = S1(i0, i1, i2, i3, i4) = 1 + i4 + i3 + i3i4 + i2i4 + i2i3 + i1i4 + i1i3 +
i1i2 + i1i2i4 + i1i2i3 + i0 + i0i3i4 + i0i2 + i0i2i3
+ i0i1 + i0i1i3 + i0i1i3i4 + i0i1i2 + i0i1i2i3

x1 = S2(i0, i1, i2, i3, i4) = i3+ i2i4+ i1+ i1i4+ i1i3i4+ i0i4+ i0i1+ i0i1i3+
i0i1i2+ i0i1i2i4

x2 = S3(i0, i1, i2, i3, i4) = 1 + i4 + i3 + i2i4 + i2i3 + i2i3i4 + i1+ i0i2i3 +
i0i1i4 + i0i1i3 + i0i1i3i4+ i0i1i2

x3 = S4(i0, i1, i2, i3, i4) = 1 + i3 + i2 + i2i4 + i1i3i4 + i1i2i4 + i0i3i4 + i0i2
+ i0i1 + i0i1i3i4+ i0i1i2i4

y0 = S5(i0, i1, i2, i3, i4) = 1 + i4 + i3 + i2i4 + i2i3 + i2i3i4 + i1 + i1i4 +
i1i3 + i1i3i4 + i1i2 + i1i2i3 + i0 + i0i3 + i0i3i4 +
i0i2 + i0i2i4 + i0i2i3 + i0i2i3i4 + i0i1i4 + i0i1i2+
i0i1i2i3

y1 = S6(i0, i1, i2, i3, i4) = i3 + i3i4 + i2i4 + i1 + i0
y2 = S7(i0, i1, i2, i3, i4) = 1 + i4 + i3i4 + i2 + i2i3i4 + i1 + i1i2i3 + i0 + i0i4

+ i0i3 + i0i2i3i4 + i0i1 + i0i1i4 + i0i1i3i4 + i0i1i2
+ i0i1i2i3

y3 = S8(i0, i1, i2, i3, i4) = 1 + i3 + i3i4 + i2 + i1i4 + i1i3i4 + i1i2 + i0i4 +
i0i3 + i0i2i3i4 + i0i1 + i0i1i4 + i0i1i3i4 + i0i1i2 +
i0i1i2i3

z0 = S9(i0, i1, i2, i3, i4) = 1 + i4 + i3 + i3i4 + i2i4 + i2i3 + i2i3i4 + i1 +
i1i4 + i1i3i4 + i1i2i4 + i1i2i3 + i0i4 + i0i3 + i0i2
+ i0i2i3 + i0i2i3i4 + i0i1i4 + i0i1i3 + i0i1i2i4 +
i0i1i2i3

z1 = S10(i0, i1, i2, i3, i4) = i3i4 + i2 + i2i4 + i2i3i4 + i1i4 + i1i3 + i1i2i4 + i0i4
+ i0i2 + i0i2i4 + i0i2i3 + i0i2i3i4 + i0i1 + i0i1i4 +
i0i1i3 + i0i1i3i4

z2 = S11(i0, i1, i2, i3, i4) = i3 + i2i4 + i1i3i4 + i1i2 + i1i2i4 + i0 + i0i3i4 +
i0i1i4

z3 = S12(i0, i1, i2, i3, i4) = i4 + i2 + i2i3 + i2i3i4 + i1i3 + i1i2 + i1i2i3 + i0i3i4
+ i0i2i3 + i0i2i3i4 + i0i1i3i4 + i0i1i2i3

p = S13(i0, i1, i2, i3, i4) = i4 + i3 + i3i4 + i2 + i1 + i1i3i4 + i0i4 + i0i3i4 +
i0i2 + i0i2i3 + i0i2i3i4 + i0i1i3i4 + i0i1i2i3

q = S14(i0, i1, i2, i3, i4) = i4 + i3i4 + i2 + i2i3 + i2i3i4 + i1 + i1i2 + i0 +
i0i1i3 + i0i1i3i4
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Table B.2: The truth table of the 14 Boolean functions

Input S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

00000 1 0 1 1 1 0 1 1 1 0 0 0 0 0
00001 0 0 0 1 0 0 0 1 0 0 0 1 1 1
00010 0 1 0 0 0 1 1 0 0 0 1 0 1 0
00011 0 1 1 0 1 0 1 1 0 1 1 1 1 0
00100 1 0 1 0 1 0 0 0 1 1 0 1 1 1
00101 1 1 1 1 1 1 1 0 1 0 1 0 0 0
00110 1 1 1 1 1 1 0 1 1 1 1 0 0 0
00111 0 0 0 0 0 1 1 0 1 0 0 0 0 1
01000 1 1 0 1 0 1 0 1 0 0 0 0 1 1
01001 1 0 1 1 0 1 1 0 0 1 0 1 0 0
01010 1 0 1 0 0 0 0 0 1 1 1 1 0 1
01011 0 0 0 1 1 1 0 1 1 1 0 0 1 1
01100 0 1 0 0 1 1 1 1 0 1 1 0 0 1
01101 0 1 0 0 0 0 0 0 0 0 1 1 1 0
01110 0 0 0 1 1 0 0 0 1 0 0 1 1 0
01111 1 1 1 0 0 0 1 1 0 1 1 1 0 1
10000 0 0 1 1 0 1 0 1 1 0 1 0 0 1
10001 1 1 0 1 1 1 0 0 1 1 1 1 0 0
10010 1 1 0 0 0 0 1 1 1 0 0 0 1 1
10011 0 0 1 1 0 1 0 1 0 0 1 0 1 1
10100 1 0 1 1 1 1 1 0 0 0 1 1 0 0
10101 1 0 1 0 0 0 1 1 1 1 0 0 0 1
10110 0 1 0 0 1 0 0 0 0 1 0 1 0 1
10111 0 1 1 0 1 0 1 1 0 1 0 1 1 0
11000 1 0 0 0 1 0 0 0 0 1 1 0 1 0
11001 1 0 0 0 0 0 1 1 0 0 0 1 1 1
11010 0 0 0 1 0 1 1 0 1 1 0 1 0 1
11011 1 1 1 0 1 0 0 0 1 0 1 0 0 0
11100 0 1 1 0 0 0 0 1 1 1 0 0 1 0
11101 0 1 0 1 1 1 1 0 0 1 1 1 1 1
11110 1 1 1 1 1 1 1 0 0 0 1 1 0 0
11111 0 0 0 1 0 1 0 1 1 0 0 0 1 0
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B.2 Algebraic Equations at Time t = −31

From Equation 5.1 in Section 5.1, during the initialisation process, the system

of equations of the new 4-bit word after the first clock of the registers A can be

written in term of stage bits as follows:

a−310,0 =a−329,0 ⊕ S1(a
−31
3,3 , a

−31
1,1 , a

−31
2,3 , a

−31
4,2 , a

−31
8,0 )⊕

S9(a
−31
2,1 , a

−31
3,2 , a

−31
6,3 , a

−31
7,0 , a

−31
9,1 )⊕ e−320 ⊕ b−320out ⊕ v4

a−310,1 =a−329,1 ⊕ S2(a
−31
1,3 , a

−31
2,0 , a

−31
5,1 , a

−31
5,3 , a

−31
6,2 )⊕

S10(a
−31
4,0 , a

−31
1,2 , a

−31
6,1 , a

−31
7,3 , a

−31
9,0 )⊕ e−321 ⊕ b−321out ⊕ v5 (B.1)

a−310,2 =a−329,2 ⊕ S3(a
−31
2,1 , a

−31
3,2 , a

−31
6,3 , a

−31
7,0 , a

−31
9,1 )⊕

S11(a
−31
3,1 , a

−31
4,1 , a

−31
5,0 , a

−31
7,2 , a

−31
9,3 )⊕ e−322 ⊕ b−322out ⊕ v6

a−310,3 =a−329,3 ⊕ S4(a
−31
4,0 , a

−31
1,2 , a

−31
6,1 , a

−31
7,3 , a

−31
9,0 )⊕

S12(a
−31
5,2 , a

−31
4,3 , a

−31
6,0 , a

−31
8,1 , a

−31
9,2 )⊕ e−323 ⊕ b−323out ⊕ v7

by substituting key and IV bits in Equation B.1, the above equations can be

written as follows:

a−310,0 = k5k11k15k18 ⊕ k9k14k27k28 ⊕ k5k11k15 ⊕ k5k11k18 ⊕ k5k15k18 ⊕ k11k15k18
⊕ k9k14k28⊕ k9k27k28⊕ k14k27k28⊕ k5k11⊕ k5k15⊕ k11k15⊕ k5k18⊕ k11k18
⊕ k9k27 ⊕ k9k28 ⊕ k27k28 ⊕ k14 ⊕ k15 ⊕ k18 ⊕ k28 ⊕ k41 ⊕ k55 ⊕ k60 ⊕ v4

a−310,1 =k7k8k21k26 ⊕ k7k8k21 ⊕ k7k8k23 ⊕ k8k23k26 ⊕ k6k16k31 ⊕ k16k25k31 ⊕ k7k8
⊕ k6k16 ⊕ k16k25 ⊕ k7k26 ⊕ k8k26 ⊕ k21k26 ⊕ k6k31 ⊕ k8 ⊕ k23 ⊕ k25 ⊕ k44
⊕ k49 ⊕ k51 ⊕ k62 ⊕ v5

a−310,2 =k9k14k27 ⊕ k9k14k28 ⊕ k9k27k28 ⊕ k17k20 ⊕ k27k28 ⊕ k13 ⊕ k14 ⊕ k28 ⊕ k30
⊕ k43 ⊕ k46 ⊕ k52 ⊕ k61 ⊕ v6 ⊕ 1

a−310,3 =k6k16 ⊕ k19k24 ⊕ k16k25 ⊕ k24 ⊕ k25 ⊕ k31 ⊕ k40 ⊕ k53 ⊕ k58 ⊕ v7 ⊕ 1
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Using Equations 5.6 and 5.7 of the initialisation process, the system of equa-

tions for the first 4-bits word of the registers B after the first clock can be

described in the term of key-IV bits as follows:

b−310,0 = k10k13k17k20k29k30 ⊕ k10k13k17k20k29 ⊕ k12k13k17k20k30 ⊕ k10k13k20k29k30
⊕ k10k17k20k29k30 ⊕ k13k17k20k29k30 ⊕ k12k13k17k20 ⊕ k10k13k20k29
⊕ k10k17k20k29 ⊕ k13k17k20k29 ⊕ k12k13k20k30 ⊕ k12k17k20k30 ⊕ k13k17k20k30
⊕ k10k13k29k30 ⊕ k10k17k29k30 ⊕ k10k20k29k30 ⊕ k13k20k29k30 ⊕ k17k20k29k30
⊕ k12k13k20 ⊕ k12k17k20 ⊕ k13k17k20 ⊕ k10k13k29 ⊕ k10k17k29 ⊕ k10k19k29
⊕ k13k20k29 ⊕ k17k20k29 ⊕ k10k22k29 ⊕ k12k13k30 ⊕ k12k17k30 ⊕ k12k20k30
⊕ k13k20k30 ⊕ k17k20k30 ⊕ k10k29k30 ⊕ k13k29k30 ⊕ k17k29k30 ⊕ k20k29k30
⊕ k10k29k56 ⊕ k10k29k57 ⊕ k10k29v0 ⊕ k10k29v1 ⊕ k12k13 ⊕ k12k17 ⊕ k12k19
⊕ k13k20 ⊕ k17k20 ⊕ k12k22 ⊕ k10k29 ⊕ k13k29 ⊕ k17k29 ⊕ k19k29 ⊕ k22k29
⊕k12k30⊕k13k30⊕k17k30⊕k20k30⊕k29k30⊕k12k56⊕k29k56⊕k12k57⊕k29k57
⊕ k12v0⊕ k29v0⊕ k12v1⊕ k29v1⊕ k12⊕ k13⊕ k17⊕ k29⊕ k30⊕ k56⊕ v0⊕ 1

b−310,1 = k5k10k11k15k18k29 ⊕ k5k11k12k15k18 ⊕ k5k10k11k15k29 ⊕ k5k10k11k18k29
⊕ k5k11k15k18k29 ⊕ k5k11k12k15 ⊕ k5k11k12k18 ⊕ k5k10k15k29 ⊕ k5k11k15k29
⊕ k5k11k18k29 ⊕ k10k15k18k29 ⊕ k5k12k15 ⊕ k12k15k18 ⊕ k5k10k29 ⊕ k10k11k29
⊕ k5k15k29 ⊕ k10k15k29 ⊕ k15k18k29 ⊕ k10k19k29 ⊕ k10k22k29 ⊕ k10k29k57
⊕k10k29k58⊕k10k29v1⊕k10k29v2⊕k5k12⊕k11k12⊕k12k15⊕k12k19⊕k12k22
⊕k5k29⊕k10k29⊕k11k29⊕k15k29⊕k19k29⊕k22k29⊕k12k57⊕k29k57⊕k12k58
⊕ k29k58 ⊕ k12v1 ⊕ k29v1 ⊕ k12v2 ⊕ k29v2 ⊕ k12 ⊕ k19 ⊕ k22 ⊕ k29 ⊕ k57 ⊕ v1

b−310,2 = k5k10k11k15k18k29⊕k7k8k10k21k23k29⊕k7k8k10k23k26k29⊕k7k10k21k23k26k29
⊕ k5k11k12k15k18 ⊕ k7k8k12k21k23 ⊕ k7k8k12k23k26 ⊕ k7k12k21k23k26
⊕ k5k10k11k15k29 ⊕ k5k10k11k18k29 ⊕ k5k11k15k18k29 ⊕ k7k8k10k21k29
⊕ k7k8k21k23k29 ⊕ k7k8k10k26k29 ⊕ k7k8k23k26k29 ⊕ k8k10k23k26k29
⊕ k7k21k23k26k29 ⊕ k5k11k12k15 ⊕ k5k11k12k18 ⊕ k5k11k15k18 ⊕ k7k8k12k21
⊕ k7k8k12k26 ⊕ k8k12k23k26 ⊕ k7k8k10k29 ⊕ k5k10k15k29 ⊕ k5k11k15k29
⊕ k5k11k18k29 ⊕ k10k15k18k29 ⊕ k7k8k21k29 ⊕ k8k10k21k29 ⊕ k7k10k23k29
⊕ k7k8k26k29 ⊕ k7k10k26k29 ⊕ k8k10k26k29 ⊕ k8k23k26k29 ⊕ k10k23k26k29
⊕k7k8k12⊕k5k11k15⊕k5k12k15⊕k5k11k18⊕k12k15k18⊕k8k12k21⊕k7k12k23
⊕k7k12k26⊕k8k12k26⊕k12k23k26⊕k7k8k29⊕k5k10k29⊕k10k11k29⊕k5k15k29
⊕ k10k15k29 ⊕ k15k18k29 ⊕ k8k21k29 ⊕ k10k21k29 ⊕ k7k23k29 ⊕ k10k23k29
⊕ k7k26k29 ⊕ k8k26k29 ⊕ k23k26k29 ⊕ k10k29k58 ⊕ k10k29k59 ⊕ k10k29v2
⊕ k10k29v3 ⊕ k5k12 ⊕ k11k12 ⊕ k5k15 ⊕ k12k15 ⊕ k15k18 ⊕ k12k21 ⊕ k12k23
⊕ k5k29 ⊕ k11k29 ⊕ k15k29 ⊕ k21k29 ⊕ k23k29 ⊕ k12k58 ⊕ k29k58 ⊕ k12k59
⊕ k29k59 ⊕ k12v2 ⊕ k29v2 ⊕ k12v3 ⊕ k29v3 ⊕ k5 ⊕ k11 ⊕ k15 ⊕ k58 ⊕ v2 ⊕ 1
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b−310,3 = k7k8k10k21k23k29 ⊕ k7k8k10k23k26k29
⊕ k7k10k21k23k26k29 ⊕ k10k13k17k20k29k30
⊕ k7k8k12k21k23 ⊕ k7k8k12k23k26 ⊕ k7k12k21k23k26
⊕ k10k13k17k20k29 ⊕ k7k8k10k21k29 ⊕ k7k8k21k23k29
⊕ k7k8k10k26k29 ⊕ k7k8k23k26k29 ⊕ k8k10k23k26k29
⊕ k7k21k23k26k29 ⊕ k12k13k17k20k30
⊕ k10k13k20k29k30 ⊕ k10k17k20k29k30
⊕ k13k17k20k29k30 ⊕ k12k13k17k20 ⊕ k7k8k12k21
⊕ k7k8k21k23 ⊕ k7k8k12k26 ⊕ k7k8k23k26
⊕ k8k12k23k26 ⊕ k7k21k23k26 ⊕ k7k8k10k29
⊕ k10k13k20k29 ⊕ k10k17k20k29 ⊕ k13k17k20k29
⊕ k7k8k21k29 ⊕ k8k10k21k29 ⊕ k7k10k23k29
⊕ k7k8k26k29 ⊕ k7k10k26k29 ⊕ k8k10k26k29
⊕ k8k23k26k29 ⊕ k10k23k26k29 ⊕ k12k13k20k30
⊕ k12k17k20k30 ⊕ k10k13k29k30 ⊕ k10k17k29k30
⊕ k10k20k29k30 ⊕ k13k20k29k30 ⊕ k17k20k29k30
⊕ k7k8k12 ⊕ k12k13k20 ⊕ k12k17k20 ⊕ k7k8k21
⊕ k8k12k21 ⊕ k7k12k23 ⊕ k7k8k26 ⊕ k7k12k26
⊕ k8k12k26 ⊕ k8k23k26 ⊕ k12k23k26 ⊕ k7k8k29
⊕ k10k13k29 ⊕ k10k17k29 ⊕ k13k20k29 ⊕ k17k20k29
⊕ k8k21k29 ⊕ k10k21k29 ⊕ k7k23k29 ⊕ k10k23k29
⊕ k7k26k29 ⊕ k8k26k29 ⊕ k23k26k29 ⊕ k12k13k30
⊕ k12k17k30 ⊕ k12k20k30 ⊕ k10k29k30 ⊕ k13k29k30
⊕ k17k29k30 ⊕ k20k29k30 ⊕ k10k29k56 ⊕ k10k29k59
⊕ k10k29v0 ⊕ k10k29v3 ⊕ k7k8 ⊕ k12k13 ⊕ k12k17
⊕ k8k21 ⊕ k12k21 ⊕ k7k23 ⊕ k12k23 ⊕ k7k26 ⊕ k8k26
⊕k23k26⊕k13k29⊕k17k29⊕k21k29⊕k23k29⊕k12k30
⊕ k29k30⊕ k12k56⊕ k29k56⊕ k12k59⊕ k29k59⊕ k12v0
⊕ k29v0 ⊕ k12v3 ⊕ k29v3 ⊕ k21 ⊕ k23 ⊕ k59 ⊕ v3 ⊕ 1

Using Equation 5.11, the content of memory F after the first clock can be

described in term of the key-IV bits as follows:

f−310 = k9k12k14k27k28k29 ⊕ k9k10k14k27k28 ⊕ k9k12k14k27k28 ⊕ k9k12k14k28k29
⊕ k9k12k27k28k29 ⊕ k9k14k27k28k29 ⊕ k12k14k27k28k29 ⊕ k9k10k14k28
⊕ k9k12k14k28 ⊕ k9k10k27k28 ⊕ k9k12k27k28 ⊕ k10k14k27k28 ⊕ k12k14k27k28
⊕ k9k12k27k29 ⊕ k9k12k28k29 ⊕ k9k14k28k29 ⊕ k9k27k28k29 ⊕ k12k27k28k29
⊕ k14k27k28k29 ⊕ k9k10k27 ⊕ k9k12k27 ⊕ k9k10k28 ⊕ k9k12k28 ⊕ k10k27k28
⊕k12k27k28⊕k12k14k29⊕k9k27k29⊕k9k28k29⊕k12k28k29⊕k27k28k29⊕k10k14
⊕ k12k14 ⊕ k10k28 ⊕ k12k28 ⊕ k12k29 ⊕ k14k29 ⊕ k28k29 ⊕ k10 ⊕ k12 ⊕ k29

f−311 = k6k12k16k29k31 ⊕ k12k16k25k29k31 ⊕ k6k12k16k29 ⊕ k12k16k25k29
⊕ k6k10k16k31 ⊕ k6k12k16k31 ⊕ k10k16k25k31 ⊕ k12k16k25k31
⊕ k6k12k29k31 ⊕ k6k16k29k31 ⊕ k16k25k29k31 ⊕ k6k10k16 ⊕ k6k12k16
⊕ k10k16k25 ⊕ k12k16k25 ⊕ k6k16k29 ⊕ k12k25k29 ⊕ k16k25k29
⊕ k6k10k31 ⊕ k6k12k31 ⊕ k6k29k31 ⊕ k10k25 ⊕ k12k25 ⊕ k25k29
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f−312 = k12k17k20k29 ⊕ k10k17k20 ⊕ k12k17k20 ⊕ k12k13k29 ⊕ k17k20k29
⊕ k12k29k30 ⊕ k10k13 ⊕ k12k13 ⊕ k13k29 ⊕ k10k30 ⊕ k12k30 ⊕ k29k30

f−313 = k12k19k24k29 ⊕ k10k19k24 ⊕ k12k19k24 ⊕ k12k24k29
⊕ k19k24k29 ⊕ k10k24 ⊕ k12k24 ⊕ k24k29

Note: During keystream generation, there is no IV input to both register A

and B and no feedback from the output function (labeled D) to register A, so, the

complexity of the system of equations is less than that during the initialisation

process.
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