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ABSTRACT 

In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation 

was presented to handle geometric non-linearities.  The formulation of the present paper extends 

this to include material non-linearity by proposing a refined plastic hinge approach to analyse large 

steel framed structures with many members, for which contemporary algorithms based on the 

plastic zone approach can be problematic computationally.  This concept is an advancement of 

conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual 

yielding, being recognized as distributed plasticity across the element section, a condition of full 

plasticity, as well as including strain hardening.  It is founded on interaction yield surfaces specified 

analytically in terms of force resultants, and achieves accurate and rapid convergence for large 

frames for which geometric and material non-linearity are significant.  The solutions are shown to 

be efficacious in terms of a balance of accuracy and computational expediency.  In addition to the 

numerical efficiency, the present versatile approach is able to capture different kinds of material and 

geometric non-linearities on general applications of steel structures, and thereby it offers an 

efficacious and accurate means of assessing non-linear behaviour of the structures for engineering 

practice. 
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1. Introduction 

This paper is concerned with an innovative extension of the geometrically non-linear elastic finite 

element formulation with a higher-order element, described in the companion paper [1], to include 

steel yielding so as to produce a robust and highly efficient technique for analysing frames with a 

multiplicity of component structural members.  The material yielding of an infinitesimal steel 

element or particle across the element section has been investigated numerically through the plastic 

hinge approach in the efficacious manner. 

King et al. [2] presented a plastic hinge method which accounts for the degradation of the member 

stiffness.  The plastic hinge stiffness is formulated in this method by inserting a hinge in the 

incremental element stiffness equation if a linear initial yield and fixed full yield condition [3] with 

residual stresses are satisfied.  In later work, Liew et al. [4, 5] proposed a second-order refined 

plastic hinge analysis for steel frame design which included inelastic stiffness degradation, with 

reference to a bilinear interaction equation AISC [6].  A tangent modulus technique was applied 

which reduced the modulus of elasticity from its elastic value continuously as it entered the plastic 

range. 

Yau and Chan [7] established a plastic hinge analysis of steel frames in which the hinge stiffness is 

formulated into the element stiffness matrix based on the incremental moment equation of 

equilibrium at a node, with the full yield criterion of Duan and Chen [3] being adopted in the 

formulation.  Further, Chan and Chui [8] proposed a method for considering the gradual yielding 

across a cross-section subjected to bending action, for which the axial force was included by 

reducing the bending moment capacity.  More recently, Iu and Chan [9] developed a refined plastic 

hinge method which included strain-hardening for steel structures subjected to elevated 

temperatures, while Iu et al. [10] modified a plastic hinge approach in which the interaction of 

bending and axial actions on the yield surface at elevated temperature was formulated.  Using a 

higher-order element representation, Chan and Zhou [11, 12] presented a large displacement 

analysis using a plastic hinge approach in which large deflections in the presence of a hinge along 

the member can be included. 

In the companion paper [1], the geometric non-linearities associated with a second-order analysis of 

an elastic framed structure were discussed.  Commonly, material yielding is an important 

consideration for steel structures at their strength or ultimate limit state, and so generalised 

numerical non-linear analysis of steel framed structures at their strength limit state necessitates the 

accurate modelling of both geometric and material non-linearities.  Many contemporary steel 

structures are very large, comprising of a great number members of which many are slender, and 



despite advances in computational algorithms and computer hardware capabilities, efficient and 

accurate analyses of these structures is still problematic when material non-linearities have to be 

considered.  In order to provide a solution technique which overcomes these difficulties, the plastic 

hinge approach is engaged in this paper to provide a balance between efficiency and accuracy.  

Elasto-plastic hinge methods have been developed and reported by many researchers (e.g. in [2, 7, 

13]), but contrary to these, the present paper develops a refined plastic hinge approach to allow for 

the gradual development of yielding as distributed plasticity across the section to a fully plastic 

hinge, which admits strain hardening and accounts for the interaction of axial and bending actions.  

This is an advance on elasto-plastic hinge methods because it allows for a more general description 

of the materially non-linear behaviour of the steel in terms of force resultants (rather than of stresses 

in a much less-efficient plastic zone approach).  This paper therefore offers a non-linear analysis 

with accuracy in solution, versatile for vast forms of structures and reliability in convergence for 

engineering practice. 

2. Interaction Equations for Yielding Criterion 

In accordance with the so-called “plastic zone method”, the yield condition of the steel is examined 

with respect to each point in the member, and so it is convenient to express the behaviour of the 

steel in terms of its stress-strain relationship.  This technique is valid for all cross-sections along the 

member once the domain of the numerical integration has been defined.  On the other hand, the 

“plastic hinge method” bases its material modelling on the load-displacement relationship for a 

beam-column cross-section [3, 6].  This modelling requires interaction equations between bending 

and axial actions which defined the capacity its cross-sections. 

In general, initial yielding within a member occurs well before the fully plastic cross-sectional 

strength is reached.  It depends on both the shape factor for the cross-section η and the residual 

stresses on the cross-section.  The initial yield surface φy, or initial yield interaction equation, may 

be defined from the bending actions about the major principal axis Mx, minor principal axis My and 

axial force P collected in the vector f = {P, Mx, My}T and related by  
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in which the numbers 0.8 and 0.9 in the denominator account for residual stresses, Py is the axial 

force capacity of the cross-section, and Mpx and Mpy are its full plastic moments about the major and 

minor principal axes respectively which have respective shape factors of ηx and ηy.  When φy(f) < 1, 



the cross-section is taken as elastic.  For a doubly-symmetric I-section, a convenient formulation 

used for the first yield surface is 
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The AISC-LRFD standard [6 provides bilinear interactions for the criterion of full yield in terms of 

a function φp(f) = 1, but it is known that this is generally conservative for both short beam-columns 

for which material non-linearities are dominant and for biaxial loading cases. The present 

formulation therefore adopts the full yield interaction function φp(f) proposed by Duan and Chen 

[3], which defines a continuous convex full yield surface as shown in Fig. 1, with vertices as its 

intersection with the P axis. 

 

 

 

 
Figure 1. Initial and full yield surface under interaction of force resultants 

For the case of uniaxial bending about the major axis, full yield is taken as 
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while for uniaxial bending about the minor axis, it is taken as 
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in which Py = fyA, A is the area of the cross-section, fy is the uniaxial yield stress and the moments 

pxM  and pyM  are the major and minor axis bending capacities reduced in the presence of axial 

force.  A modified interaction surface from Tebege and Chen [14] is 
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so that using Eqs. (3) and (4), 
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in which  
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In the refined plastic hinge approach, gradual yielding is defined when the vector of actions on the 

cross-section f is such that φy(f) > 1 and φp(f) < 1; this situation is common for beam-columns at 

their strength limit state.  The initial and full yield surfaces shown in Fig. 1 have been shown [3] to 

be valid for a large range of steel cross-sections under biaxial bending and compression, and 

provide an empirical basis for the refined plastic hinge approach of this paper. 

3. Refined Plastic Hinge Stiffness Formulation 

3.1. Plastic hinge spring stiffness 

The present non-linear analysis for beam-columns relies on plastic hinge springs, as shown in Fig. 

2, to be activated when the vector of actions at a node f are such that φy(f) exceeds unity.  When this 

vector is such that φp(f) exceeds unity, the cross-section experiences strain hardening.  The 

stiffnesses of the axial and bending springs are then taken as 
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and 
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in which the stiffnesses are such that ∞ > Sa > 0 and ∞ > Sb > 0, μa and μb are strain hardening 

parameters, EI/L is the elastic flexural stiffness of the beam-column and EA/L is its elastic axial 

stiffness.  The spring formulation of Eqs. (8) and (9) was first introduced by Iu et al. [15]. 

The interaction between the three force resultants in the vector f has a twofold effect in the refined 

hinge formulation; it firstly defines the initial yield and fully plastic surfaces by φy(f) = 1 and φp(f) = 

1, and it secondly defines the spring stiffness by Eqs. (8) and (9) which are degraded when φy(f) > 1.  



This kind of gradual yielding by proposed refined plastic hinge approach heralds distributed 

plasticity across the member section.  The spring formulation is therefore able to capture the non-

linear material behaviour, including its elastic domain, gradual or partial yielding, full plasticity, 

strain hardening as well as residual stresses, in the load-deformation relationship for the quartic 

beam-column finite element.  These hinges may be incorporated into the second-order elastic 

stiffness formulation of the companion paper [1] using the procedures described in [7, 16].  In 

reference to [15], it is also worth mentioning that the plastic hinges in Eqs. (8) and (9) are versatile 

for different kind materials, once the interaction equations φy(f) and φp(f) are replaced by the 

corresponding material failure surfaces. 

3.2. Secant stiffness in plastic hinge formulation 

In order to combine the plastic hinge spring stiffness formulation with the second-order elastic 

stiffness formulation for a beam-column element, the incremental equilibrium equation of the 

element is written as 
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Figure 2. Beam-column element with axial and rotational springs 

and for which it can be assumed that moment and axial force equilibrium of the beam-column 

element can be considered separately in regard to material yielding behaviour.  Since a plastic hinge 

is inserted at the ends of the beam-column element, additional rotational degrees of freedom at the 

nodes Δθs1 and Δθs2 are introduced, as shown in Fig. 2.  Using matrix condensation of the internal 

degree of freedom of the beam-column element (ΔMe1 = ΔMe2 = 0), Eq. (10) can be decomposed 

into 
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and 
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After matrix condensation as in Eqs. (12) and (13), the incremental rotational deformations of the 

beam-column element Δθe1 and Δθe2 can be evaluated from the incremental joint rotations Δθs1 and 

Δθs2 from the equation 
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or 
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where |K| = (K11 + Ss1)⋅(K22 + Ss2) – K12K21.  Once the element incremental rotations Δθe1 and Δθe2 

are known from Eq. (14) which includes material non-linearity, the incremental bending resistance 

can be evaluated from 
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which is based on the elastic stiffness formulation based on elastic stiffnesses Kij because it is 

assumed that the element is elastic.  Hence the equation 
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is equivalent to the incremental secant stiffness in the second-order elastic stiffness formulation in 

the companion paper [1].  For axial actions, the incremental force equilibrium equation is written 

separately as 
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where the incremental axial force in the linear spring ΔPa is equal to the axial force in the beam-

column element ΔPe.  The total incremental axial deformation Δu is the sum of the incremental 

axial deformation in the axial spring Δua and in the element Δue, and consequently the axial 

resistance of an element can be expressed as 
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which describes the axial resistance of the element in terms of the axial displacement and so is 

equivalent to the secant stiffness for a plastic axial spring. 

3.3. Tangent stiffness for plastic hinge formulation 

For bending actions, the incremental moment-rotation relationship needs to be reformulated with 

respect to the nodal or local coordinate system, and the axial spring stiffness superimposed into the 

stiffness formulation in a similar way; it being assumed that the moment and axial force equilibrium 

conditions can be formulated separately.  This produces 
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Equation (19) is equivalent to the tangent stiffness in the second-order elastic stiffness formulation 

in the companion paper [1].  This non-linear equilibrium path due to material non-linearities can be 

traced using the non-linear solution procedures described in the companion paper [1]. 



4. Numerical Verifications 

In order to verify the accuracy and efficiency of the present non-linear second-order inelastic 

analysis, material non-linearities for an encastré beam with a concentrated load are compared with 

other inelastic analyses.  Two benchmark solutions for frame structures are also investigated, 

including both material and geometric non-linearities, while a calibration frame is studied for 

investigating the effect of spreading of plasticity.  Finally, a large-scale space framed structure is 

analysed using the proposed method. 

4.1. Encastré beam with an asymmetric point load 

A beam with fixed or encastré ends has been investigated to isolate a case which is governed by 

material yielding.  The inelastic behaviour of this fixed beam with a residual stress of 60% of the 

yield stress was studied by Liew et al. [17], in which a point load was applied at one-third of the 

beam, as shown in Fig. 3.  Plastic hinges then form in sequence, until a plastic mechanism is 

achieved (the load factor λp = PL/Mp quoted in Trahair et al. [18] is 9.0 for a full plastic 

mechanism).  Liew et al. [17] analysed this problem by both a refined plastic hinge method and a 

hinge-by-hinge method.  The load factor λp = PL/Mp is plotted against the dimensionless deflection 

δ⋅EI/MPL2 at the point of application of the load in Fig. 3.  For the proposed non-linear analysis, two 

elements were used for the beam with the load being applied at span.  It can be seen that the results 

of the present method are in accord with those of Liew et al. [17].  In the present non-linear 

analysis, initial yielding initiates at location 1 with a load factor λp1 = 5.41; this hinge becomes fully 

plastic when λp1 = 8.81.  Fully-yielded plastic hinges form at locations 2 and 3 at values of λp2 = 

8.91 and λp3 = 9.01.   

 

 

 

 

 

 

Figure 3. Normalized load-displacement curve of a fixed-end beam 
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Figure 3 also summarises the plastic load factors from various approaches.  This numerical 

verification illustrates that the proposed plastic hinge method is able to model residual stresses, 

gradual yielding and fully-yielded material behaviour. 

4.2. Single-bay frame of Vogel 

 

 

 

 

Figure 4. Geometric configurations and loading pattern of Vogel’s frame 

The portal frame shown in Fig. 4 was analysed numerically in 1985 by Vogel [19], and this frame 

has been used by several researchers (e.g. Chan and Zhou [12] and Toma and Chen [20]) as a 

benchmark solution for including material non-linearities including residual stresses, gradual 

yielding and full-plasticity, as well as geometric non-linearities.  Figure 4 shows the applied 

loading, material properties, member cross-section and geometry of the simple portal frame.  The 

initial out-of-straightness ψ = 1/400 of the column height was engaged in the plastic zone method 

[19].  The horizontal load on the top of the frame produces sway in the frame, and the vertical loads 

generate second-order effects in the columns. 

 

 

 

 

 

 

 

Figure 5. Load-displacement curve at the top of Vogel’s portal frame 
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In the model herein, only one element was used to model each of the members, whereas Clarke [21] 

used a refined mesh with 50 elements for each column and 20 elements for the beam in his 

numerical modelling.  More recently, Teh and Clarke [22] produced a more computationally 

efficient approach in their plastic zone method for which 4 elements were used in each column to 

model geometric non-linearity and stability effects, and one element for the beam.  The present 

technique is still more computationally efficient than the latter modelling of Teh and Clarke [22]. 

The load versus displacement curves for the top of the column from both the approach of this paper 

and that of Vogel [19] are shown in Fig. 5.  Generally, the load-displacement behaviour from the 

present method is reasonably consistent with that of Vogel, the deviation between the present 

analysis and Vogel’s plastic zone method being attributed mainly to the different onsets of initial 

yielding at load factors of 0.8 and 0.6 respectively.  The plastic hinge formulation of Vogel does not 

include gradual yielding.  The ultimate load factor from the analysis of this paper is 1.05, whereas 

that from Vogel’s plastic zone analysis is 1.02 and Vogel’s plastic hinge analysis is 1.07.  All of 

these three methods produce a consistent ultimate load factor. 

Initial yielding occurs firstly in the right column at its bottom at a load factor of 0.825, and all four 

joints of the frame have reached initial yield at a load factor of 0.875.  When the frame is loaded to 

a load factor of 1.05, a fully yielded plastic hinge forms in the right column at its bottom, and with 

an infinitesimal increase of this load factor, a failure mechanism develops in the frame.  The portal 

frame exhibits no strength reserve from its threefold redundancy because of the symmetric loading 

distribution in this frame; when the fully yielded plastic hinge is formed, the other three hinges for 

which full yielding is imminent form fully plastic hinges in the next iteration with numerical 

divergence being detected at a load factor of 1.05.  This represents the ultimate capacity of the 

frame.  The lateral behaviour of the frame from the present approach is stiffer than the results of 

Vogel [19], probably because of the different initial yielding conditions which are engaged in both 

analyses.  This benchmark numerical example is used commonly as a countercheck of gradual 

yielding behaviour. 

4.3. Six storey rigid-jointed frame of Vogel 

The two-bay six-storey European calibration frame shown in Fig. 6 was subjected to proportionally 

applied distributed gravity loads and to concentrated loads, and its behaviour was reported by Vogel 

[19].  The member sections and frame geometry are depicted in Fig. 6, and the elastic modulus and 

yield stress of the steel were taken as 2.05×108 kN/m2 and 2.35×105 kN/m2 throughout.  The initial 

out-of-straightness of the frame was assumed to be ψ = 1/450, with all members being rigidly 

connected at their joints.  In the modelling of this frame, each column was discretised as one 
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element whilst the beams were subdivided into four elements because only nodal loads are 

admitted, although the present formulation does allow for a quadratic bending moment distribution 

to be simulated in by the fourth-order finite element.  It is worth noting that using the plastic zone 

approach [21], each column was subdivided into 20 elements and each beam into either 20 or 40 

elements, depending on the degree of non-linearity. 

 

 

 

 

 

 

Figure 6. Geometric configuration and loading pattern of Vogel’s six-storey frame 

 

 

 

 

 

 

 

Figure 7. Lateral drifts of the Vogel’s six-storey frame 

Figure 7 shows the lateral drifts of the 4th and 6th floors of the frame determined from the analysis 

of this paper, and those reported by Vogel [19], and it can be seen that they are in excellent 

agreement.  The ultimate load factor predicted by the current method is 1.14, which is slightly 

higher than the value of 1.12 given by Vogel [19]. 

In the approach of this paper, initial yielding occurs at a load factor of 0.62 at the beams adjacent to 

the interior column joints at the 4th and 6th floor levels.  Both of these hinges have fully yielded 
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when a load factor of 0.94 is reached, which heralds the onset of non-linearity which can be seen in 

Fig. 7.  At a load factor of 1.02 in Fig. 7, the number of fully-yielded plastic hinges increases to 

four, and these are denoted by the numeric index 1 in Fig. 8a and in Fig. 7.  When the frame is 

loaded further to a load factor of 1.10, a total of 10 fully-yielded plastic hinges have formed and the 

additional ones are denoted by the index 2 in Fig. 8a and in Fig. 7.  When the ultimate load of the 

frame has been reached, there are a total of 23 fully-yielded plastic hinges, those formed at the 

beams’ mid-spans are due mainly to gravity loading, whereas those formed at the beams’ ends are a 

result of the effect of sway in accordance with the distribution of bending moment at ultimate 

loading which is shown in Fig. 8b.  This verification example indicates that the present inelastic 

approach can accurately replicate the effects of gradual yielding and full plasticity in a large-scale 

multi-storey steel frame.  Ziemian [23] also carried out a calibration study of this frame in his 

numerical analysis in 1992.  It is worth noting that the following comparison is for information only 

because of different computational technologies being used.  While Ziemian’s plastic zone 

approach took 8 minutes to perform the analysis, the present analysis took 4 seconds on a desktop 

personal computer.  The present plastic hinge analysis is more efficient by comparison and can 

capture the real inelastic and stability behaviour of large-scale frames accurately, including initial 

yield, gradual or partial yield and full plasticity, as well as frame sway and member bowing. 

 

 

 

 

 

 

Figure 8. Plastic hinge pattern and moment distribution on the frame 

4.4. Two-storey asymmetric calibration frame 

The two-storey two-bay asymmetrical frame subjected to vertical loading only shown in Fig. 9 was 

studied in 1982 by Iffland and Birnstiel [24] as part of the American Institute of Steel Construction 

report on frame stability with plasticity.  This calibration frame was chosen as a benchmark for 

validating the loading redistribution due to plasticity.  The material modelling used was elastic-

perfectly-plastic (without strain hardening), and the geometry, material properties, loading and 

168.4kNm

156.6kNm

165.3kNm

147.9kNm

151kNm

86kNm

114.2kNm

131kNm

158kNm

150kNm

148.6kNm

86.2kNm

106kNm 127.5kNm 107kNm

144.4kNm 228.5kNm

239.4kNm 240kNm

191kNm 191kNm

150kNm 150kNm

150kNm 149kNm

2

2 3

2 2

1 1

1 3

1
3

3 3

3 3

2

3

3

3

3

3

3 3

a) Locations of the fully plastic b) Moment distribution on the 



section configurations are shown in Fig. 18.  Ziemian [23] and Clarke [21] also analysed this frame 

in the verification of their numerical analyses.  Ziemian [23] presented both plastic zone and hinge 

methods, in which he used 60 elements per beam and 50 elements per column in his modelling, 

while Clarke [21] undertook a plastic zone method analysis of the frame with each column being 

subdivided into 20 elements, beams B1 and B3 into 20 elements and beams B2 and B4 into 40 

elements.  However, modelling the frame using the approach of this paper necessitated subdividing 

the columns into one element beams into 4 elements to include the distributed loading, as discussed 

previously.  Both arc-length [25] and residual load [26] strategies are proposed to trace the non-

linear equilibrium solution of this two-storey asymmetrical frame. 

 

 

 

 

 

Figure 9. Configurations of the American calibration frame 

 

 

 

 

 

 

 

Figure 10. Lateral displacement at top of the two-storey frame against load factor 

The lateral displacement of the frame at the roof level Δ is plotted in Fig. 10 against the load factor.  

The lateral displacement from the method of this paper agrees almost completely with the plastic 

hinge method [23] throughout the entire loading range.  Columns C1 and C4 are much more 

flexible than the other columns of the frame, and so initially the frame sways towards its weaker 
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λp = 0.736

λp = 0.808

λp = 0.85

λp = 0.976

λp = 0.998

λp = 0.999

bay as shown in Fig. 10.  At a load factor of about 0.808, three plastic hinges are formed as shown 

in Fig. 11, with the differential yielding between the stronger and weaker bays causing their relative 

stiffnesses to change, with a consequent change in the direction of the sway Δ, as shown in Fig. 10.  

Using the present non-linear analysis, the plastic hinges form subsequently with an increase in load 

until the ultimate load factor (λu = 0.999) is reached, with the hinges shown in Fig. 11, but before 

doing so the sway reverses its direction again due to the significant yielding of the stronger bay, in 

which plastic hinges form at the mid-span of beams B2 and B4.  The ultimate load factor of λu = 

0.999 compares very well with that of Ziemian [23] (λu = 1.01) and Clarke [21] (λu = 0.985).  The 

numerical analysis proposed herein was completed in 6 seconds for 300 load cycles. 

 

 

 

 

 

 

Figure 11. Sequence of plastic hinges formed at corresponding plastic load factors 

4.5. 6-storey large space frame structure 

The rigid-jointed 6-storey asymmetrical space frame shown in Fig. 12 was proposed and analysed 

by Orbison et al. [27], and later by Liew et al. [28] and Jiang et al. [29].  The yield strength and 

elastic modulus were taken as 250×105 kN/m2 and 2.07×108 kN/m2 respectively, and the frame was 

subjected to both uniform gravity loads of 9.6 kN/m2 on each floor and lateral loads of 53.376 kN 

which were applied at every beam-column joint in the transverse z-direction, as shown in Fig. 12.  

The member sections and plan configuration of the floors are also shown in Fig. 12.  In the present 

numerical modelling, one element was used for each member to replicate the overall load-

displacement behaviour of the space frame, which is the same as used in [28, 29].  The main 

differences in these analyses is in the treatment of inelasticity; a plastic hinge model using a plastic 

interaction function was employed by Orbison et al. [27] and by Liew et al. [28], whereas a plastic 

zone approach with gradual member yielding was used by Jiang et al. [29].  The refined plastic 

hinge approach in the present method allows for gradual yielding at the hinge under both axial and 

bending actions. 
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Figure 12. Section and geometric configuration of 6-storey space framed structure 

 

 

 

 

 

 

 

Figure 13. Lateral drifts of points A and B in x- and z-directions vs load factor 

Figure 13 plots the lateral drifts at points A and B, which are shown as black dots in Fig. 12, in the x 

and z-directions against the load factor.  In [28, 29], the lateral displacements of point A are 

completely consistent in all ranges with the results of the present non-linear analysis.  The present 

analysis predicts initial frame yielding at a load factor of 0.835; the ultimate load factor of the space 

frame from [28] is 1.005 whereas a value of 1.0344 is predicted from the present approach.  In Fig. 

13, it can be seen that the lateral displacement of point B in the x-direction is antisymmetric to that 

of point A, whilst the lateral displacements for points A and B are the same in the z-direction.  This 

implies that the structure twists as the applied loads and structural form are asymmetrical because of 

the change of the structural plan at the fourth floor level.  In addition, after sufficient plastic hinges 

have formed at a load factor of about 0.92, the space frame undergoes large lateral displacements in 
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both transverse directions and the present non-linear analysis predicts the formation of 16 plastic 

hinges at the ultimate load factor of 1.0344.  The locations of the plastic hinges are shown by the 

dots in Fig. 13, indicating the yielding which occurs at the ends of the beams in the 6-sotrey space 

frame due to the torsional effect on the whole structure.  In [28], a total of 20 plastic hinges 

developed and most of them were located at the fourth floor owing to the twisting of this space 

structure.  In summary, the general material and geometric non-linear behaviour of the large-scale 

space structure is adequately captured using the present non-linear analysis. 

5. Concluding remarks 

In this paper, a refined plastic hinge method has been proposed to account for material non-

linearities in steel framed structures.  The formulation makes recourse to a gradual yielding from 

prescribed initial and fully-yielded interaction criteria in terms of force resultants (axial and bending 

actions), so that distributed plasticity across the element section is adequately modelled.  This 

proposed refined plastic hinge formulation is incorporated into the non-linear elastic stiffness 

analysis described in the companion paper.  The technique has been applied to a number of 

independent sample problems, with good agreement being obtained, and moreover the solutions 

were obtained very rapidly. 

Both this and the companion paper demonstrate that the present fourth-order stiffness formulation 

with a refined plastic hinge methodology can accurately tackle material yielding and structural 

instability, using a minimum of element discretisations by comparing with the conventional finite 

element in deference to the plastic zone method.  The technique provides an efficacious and reliable 

means for the analysis of general steel structures numerically, when they have many members, 

accounting adequately for geometric and material non-linear effects.  Further, the present plastic 

hinge stiffness formulation is able to evolve itself accounting for the various kinds of materials 

versatilely, such as concrete or composite, once the failure surfaces in the hinge stiffness are 

replaced correspondingly.  This paper therefore offers a non-linear analysis with accuracy in 

solution, versatile for vast forms of structures and efficiency in convergence for engineering 

practice. 
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