Functional and Biochemical Alterations of the Medial Frontal Cortex in Obsessive-Compulsive Disorder

Yucel, Murat, Harrison, Ben, Wood, Stephen, Fornito, Alex, , Pujol, Jesus, Clarke, Kerrie, Phillips, Mary, Kyrios, Michael, Velakoulis, D, & Pantelis, C (2007) Functional and Biochemical Alterations of the Medial Frontal Cortex in Obsessive-Compulsive Disorder. Archives of General Psychiatry, 64(8), pp. 946-955.

[img]
Preview
Accepted Version (PDF 896kB)
6749_3.pdf.

View at publisher

Description

Context: The medial frontal cortex (MFC), including the dorsal anterior cingulate (dAC) and supplementary motor area (SMA), is critical for adaptive and inhibitory control of behaviour. Abnormally high MFC activity has been a consistent finding in functional neuroimaging studies of obsessive-compulsive disorder (OCD). However, the precise regions and the neural alterations associated with this abnormality remain unclear. Objective: To examine the functional and biochemical properties of the MFC in patients with OCD. Design: Cross-sectional design combining volume localized proton magnetic resonance spectroscopy (1H-MRS) and functional MRI (fMRI) with an inhibitory control paradigm (the Multi-Source Interference Task; MSIT) designed to activate the MFC. Setting: Healthy control participants and OCD patients recruited from the general community. Participants: Nineteen OCD patients (10 male, and 9 female) and nineteen age, gender, education and intelligence-matched healthy control participants. Main Outcome Measures: Psychometric measures of symptom severity, MSIT behavioural performance, blood-oxygen-level-dependent (BOLD) activation and 1H-MRS brain metabolite concentrations. Results: MSIT behavioural performance did not differ between OCD patients and control subjects. Reaction-time interference and response errors were correlated with BOLD activation in the dAC region in both groups. Relative to control subjects, OCD patients showed hyper- activation of the SMA during high response-conflict (incongruent > congruent) trials and hyper-activation of the rostral anterior cingulate (rAC) region during low response- conflict (incongruent < congruent) trials. OCD patients also showed reduced levels of neuronal N-acetylaspartate in the dAC region, which was negatively correlated with their BOLD activation of the region. Conclusions: Our findings suggest that hyper-activation of the medial frontal cortex in OCD patients may be a compensatory response to neural pathology in the region. This relationship may partly explain the nature of inhibitory control deficits that are frequently seen in this group and may serve as a focus of future treatment studies.

Impact and interest:

227 citations in Scopus
192 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

556 since deposited on 28 Mar 2007
34 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 6749
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Wellard, Robertorcid.org/0000-0002-7364-7708
Measurements or Duration: 10 pages
Keywords: Cingulate, Functional MRI, OCD, Obsessive-Compulsive, Spectroscopy
ISSN: 0003-990X
Pure ID: 33736335
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Institutes > Institute of Health and Biomedical Innovation
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Research Centres > Australian Research Centre for Aerospace Automation
Copyright Owner: Copyright 2007 American Medical Association
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 28 Mar 2007 00:00
Last Modified: 05 Aug 2024 17:07