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1 Introduction

Considering the wide spectrum of situations that it may encounter, a robot
navigating autonomously in outdoor environments needs to be endowed with
several operating modes, for robustness and efficiency reasons. Indeed, the
terrain it has to traverse may be composed of flat or rough areas, low cohesive
soils such as sand dunes, concrete road etc. . . Traversing these various kinds of
environment calls for different navigation and/or locomotion functionalities,
especially if the robot is endowed with different locomotion abilities, such as
the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers.

Numerous rover navigation techniques have been proposed, each of them
being suited to a particular environment context (e.g. path following, obstacle
avoidance in more or less cluttered environments, rough terrain traverses...).
However, seldom contributions in the literature tackle the problem of selecting
autonomously the most suited mode [3]. Most of the existing work is indeed
devoted to the passive analysis of a single navigation mode, as in [2]. Fault
detection is of course essential: one can imagine that a proper monitoring of
the Mars Exploration Rover Opportunity could have avoided the rover to be
stuck during several weeks in a dune, by detecting non-nominal behavior of
some parameters.

But the ability to recover the anticipated problem by switching to a better
suited navigation mode would bring higher autonomy abilities, and therefore a
better overall efficiency. We propose here a probabilistic framework to achieve
this, that fuses environment related and robot related information in order to
actively control the rover operations.
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2 Approach

The aim of our system is to select a navigation mode, that specifies either
the combination of the main three perception, decision and action processes,
or some parameters of each of these processes. For instance, a path following
mode is defined by a path detection process and a servoing control law (no
decision process here), whereas a rough terrain traverse mode is defined by
a fine terrain geometric modeling process, a trajectory generation process
and a trajectory following process. In the latter case, the trajectory following
process may be achieved in various ways, especially if the rover is endowed
with a complex articulated chassis (e.g. that allows both simple rolling or
wheel walking motions).

To select the navigation mode to apply, two different sources of information
are available :

• Environment related knowledge, or context data, that specify the suitabil-
ity of the available navigation modes for given areas. Such information can
be provided by an analysis of the terrain based on prior available aerial
data for instance, by the rover’s own terrain perception abilities (extero-
ceptive sensors), or by a combination of both. Given the nature of the
processes that provide such knowledge, a description that expresses the
partial probabilities of each considered navigation mode to be efficient is
particularly adapted.

• On-line execution knowledge, provided by processes that evaluate the effi-
ciency of the current navigation mode. These on-line monitoring processes
check the evolution of some parameters with respect to pre-defined nomi-
nal behaviors.

These pieces of information are exploited to estimate the most suited mode
thanks to a Hidden Markov Model (figure 1): the role of this HMM is to com-
pute on-line the probability that each available mode is the the most adapted
to the current situation [8]. Each state xk corresponds to the proposition:
“mode mk is the best mode to apply” among the available applicable modes,
and the chain is designed to survey the evolution in time of the robot behavior.

2.1 Conditional Estimation

The framework is designed as a Markov conditional estimation system [1]:
the goal is to estimate the conditional state xk,t at time t, knowing context
observation until time t, O1:t, and behavior information B1:t, provided by
the on-line monitoring processes. Let’s consider the robot is endowed with N
different modes. The probability that mode mk is the one to be apply at time
t can be written, ∀k ∈ [[1, N ]]:

P (xk,t|O1:t, B1:t) = η P (Ot|xk,t)
N∑

i=1

P (xk,t|xi,t−1, B1:t)P (xi,t−1|O1:t−1, B1:t−1)
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Fig. 1. Example of a HMM for the
mode selection, with three modes avail-
able. The active mode here is m1.

Fig. 2. The rover Dala

where:
• P (Ot|xk,t) is an observation probability (context data) obtained through an
analysis of the terrain (initial classification data).
• P (xk,t|xi,t−1, B1:t) is a conditional probability of the transition from state
xi to state xk, knowing the behavior B1:t until time t.
• η is a normalization coefficient.

2.2 Transition Probabilities

The expression of the conditional probability of transition from state xc to
state xk (with k 6= c), knowing the behavior B1:t of the current mode mc, is:

P (xk,t|xc,t−1, B1:t) = P (xk,t|xc,t−1) + (1 − P (xk,t|xc,t−1))Qc,k(B1:t) (1)

Where Qc,k(B1:t) is a pseudo-probability of bad behavior of mode mc and
P (xk,t|xc,t−1) is an a priori transition probability, from a fixed dynamic
model. That way, if bad behavior of the current mode is detected by monitors
while another suited mode is available, Qc,k(B1:t) will tend to raise, increasing
the probability of the transition to the alternative mode (compared with the
initial a priori probability P (xk,t|xc,t−1)).

If no behavior data is available (it is generally the case for all modes differ-
ent from the current active one), Qc,k(B1:t) = 0, so the transition probability
is no more conditional and: P (xk,t|xc,t−1, B1:t) = P (xk,t|xc,t−1)

3 Navigation modes

The experiments are made with the robot Dala (figure 2), an iRobot ATRV
equipped with a stereo-vision bench, a SICK 2D scanning laser rangefinder, an
inertial measurement unit, odometry encoders, and a fiber-optics gyrometer.
Two navigation modes have been implemented on this rover:
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• The Flat Terrain Navigation Mode (FlatNav), adapted to flat terrains, with
possible high speeds. The mode is a reactive collision avoidance method
based on the information provided by the laser rangefinder, that identifies
the navigation situation and applies the corresponding motion heuristics
with a divide and conquer strategy [6].

• The Rough Terrain Navigation Mode (RoughNav), dedicated to uneven
terrains, with rather low speeds. It uses a local trajectory selection based
on predicted placements of the rover’s structure on a Digital Elevation Map
(DEM) built on-line [5]. The trajectory selected is the one that optimizes
an interest/cost criteria, where the interest is a distance to the goal and
the cost represents an integration of difficulties associated to the predicted
attitude and configuration of the rover obtained by the placement function.

.

4 Context observation data: terrain classification

The first kind of data used to estimate the mode to apply is context data.
Such data is obtained thanks to the robot placement algorithm on the DEM
built on-line from stereovision data. On each cell of the map, the predicted
configurations of the robot placed with different orientations are computed,
and then combined to generate a difficulty associated to that cell (an example
of difmap obtained can be seen in figure 3). This difficulty is clearly uncertain:
a standard deviation is associated to each configuration and also consequently
to the difficulty associated to each cell. An observation model enables to com-
pute the context observation probabilities for the three classes associated to
the modes FlatNav, RoughNav and Stop, which are: Flat Terrain (difficulty
close to zero), Rough Terrain and Obstacle (difficulty close to 1 = maximum
difficulty). Applying that observation model enables to obtain the probability
densities P (O|FlatNav), P (O|RoughNav) and P (O|Stop) (here, observation
O = difficulty diff).

Other ways of getting context information are studied, such as the com-
bination with aerial data from a blimp over the area, and/or with initial
information provided by an operator.

5 On-line monitoring

The role of monitors is to check the behavior of the current mode by compar-
ing a model of the nominal behavior with on-line gathered data, in order to
provide probabilities that are used to compute the actual transition probabil-
ities between the available modes. That way, if a monitor estimates that the
current behavior of the active mode is not nominal, it will tend to provoke a
transition to an alternative suited mode.
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(a) DEM and robot’s trajectory (b) difmap

Fig. 3. DEM and difmap corresponding to an area with a pavement.

Various monitors can be defined, and we have developed three different
ones for the experiments that will be presented.

5.1 Uneven Terrain Detector (UTD)

This monitor is to be applied when the current mode is FlatNav to verify
that the currently traversed terrain is actually flat. It uses an energy function
computed with roll/pitch rates and the vertical acceleration provided by the
IMU – this energy should indeed remain close to zero [8].

5.2 Locomotion Efficiency Monitor (LEM )

This monitor detects significant slippage situations, and especially locomo-
tion faults, on the basis of speeds coherence indicators, used in a probabilistic
classification procedure (see [7]). These indicators are the differences between
various ways of estimating angular and linear speeds on board the rover. If
the behavior of the robot is nominal, the various estimations should be simi-
lar: the higher the differences, the worse the locomotion behavior. Using these
indicators as features, a Bayesian classification procedure based on a prelim-
inary supervised learning stage enables to compute partial probabilities that
the robot is in each of these following states: Efficient Locomotion, Slipping
and Locomotion Fault.

5.3 Attitude Monitor

The Attitude Monitor uses the on-line comparison between the robot’s atti-
tude predicted and observed by the on board sensors. This monitor is applied
when the RoughNav mode is active: the attitude prediction is made on-line
thanks to the placement algorithm, applied at the current location of the rover
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on the computed DEM. Associated standard deviations are also computed,
on the basis of the altitude standard deviations encoded in the DEM. These
predicted attitude angles are then compared to the ones estimated using the
IMU data, thus providing information about the behavior of RoughNav : in
nominal behavior, predicted and observed angles should be similar.

Indeed, it is crucial to be able to check the validity of the angle prediction
(and of the DEM computed for that purpose), as RoughNav relies on that
operation. The main possible errors made by that prediction algorithm are due
to: localization errors (leading to an inaccurate model of the environment),
stereovision errors (including miscalibration of the stereovision bench) and
model assumptions (e.g. assuming a rigid terrain).

Figure 4 shows an illustration of that comparison between prediction and
observation of the pitch angle of the robot, and the consequent pseudo-
probability of bad behavior obtained from it after applying the shaping
function illustrated on figure 5. That function (corresponding to a pseudo-
probability density) takes into account the uncertainty of the prediction and
adds an influence of the maximum angle tolerated φmax: indeed, the closer to
the limitation the observed angle is, the more critical a rather small difference
between prediction and observation might be.

Fig. 4. Comparison between predicted
pitch φpred and on-line observed pitch
φobs while the robot is going over a
pavement step, and consequent “bad-
behavior” pseudo-probability computed.

Fig. 5. Behavior pseudo-probability dis-
tribution over the difference dφ =
|φpred − φobs| and the observation |φobs|.

6 Integration and experimentation

6.1 Multi-modes navigation system

The multi-modes navigation system implemented on the rover Dala is illus-
trated on figure 6. It is composed of three navigation modes: FlatNav, Rough-
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Fig. 6. Multi-modes navigation system for Dala, using FlatNav, RoughNav and
a Stop mode in which all navigation actions are stopped. Node named FlatNav
corresponds to the assumption: “FlatNav is the navigation mode to apply”.

Nav and Stop, in which navigation is stopped if there is no better available
alternative or no way for the robot to travel through the present area.

FlatNav is monitored by the Uneven Terrain Detector and by the Loco-
motion Efficiency Monitor (LEM ). Indeed, if an area of uneven terrain or a
locomotion difficulty is respectively detected by those monitors, it means that
the terrain is not so flat and “easy” than expected (regarding only the con-
text data). Consequently, RoughNav should be preferred, as it uses a far more
complete environment model for motion planning: transition from xFlatNav

(i.e. “FlatNav is the mode to apply”) to xRoughNav (i.e. “RoughNav is the
mode to apply”) should be encouraged.

RoughNav is monitored by LEM too (Stop will tend to be preferred to
RoughNav in case of locomotion fault), but also by the Attitude Monitor.
As Dala is not endowed with any other navigation mode adapted to rough
terrains, the probability of transition from RoughNav to Stop will increase if
Attitude Monitor shows evidence of a bad behavior.

6.2 Monitors and Transition Probabilities

The current mode (mc) pseudo-probability of bad behavior, Qc,k(B1:t), which
has been introduced in equation 1, is provided by the active monitors. If
there is only one active monitor to check the behavior of mode mc, and that
mode mk is an available alternative, the element Qc,k(B1:t) is directly the
probability of bad behavior according to that monitor. For example, figure
7 shows behavior data and transition probabilities obtained with RoughNav
being the current mode and Attitude Monitor the only active monitor. The
influence of behavior data provided by monitors can be seen clearly when
context observation was wrong.

If several monitors are active, the pieces of information they provide need
to be combined. Several combination strategies can be considered, depending
on the relations between the events detected. Indeed, the events can be the
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Fig. 7. Example of probabilities of mode to apply with the Attitude Monitor active,
while context data is fixed by a human observer to: p(O|Flat) = p(O|FlatNav) =
0.09, p(O|Rough) = p(O|RoughNav) = 0.8 and p(O|Obstacle) = p(O|Stop) = 0.11.
In spite of context data privileging RoughNav, the active monitor contributes to
rather privilege several times Stop, as it detects evidence of bad behavior of Rough-
Nav (inconsistencies between prediction and observation of the attitude angles).

same, but detected using different signals (enabling to use the Bayes formula),
or they may be linked by a causal relation, or a logical combination.

In the present case, the behavior of FlatNav is checked by two monitors:
UTD (Uneven Terrain Detector) and LEM (Locomotion Efficiency Monitor).
The events they detect can be considered as independent, and the transition
towards RoughNav should be privileged if an uneven area is detected by UTD
or if there is a slipping situation seen by LEM. Thus, we make a logical
combination, leading to:

QFlatNav,RoughNav(B) = P (Slipping) + P (UTD)− P (Slipping).P (UTD)

Figure 8 illustrates the result of the combination of behavior informa-
tion provided by the two monitors UTD and LEM, while the active mode is
FlatNav and the context observation probabilities have been set by a human
observer. It shows that although context data assume the terrain is flat, be-
havior data provided by the combined monitors can lead to prefer RoughNav
several times.

Finally, Figure 9 shows an illustration of a complete experiment: the con-
text data are computed by building a difmap, and the adequate monitors are
active to provide behavior information.
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Fig. 8. Example of probabilities of the modes to apply with combination of
monitors UTD and LEM, while context data is fixed by a human observer to:
p(O|Flat) = 0.75, p(O|Rough) = 0.20 and p(O|Obstacle) = 0.05. In spite of context
data privileging the FlatNav mode, the two combined monitors contribute to rather
privilege several times RoughNav, as they detect evidence of rough terrain areas
above the robot and/or inefficient locomotion.

(a) Context observation probabilities
computed from the difmap

(b) Modes application probabilities after
integration of behavior data

Fig. 9. Illustration of results in the situation introduced in figure 3. (a) shows the
difficulty read in the difmap along the trajectory of the robot, which is going up a
pavement step (see the predicted pitch angle), and the context data generated from
it (P (O|TerrainClass)). (b) illustrates the final probabilities after integration of
behavior data.
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7 Conclusion

This paper presents a method for estimating on-line the navigation mode to
be apply on a rover endowed with several ways of achieving navigation in an
outdoor environment. It is based on a Hidden Markov Model which uses two
kinds of information: context observation (classification of the terrain on the
basis of the evaluation of a difficulty) and behavior information provided by
monitors. Three of them have been developed and presented, many others
may be added for the benefit of the whole system. The experimentation show
the interest of such an approach, especially when context observation was
not able to make the right assumption about the terrain, which is exhibited
by the detection of a behavior issue. There are numerous perspectives to that
work, including the development of many other monitors to benefit from more
behavior information, the use of additional navigation modes such as path fol-
lowing, and a thorough experimentation campaign to compare performances
with other rover navigation methods.
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