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Abstract: We present a novel approach for developing summary statistics for
use in approximate Bayesian computation (ABC) algorithms using indirect infer-
ence. We embed this approach within a sequential Monte Carlo algorithm that
is completely adaptive. This methodological development was motivated by an
application involving data on macroparasite population evolution modelled with
a trivariate Markov process. The main objective of the analysis is to compare
inferences on the Markov process when considering two different indirect mod-
els. The two indirect models are based on a Beta-Binomial model and a three
component mixture of Binomials, with the former providing a better fit to the
observed data.
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1 Introduction

In approximate Bayesian computation (ABC), we seek to make inferences
about the parameters of the posterior distribution when the likelihood func-
tion is computationally intractable. While the likelihood function itself can-
not be computed easily, it is assumed that simulation from the model is
relatively straightforward. The likelihood is replaced by a comparison of
p summary statistics, S(·) = [S1(·), . . . , Sp(·)]T , of the observed and simu-
lated data using a distance function, ρ(y, x)

ρ(y, x) = ‖S(y)− S(x)‖.

ABC is particularly effective when the statistics are sufficient. However, in
many applications sufficient statistics are not available and the practitioner
must resort to a selection of carefully chosen data summaries.
In this paper we investigate an alternative approach to obtaining summary
statistics based on indirect inference (Heggland and Frigessi 2004). In indi-
rect inference an auxiliary model is proposed whose likelihood function is
tractable and provides a good description of the data. The objective is to



2 ABC using Auxiliary Model Based Estimates

search for parameter values of the model of interest that produce simulated
data that lead to auxiliary parameters close to those based on maximum
likelihood of the original data. Therefore a comparison of summary statis-
tics involves computing a distance between such auxiliary parameters.
We consider a stochastic process model developed by Riley et al (2003) for
a macroparasite population within a host. A Beta-Binomial model or a Bi-
nomial mixture is employed as an auxiliary model to provide a description
of the data, while the stochastic model encapsulates the biological system
which drives the observed data. We investigate the sensitivity of the in-
ferences on the Markov process model to the indirect model. In particular
we analyse any inefficiencies by introducing a three component Binomial
mixture, which does not fit the data as well as the Beta-Binomial model.

2 Data and Modelling

Here the data is described as well as the stochastic process model of Riley
et al (2003) used to explain the data. We also outline the auxiliary models.

2.1 Data

The data consist of mature parasite counts at particular autopsy times for
212 hosts (Denham et al 1972). Each host was injected with roughly 100 or
200 larvae and necropsy time ranged between 24 and 1193 days after the
initial infection. The data are in the form of proportions (the mature count
divided by the initial infection). From Figure 1 there is clear evidence of
overdispersion, which a Binomial distribution alone cannot describe.

2.2 Markov Process Model

The following stochastic model was developed by Riley et al (2003) to help
explain the population dynamics of Brugia pahangi. At time t any host
is described by three random variables {M(t) , L(t), I(t)}, where M(t) is
the number of mature parasites, L(t) is the number of larvae and I(t) is a
discrete immunity variable. Initially cats are infected with LI larvae and
after a certain time the hosts are autopsied and the number of mature
parasites are recorded. It is assumed that larvae can mature at a rate of
γ per larva per day. Larvae die at a rate µL + βI(t) per larva where µL

represents natural death of larvae and β describes the death of larvae due
to the immune response of the host. The acquisition of immunity occurs at
rate νL(t), and a host loses immunity at a rate µI per unit of immunity.
Mature parasites die at a rate of µM adults per day. In its deterministic
form, the above model can be re-written as a set of differential equations

dL

dt
= −µLL− βIL− γL,

dM

dt
= γL− µMM,

dI

dt
= νL− µII.
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We consider the stochastic version of this model via a continuous time
discrete trivariate Markov process as developed by Riley et al (2003). Data
can be simulated from the model using the algorithm of Gillespie (1977).
We consider µM = 0.0015 and γ = 0.04 fixed as per Riley et al (2003).

2.3 Auxiliary Models

For the auxiliary model we propose a Beta-Binomial model, which contains
an extra parameter to capture the dispersion. More specifically, the ith

observation has a Beta-Binomial distribution with Beta parameters, αi and
βi. It is convenient to use a reparameterisation in terms of the proportion,
pi = αi/(αi + βi), and overdispersion, θi = 1/(αi + βi), so that the mean
and variance are given by lipi and lipi(1− pi)(1+ (θi/(1+ θi))(li− 1)). We
relate these parameters to the necropsy time, ti, and initial larvae burden,
li, through the following functions chosen to optimise the fit to the data

logit(pi) = β0 + β1 log(ti) + β2 log(ti)2

log(θi) =
{

η100, if li ≈ 100
η200, if li ≈ 200 .

We also consider an alternative auxiliary model based on a three component
Binomial mixture. This model was chosen purposefully as it still provides
a reasonable description of the data but does not fit the data as well as the
Beta Binomial model. The ith observation has the density

f(mi|Θ) =
(

li
mi

)∑3
k=1 wk(θk

i )mi(1− θk
i )li−mi ,

where w3 = 1 − w1 − w2. We reparameterise the θk
i , logit(θk

i ) = γk
0 +

γ1 log(ti), so that each component has the same slope but a different inter-
cept. Therefore this model has six parameters, Θ = (w1, w2, γ

1
0 , γ2

0 , γ3
0 , γ1).

The Beta-Binomial model provides a more optimal fit, with an improve-
ment of about 170 points in the loglikelihood using one less parameter.
From Figure 1 it is clear that the Beta-Binomial is explaining more vari-
ability. Furthermore, the Beta-Binomial simulations are spread across the
range of observed matures while the mixture simulations are ‘clumpy’.
Our main investigation is to determine whether using the mixture auxiliary
model leads to inefficient parameter estimates of the stochastic process
model compared to when using the Beta-Binomial auxiliary model. Or,
are inferences sensitive to the choice of the auxiliary model and how much
effort should be spent on finding a well-fitting indirect model?

3 ABC using Indirect Inference

We consider a sequential Monte Carlo ABC (Sisson et al 2007) algorithm
to sample from the sequence of targets

π(θ, x|ρ(y, x) ≤ εt) ∝ f(x|θ)π(θ)1ρ(y,x)≤εt
for t = 1, . . . , T.
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FIGURE 1. A typical simulation from the Beta-Binomial (left) and the Binomial
mixture (right) models. A cross denotes observed and a dot denotes simulated.
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Simulation of Beta−Binomial Model
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Simulation of Binomial Mixture Model

Our ABC algorithm is based upon the SMC ABC replenishment algorithm
of Drovandi and Pettitt (2010). Here N particles are traversed through the
sequence of target distributions. The algorithm determines the sequence
of tolerances adaptively by dropping a proportion, α, of the particles with
the highest discrepancy value. The population is replenished by resampling
from the remaining particles. Diversity is ensured by moving the particles
according to an MCMC kernel invariant for the current target. The proposal
distribution of this MCMC step is also updated dynamically. We iterate
the MCMC kernel sufficiently to ensure that each particle gets moved with
a theoretical probability of 1 − c (with c set small). Our algorithm differs
from Sisson et al (2009) and Beaumont et al (2009) since they use a forward
kernel and also require pre-specification of the sequence of tolerances.
ABC with indirect inference requires an extra step. After data are simulated
from the model, an auxiliary model is fitted to the data. The parameter
estimates of this auxiliary model become the simulated summary statistics,
θx

a , which are then compared to the observed summary statistics, θ̂a.

4 Results

We inferred the parameters of the stochastic model successfully using the
indirect inference approach with both auxiliary models. In the ABC algo-
rithm we used N = 1000 particles, dropped half the particles with the worst
discrepancy, α = 0.5, and iterated the MCMC kernel so that theoretically
99% of the particles are moved, c = 0.01. For both cases the process was
stopped when the MCMC kernel had about a 3% acceptance rate.
Parameter summaries of the Markov process model when applying each of
the auxiliary models is presented in Table 1. Unfortunately the parameters
µI and β are imprecisely estimated. This occurred since only mature counts
are available and the immunity variable in simulations mostly takes a value
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TABLE 1. Posterior summaries. Shown are the posterior mode, mean, standard
deviation and the (2.5%,50%,97.5%) quantiles. BB = Beta-Binomial indirect
model and BM = Binomial mixture indirect model. † estimates for these pa-
rameters have been multiplied by 100.

model param mode mean std dev (2.5%,50%,97.5%)

BB ν† 0.13 0.13 0.03 (0.07,0.13,0.20)
BB µI 1.08 1.03 0.47 (0.15,1.02,1.88)
BB µL† 0.55 0.85 0.60 (0.04,0.73,2.35)
BB β 1.34 1.20 0.44 (0.34,1.22,1.96)
BM ν† 0.08 0.11 0.04 (0.05,0.11,0.22)
BM µI 1.05 1.03 0.46 (0.20,1.03,1.89)
BM µL† 2.44 2.07 0.68 (0.37,2.22,3.05)
BM β 1.03 1.18 0.43 (0.40,1.17,1.95)

no higher than 1 and is short lived. This meant that the parameters were
sensitive to the prior but the ratio µI/β was relatively less sensitive.
The parameters ν and µL were precisely estimated. It can be seen from
the Table that the posterior summaries for ν were similar regardless of
which auxiliary model was applied, with a smaller variance when the Beta-
Binomial model was used. The posterior summaries for µL were more de-
pendent on the indirect model. The posterior for µL when using the Beta-
Binomial distribution is shifted, tighter and is skew to the right compared
with the posterior when the Binomial mixture is used.
To compare the results from the two auxiliary models we produced predic-
tions of the Markov process model based on the posterior modes in Table 1.
We approximated 95% prediction intervals based on each auxiliary model,
shown in Figure 2. It is clear that predictions from the stochastic model
using Beta-Binomial auxiliary estimates account for more variability in the
data. However, it appears that the ‘clumpiness’ of the Binomial mixture
fit does not cause any problems as the stochastic model cannot predict
such an effect. However, the most important summary would seem to be
the range of the data at each time point, which the Beta-Binomial model
explains better than the Binomial mixture model.

Acknowledgments: The authors would like to thank Edwin Michael and
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FIGURE 2. 95% predictions intervals based on the posterior modes of the stochas-
tic model when applying the Beta-Binomial (left) and the Binomial mixture
(right) as auxiliary models.
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