Improved molecular tools for sugar cane biotechnology

, , , , , , , , , & (2014) Improved molecular tools for sugar cane biotechnology. Plant Molecular Biology, 84(4 - 5), pp. 497-508.

View at publisher

Description

Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

Impact and interest:

13 citations in Scopus
9 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 69102
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Williams, Brettorcid.org/0000-0002-6510-8843
Measurements or Duration: 12 pages
Keywords: Agrobacterium-mediated Transformation, Enhancer, Gene Expression, Genetic Engineering, Promoter, Transgenic Sugar Cane
DOI: 10.1007/s11103-013-0147-8
ISSN: 1573-5028
Pure ID: 32684554
Divisions: Past > Institutes > Institute for Future Environments
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Research Centres > Centre for Tropical Crops and Biocommodities
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 24 Mar 2014 22:40
Last Modified: 01 Mar 2024 14:32