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Abstract 

The application of artificial neural networks (ANN) in finance is relatively new area of 
research. We employed ANNs that used both fundamental and technical inputs to predict 
future prices of widely held Australian stocks and used these predicted prices for stock 
portfolio selection over a 10-year period (2001-2011). We found that the ANNs generally do 
well in predicting the direction of stock price movements. The stock portfolios selected by the 
ANNs with median accuracy are able to generate positive alpha over the 10-year period. More 
importantly, we found that a portfolio based on randomly selected network configuration had 
zero chance of resulting in a significantly negative alpha but a 27% chance of yielding a 
significantly positive alpha. This is in stark contrast to the findings of the research on mutual 
fund performance where active fund managers with negative alphas outnumber those with 
positive alphas. 
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The Quest for Alpha: Can Artificial Neural Networks Help? 

Australians have a significant portion of their personal wealth invested in the stock market.  A large 

proportion of this wealth is invested with active fund managers who try to beat the market and earn 

excess risk-adjusted returns (alpha) by actively selecting stocks to buy and sell. However, there is a 

plethora of research evidence showing that most active managers underperform the broad market 

index on a risk-adjusted basis. In Australia, 7 out of 10 actively managed retail funds 

underperformed the market index over both a one and three year horizon (Karaban & Maguire, 

2012).  This evidence is consistent with the efficient markets hypothesis, where current prices tend to 

reflect all available information. Yet the attempt to predict the future course of stock prices and earn 

excess returns has remained a persistent endeavour for many investors (Malkiel, 2011). 

Advances in computing power in combination with the widespread availability of historical datasets 

have provided investors with increased opportunity to test markets for predictable returns. In this 

paper, we present an artificial neural network (ANN) model that utilises a combination of technical 

and fundamental input data to predict future prices of widely held Australian stocks and use these 

predicted prices for stock portfolio selection. We present evidence on whether such portfolios can 

earn positive alpha for investors. 

An ANN is a mathematical model that is inspired by the structure and function of biological nervous 

systems, such as the brain, in processing information. The brain continually receives input 

information from receptors, processes the information, and makes decisions. Like the biological 

nervous system, the ANN is composed of a large number of highly interconnected processing 

elements working together to solve specific problems. ANNs, just like human brains, learn by 

example.1  

                                                 
1There are number of books and articles that explain neural networks from a beginner’s perspective. See for example, 
Coolen (1998) or Garson (1998). Many articles are also available on the World Wide Web. 
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Financial research utilising artificial neural networks is a relatively new area with published research 

in the field only going back to a little over two decades. Over this period, the majority of the studies 

have focussed on US stock prices and indexes. Very limited research has been undertaken in the 

Australian context. Among them, Tan (1997) found that statistical auto-regressive models when 

combined with ANN produce superior forecast and profitability in forex trading (AUD/USD) market 

than when used in isolation. Ellis & Wilson (2005) applied ANN modelling techniques using seven  

fundamental indicators  to construct portfolios in the Australian property sector that outperformed 

both DS Australian Real Estate Index and S&P/ASX Property Index on a risk-adjusted basis. Finally, 

Vanstone, Finnie and Hahn (2010) used four fundamental indicators as inputs to devise  a trading  

rule based on ANN for stock selection in the  Australian market. They found that an ANN based rule 

produced higher returns, albeit with higher volatility, compared with a buy and hold approach and a 

filter rule based on the same fundamental variables as inputs. Unlike the above studies, which use 

either technical or fundamental indicators as inputs to ANN, we investigate the stock selection 

performance of neural networks in the Australian market using a range of fundamental and technical 

indicators simultaneously as inputs.  

Network model  

We used a walk forward testing approach, which is considered to be the best method for prediction 

for time series data. It simulates the real-life trading situation where the model is regularly retrained 

with new data as it becomes available (an implicitly Bayesian approach). The frequent re-training is 

time-consuming but allows the network to adapt to changing market conditions. We employed four 

different training periods: 3, 6, 12, and 24 months. For each walk forward testing (rolling) window, 

the validation period (containing the data set used for monitoring the error during training) was fixed 

at 6 months and the out-of-sample testing period at 12 months. Figure 1 diagrammatically shows the 

walk forward testing approach using an example of a 24-month long training period. All neural 

network input and output data was pre-processed. Several pre-processing algorithms were adopted in 

Comment [KD1]: What happens in the 
validation period? 

Comment [AJA2]: Training and 
Validation steps added in next page to 
address this comment.  
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order to ensure that the neural network learned quickly and provided better performance. The 

training and validation process comprises the following steps: 

1. The training data is presented to the network; 

2. The network computes outputs; 

3. The network outputs are compared with the desired outputs and error is calculated; 

4. Network weights are updated based on the error calculation; 

5. Process repeats until the error reaches a pre-defined level or the maximum number of epochs 

has occurred.  

Figure 1: Walk Forward (Rolling) Testing Window 
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the contents are black. 
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For this study, we used weekly price data on 20 randomly selected stocks from ASX50 (which 

comprises of 50 largest and widely held stocks in the Australian market) between January 1997 and 

December 2011. The network input data inputs consisted of 59 indicators for each of these stocks. Of 

these, 18 were fundamental indicators (like return on assets, profit margin, sales growth etc.) and 41 

were technical indicators (different momentum indicators for price movements and volume like 20, 

30, 50 day moving averages, relative strength index etc.).2 The values for the fundamental indicators 

were calculated from the data extracted from half-yearly financial reports published by the 

companies.3 The technical indicators were available as a weekly data series.4 All data was obtained 

from Bloomberg. All analysis was undertaken using Neural Network toolbox in Matlab® (version 

R2012a) software program developed by The MathWorks, Inc. The parameter specifications of the 

neural network configuration is summarised in Table 1.5 

Table 1: Network Configuration 

                                                 
2 The full list of fundamental and technical indicators can be obtained from the authors on request. 
3 It can be argued that there is usually a delay of few months between the date of the financial statements and the date of 
their actual release. However, we have not adjusted for such time lags in our study. If we believe markets are by and 
large informationally efficient with many well-informed analysts closely following companies, the public announcement 
of half-yearly results would be well anticipated by the market in most cases, more so for the large companies. 
4 Early data (1997-1999) was used to compute the values for the technical indicators. 
5 Further information regarding network parameters can be found in Beale, M. H., Hagan, M. T., & Demuth, H. B. 
(2011).  

Comment [KD7]: This won’t help the 
reader at all and should either go as an 
appendix or “on available from authors”. 
And there look to be some weird typoes in 
the variable parameters section 

Comment [AJA8]: We acknowledge 
this comment. We originally included these 
details to give the reader a feel for the 
difference combinations networks tested 
and also to provide some transparency 
around parameters. We have no problem 
with adding as an appendix or mentioning 
this is ‘available from authors’. 
 Sorry we don't see any typos. If you are 
concerned about 'x' used to denote 
multiplication symbol, we can use '*' 
instead. 
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A schematic diagram of the ANN as implemented is shown in Figure 2. 

Fixed Parameters 

Architecture 3-layer feed-forward network 
Each layer fully connected to 
its adjacent layers only (no 
connections between input 
and output layer) 

Initialisation 
algorithm 

Nguyen-Widrow 

Validation period 6 months 
Learning 
algorithm 

Gradient descent with 
momentum 

Learning rate 0.1 
Momentum factor 0.9 
Transformation 
function 

Hyperbolic tangent 

Max. training 
epochs 

100,000 

Validation stop 50 iterations 
Evaluation criteria Mean square error 

  
 

Variable Parameters 

Input type Price OR 
Technical indicators only OR 
Fundamental inputs only OR 
Price + Technical OR 
Price + Fundamental OR 
Price + Technical + 
Fundamental 
(6 options) 

Lookback window 4, 8, 12, 16, 20 periods 
(5 options) 

Hidden layer size 30, 60, 90, 120, 150 nodes 
(5 options) 

Training period 
length 

3, 6, 9, 12 months 
(4 options) 

 
600 different neural networks run for each 
stock/portfolio for each of the 10 one-year 
testing periods: 
 
6 input types x 5 lookback windows x 5 hidden 
layer size x 4 training period lengths 
-------------------------------- 
= 600 network models 
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Figure 2: Schematic Diagram of ANN 
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Predictive ability 

 

While a network model that correctly predicts stock price movement could be used to achieve 

superior returns, from a practitioner’s perspective (and depending on the trading system 

implemented) knowing the precise quantum of the price movement may be less important than 

correctly predicting the direction of the price movement. For example, few investors would be 

unhappy with a situation whereby their network model predicted a +15% price movement and the 

actual price movement was +5%. Whilst the prediction error was 10% but the trade would be still 

profitable as the directional movement was accurately predicted. Contrast this with a trading 

situation where the network model predicted a +2% price move and the actual price movement was -

3%. In this case the prediction error was 5% (far more accurate than the previous example) but the 

trade was not profitable as the directional movement was incorrectly predicted.  

The neural network in our study performed reasonably well at predicting the correct directional 

movement of stock prices. For all stocks (with one exception), direction of price changes were 

accurately predicted at least half the time. Though most of the success rates were only marginally 

above 50% (generally ranging from 50 to 55%) there were better performers such as 65%. The large 

number of observations for each stock and portfolio (n = 521 i.e. 521 four-week ahead predictions 

over the 10-year testing period) denoted that any directional prediction accuracy above 53% was 

significant at least at the 5% level. Overall, 13 of the 20 stocks achieved directional movement 

accuracy with statistical significance at the 5% level. 5 of the stocks achieved directional movement 

accuracy with statistical significance at 0.1% level. 

Portfolio strategy 

 

To determine if the ANN model could be used to achieve abnormal returns, the following procedure 

was adopted. The ANN price predictions were undertaken for each stock. For each four-weekly 

time-step over the 10-year period, 600 ANN models were run to predict future prices. These 600 

Comment [KD9]: I don’t think this is 
correct for long-short portfolios, because 
long-short weights will be based on 
predicted price movements. And you r 
results seem to indicate this.  

Comment [AJA10]: You are right but 
this example is about a long only 
investment. We are merely trying to make 
the point that a network with a large error 
magnitude could still be highly profitable if 
it could reliably predict directional 
movement.  

Comment [KD11]: Four-week-ahead? 

Comment [AJA12]: Yes – text 
amended. Thank you. 
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simulations were the result of testing 6 different input types, 5 lookback window options, 5 hidden 

layer size options, and 4 training period lengths (refer to Table 1 and Figure 2 for further details). For 

each four-weekly time-step, the ANN simulated price was compared to the real price and the 600 

networks specifications were placed in a rank order based on the size of the error. For the purpose of 

this analysis, we report the results of two network configurations: the most accurate network (i.e. one 

that produced the minimum error over each twelve month testing period) and the network with 

median accuracy.6  

Once the predicted price returns for each stock and time step were calculated for the two 

configurations described above, two portfolios were constructed for each case. The first portfolio 

was a long only portfolio in which a long position was taken for all stocks with a positive expected 

return weighted according to the magnitude of their expected price return. For example, a stock with 

a 10% expected price return was given double the weighting of a stock with a 5% expected price 

return. All stocks that had an expected negative price return were assigned a portfolio weight of zero. 

The second portfolio was a ‘long minus short’ portfolio. To construct this portfolio, all 20 stocks 

were weighted according to the absolute value of the magnitude of their expected price return. A 

long position was taken for all stocks with a positive expected return while a short position was 

entered for all stocks with a negative expected return.  

The portfolio construction occurred at the beginning of each four-weekly time-step over the 10-year 

period and stocks were held until the end of the time step. While the portfolio construction was based 

upon the expected return generated by the ANN model, the actual return for the portfolios at the end 

of four weeks was calculated using the actual price data. The process was then repeated for the entire 

testing period. 

 

Performance Measurement 

                                                 
6 Obviously the rankings of these network configurations changed every time step based on performance.  

Comment [KD13]: For each forecast 
date – ie different ANNs, or the one ANN 
giving minimum over the forecast period 

Comment [AJA14]: Minimum over the 
testing period of each walk forward testing 
window i.e. minimum error over each 12 
month period. We have included additional 
words for clarity. 

Comment [AJA15]: Yes

Comment [AJA16]: Yes 

Comment [KD17]: Any particular 
reason – it will give rise to some weird 
portfolios, eg if there are several stocks 
with expected returns just above zero and 
some with say 10% 

Comment [AJA18]: We wanted to 
implement a trading system whereby strong 
price signals provided by the ANN were 
weighted more heavily (the intuition being 
that if the network predicts a large price 
movement it should be a more reliable). 
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The four-factor model (Carhart, 1997) was used as the performance measurement framework for the 

ANN models. Excess portfolio returns were regressed against the market, size, value and the 

momentum factors as: 

௣௧ݎ  ൌ	∝௣்൅	ܾ௣்ܴܨܴܯ௧ ൅ ௧ܤܯ௣்ܵݏ ൅ ݄௣்ܮܯܪ௧ 	൅ ௧ܦܯ௣்ܷݑ ൅ ݁௣௧ ݐ ൌ 1, 2,⋯ , ܶ (1)  

where:   

 ௣௧ is the monthly return on portfolio (p) in excess of the 10-year Australian government bond rate inݎ
month t 

 is the excess return on the ASX200 index in month t over the 10-year Australian government	௧ܨܴܯܴ
bond rate 

 is the monthly return on the mimicking size portfolio i.e. excess return of ‘small’ stocks over	௧ܤܯܵ
‘large’ stocks in month t 

 is the monthly return on the mimicking book-to-market portfolio i.e. ‘value’ stocks over	௧ܮܯܪ
‘growth’ stocks in month t 

 is the monthly return on the mimicking momentum portfolio i.e. excess return of recent	௧ܦܯܷ
‘winner’ over recent ‘loser’ stocks in month t 

 

 

Table 2: Four Factor Regression Estimates for Portfolio Returns 

  

 

 

 

 
 
 *, **, *** indicates statistical significance at 5%, 1% and 0.1% level 

We proxied the SMB return by the return difference between monthly returns of ASX Small 

Ordinaries and ASX 100 index. Monthly HML data for Australia was obtained from Ken French’s 

  Most Accurate Network  Median Network 

Coefficients 
Long 

portfolio 
Long-short 
portfolio 

 Long 
portfolio 

Long-short 
portfolio 

α  0.016**  0.013***  0.012**  -0.001 

RMRF  0.712*** -0.011  0.137 0.003 

SMB -0.317 -0.604**  -0.050 -0.011 

HML -0.416** -0.306  -0.310 -0.064 

WML -0.011  0.038  -0.326 -0.115 

Comment [KD19]: Am I correct in 
thinking that there  are 130 observations ie 
13 four week periods each year for 10 
years. You could do a lot more to help the 
reader fully understand the steps in your 
approach. 

Comment [AJA20]: Yes. We 
acknowledge the criticism. (It has been very 
difficult to achieve clarity to our desired 
level due to the journal's word count 
requirement).  
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website. Momentum portfolios were constructed using monthly returns data from CRIF database 

following Jegadeesh and Titman (1993). 

The regression results are reported in Table 2. The long portfolio created using the most accurate 

ANN produced a monthly alpha of 1.6% while the median ANN achieved a positive alpha of 1.2%. 

Both these estimates were significant at the 1% level. The alpha estimates for the long minus short 

portfolios were less encouraging. Whilst the most accurate ANN portfolio’s alpha was still 

significant, albeit at a diminished 1.3%, for the median ANN, the alpha dissipated. These results 

suggest that network predicted the positive price movements more successfully than it predicted the 

negative price movements. Among the other regression coefficients, the market (RMRF) and the 

value (HML) factors were significantly related to the returns of the long portfolio created using the 

most accurate ANN but none of the coefficients were significant for the median network’s portfolio. 

We need to caution the reader here that there is no way of predicting ex-ante the accuracy of a 

particular network and therefore, its ability to result in a positive alpha. In other words, a randomly 

selected network specification may result in an outcome that is far inferior to that achieved by the 

two networks in Table 2. In order to gain an understanding of the distribution of alphas generated by 

the different ANN specifications selected without any ex-ante knowledge about their accuracy, the 

different network parameter combinations were applied uniformly to all stocks over the entire 10-

year period. Long portfolios based on expected returns were formed and their returns regressed 

against the four-factor model resulting in 600 estimates of alpha. This analysis mimics the real world 

situation where the practitioner does not have prior knowledge of which network specification to 

apply in order to achieve maximum predictive capability and randomly selects a particular network 

specification for application to all stocks in her investment universe.  

 

Figure 3: Frequency Distribution of Four-factor Alphas 

Comment [KD21]: Can’t this simply be 
a result of the particular weighting scheme 
you used for stocks included in the 
portfolios. 
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predictive ability of the two portfolios.  
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Figure 3 presents the distribution of alphas. Out of the 600 portfolios, 529 (88%) achieved positive 

alphas. The alpha value was significantly positive for 144 portfolios (27% of all portfolios) at the 5% 

level. The distribution of alphas peaked between 0.4% and 1%. The distribution had a slight left 

skew but there were very few alphas below -0.4%. Remarkably none of the negative alphas were 

statistically significant. This finding is extremely important as it demonstrates that even without any 

knowledge about the predictive capability of the networks ex-ante, the practitioner would still have a 

much higher likelihood of generating positive alpha relative to negative alpha. 

Conclusion 

Artificial intelligence is increasingly used in different fields of human endeavours mainly due to its 

predictive abilities based on pattern recognition and learning. The data-rich environment of stock 

price movements offers fertile ground for testing these capabilities. The ANN model presented in 

this paper provides encouraging results for investors. We found that the ANNs generally do well in 

predicting the direction of stock price movements. The portfolio selected by the ANNs with median 

accuracy every 1-year testing period was able to generate positive alpha over a 10-year period. More 

importantly, we found that practitioners can improve the likelihood of generating positive alphas 

using neural networks even without any ex-ante knowledge about their accuracy as many of the 

network configurations resulted in positive alphas while none resulted in a negative alpha with 

statistical significance. This is in stark contrast to the findings of the research on mutual fund 

performance, which show that funds with negative alphas outnumber those with positive alphas. It is 

also important to note that we have considered only price returns in this study. Total returns inclusive 
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of dividends would certainly be higher; hence the alphas for the portfolios selected by the ANN are 

also likely to be higher. 

Although the portfolios derived using ANN model produced positive alphas in many cases, it 

remains unclear what kind of pricing inefficiencies or risk exposures the network might be 

exploiting. In fact, returns for many of the ANN portfolios had no relationship with the known risk 

factors. At this point, given the ‘black box’ nature of the ANN, it is difficult to offer any explanation 

beyond the well-known ability of the ANN to capture ‘hidden’ relationship between inputs and 

outputs. It is not beyond the realms of possibility that ANN’s artificial intelligence is able to detect 

patterns in stock price movements which are not obvious to human intelligence and commonly 

dismissed as ‘noise’. We hope that future research in the fields of both asset pricing and artificial 

intelligence would be able to offer more insight. 
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