Numerical and Experimental Studies on the Fracture Behavior of Rubber-Toughened Epoxy in Bulk Specimen and Laminated Composites

, Xiao, Keqin, Ye, Lin, & Mai, Y (2002) Numerical and Experimental Studies on the Fracture Behavior of Rubber-Toughened Epoxy in Bulk Specimen and Laminated Composites. Journal of Materials Science, 37(5), pp. 921-927.

[img]
Preview
PDF (1MB)
7070.pdf.

View at publisher

Description

To study the toughening mechanisms of liquid rubber (LR) and core-shell rubber (CSR) in bulk epoxy and composite laminate, experimental and numerical investigations were carried out on compact tension (CT) and double-cantilever-beam (DCB) specimens under mode-I loading. The matrix materials were pure epoxy (DGEBA), 15% LR (CTBN) and 15% CSR modified epoxies. Experimental results and numerical analyses showed that both liquid rubber (LR) and core-shell rubber (CSR) could improve significantly the fracture toughness of pure epoxy (DGEBA). However, the high toughness of these toughened epoxies could not be completely transferred to the interlaminar fracture toughness of the unidirectional carbon fibre reinforced laminate. The main toughening mechanism of CSR in bulk epoxy was the extensive particle cavitation, which greatly released the crack-tip triaxiality and promoted matrix shear plasticity. The poor toughness behavior of CSR in the carbon fibre laminate was thought to be caused by the high constraint imposed by the stiff fibre layers. No particle cavitation had been observed in LR modified epoxy and the main toughening mechanism was merely the large plastic deformation near the crack-tip due to the rubber domains in the matrix which results in a lower yield strength but a higher elongation-to-break.

Impact and interest:

39 citations in Scopus
33 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,103 since deposited on 19 Apr 2007
19 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 7070
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Yan, Chengorcid.org/0000-0002-4909-439X
Measurements or Duration: 7 pages
DOI: 10.1023/A:1014335511515
ISSN: 0022-2461
Pure ID: 34076269
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 19 Apr 2007 00:00
Last Modified: 24 Jun 2024 19:10