Experimental and numerical analysis of the relationship between indoor and outdoor airborne particles in an operating room

Pereira, Marcelo Luiz, Vilain, Rogerio, Ferreira Galvao, Flavio Henrique, Tribess, Arlindo, & (2013) Experimental and numerical analysis of the relationship between indoor and outdoor airborne particles in an operating room. Indoor and Built Environment, 22(6), pp. 864-875.

View at publisher

Description

This work investigated the impact of the HVAC filtration system and indoor particle sources on the relationship between indoor and outdoor airborne particle size and concentrations in an operating room. Filters with efficiency between 65% and 99.97% were used in the investigation and indoor and outdoor particle size and concentrations were measured. A balance mass model was used for the simulation of the impact of the surgical team, deposition rate, HVAC exhaust and air change rates on indoor particle concentration. The experimental results showed that high efficiency filters would not be expected to decrease the risk associated with indoor particles larger than approximately 1 µm in size because normal filters are relatively efficient for these large particles. A good fraction of outdoor particles were removed by deposition on the HVAC system surfaces and this deposition increased with particle size. For particles of 0.3-0.5 µm in diameter, particle reduction was about 23%, while for particles >10 µm the loss was about 78%. The modelling results showed that depending on the type of filter used, the surgical team generated between 93-99% of total particles, while the outdoor air contributed only 1-6%.

Impact and interest:

4 citations in Scopus
4 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

40 since deposited on 06 Nov 2021
22 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 219421
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Morawska, Lidiaorcid.org/0000-0002-0594-9683
Measurements or Duration: 12 pages
Keywords: Operating room, airborne particles, balance mass model, filtration, outdoor air, ventilation
DOI: 10.1177/1420326X12460707
ISSN: 1420-326X
Pure ID: 32536680
Divisions: Past > Institutes > Institute of Health and Biomedical Innovation
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 06 Nov 2021 11:28
Last Modified: 07 Mar 2024 13:48