Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures

& Daggard, Grant (2006) Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures. Plant Cell Reports, 25(12), pp. 1336-1346.

View at publisher

Description

Abstract Antifreeze proteins (AFPs) adsorb to ice crystals and inhibit their growth, leading to non-colligative freezing point depression. Crops like spring wheat, that are highly susceptible to frost damage, can potentially be made frost tolerant by expressing AFPs in the cytoplasm and apoplast where ice recrystallisation leads to cellular damage. The protein sequence for HPLC-6 α-helical antifreeze protein fromwinter flounderwas rationally redesigned after removing the prosequences in the native protein. Wheat nuclear gene preferred amino acid codons were used to synthesize a recombinant antifreeze gene, rAFPI. Antifreeze protein was targeted to the apoplast using a Murine leader peptide sequence from the mAb24 light chain or retained in the endoplasmic reticulum using C-terminus KDEL sequence. The coding sequences were placed downstream of the rice Actin promoter and Actin-1 intron and upstream of the nopaline synthase terminator in the plant expression vectors. Transgenic wheat lines were generated through micro projectile bombardment of immature embryos of spring wheat cultivar Seri 82. Levels of antifreeze protein in the transgenic lines without any targeting peptide were low (0.06–0.07%). The apoplast-targeted protein reached a level of 1.61% of total soluble protein, 90% of which was present in the apoplast. ER-retained protein accumulated in the cells at levels up to 0.65% of total soluble proteins. Transgenic wheat line T-8 with apoplast-targetedantifreeze protein exhibited the highest levels of antifreeze activity and provided significant freezing protection even at temperatures as low as −7◦C.

Impact and interest:

38 citations in Scopus
30 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 7276
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
Measurements or Duration: 11 pages
Keywords: Antifreeze Protein, Codon Optimisation, Frost Tolerance, Signal Peptide, Transgenic, Wheat
DOI: 10.1007/s00299-006-0191-9
ISSN: 0721-7714
Pure ID: 33905753
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > School of Life Sciences
Past > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 02 May 2007 00:00
Last Modified: 03 Mar 2024 15:54