TEM, XRD, and Thermal Stability of Adsorbed Paranitrophenol on DDOAB Organoclay

, , , , & (2007) TEM, XRD, and Thermal Stability of Adsorbed Paranitrophenol on DDOAB Organoclay. Journal of Colloid and Interface Science, 311(1), pp. 24-37.

[img]
Preview
PDF (632kB)
7419.pdf.

View at publisher

Description

Water purification is of extreme importance to modern society. Organoclays through adsorption of recalcitrant organics provides one mechanism for the removal of these molecules. The organoclay was synthesised through ion exchange with dimethyldioctadecylammonium bromide labeled as DDOAB of formula (CH3(CH2)17)2NBr(CH3)2. Paranitrophenol was adsorbed on the organoclay at a range of concentrations according to the cation exchange capacity (CEC) of the host montmorillonite. The paranitrophenol in solution was analysed by a UV-260 spectrophotometer at 317nm, with detection limits being 0.05mg/L. The expansion of the montmorillonite was studied by a combination of X-ray diffraction and transmission electron microscopy. Upon adsorption of the paranitrophenol the basal spacing decreased. The thermal stability of the organoclay was determined by a combination of thermogravimetry and infrared emission spectroscopy. The surfactant molecule DDOAB combusts at 166, 244 and 304 degrees Celsius and upon intercalation into Na-montmorillonite is retained up to 389 degrees Celsius thus showing the organoclay is stable to significantly high temperatures well above the combustion/decomposition temperature of the organoclay.

Impact and interest:

52 citations in Scopus
46 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

503 since deposited on 04 May 2007
23 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 7419
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Xi, Yunfeiorcid.org/0000-0003-2924-9494
Measurements or Duration: 14 pages
Keywords: Adsorption, Emission, Infrared Spectroscopy, Intercalation, Montmorillonite, Organoclay
DOI: 10.1016/j.jcis.2007.02.039
ISSN: 0021-9797
Pure ID: 33725712
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Research Centres > Australian Research Centre for Aerospace Automation
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 04 May 2007 00:00
Last Modified: 29 Jul 2024 14:36