Nano and ultrafine particle number concentrations in different environments: application towards air quality regulations

, , & (2009) Nano and ultrafine particle number concentrations in different environments: application towards air quality regulations. In Pitts, O, Franklin, P, & Neumeister-Kemp, H (Eds.) Proceeding of the 19th International Clean Air and Environment Conference. Clean Air Society of Australia and New Zealand, Australia, pp. 1-6.

Description

Particle number concentrations vary significantly with environment and, in this study, we attempt to assess the significance of these differences. Towards this aim, we reviewed 85 papers that have reported particle number concentrations levels at 126 sites covering different environments. We grouped the results into eight categories according to measurement location including: road tunnel, on-road, road-side, street canyon, urban, urban background, rural, and clean background. From these reports, the overall median number concentration for each of the eight site categories was calculated. The eight location categories may be classified into four distinct groups. The mean median particle number locations for these four types were found to be statistically different from each other. Rural and clean background sites had the lowest concentrations of about 3x103 cm-3. Urban and urban background sites showed concentrations that were three times higher (9x103 cm-3). The mean concentration for the street canyon, roadside and on-road measurement sites was 4.6x104 cm-3, while the highest concentrations were observed in the road tunnels (8.6x104 cm-3). This variation is important when assessing human exposure-response for which there is very little data available, making it difficult to develop health guidelines, a basis for national regulations. Our analyses shows that the current levels in environments affected by vehicle emissions are 3 to 28 times higher than in the natural environments. At present, there is no threshold level in response to exposure to ultrafine particles. Therefore, future control and management strategies should target a decrease of these particles in urban environments by more than one order of magnitude to bring them down to the natural background. At present there is a long way to go to achieve this.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

71 since deposited on 17 Aug 2014
7 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 75159
Item Type: Chapter in Book, Report or Conference volume (Conference contribution)
ORCID iD:
Morawska, Lidiaorcid.org/0000-0002-0594-9683
Jayaratne, Rohanorcid.org/0000-0002-4315-4937
Measurements or Duration: 6 pages
Keywords: Air Quality, Atmospheric Aerosols, Particle Number Concentration
Pure ID: 31895280
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Institutes > Institute of Health and Biomedical Innovation
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Research Centres > Australian Research Centre for Aerospace Automation
Funding:
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 17 Aug 2014 22:29
Last Modified: 08 Mar 2024 14:28