

Queensland University of Technology Brisbane Australia

This may be the author's version of a work that was submitted/accepted for publication in the following source:

Bu, Di & Liao, Yin
(2014)
Corporate credit risk prediction under stochastic volatility and jumps. *Journal of Economic Dynamics and Control*, 47, pp. 263-281.

This file was downloaded from: https://eprints.qut.edu.au/77848/

© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5

Notice: Please note that this document may not be the Version of Record (*i.e.* published version) of the work. Author manuscript versions (as Submitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appearance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/j.jedc.2014.08.006

Corporate Credit Risk Prediction Under Stochastic Volatility and Jumps^{*}

 $\mathrm{Di}\;\mathrm{Bu}^\dagger$

University of Queensland Brisbane, QLD, 4001 AUSTRALIA Yin Liao[‡] Queensland University of Technology Brisbane, QLD, 4000 AUSTRALIA

Abstract

This paper exams the impact of allowing for stochastic volatility and jumps (SVJ) in structural model on corporate credit risk prediction. The SVJ structural model is compared with the commonly used Merton model throughout a Monte Carlo study and an empirical analysis of 20 Dow Jones firms as well as 200 randomly selected CRSP firms. The simulation study verifies the better performance of the SVJ model when the constant volatility assumption in the Merton model is violated in actual asset returns, and three explanations are identified for the superiority including i) mean level effect: SVJ model better depicts the average level of asset volatility, and thereby better predicts the average level of credit spread; ii) dynamic change effect: SVJ model better tracks the changes in credit spread; and (iii) extreme change effect: SVJ model better captures the extreme movements in credit spread. The empirical analysis ascertains the importance of recognizing the stochastic volatility and jumps in structural model by showing that on average the SVJ model raises the spread prediction from the Merton model by 6.5 basis points in 20 Dow Jones firms and 8 basis points in 200 CRSP firms, which helps explain up to 8% and 10% of the time-variation in actual credit spreads. Improvements in predictions are particularly apparent in small firms or when the market is turbulent such as the recent financial crisis.

^{*}We thank Tom Smith and Jin-Chuan Duan for insightful comments, as well as Andras Fulop for kindly sharing Matlab code. We would also like to thank an associated editor and two anonymous referees for fairly constructive comments, and conference participants at the 4th International Conference on Computational and Financial Econometrics, the 2013 University of Queensland Business School Research Colloquium, the 2014 International Symposium on Financial Engineering and Risk Management, and seminar participants at University of Queensland and Australian National University. All remaining errors are ours.

[†]Email: d.bu@business.uq.edu.au

[‡]Email : yin.liao@qut.edu.au, ph 61 7 3138 2662 (corresponding author)

Keywords: Credit Risk, CDS Spread, Merton Model, Stochastic Volatility. **JEL classification**: C22, G13

1 Introduction

Over the last decade, the literature has developed sophisticated methods in an attempt to model the corporate credit risk. Structural and reduced form approaches represent the two primary classes of such models, and play increasingly important roles in corporate risk management and performance evaluation processes. While the reduced form approach models credit defaults as exogenous events driven by a stochastic process, the structural approach provides an explicit relationship between default risk and corporate capital structure. In this sense, structural models are more referring to economic fundamentals and provide an endogenous explanation for corporate default.

As the first attempt, Merton model laid the foundation to the structural approach and has served as the cornerstone for all other structural models. Despite the great success of the Merton model, the assumption that asset return follows a pure diffusion in the model has long been criticized. There are many studies showing that the pure diffusion assumption is overly restrictive and causes the Merton model to estimate the credit risk measures with a large bias. In theory, the log-normal pure diffusion model fails to reflect many empirical phenomena, such as the asymmetric leptokurtic distribution of the asset return, volatility smile and the large random fluctuations in asset returns. Since all of these features play key roles in the structural credit risk modeling, one will produce misleading estimates of the credit risk once ignoring them. In practice, Jones, Philip, Mason, and Rosenfeld (1984) analyzed 177 bonds issued by 15 firms and found that the Merton model overestimated bond prices by 4.5% on average. Eom, Ho, Helwege, and Huang (1994) empirically tested the performance of Merton model in predicting corporate bond spread, and suggests that the predicted spreads from the Merton model are too low. Tarashev (2005) claimed that the default probability generated by the Merton model is significantly less than the empirical default rate, and Huang and Hao (2008) documented the inability of the existing structural models to capture the dynamic behavior of credit default swap (CDS) spreads and equity volatility. These empirical findings pointed potential roles of time-varying asset volatility and jumps in credit risk modeling.

The contribution of this paper is to generalize the structural model to allow for stochastic volatility and jumps (SVJ) in the underlying asset returns, as well as study the property of the SVJ structural model in corporate credit risk prediction. Basically, the SVJ model is not novel as it has been widely used in option pricing literature. However, its application in credit risk modeling is still an untouched territory. The only work related is Fulop and Li (2013) which showed an application of the structural model with stochastic volatility (SV) in evaluating the credit risk of

Lehman Brothers. However, their work mainly focuses on the estimation of the SV structural model. This paper steps further to also consider jumps and exam the impact of allowing for both stochastic volatility and jumps in structural model on corporate credit risk prediction. To our best knowledge, this is the first to explicitly study the benefit of recognizing stochastic volatility and jumps in asset returns for credit risk prediction. The research is useful for current practice where structural credit risk models with constant asset volatility still predominate. Specifically, we employ Bates (1996) model as an example of SVJ model to describe the evolution of the asset returns. It is worth noting that jumps in Bates (1996) only appear in the return equation and are treated as a poisson process with constant intensity. The same analysis can be easily generalized to other SVJ models. The empirical observations in recent financial market turmoils have suggested that jumps as extreme events tend to be clustered, and jumps in asset returns tend to associated with an abrupt movement in asset volatility. This lays the possibility to allow for jumps in both asset returns and volatility and self-exciting jump clustering in structural model to improve credit risk prediction. We leave these interesting extensions for later work.

Despite its attractiveness, the estimation of the SVJ model poses substantial challenges. In essence, the SV structural model is a non-linear and non-Gaussian state-space model. But it differs from the standard state-space model in several ways. First, after allowing the asset return to have stochastic volatility and jumps, the likelihood function of the observed equity prices is no longer available in a closed form. The commonly used MLE type estimation cannot be applied. Furthermore, the additional state variables that determine the level of volatility increase the dimension of the latent states. Thirdly, the additional jump related unknowns increase the dimension of parameter uncertainty. We employ a Bayesian learning algorithm by following the marginalized resample-move (MRM) approach of Fulop and Li (2013) to solve this estimation problem. This algorithm is able to deliver exact draws from the joint posteriors of the latent states and the static parameters.

A Monte Carlo study is conducted to study the property of the SVJ model in corporate credit spread prediction. The exercise is based on a comprehensive set of simulation designs, which embody several features of the asset return data. To illustrate the benefit of allowing for time-varying volatility, we compare the SVJ model with the Merton model under a jump diffusion process with stochastic volatility and a pure diffusion with constant volatility. To reveal the important role of jumps, we compare the SVJ model with the SV model based on a jump diffusion process with stochastic volatility and a stochastic volatility process without jumps. The simulation results suggest that when the actual return is a pure diffusion, the results from all the three models are almost identical with the Merton model performs slightly better. However, in the more realistic situations where the actual return has a stochastic volatility or has both stochastic volatility and jumps, the SVJ and SV model largely outperform the Merton model, and a further improvement is spotted from SV model to SVJ model when there are jumps. In short, the SVJ model turns out to be the best specification, and three sources are explored to explain its superiority. First, the volatility dynamics and jumps allowed in SVJ model can better depict the mean level of credit spread. Second, the SVJ model better tracks the changes in credit spread because of the time-varying volatility and the more realistic functional form between asset and equity values. Lastly, the jump component in SVJ model better captures the extreme movements in credit spread.

We further implement the SVJ model on two real samples to empirically evaluate its ability. The first samples consists of 20 Dow Jones firms to represent the large-cap companies, and the second includes 200 firms randomly selected from CRSP to represent the general population of the US corporate sector. From each sample, we indeed find significant stochastic volatility and jumps in the asset returns. The impact of ignoring asset volatility dynamics and jumps in credit risk modeling is also studied. We find that the SVJ and SV model always provide better credit spread predictions than the Merton model, and SVJ model makes further improvement from SV model. On average, the SVJ model raises the spread prediction from the Merton model by 6.5 basis points in 20 Dow Jones firms, and 8 basis points in 200 CRSP firms. It helps explain up to 8% and 10% of the variation in actual credit spreads over time. These prediction improvements are found to be particularly apparent in small firms or when the market is turbulent such as the recent financial crisis.

The remainder of this paper is organized as follows. Section 2 presents in details the SVJ model specification, estimation and application in credit risk prediction. Section 3 conducts a Monte carlo simulation to study the property of SVJ model in credit risk prediction. Section 5 provides two empirical analysis of the SVJ structural model using 20 Down Jones firms and 200 randomly selected CRSP firms, Section 4 concludes.

2 The SVJ structural model

In this section, we give a full description of the SVJ structural model, and introduce marginalized resample-move algorithm of Fulop and Li (2013) to estimate the model.

2.1 The model description

We follow up the general set-up of the Merton model, but relax the constant volatility assumption to allow for stochastic volatility and jumps in asset price evolution. We define the asset value of a firm and its volatility as S_t and V_t at time t, and describe their joint dynamics using Bates (1996) model as follows:

$$logS_{t} = logS_{t-1} + (\mu - \frac{1}{2}\sigma_{t-1}^{2} - \lambda \overline{J})dt + \sigma_{t-1}\sqrt{dt}dW_{t}^{S} + J_{t}dN_{t},$$
(1)

$$\sigma_t^2 = \sigma_{t-1}^2 + \kappa (\theta - \sigma_{t-1}^2) dt + \sigma_V \sigma_{t-1} \sqrt{dt} dW_t^\sigma$$
⁽²⁾

where dW_t^S and dW_t^{σ} are Wiener processes with correlation ρ . $J_t dN_t$ denotes the jump component where N(t) being a compound Poisson process with constant intensity λ and J_t denoting the magnitude of the jump which follows a normal distribution as $log(1 + J_t) \sim N(log(1 + \overline{J}) - \frac{1}{2}\sigma_J^2, \sigma_J^2)$. Bates (1996) model is employed as an example of SVJ model, and the analysis in the paper can be easily generalized to other SVJ models.

Given that an equity and a zero-coupon debt are two types of outstanding claims of a firm, and the debt matures at time T with face value F, we have the following accounting identity holds at every time t

$$S_t = E_t + D_t, \tag{3}$$

where E_t and D_t respectively denote the market value of equity and debt at time t. The default occurs in the event that the firm's assets are less than the face value of the debt, i.e. $S_T < F$, when debt matures. Otherwise, equity holders step in to repay the debt and keep the balance. Therefore, the payout to the debt holders at the maturity time T is

$$D_T = \min(S_T, F),\tag{4}$$

and on the other side, the equity holders receive

$$E_T = max(S_T - F, 0). \tag{5}$$

Therefore, the firm's equity can be regarded as if it was a call option on the total asset value V of

the firm with the strike price of F and the maturity date T. Assuming the risk-free interest rate is r, the equity claim in (5) can be priced at time t < T according to the call option pricing formula as follows:

$$E_t = E(S_t; \sigma_t^2, F, r, T - t) = S_t P_1 - F e^{-r(T-t)} P_2$$
(6)

where

$$P_{j} = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} Re(\frac{e^{-i\phi \ln(K)} f_{j}(x, \sigma_{t}^{2}, T, \phi)}{i\phi}) d\phi$$
(7)

and

$$\begin{split} f_{j} &= \exp(A_{j} + B_{j}\sigma_{t}^{2} + i\phi S + \lambda(T-t)(1+\overline{J})^{u_{j}+\frac{1}{2}} \times [(1+\overline{J})^{i\phi}e^{\delta^{2}(u_{j}i\phi-\frac{1}{2}\phi^{2})} - 1]), \\ A_{j} &= -2\frac{u_{j}i\phi-\frac{1}{2}\phi^{2}}{\rho\sigma_{v}i\phi-\kappa_{j}+\gamma_{j}(1+e^{\gamma_{j}(T-t)})/(1-e^{\gamma_{j}(T-t)})}, \\ B_{j} &= (r-\lambda\overline{J})i\phi(T-t) - \frac{\kappa\theta(T-t)}{\sigma_{v}^{2}}(\rho\sigma_{v}i\phi-\kappa_{j}-\gamma_{j}) - \frac{2\kappa\theta}{\sigma_{v}^{2}}log[1+\frac{1}{2}(\rho\sigma_{v}i\phi-\kappa_{j}-\gamma_{j})\frac{1-e^{\gamma_{j}(T-t)}}{\gamma_{j}}], \\ \gamma_{j} &= \sqrt{(\rho\sigma_{v}i\phi-\kappa_{j})^{2} - 2\sigma_{v}^{2}(u_{j}i\phi-\frac{1}{2}\phi^{2})}, \\ u_{1} &= \frac{1}{2}, u_{2} &= -\frac{1}{2}, \kappa_{1} = \kappa - \rho\sigma_{v}, \kappa_{2} = \kappa, \end{split}$$

where all the parameters are risk neutral. Similarly, the firm's debt can be priced by regarding the payoff of the debt as the difference between a default-free debt and a put option on the total asset value of the firm with the strike price of F and the maturity date T. We will discuss this further in section 2.3.

Meanwhile, it is well documented that the observed equity prices can be contaminated by microstructure noise, and the impact is particular large for small firms or firms in a financial distress. To incorporate the trading noise into our analysis, we follow up Duan and Fulop (2009) to assume a multiplicative error structure for the trading noise, and extend the equation (6) as

$$log(E_t) = log(E(S_t; \sigma_t^2, F, r, T - t)) + \delta v_t,$$
(8)

where v_t is an i.i.d normal random variable, and the option pricing function $E(S_t; \sigma_t^2, F, r, T - t)$ is as shown in equation ((6)). The market microstructure effects are usually complex and can take many different forms. Huang and Yu (2010) modeled the microstructure noise using a Student-t distribution, and the noise is likely to be correlated with the equity value. The model estimates from MRM algorithm would not be consistent if this effect is misspecified. We stay with the normal distribution assumption in the current work, and leave the further investigation of alternative distributions for later work.

2.2 The model estimation

In the absence of trading noise, the SVJ structural model is essentially a nonlinear and non-Gaussian state-space model with (1) being the measurement equation, and (2) being the latent state equation. However, different from the standard state-space model, the observation S_t in the measurement equation of this model are actually not observed. We need to use the observed equity values instead to filter the whole system. Since there is a one-to-one relationship between the equity and asset values, based on the model-impled likelihood function of the asset values, we can easily write out the likelihood function for equity values to estimate the model.

When trading noises are present, the estimation becomes more complicated. The previous oneto-one relationship between the equity and asset values is no longer existing. The equity values are now influenced by both the underlying asset value and the trading noise. Therefore, the estimation becomes another filtering problem with (8) as a measurement equation, and equation (1) along with equation (2) being the latent state equations.

More specifically, let \mathcal{F}_T denotes a time series of the observed equity values, i.e., $\mathcal{F}_T = \{E_1, ..., E_T\}$. Θ represents the parameter vector containing eight parameters, i.e., $\Theta = \{\mu, \lambda, \overline{J}, \sigma_J, \kappa, \theta, \sigma_V, \rho\}$. xdenotes the latent state variables including the asset value S_t , and its stochastic volatility process σ_t^2 . Our objective is to simultaneously estimate the parameter vector Θ and the latent state variable xbased on the information set \mathcal{F}_T . The marginalized resample-move (MRM) algorithm of Fulop and Li (2013) is employed to achieve this. The basic idea of this algorithm is that one can break up the interdependence of the hidden states and the fixed parameter by marginalizing out the states using a particle filter, and then a Bayesian resample-move algorithm can be applied to the marginalized system to improve the performance of the algorithm. Throughout the two steps, this algorithm does deliver exact draws from the joint posterior distribution of the parameters and the state variables.

The estimation procedure for our particular problem using MRM algorithm is detailed as follows. Starting from a set of weighted samples $\{(\Theta, x_{t-1}^{(n)}), \omega_{t-1}^{(n)}; n = 1, ..., N\}$ that represent the target distribution $p(\Theta, x_{1:t-1}|E_{1:t-1})$ at time t-1, where ω_{t-1} denotes the sample weights, we can arrive at a set of samplers representing the target distribution $p(\Theta, x_{1:t}|E_{1:t})$ at time t throughout the following steps:

• Step 1: Augmentation step. For each $\Theta^{(n)}$, we run a localized particle filter (see Duan and

Fulop (2009)) that takes the information of the new observation E_t to propagate $\{x_{t-1}^{(k,n)}, k = 1, ..., M\}$ to $\{x_t^{(k,n)}, k = 1, ..., M\}$ via $p(x_t | x_{t-1}^{(n)}, E_t, \Theta^{(n)})$. Notice that for each n, the hidden state x_t is represented by M particles. Therefore, we have to maintain $M \times N$ particles of the hidden states throughout the whole process.

• Step 2: Re-weighting step. We update the weights accounting for the new information in E_t to obtained a new set of weighted samples. The incremental weights can be computed by using the likelihood $p(E_t|x_t^{(n)}, |x_{t-1}^{(n)}, \Theta^{(n)})$, and the new weights for each particle as follows

$$s_t^{(n)} = s_{t-1}^{(n)} \times p(E_t | x_t^{(n)}, | x_{t-1}^{(n)}, \Theta^{(n)}).$$
(9)

Then, our target distribution $p(\Theta, x_{1:t}|E_{1:t})$ can be represented by a new set of weighted samples $\{x_t^{(n)}, \Theta^{(n)}; n = 1, ..., N\}$.

• Step 3: Resample-move step. This is not necessary for all the time points. It only implemented to enrich the set of particles and avoid a gradual deterioration of the performance of the algorithm whenever the effective sample size $ESS_t = \frac{1}{\sum_{K=1}^n (\pi_t^{(K)})^2}$ falls below some fixed value B_1 , where $\pi_t^{(n)} = \frac{s_t^{(n)}}{\sum_{K=1}^n s_t^{(K)}}$ is the normalized weight. There are two steps involved: 1) Resample the particles according to the normalized weight $\pi_t^{(n)}$ to get an equally-weighted sample $\{x_t^{(n)}, \Theta^{(n)}; n = 1, ..., N\}$; 2) Move each particle through a Metropolis-Hastings kernel to improve its support and diversity. More details are referred to Fulop and Li (2013).

Meanwhile, this algorithm provides a natural estimate of the marginal likelihood for each new observation E_t , which embeds the model fit information over time and can be used to construct a sequential Bayes factor for sequential model comparison. The Bayes factor at time t for any models M_1 and M_2 has a recursive formula as follows:

$$BF_t \equiv \frac{p(E_{1:t}|M_1)}{p(E_{1:t}|M_2)} = \frac{p(E_t|E_{1:t-1}, M_1)}{p(E_t|E_{1:t-1}, M_2)} BF_{t-1},$$
(10)

where $p(E_t|E_{1:t-1}, M_i)$ is the estimate of the marginal likelihood of the new observation E_t based on

model M_i .

2.3 The model application in credit risk measurement

Once the model is estimated, the most appealing application is to predict corporate bond credit spread. The credit spread of a risky corporate bond is defined as the premium required to compensate for the expected loss in the event of default. That is, $s_t = y_t - r$, where y_t is the yield of the risky corporate bond, and r is the risk-free interest rate. As discussed in section 2.1, the risky debt can be priced by the difference between a default-free debt and a put option on the total asset value S_t of the firm with the strike price of F and the maturity date T. Therefore, the risky bond can be priced at time t < T as

$$B_t = F e^{-r(T-t)} - P_t^{HM},$$
(11)

where F is the face value of the zero coupon debt at the maturity time, and P_t^{HM} is the price of a put option on the asset value S_t with the strike price F and the maturity date T^{-1}

$$P_t^{HM} = F e^{-r(T-t)} (1 - P_2) - S_t (1 - P_1).$$
(12)

According to the relationship between face value and the price of the bond, the yield y_t of the risky corporate bond can be derived from

$$e^{-y_t(T-t)}F = B_t, (13)$$

and thereby the credit spread s_t can be computed as

$$s_t = -\frac{1}{T-t} \ln(1 - \frac{P_t^{HM}}{Fe^{-r(T-t)}}).$$
(14)

3 Monte Carlo Analysis

In this section, we conduct a simulation study to exam the property of SVJ model throughout comparing its performance with Merton model and SV model without jumps in corporate credit spread prediction. We design three simulation scenarios to reflect different features of the return data, including a simple pure diffusion (in which the stochastic volatility and jump related parameters

¹We refer to section 2.1 for the explicit expressions of P_1 and P_2 .

 $(\kappa, \theta, \sigma_V, \lambda, \overline{J} = 0.002, \text{ and } \sigma_J = 0.3256)$ in equation (1) and (2) are zeros), a stochastic volatility process without jumps (in which the jump related parameters $(\lambda, \overline{J} = 0.002, \text{ and } \sigma_J = 0.3256)$ in equation (1) and (2) are zeros) and a jump diffusion process with stochastic volatility (which is exactly as jointly expressed in equation (1) and (2)). The first two scenarios aim to illustrate the benefit of allowing for time-varying volatility in asset returns, and the last two scenarios are used to reveal the important role of jumps.

3.1 Simulation Design

Most of the parameters in the simulation are set according to Lehman Brothers analysis of Fulop and Li (2013), with $\mu = -0.034$, $\kappa = 13.93$, $\theta = 0.004$, $\sigma_V = 0.263$, $\rho = 0$, $\delta = 0.0018$, and $F = 2.734 \times 10^5$. The three additional jump related parameters are calibrated to the mean estimates of our empirical data as $\lambda = 0.0032$, $\overline{J} = 0.0029$, and $\sigma_J = 0.3274$. We set the risk free rate as 0.03^2 , and choose the initial leverage ratio $\frac{F}{S}$ to be equal to 20%, resulting in the initial asset value $S_1 = 1.37 \times 10^6$, and the initial value of the asset volatility is to be θ . We repeat the simulation exercise by changing the value of θ from 0.004 to 0.04 in order to investigate how the model performance changes with the increase of the firm's financial risk, and change the value of λ (and \overline{J}) from 0.0032 (and 0.0029) to 0.010 (and 0.010) to analyze the sensitivity of the model performance to the extend of jump activities in the asset returns.

In short, we generate 1250 (5-year) daily returns and then compute the firm's asset values backward to yield a sample of 1251 asset values. The equity values are calculated using the option pricing formula displayed in equation (6), and the maturity period of the firm's debt is chosen to be 5 years. To mimic the real world, we regard the asset price value as an unknown, and only utilize the information embedded in the observed equity values to estimate the models. The first 1000 samples are used to estimate the models, and the last 250 samples are left for out-of-sample prediction evaluation. To lock out Monte Carlo variability, we simulate 100 data sets for each case, and implement 15 independent runs of MRM algorithm on each data set to get the model parameter estimates. The number of parameter and state particles used in MRM algorithm are respectively chosen to be N = 1000 and M = 500. We compute both one-step-ahead and five-step-ahead credit spread forecasts from the SVJ model, and compare its performance with the Merton model and the SV model without jumps.

²It is the average of 3-month constant maturity treasury yield used in Fulop and Li (2013)

3.2 Simulation Results

We compute the bias and RMSE of credit spread predictions from the three models³ for the last 250 samples of each data set, and report the mean of bias and RMSE across the 100 data sets in Table 1. The third column contains the results for the Merton model, the sixth column has the results for SV model, and the results of SVJ model are presented in the seventh column. These results reveal several noteworthy points. Beginning with the first DGP where asset return follows a pure diffusion process (see Panel A in Table 1), the three models perform quite identically with the Merton model performing slightly better. It is not surprising given that a complex model with more parameters (the SV model and SVJ model) will have additional estimation uncertainty. But the cost appears marginal according to the results. Secondly, when the asset returns do not follow a pure diffusion (see Panel B and C in Table 1), the SVJ model largely outperforms the Merton model with far smaller bias and RMSE. Compared with SV model without jumps, the SVJ model performs quite similarly when asset returns move without jumps, but performs better when asset returns follow a jump diffusion process. In addition, the improvement from SV model to SVJ model is more pronounced when both intensity and magnitude of jumps increase. Thirdly, while the three models provide better forecasts at shorter time horizon (one-step-ahead), the improvement from Merton model to SV model and SVJ model becomes more pronounced in longer horizon forecasts (five-step-ahead). Lastly, as the firm financial risk increases, all the models perform worse with larger prediction bias and RMSE. It implies that the higher the risk is, the harder it is to be accurately quantified.

Despite these results reveal the advantage of SVJ model, they give no indication about where the better performance of SVJ model comes from. We conduct a decomposition analysis on the reported RMSE to answer this question. Intuitively, we can think at least three channels are driving the model performance differences. First, from the mean level perspective, after allowing for dynamics in asset volatility, the SV model and SVJ model can better capture the average level of the asset volatility, and thereby better predict the average level of credit spread. Second, with time-varying volatility and the implied more realistic functional form between asset and equity values, the SVJ model can better track the changes in credit spread. Lastly, explicitly considering jumps in SVJ model

$$CDS_{Merton} = -\frac{1}{T-t} log(\frac{V_t}{F} \Phi(-d_t) + e^{-r(T-t)} \Phi(d_t - \sigma\sqrt{T-t})) - r,$$

where $d_t = \frac{ln(\frac{V_t}{F}) + (r + \frac{\sigma^2}{2})(T-t)}{\sigma\sqrt{T-t}}$.

³The model predicted spread can be calculated according to equation 14 for SVJ model and SV model with the corresponding P_t^{HM} . The Merton model predicted spread can be computed as follows:

can better describe the large random fluctuations in credit spread. The three effects are further examined as follows.

The mean level effect can be easily identified by looking at the mean spread forecast errors of these models. We compare the average of the predicted spreads from the three models against the average of the true spreads, that is the bias we reported in Table 1. Compared to the Merton model, the always smaller bias in SVJ model and SV model verifies that taking into account the stochastic property of the asset volatility is helpful to better measure the level of credit spread on average. Next, we focus on the change effect and define a new SV model where the volatility state variable is fixed at its stationary level (that is θ) to separately explore the role of time-varying volatility and the functional form between asset and equity values in tracking the changes of credit spreads. The bias and RMSE of predictions from this new SV model are reported in the fifth column of Table 1. While the reduction in bias from Merton model to this model implies that an appropriate functional form between asset and equity values helps better capture the changes in credit spreads, the rest discrepancy between this model and the SV model reveals the benefit of allowing for time-varying volatility. In fact, the two effects can be alternatively separated by looking at a modified Merton model where the asset volatility is no longer an unknown parameter, but takes its true value at each time point. This model eliminates the asset volatility estimation uncertainty, and only focus on the effect of functional form mapping asset values to equity values. To save the space, we do not report the results of this model, but these results are available upon request. We observe a reduction of bias and RMSE from Merton model to this model, which reveals the importance of accurately estimating asset volatility in credit risk prediction. The still better performance of the SV model compared to this model reveals the benefit of utilizing appropriate option pricing function form in structural model. At the end, we compare the SVJ model with the SV model to identify the extreme movement effect. The reduction of bias and RMSE from SV model to SVJ model under the jump diffusion process with stochastic volatility provides the evidence that explicitly modeling jumps can better capture the large fluctuations in credit spreads.

In addition, a typical implementation of the Merton model tends to use one-year rolling window to account for time-varying asset volatility. For better comparability, we estimate the Merton model with one-year rolling samples, and report the bias and RMSE of the generated predictions in fourth column of Table 1. In general, both bias and RMSE are reduced from the previous Merton model with a multi-year fixed samples. This improvement further collaborates the benefit of taking into account the variability of the asset volatility. More importantly, the rolling strategy does not help the Merton model to overcome the SV model and SVJ model decisively. The still smaller bias and RMSE of the SV model and the SVJ model suggest that apart from specifying the dynamics of time-varying volatility, other sources are leading to the better performance of the two models such as the functional form transforming asset values to equity values.

		Merton Model	Merton Model*	$SV \mod^*$	SV model	SVJ model
		Pa	anel A: Constant	Volatility with	nout Jumps	
One stop sheed	Bias	-0.0005	-0.0004	-0.0004	-0.0006	-0.0006
One step aneau	RMSE	0.0009	0.0008	0.0008	0.0011	0.0011
Eine star shard	Bias	-0.0012	-0.0011	-0.0011	-0.0012	-0.0012
Five step anead	RMSE	0.0015	0.0015	0.0015	0.0016	0.0016
		Panel	B: Stochastic Vola	atility Process	without Jur	nps
			σ_v	= 0.004		
One stan sheed	Bias	-0.0052	-0.0050	-0.0051	-0.0047	-0.0047
One step anead	RMSE	0.0061	0.0059	0.0060	0.0056	0.0057
Eine star shard	Bias	-0.0057	-0.0054	-0.0053	-0.0049	-0.0050
Five step anead	RMSE	0.0063	0.0061	0.0061	0.0058	0.0059
			σ_v	= 0.04		
	Bias	-0.0074	-0.0072	-0.0072	-0.0069	-0.0070
One step anead	RMSE	0.0083	0.0079	0.0080	0.0076	0.0078
Eine star shard	Bias	-0.0079	-0.0075	-0.0074	-0.0071	-0.0072
Five step anead	RMSE	0.0087	0.0083	0.0082	0.0079	0.0080
		Panel C:	Jump Diffusion P	rocess with St	tochastic Vol	atility
			$\sigma_v = 0.004, \lambda =$	$= 0.0032, \ \overline{J} =$	0.0029	
One step sheed	Bias	-0.0068	-0.0065	-0.0066	-0.0062	-0.0060
One step anead	RMSE	0.0063	0.0059	0.0060	0.0056	0.0054
Eine star shard	Bias	-0.0073	-0.0068	-0.0070	-0.0067	-0.0066
Five step anead	RMSE	0.0067	0.0064	0.0065	0.0062	0.0060
			$\sigma_v = 0.004, \lambda$	$= 0.010, \overline{J} =$	0.010	
	Bias	-0.0084	-0.0080	-0.0081	-0.0078	-0.0073
One step ahead	RMSE	0.0089	0.0086	0.0087	0.0081	0.0078
	Bias	-0.0090	-0.0087	-0.0086	-0.0082	-0.0079
Five step ahead	RMSE	0.0090	0.0087	0.0088	0.0085	0.0081

Table 1: Simulation study for the model comparison

Note: We simulate 100 data sets with sample size T = 1250 under three GDPs, including a pure diffusion, a stochastic volatility process without jumps and a jump diffusion process. We implement 15 independent runs of MRM algorithm on the first 1000 observations of each data set to obtain the model parameter estimates, and then produce the credit spread prediction for the last 250 days. This table reports the mean of bias and RMSE of credit spread predictions for the last 250 days from different models across the 100 data sets.

4 Empirical Analysis

We implement the SVJ structural model on two real data sets to empirically assess its ability in credit risk prediction. The first sample includes 20 Dow Jones firms representing the large-cap companies, and the second contains 200 randomly selected firms from the CRSP database representing typical U.S. exchange listed firms. The firm is included in the second sample only if it has the required CDS spread data and balance sheet information for our sample period and it is not a firm already contained in the Dow Jones sample. We will compare the SVJ model with Merton model and SV model in terms of their 5-year CDS spread predictions for these sample firms. We choose CDS spread to test the model performance due to three reasons. First, the CDS contract is typically traded on standardized terms, and the transaction data is available publicly. Second, CDS spread is a relatively pure pricing of default risk of the underlying entity. Lastly, in the short run CDS spread tends to efficiently respond to changes in credit conditions, so that it is a good credit risk indicator.

4.1 Dow Jones 20 Firms

Our data sample consists of daily 5-year corporate debt CDS spreads⁴, and all required balance sheet information of the 20 firms. The sample covers the period of 03/01/2008-31/12/2013, resulting in a sample size of T = 1490. The data of CDS spreads are taken from Bloomberg, and the balance sheet information are obtained from WRDS CRSP database. The equity values are computed as the product of the closing price of equity and the number of shares outstanding. The maturity of debt is set to 5 years to match with the maturity period of the CDS contracts, and the 3-month constant maturity treasury yield from the St. Louis FED website is chosen to represent the risk free rate. The face value of the debt F is treated as an unknown which is determined by the data. Company name and main statistics of their 5-year CDS spreads are summarized in Table 2, and Figure 1 displays the average daily equity return and the average 5-year CDS spreads across the 20 Down Jones Firms over the whole sample period. The relatively higher return volatility and CDS spreads during 2008-2009 suggests the presence of a turbulent period during the recent financial crisis.

We use the first 993 samples from January 2 2008 to December 30 2011 to estimate the models, and leave the last 498 days from January 3, 2012 to December 30, 2013 for model forecast evaluation. The MRM algorithm is implemented with 1000 parameter particles (N=1000) and

⁴We choose 5-year CDS as it is the most liquid CDS contract traded in U.S market.

Company Name		Jan 2008-	Dec 2013	
		5 year CD	S spread	
	Mean	Max	Min	Std
Verizon	68.6144	169.3000	18.6000	29.6478
Boeing	92.9535	322.0000	15.2000	67.3197
Caterpillar	123.1250	504.9100	33.4000	101.0075
Chevron	68.6143	129.0000	20.1000	29.7738
Coca-cola	36.2504	84.5000	17.8000	13.8985
Walt Disney	42.8312	108.5000	19.8000	18.4209
E.I. du Pont	45.4038	207.0000	16.0000	34.9434
Exxon	31.5696	99.4000	12.0000	19.2140
Home Depot	111.2713	330.3000	31.0650	71.5890
Intel	45.1969	83.6060	22.2300	24.5180
Johnson&Johnson	31.7979	70.6000	10.8000	13.8626
Mcdonald	30.3598	63.0000	11.7100	12.0808
3M	40.2012	113.7000	14.6250	24.2850
Procter&Gamble	52.3325	147.1000	19.4000	32.4460
AT&T	38.1561	107.3000	12.4000	17.8618
United Health	118.0969	416.6250	39.1090	84.4500
United Technologies	46.1059	118.3000	19.6100	22.5466
Wal-Mart	47.9782	120.6000	21.7000	25.4582
Microsoft	25.5980	85.0000	7.8104	8.2000
Cisco	49.7668	143.7000	20.4000	23.8078

Table 2: Summary Statistics of 5-year CDS Spreads for 20 Dow Jones Companies

Note: This table reports the summary statistics of 5-year CDS spreads for 20 Down Jones Firms from 02/01/2008-31/12/2013. The numbers are expressed in basis point.

500 state particles (M=500) for each parameter set. A uniform prior for F is used with a lower bound equal to current liabilities plus 0.5 long term debt (default barrier used in Moody's KMV model) and an upper bound equal to total liabilities. The remaining parameters have the following priors: $\mu \sim N(0,005)$, $(\theta, \kappa, \sigma_V, \lambda, \overline{J}, \sigma_J, \delta) \sim U[(0.001^2, 0, 1 \times 10^5, 0.001, -0.01, 0.01, 1 \times 10^6), (0.2^2, 20, 2, 0.01, 0.01, 0.1, 0.05)]$. Both one-step-ahead and five-step-ahead forecasts are computed for model comparison.

Table 3 reports the estimation results of the SVJ model for the 20 firms⁵. Firm names are given in the first column. Full-sample parameter posterior means together with the 5th and 95th percentiles of the posterior distribution are contained in the next columns. The mean of the log marginal likelihood is presented in the last column. Figure 2 shows the average sequential estimates of the filtered asset volatility across these firms along with the average central 90% confidence interval. These results strongly support the SVJ model from several aspects. First, the stochastic volatility related parameters (κ and σ_V) in all the firms have narrow 90% confidence intervals indicating that the real asset volatility indeed exhibits variability. This is further corroborated by Figure 2 in

 $^{^{5}}$ The estimation results of the Merton model and SV model are not reported here, but they are available upon request.

which the average value of the filtered asset volatility across the 20 firms varies substantially over time with a tight 90% confidence interval. These filtered asset volatilities can efficiently depict all fluctuations observed in the market with large magnitude and variability in the beginning of the sample, and relatively small values from the middle towards the end. Second, the jump related parameters $(\lambda, \overline{J} \text{ and } \sigma_I)$ in all the firms also have tight 90% confidence intervals, but the intervals are relatively large than those of other parameters. These results confirm the existence of abrupt movements in asset returns, and the greater uncertainty of these extreme events occurrences. Third, the mean of the log marginal likelihood from SVJ model is always larger than that of Merton model and SV model (the mean of the log marginal likelihood of Merton model and SV model are not reported here, but available upon request) for all the firms, implying that on average the SVJ model provides better in-sample fit for the observed equity values on average. We also employ sequential log Bayes factor as shown in equation (10) to compare the three models recursively. We average the log Bayes factor between the SVJ model and the Merton model or the SV model across the 20 firms, and plot them in Figure 3. It is clear that while the three models perform very similarly at the beginning, the SVJ model and the SV model shows a huge superiority to the Merton model during the crisis period as the log Bayes factor between the SVJ model (or the SV model) and the Merton model reaches a high level at the end of year 2008 and keeps rising onwards until the end of sample. A further advantage is spotted from SV model to SVJ model. In summary, the SVJ model is overwhelmingly preferable to Merton model and also superior to the SV model. The advantage is particularly apparent when the market is turbulent. Note that our analysis so far relies on the expected values of the posterior distributions of model parameters and states without considering parameter and state uncertainty. Korteweg and Polson documented the importance of accounting for parameter uncertainty on corporate bond credit spreads, and therefore it would be interesting to see whether the rank of the models considered here will be alternated after considering this effect. We leave this for later work.

Company name		μ	θ	κ	σ_V	λ	J	σ_J	δ	F	MLMLH
	Mean	0.0046	0.0167	12.578	0.1996	0.0032	0.0012	0.1274	0.0027	1.0945×10^5	
Verizon	$0.05 \ \mathrm{Qtl}$	-0.0797	0.0129	8.437	0.0998	0.0008	0.0009	0.0975	0.0011	$8.9570 imes 10^4$	946.72
	$0.95 \mathrm{Qtl}$	0.1176	0.0210	18.256	0.2765	0.0051	0.0033	0.2986	0.0042	1.3157×10^{5}	
	Mean	0.0277	0.0318	10.276	0.1975	0.0057	0.0063	0.1587	0.0017	5.1579×10^{4}	
Boeing	$0.05 \ \mathrm{Qtl}$	-0.0847	0.0279	8.723	0.1135	0.0023	0.0047	0.0825	0.0003	4.6832×10^{4}	925.33
	$0.95 \mathrm{Qtl}$	0.1466	0.0356	16.759	0.2872	0.0086	0.0105	0.2574	0.0034	5.7229×10^{4}	
	Mean	0.0810	0.0378	11.098	0.4391	0.0015	0.0027	0.0129	0.0022	4.7439×10^{4}	
Caterpillar	$0.05 \ \mathrm{Qtl}$	-0.0498	0.0349	4.675	0.1957	0.0009	0.0012	0.0095	0.0011	4.3608×10^{4}	879.61
	$0.95 \mathrm{Qtl}$	0.2416	0.0397	19.884	0.6332	0.0026	0.0032	0.0153	0.0043	5.0305×10^{4}	
	Mean	0.0279	0.0396	15.987	0.4331	0.0025	0.0013	0.0228	0.0048	7.1009×10^4	
Chevron	$0.05 \ \mathrm{Qtl}$	-0.1322	0.0382	6.778	0.2098	0.0014	0.0008	0.0125	0.0045	6.9327×10^{4}	895.47
	$0.95 \mathrm{Qtl}$	0.2005	0.0400	20.912	0.6776	0.0037	0.0024	0.0326	0.0050	$7.1918{\times}10^4$	
	Mean	0.0667	0.0377	10.224	0.5331	0.0056	0.0436	0.0275	0.0038	2.2054×10^{5}	
Coca-Cola	$0.05 \ \mathrm{Qtl}$	-0.0810	0.0357	3.987	0.3207	0.0031	0.0258	0.0156	0.0030	2.0646×10^5	918.94
	$0.95 \ \mathrm{Qtl}$	0.1903	0.0399	18.090	0.6652	0.0072	0.0627	0.0305	0.0046	2.3139×10^{5}	
	Mean	0.0378	0.0395	17.223	0.3341	0.0065	0.0026	0.3287	0.0048	2.7358×10^{4}	
Walt Disney	$0.05 \ \mathrm{Qtl}$	-0.1059	0.0389	9.087	0.1126	0.0042	0.0011	0.2076	0.0043	2.6797×10^4	874.56
	$0.95 \ \mathrm{Qtl}$	0.1793	0.0400	23.998	0.5430	0.0081	0.5127	0.3923	0.0050	2.7681×10^4	
	Mean	0.0562	0.0380	10.876	0.4219	0.0041	0.0049	0.1657	0.0039	2.9429×10^4	
E.I. du Pont	$0.05 \ \mathrm{Qtl}$	-0.0929	0.0358	2.993	0.2325	0.0036	0.0035	0.0983	0.0029	2.7588×10^4	894.30
	$0.95 \mathrm{Qtl}$	0.2131	0.0398	16.095	0.5098	0.0052	0.0057	0.2014	0.0048	3.0414×10^{4}	
	Mean	-0.0645	0.0396	15.908	0.3348	0.0074	0.0021	0.2573	0.0049	1.1420×10^{5}	
Exxon	$0.05 \ \mathrm{Qtl}$	-0.1853	0.0382	5.214	0.1980	0.0061	0.0014	0.1786	0.0046	1.0948×10^{5}	926.19
	$0.95 \mathrm{Qtl}$	0.1007	0.0400	22.987	0.5231	0.0089	0.0033	0.3326	0.0050	1.1722×10^{5}	
	Mean	0.0646	0.0395	13.776	0.2241	0.0025	0.0014	0.3659	0.0046	2.3060×10^4	
Home Depot	$0.05 \ \mathrm{Qtl}$	-0.0826	0.0389	5.786	0.1087	0.0017	0.0008	0.2219	0.0040	2.2596×10^4	931.48
	$0.95 \mathrm{Qtl}$	0.2016	0.0400	20.997	0.3066	0.0034	0.0020	0.4023	0.0050	2.3362×10^4	
	Mean	0.0559	0.0333	12.989	0.3891	0.0014	0.0026	0.2129	0.0017	8.0034×10^{4}	
Intel	$0.05 \ \mathrm{Qtl}$	-0.0900	0.0311	5.887	0.2085	0.0007	0.0013	0.1186	0.0005	7.3835×10^4	886.43
	$0.95 \ \mathrm{Qtl}$	0.1974	0.0360	17.224	0.5098	0.0025	0.0034	0.3234	0.0030	8.4765×10^4	

Table 3: SVJ structural Model Estimation Results for 20 Dow Jones Companies

	Mean	-0.0326	0.0231	18.765	0.3321	0.0025	0.0041	0.2235	0.0036	4.1332×10^{4}	
Johnson & Johnson	$0.05 \ \mathrm{Qtl}$	-0.1268	0.0211	10.228	0.2653	0.0014	0.0032	0.1764	0.0027	3.6794×10^{4}	898.73
	$0.95 \ \mathrm{Qtl}$	0.0809	0.0257	29.876	0.5208	0.0033	0.0054	0.3546	0.0048	4.3938×10^{4}	
	Mean	0.1063	0.0319	12.989	0.3321	0.0041	0.0026	0.4079	0.0045	1.5003×10^{4}	
Mcdonald	$0.05 \ \mathrm{Qtl}$	-0.0259	0.0295	7.232	0.2987	0.0021	0.0018	0.2764	0.0040	1.3413×10^{4}	944.31
	$0.95 \mathrm{Qtl}$	0.2459	0.0347	19.887	0.5321	0.0054	0.0039	0.5123	0.0049	1.6026×10^4	
	Mean	0.0361	0.0389	10.998	0.4217	0.0028	0.0016	0.1513	0.0047	1.3478×10^{4}	
3M	$0.05 \ \mathrm{Qtl}$	-0.1092	0.0291	3.885	0.2238	0.0010	0.0009	0.1024	0.0042	1.2551×10^{4}	821.25
	$0.95 \mathrm{Qtl}$	0.1642	0.0452	16.989	0.5356	0.0032	0.0025	0.2287	0.0050	1.3939×10^{4}	
	Mean	-0.0290	0.0249	17.098	0.3432	0.0037	0.0025	0.2671	0.0043	6.1996×10^4	
Procter & Gamble	$0.05 \ \mathrm{Qtl}$	-0.1583	0.0226	10.291	0.2109	0.0022	0.0018	0.1983	0.0037	5.3287×10^{4}	850.92
	$0.95 \mathrm{Qtl}$	0.1010	0.0281	25.439	0.4342	0.0043	0.0031	0.3085	0.0049	6.9547×10^4	
	Mean	-0.0473	0.0285	11.223	0.3238	0.0037	0.0024	0.2026	0.0038	1.1040×10^5	
AT/T	$0.05 \ \mathrm{Qtl}$	-0.1775	0.0253	4.998	0.2901	0.0023	0.0012	0.1514	0.0024	1.0273×10^{5}	864.38
	$0.95 \mathrm{Qtl}$	0.0940	0.0319	16.289	0.5529	0.0042	0.0033	0.3837	0.0046	1.2076×10^{5}	
	Mean	0.0430	0.0395	13.879	0.3906	0.0015	0.0034	0.2627	0.0046	3.5056×10^4	
United Health	$0.05 \ \mathrm{Qtl}$	-0.0703	0.0372	7.9981	0.2176	0.0009	0.0023	0.1018	0.0038	3.4302×10^4	795.41
	$0.95 \mathrm{Qtl}$	0.1611	0.0432	21.879	0.4432	0.0021	0.0045	0.3132	0.0049	3.5430×10^4	
	Mean	0.0273	0.0376	8.2351	0.1198	0.0012	0.0034	0.1517	0.0036	3.2973×10^4	
United Technologies	$0.05 \ \mathrm{Qtl}$	-0.1134	0.0321	6.7093	0.0981	0.0008	0.0021	0.1089	0.0023	3.1213×10^4	897.66
	$0.95 \mathrm{Qtl}$	0.1905	0.0438	10.2347	0.2865	0.0021	0.0040	0.2286	0.0048	3.4259×10^4	
	Mean	0.0554	0.0230	12.887	0.3376	0.0014	0.0023	0.1587	0.0046	8.2534×10^{4}	
Wal-Mart	$0.05 \ \mathrm{Qtl}$	-0.0440	0.0209	5.679	0.1309	0.0007	0.0015	0.1015	0.0042	7.7116×10^4	823.57
	$0.95 \mathrm{Qtl}$	0.1750	0.0254	19.824	0.5487	0.0025	0.3231	0.2028	0.0050	8.7963×10^{4}	
	Mean	-0.0302	0.0398	15.884	0.5498	0.0045	0.0023	0.1614	0.0049	3.7567×10^{4}	
Microsoft	$0.05 \ \mathrm{Qtl}$	-0.1652	0.0352	9.761	0.2231	0.0033	0.0015	0.1012	0.0032	3.6742×10^4	897.43
	$0.95 \mathrm{Qtl}$	0.0894	0.0400	21.325	0.7678	0.0052	0.0037	0.2829	0.0057	3.8314×10^4	
	Mean	-0.0572	0.0398	14.989	0.3241	0.0012	0.0037	0.2124	0.0050	$2.9299{\times}10^4$	
Cisco	$0.05 \ \mathrm{Qtl}$	-0.1983	0.0352	10.225	0.2256	0.0008	0.0012	0.1215	0.0049	$2.9010{\times}10^4$	803.42
	$0.95 \mathrm{Qtl}$	0.0669	0.0457	20.975	0.5098	0.0023	0.0041	0.3217	0.0065	2.9445×10^4	

Note: This table reports the parameter estimates of the SVJ model at the final date T with the first 993 equity value observations using MRM for 20 Dow Jones firms. In estimation, we set the number of state and parameter particles are respectively 500 and 1000. The priors are $\mu \sim N(0,005)$, $(\theta, \kappa, \sigma_V, \lambda, \overline{J}, \sigma_J, \delta) \sim U[(0.001^2, 0, 1 \times 10^5, 0.001, -0.01, 0.01, 1 \times 10^6), (0.2^2, 20, 2, 0.01, -0.01, 0.1, 0.05)].$

After obtaining the model parameter estimates, together with the risk-free interest rate we can produce the model implied credit spreads for the whole sample period. To remove the influence of the priors, we leave an initial learning period of 100 days and begin the spread calculation only after that. In contrast to the estimation period where the spreads are computed by using estimated asset volatilities, the spread predictions in the forecast evaluation period are computed using the predicted asset volatilities. By employing 5-year CDS spread as a proxy of the real credit risk, we compare the SVJ model with Merton model and SV model in terms of bias and RMSE of their one-step-ahead and five-step-ahead credit spread predictions. The bias and RMSE of the model predicted spread have the standard definition as E(CDS - CDS), and $\sqrt{E(CDS - CDS)^2}$, where CDS is the model predicted credit spread and CDS is the actually observed CDS spread.

We firstly look at the model implied CDS spreads in estimation period. Table 4 panel A summarizes the bias and RMSE of the model implied credit spreads for the whole estimation period, and panel B provides the results for the financial crisis period. Firm names are given in the first column. The second and third columns report the results of the Merton model, the eighth and ninth columns contain the results of the SV model, and the last two columns present the results of the SVJ model. In general, although all the three models underestimate the credit spread, there are large improvements from Merton model to SV model and SVJ model. The average RMSE across the firms are reduced around 6 basis points from Merton model to SV model, and further 2 basis points to SVJ model. The improvement exhibits more pronounced during the crisis period, with the average RMSE decreasing respectively around 7 and 10 basis points from Merton model to SV model and SVJ model. We further exam whether the three sources documented in Section 3 are able to explain these improvements. In terms of the mean level estimation, the SV model successfully reduces the bias from the Merton model by 5 basis points, and the SVJ model reduces the bias by 6.5 basis points on average. The bias reduction appears larger during the crisis period, with 7 basis points achieved by the SV model and 9.5 basis points produced by the SVJ model. Next, we shift attention to the change effect. We compute the implied spreads from a new SV model where the state volatility is fixed at its stationary level to explore the role of time-varying volatility. The bias and RMSE of the implied credit spreads from this model are reported in the sixth and seventh columns of Table 4. While the large bias reduction from Merton model to this model shows that the mean level effect has been successfully controlled, the still larger RMSE compared to that of the standard SV model indicates that allowing for asset volatility dynamics helps better track the dynamic changes of the credit spreads. We also estimate the Merton model using one-year rolling

Figure 3: Average Sequential log Bayes factors between SV structural model and Merton model for 20 Down Jones firms

samples, and present the results in fourth and fifth columns of Table 4. The reduced bias and RMSE from the Merton model with a multi-year fixed sample provides the evidence that the rolling window estimation is a good way to account for the time-varying volatility. However, the still smaller bias and RMSE provided by SV and SVJ model corroborate the fact that apart from time-varying volatility, other sources are leading to the superiority of the SV and SVJ models such an appropriate functional form between the asset and the equity values. Lastly, we compare SV model and SVJ model to reveal the role of jumps. The always lower bias and RMSE from SVJ model particularly during the crisis period confirms that explicitly modeling jumps can better describe the extreme movements in CDS spreads.

Now, we turn to the model predicted CDS spreads in forecast evaluation period. Table 5 summarizes the bias and RMSE of the spread predictions for the last 498 days of our sample period, with panel A for one-step-ahead forecasts and panel B for five-step-ahead forecasts. In general, the rank of the models we observed above is still preserved here. The SV model and SVJ model largely reduce the prediction bias and RMSE from Merton model in all the cases, and these improvements can be attributed to the time-varying volatility and the resulting option pricing formula which transforms the asset values to the equity values. The further bias and RMSE reductions are still detected from SV model to SVJ model, suggesting that explicitly modeling jumps is important to predict the CDS spread. Meanwhile, these results reveal two additional interesting findings. First, the fivestep-ahead predictions from all the models have larger bias and RMSE than those of one-step-ahead counterparts, implying that obtaining accurate forecast is more difficult in multi-step-ahead scenario because of the accumulated forecast errors. More importantly, the prediction improvements from the Merton model to the SV and SVJ model appear greater at longer horizon. While the average bias and RMSE across these firms respectively decreased by 4 and 5 basis points from Merton model to SV model, and further reduction of 1.5 and 1.7 basis points from SV model to SVJ model at daily horizon (one-step-ahead forecast), the average bias and RMSE are reduced by 5.5 and 6 basis points from Merton model to SV model, and decrease 1.7 and 2.5 more basis points from SV model to SVJ model at weekly horizon (five-step-ahead forecast). In summary, ignoring the dynamics of asset volatility and jumps has larger impact on longer horizon credit spread prediction.

These findings are further illustrated in Figure 4 to give us a visual impression. The figure shows the Merton model predicted spreads, the SV model predicted spreads and the SVJ model predicted spreads against the actual 5-year CDS spreads of Chevron over the whole sample period. The top, middle and bottom panels of Figure 4 respectively present the implied spreads from the Merton model, the SV model and the SVJ model against the actual 5-year CDS spreads. While the right of the right y-axis labels the scale of the model predicted credit spreads, the left of the y-axis labels the scale of the actual CDS spreads. Apparently, the predicted spreads from the SV model and the SVJ model track the actual 5-year CDS spreads much better than the counterparts from Merton model with respect to both the level magnitude and the dynamic changes. The SVJ model offers further improvement from the SV model in capturing the large spikes in the actual CDS spreads. These improvements are particularly clear when market is turbulent from 01/09/2008 to 31/12/2009.

				Panel	A: 02/01/2	008-30/12	/2011			
	Mertor	n model	Merton	model*	SV m	odel*	SV n	nodel	SVJ r	nodel
Company Name	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
Verizon	-52.3537	54.3911	-49.8782	52.8986	-48.7274	51.9986	-45.8976	48.1253	-44.8786	47.3578
Boeing	-33.6025	42.8716	-31.8976	40.2758	-32.0986	40.1764	-29.8784	38.2189	-27.2135	37.1865
Caterpillar	-22.6754	45.2125	-20.8896	43.1845	-21.9456	42.8976	-19.8765	40.9876	-18.9765	39.1236
Chevron	-37.0361	42.8225	-35.8976	40.2891	-36.1215	40.1876	-33.1893	38.2935	-32.8976	37.6541
Coca-cola	-32.8873	46.9896	-30.1819	44.8976	-31.8765	43.5462	-28.7673	40.8972	-27.1789	39.2373
Walt Disney	-31.2267	40.1258	-29.7865	38.1237	-29.8764	38.5643	-26.1798	35.7892	-24.7895	34.1246
E.I.du Pont	-32.1876	38.0160	-29.8973	36.8965	-28.9764	36.1214	-26.7893	35.1287	-25.3893	33.2781
Exxon	-20.7865	29.7671	-18.7432	27.1893	19.2876	28.0981	-16.2755	23.8971	-15.0987	22.9109
Home Depot	-80.2156	94.2896	-77.1985	92.8912	-78.1256	91.2859	-75.8941	89.7667	-75.0915	89.0974
Intel	-35.7871	46.7924	-33.8696	44.8952	-32.9761	44.5642	-30.5562	40.8699	-29.7851	39.0876
Johnson&Johnson	-20.8953	34.8791	-18.7581	32.9774	-18.0876	31.8908	-15.8916	28.9075	-14.9872	27.0981
Mcdonald	-27.4341	29.2104	-25.9796	27.8915	-26.0987	26.9861	-22.8914	23.9194	-21.9532	22.6539
3M	-38.1276	44.3381	-36.9806	43.5815	-36.7424	42.8974	-35.8971	39.8017	-34.0911	38.0945
Procter&Gamble	-52.1764	65.8932	-50.1677	63.8078	-49.8608	62.1917	-45.9751	59.0137	-44.0898	58.0925
AT&T	-63.2178	74.3872	-61.8976	72.9061	-61.9895	72.6543	-58.9871	69.0832	-57.0984	68.1256
United Health	-90.2325	101.8786	-87.1437	99.0861	-87.3536	98.7961	-85.9187	95.2426	-84.8913	94.5759
United Technologies	-37.6529	45.7893	-35.0861	43.0877	-34.9872	42.9895	-32.9861	39.0853	-31.2678	38.0954
Wal-Mart	-45.8972	52.8974	-43.6783	50.0913	-43.0981	49.8125	-40.9916	46.0871	-39.6754	45.5672
Microsoft	-20.1974	25.8761	-17.4564	23.9086	-17.0983	23.0546	-15.0897	20.0952	-14.2576	19.2325
Cisco	-42.7935	54.8964	-41.8971	53.0892	-40.9897	52.9891	-35.8908	48.0872	-34.9087	47.5415

Table 4: 5-year CDS Spread Estimation Results for 20 Dow Jones Companies

				Panel	B: 02/01/2	008-30/12	/2009			
	Mertor	n model	Merton	model*	SV m	odel*	SV n	nodel	SVJ r	nodel
Company Name	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
Verizon	-54.1967	57.8972	-51.7865	53.9801	-51.9861	53.5609	-45.9086	49.0821	-43.2354	46.3576
Boeing	-35.9261	44.8921	-31.9082	40.9852	-31.5476	40.6765	-26.7786	35.8987	-23.8901	33.0981
Caterpillar	-24.7893	46.9871	-21.8976	42.9025	-21.5802	42.4341	-17.8061	38.9006	-15.8661	35.9081
Chevron	-35.1974	44.8975	-32.6976	41.0905	-32.4531	41.2416	-29.9861	36.0871	-26.9087	34.9081
Coca-cola	-33.2578	48.9072	-30.8861	45.7656	-29.0854	44.9086	-26.8799	39.0751	-24.0976	37.0908
Walt Disney	-32.8976	42.8975	-29.0875	38.0817	-28.9082	37.8981	-24.0835	34.0926	-22.0061	32.0866
E.I.du Pont	-34.5092	40.1984	-31.0907	36.3254	-30.9895	36.0278	-26.9895	33.9086	-23.8721	31.0984
Exxon	-22.7896	31.8963	-19.7864	28.9086	-19.8076	28.7854	-16.9982	25.0807	-14.0873	23.8956
Home Depot	-82.3672	96.1872	-79.8654	93.9086	-79.8753	93.7654	-76.8125	89.3241	-73.9852	87.6635
Intel	-37.0981	48.9076	-33.0986	45.7516	-33.1567	45.3479	-31.0086	42.7872	-29.9809	39.0805
Johnson&Johnson	-21.9086	36.0783	-18.7756	33.8785	-18.6523	33.7674	-15.8906	31.9077	-13.9765	28.7673
Mcdonald	-29.4956	31.9090	-25.0875	29.6797	-25.7872	29.8754	-23.4547	26.8784	-21.0098	23.4569
3M	-40.9892	46.1214	-35.4648	43.2215	-35.4647	43.1258	-33.4468	40.9896	-31.9895	37.0965
Procter&Gamble	-54.6710	67.0982	-50.1135	64.3437	-50.2326	64.3539	-47.2429	62.1154	-45.4273	60.9894
AT&T	-65.0102	75.9035	-62.1157	73.2578	-62.6754	73.5452	-59.8783	68.1195	-57.7672	65.7892
United Health	-92.0805	103.4547	-89.7674	99.3246	-89.8923	99.5654	-85.4432	95.0874	-83.1257	92.7759
United Technologies	-39.0201	47.2356	-36.1278	44.5371	-36.3260	44.6862	-33.7981	41.0805	-31.8974	39.7763
Wal-Mart	-47.0831	54.0756	-43.9987	52.9063	-43.8751	52.5654	-41.9987	48.0906	-39.0852	45.7763
Microsoft	-22.7673	28.0974	-19.8784	25.8983	-19.5421	25.5437	-15.9086	23.0667	-14.9621	20.7764
Cisco	-44.9087	56.9823	-41.0064	53.0986	-41.2326	53.1215	-38.0906	49.8982	-35.0985	46.1214

Note: This table reports the bias and RMSE of the estimated 5-year CDS spreads from the standard Merton model, the Merton model with rolling window estimation (Merton model*), the SV model with a fixed volatility state variable (SV model*), the standard SV model and the SVJ model for 20 Down Jones firms. Panel A presents the results of the whole estimation period, and Panel B presents the results for the crisis subsample period. The numbers are expressed in basis point.

				Pa	anel A: On	One step ahead				
	Merton	model	Merton	model*	SV m	odel*	SV n	nodel	SVJ r	nodel
Company Name	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
Verizon	-30.9876	37.8921	-28.9901	35.1716	-28.6752	35.2765	-25.4647	32.9086	-23.8761	30.7673
Boeing	-20.9897	27.8015	-18.3437	25.3291	-18.2276	25.4743	-15.2329	23.8907	-13.4479	21.0908
Caterpillar	-17.0071	25.0765	-15.8633	23.9096	-15.6239	23.7674	-13.8976	20.9563	-11.6509	17.7865
Chevron	-17.9140	18.9626	-15.8983	16.2426	-15.6658	16.1217	-13.0903	14.0114	-11.7673	12.6532
Coca-cola	-23.5782	29.8784	-20.7654	26.5543	-20.5641	26.3987	-18.7675	23.8064	-16.8782	21.0706
Walt Disney	-19.9983	25.0985	-17.6662	23.8785	-17.2326	23.4549	-15.4438	20.7672	-13.2986	18.3638
E.I.du Pont	-18.9622	20.0491	-16.0876	18.1267	-16.3436	18.4268	-14.0654	14.5657	-13.3236	13.8785
Exxon	-15.4467	19.0876	-13.3678	17.6564	-13.4721	17.3439	-11.7674	15.3238	-10.8784	13.2987
Home Depot	-50.9873	59.6564	-48.7652	57.0073	-48.5657	56.9893	-45.7862	53.7865	-45.2328	52.8897
Intel	-20.8965	29.3437	-17.9972	27.8075	-17.6568	27.4589	-15.9972	24.1316	-13.4786	23.9896
Johnson&Johnson	-17.0983	24.6512	-15.0467	22.6439	-15.3231	22.9873	-13.5629	19.9836	-12.9897	18.7654
Mcdonald's	-13.1351	13.6534	-12.0326	12.9897	-12.1678	12.5458	-9.8832	9.7675	-9.5451	9.2108
3M	-25.8976	30.9871	-23.6754	28.7673	-23.1617	28.6561	-20.8876	24.3937	-18.5453	22.8784
Procter&Gamble	-42.7765	49.0971	-39.9897	47.2137	-39.6764	47.0983	-35.1216	43.7685	-34.9981	43.0256
AT&T	-43.2267	50.6562	-40.9871	47.6562	-40.6564	47.2326	-37.6652	43.0061	-37.1215	42.6754
United Health	-80.6675	85.1216	-78.9763	83.2786	-78.5467	83.2521	-74.2899	80.9294	-72.7671	79.6536
United Technologies	-25.6671	30.6128	-23.4686	28.6564	-23.7865	28.4327	-20.8975	24.3638	-19.8786	23.9897
Wal-Mart	-20.8651	34.7869	-18.7675	31.2786	-18.5654	31.0908	-15.7875	28.7674	-13.9725	27.5432
Microsoft	-19.8054	22.1187	-17.9795	20.7673	-17.6534	20.5459	-15.3276	17.6563	-14.8765	16.9114
Cisco	-25.7655	29.8076	-23.7654	27.8685	-23.4548	27.9871	-20.7642	24.7632	-19.8785	23.9896

Table 5: 5-year CDS Spread Prediction Results for 20 Dow Jones Companies

				F	Panel B: fiv	e-step-ahe	ad			
	Merton	model	Merton	model*	SV m	odel*	SV n	nodel	SVJ	model
Company Name	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
Verizon	-32.7765	38.9967	-30.9987	36.5643	-30.6752	36.2765	-26.4879	34.7876	-26.1145	31.9802
Boeing	-24.8962	29.2897	-22.0987	27.1103	-22.7675	27.1248	-18.6547	24.7375	-17.0102	21.8137
Caterpillar	-19.6368	28.4645	-17.1287	26.3439	-17.6239	26.0785	-15.7674	23.7674	-14.9981	20.9563
Chevron	-20.1318	23.4547	-18.7765	20.3736	-18.9374	20.1718	-15.1617	18.4347	-14.9896	13.2234
Coca-cola	-25.6783	31.7675	-23.9791	29.0807	-23.6238	26.3987	-17.2328	24.1176	-16.9098	22.6761
Walt Disney	-21.7675	27.1413	-19.1142	25.0578	-19.0327	25.0436	-16.0325	23.7674	-14.3761	21.4983
E.I.du Pont	-35.0637	40.1137	-33.6564	38.3236	-33.6568	38.4805	-30.1162	36.1318	-29.0705	33.9986
Exxon	-18.0782	21.3427	-16.0548	19.7674	-16.2326	19.5453	-14.0675	17.1132	-13.9896	14.1129
Home Depot	-48.2127	60.8972	-47.1215	58.7863	-47.2128	58.7673	-44.1217	55.5674	-43.3768	52.67653
Intel	-24.9076	32.5645	-22.8784	30.7674	-22.7673	30.3739	-19.3438	28.8975	-17.3236	25.1784
Johnson&Johnson	-19.5654	26.8973	-17.2328	24.6893	-17.5451	24.5857	-15.1124	22.6763	-14.6567	20.8986
McDonald's	-15.6567	16.4678	-13.2573	14.7873	-13.1897	14.5458	-11.7673	12.4749	-11.5451	10.2108
3M	-29.6765	33.7674	-26.4542	29.8943	-26.3231	29.7674	-23.1251	27.1367	-22.4328	26.8785
Procter&Gamble	-45.9097	53.5551	-39.9897	47.2137	-39.6764	47.0983	-35.1216	43.7685	-34.9981	41.0256
AT&T	-45.5672	53.4849	-43.7135	49.9895	-43.4542	49.1315	-39.0403	45.1218	-39.5654	42.8785
United Health	-82.3436	87.3589	-80.8984	85.8973	-80.3231	85.4348	-76.3235	82.7876	-76.0902	79.9536
United Technologies	-27.7873	34.5631	-25.7875	32.7865	-25.4342	32.5327	-23.7761	29.8783	-22.8731	27.0982
Wal-Mart	-23.1457	36.8123	-20.6563	34.5682	-20.5351	34.7673	-18.4342	31.3432	-17.5451	28.5356
Microsoft	-21.9876	25.3245	-20.7675	23.8973	-20.0951	23.5564	-19.5456	20.7675	-18.9084	17.1211
Cisco	-28.9082	30.7675	-27.8907	29.9861	-27.4548	29.3210	-24.3765	25.3231	-22.8973	22.8785

Note: This table reports the bias and RMSE of the predicted 5-year CDS spreads from the standard Merton model, the Merton model with rolling window estimation (Merton model*), the SV model with a fixed volatility state variable (SV model*), the standard SV model and the SVJ model for 20 Down Jones firms. Panel A presents the results for one-step-ahead predictions, and Panel B presents the results for five-step-ahead predictions. The numbers are expressed in basis point.

Lastly, we employ a time series regression along with Diebold and Mariano (1995) (DM) test to reveal whether the above-documented prediction improvements are statistically significant. More specifically, we regress the 498 predicted spreads from each model on the actual CDS spreads for each firm

$$CDS_{i,t} = \alpha_0 + \alpha_1 ICDS_{i,t} + \varepsilon_{i,t}, i = 1, ..., 20$$

$$\tag{15}$$

where $CDS_{i,t}$ is the actual 5-year CDS spread of firm *i* at time t, and $ICDS_{i,t}$ is the model predicted spread of firm *i* at time t.

To test for the significance of prediction bias, and separate the contribution of the mean level effect (bias) from the model ability of explaining the time-series variability (changes) of the spreads in overall forecast accuracy, we firstly run the regression by restricting $\alpha_1 = 1$. In doing so, we can test for bias on the estimate of α_0 , and measure the property of the model to explain time-variation of the actual spreads using the sum-of-squared errors of the fitted regression (as the estimated α_0 takes out the effect of bias). The estimation results of the restricted regression for each firm are presented in Table 6. We report R^2 instead of the sum-of-squared errors of the fitted regression, as the two measures convey the same information, but the former is better to show how much time-variation of the actual spreads has been explained by the model predicted ones. Consistent with our expectation, the estimate of α_0 are exactly the same as the bias we reported in Table 5. Meanwhile, the estimated values of α_0 are uniformly positive, and statistically significant at the 5% significance level. More importantly, while the estimated value of α_0 decreases from Merton model to SV model and again to SVJ model, the R^2 increases across these models. These findings once again suggest that although all the structural models considered here under-predict the actual credit spreads, the underprediction is largely improved after taking into account the stochastic property of the asset volatility and jumps. Meanwhile, apart from the mean level effect, allowing for timevarying volatility and jumps can better track the time-variation of the actual spreads. We further use DM test to exam whether these improvements are statistically $significant^{6}$. The test results report a single * when a model significantly outperforms Merton model, and a double ** if a model provides significant improvement over both Merton model and SV model. In all the cases there are significant improvements from Merton model to SV model and SVJ model in terms of both bias reduction and time-variation explanation. In most cases with four exceptions in one step-ahead

⁶The significance of the bias reduction is tested relying on a time series of $CDS_{i,t} - ICDS_{i,t}$ from each model, and as the estimated α_0 removes the effect of bias, the significance of the improvements in time-variation explanation is tested by looking at the squared residuals from the restricted regressions.

Figure 4: The predicted credit spreads V.S the actual 5-year CDS spreads for Verizon

forecasts and three exceptions in five-step-ahead forecasts there are further improvements from SV model to SVJ model.

Next, we run the same regression exercises and across-model comparison without the restriction on α_1 to test the improvements on overall forecast accuracy. The regression results are presented in Table 7. Despite the hypothesis of the optimal forecast with $\beta_0 = 0$ and $\beta_1 = 0$ is rejected in all the model predicted spreads, there is a clear trend that the positive values of β_0 decreases towards zero and the values of β_1 decreases towards one from Merton model to SV model and again to SVJ model. These provide supportive evidences that to some extent the biased and inefficient spread predictions from the Merton model are improved by the SV and SVJ model. This is further collaborated by the increase of R^2 across these models in all the firm cases. We conduct DM test again on the squared residuals of these regressions, and the test results suggest that in all the cases there are significant improvements from Merton model to SV model and SVJ model, and in most cases with three exceptions in one step-ahead forecasts and two exceptions in five-step-ahead forecasts there are further improvements from SV model to SVJ model.

In addition, we test whether the orthogonal information among these models has addictive prediction power for credit spread. We regress the Merton model predicted spreads on the SV model predicted spreads to generate a variable $ICDS(SV - MER)_{i,t}$ that contains information from SV model orthogonal to the Merton model:

$$ICDS(SV)_{i,t} = \beta_0 + \beta_1 ICDS(MER)_{i,t} + \varepsilon_{i,t}, i = 1, ..., 20,$$
 (16)

where $ICDS(SV - MER)_{i,t}$ equals $\beta_0 + \varepsilon_{i,t}$. Then, we include $ICDS(SV - MER)_{i,t}$ as an extra explanatory variable in the regression(15) to test whether the SV model carries on incremental information to the Merton model in credit spread prediction. If this is true, the coefficient of $ICDS(SV - MER)_t$ should be significantly positive, and R^2 of the fitted regression should increase from the corresponding ones reported in Table 7. The regression results are presented in Table 8. The significantly positive α_2 and the increase of R^2 in all the cases indicates that the SV model entails extra information for credit spread prediction. We also conduct the same exercise on SV model and SVJ model to test the addictive power of jumps, and the test results are reported in Table 9. Most of the estimated α_2 in the table are significantly positive with three exceptions. A further increase of R^2 in all the firm cases confirms that more predictive information is explored by SVJ model.

			($CDS_t = \beta_0$	$_{0}+C\hat{D}S_{t}+$	$-\varepsilon_t$				
	Merton	model	Merton	model*	SV m	odel*	SV m	nodel	SVJ n	nodel
					One-s	tep-ahead				
	β_0	R^2	β_0	R^2	β_0	R^2	β_0	R^2	β_0	R^2
Verizon	30.9876	0.4672	28.9901*	0.4781	28.6752^*	0.4802^{*}	25.4647^*	0.4976^{*}	23.8761^{**}	0.5048^{**}
Boeing	20.9897	0.5281	18.3437^{*}	0.5334^{*}	18.2276^{*}	0.5312^{*}	15.2329^{*}	0.5490^{*}	14.5673^{**}	0.5521^{**}
Caterpillar	17.0071	0.5567	15.8633^{*}	0.5621^{*}	15.6239^{*}	0.5652^{*}	13.8976^{*}	0.5737^{*}	13.6509^{*}	0.5792^{*}
Chevron	17.9140	0.4123	15.8983^{*}	0.4286^{*}	15.6658^{*}	0.4245^{*}	13.0903^{*}	0.4306^{*}	12.7673^{*}	0.4389^{*}
Coca-cola	23.5782	0.5872	20.7654^{*}	0.5993^{*}	20.5641^{*}	0.6065^{*}	18.7675^{*}	0.6231^{*}	16.8782^{**}	0.6315^{**}
Walt Disney	19.9983	0.4981	17.6662^{*}	0.5097^{*}	17.2336^{*}	0.5104^{*}	15.4438^{*}	0.5213^{*}	13.2986^{**}	0.5306^{**}
E.I.du Pont	18.9622	0.5054	16.0876^{*}	0.5123^{*}	16.3436^{*}	0.5134^{*}	14.0654^{*}	0.5287^{*}	13.3236^{**}	0.5310^{**}
Exxon	15.4467	0.4982	13.3678^{*}	0.5052^{*}	13.4721^{*}	0.5087^{*}	11.7674^{*}	0.5128^{*}	10.8784^{*}	0.5203^{*}
Home Depot	50.9873	0.4187	48.7652^{*}	0.4234^{*}	48.5657^{*}	0.4256^{*}	45.7862^{*}	0.4389^{*}	45.2328^{**}	0.4402^{**}
Intel	20.8965	0.5982	17.9972^{*}	0.6075^{*}	17.6568^{*}	0.6124^{*}	15.9972^{*}	0.6286^{*}	13.4786^{**}	0.6304^{**}
Johnson&Johnson	17.0983	0.5564	15.0467^{*}	0.5673^{*}	15.3231^{*}	0.5652^{*}	13.5629^{*}	0.5708^{*}	12.9897^{**}	0.5859^{**}
McDonald's	13.1351	0.5897	12.0326*	0.5921^{*}	12.1678^{*}	0.5934^{*}	9.8832^{*}	0.6037^{*}	9.5451^{**}	0.6128^{**}
3M	25.8976	0.5653	23.6754^{*}	0.5751^{*}	23.1617^{*}	0.5739^{*}	20.8876^{*}	0.5920^{*}	18.5453^{**}	0.6025^{**}
Procter&Gamble	42.7765	0.4982	39.9897^{*}	0.5052^{*}	39.6764^{*}	0.5033^{*}	35.1216^{*}	0.5287^{*}	34.9981^{**}	0.5314^{**}
AT&T	43.2267	0.4546	40.9871^{*}	0.4672^{*}	40.6564^{*}	0.4643^{*}	37.6652^{*}	0.4843^{*}	37.1216^{**}	0.4925^{**}
United Health	80.6675	0.4439	78.9763^{*}	0.4675^{*}	78.5467^{*}	0.4632^{*}	74.2899^{*}	0.4871^{*}	72.7671**	0.4948^{**}
United Technologies	25.6671	0.5124	23.4686^{*}	0.5239^{*}	23.7865^{*}	0.5251^{*}	20.8975^{*}	0.5430^{*}	19.8786^{*}	0.5462^{*}
Wal-Mart	20.8651	0.5452	18.7675^{*}	0.5581^{*}	18.5654^{*}	0.5564^{*}	15.7875^{*}	0.5783^{*}	13.9725^{**}	0.5891^{**}
Microsoft	19.8054	0.5385	17.9795^{*}	0.5418^{*}	17.6534^{*}	0.5432^{*}	15.3276^{*}	0.5637^{*}	14.8765^{**}	0.5829^{**}
Cisco	25.7655	0.4947	23.7654*	0.5153^{*}	23.4548^*	0.5120*	20.7642^*	0.5358^{*}	19.8785**	0.5402**

Table 6: The results of regression based model comparison: Panel A

=

					Five-s	tep-ahead				
	β_0	R^2	β_0	R^2	β_0	R^2	β_0	R^2	β_0	R^2
Verizon	32.7765	0.4283	30.9987^{*}	0.4529^{*}	30.6752^{*}	0.4502^{*}	26.4879^{*}	0.4851^{*}	25.1145^{**}	0.4936**
Boeing	24.8962	0.5025	22.0987^{*}	0.5257^{*}	22.7675^{*}	0.5212^{*}	18.6547^{*}	0.5386^{*}	17.0102^{**}	0.5412^{**}
Caterpillar	19.6368	0.5286	17.1287^{*}	0.5433^{*}	17.6239^{*}	0.5452^{*}	15.7674^{*}	0.5637^{*}	14.9981^{**}	0.5690^{**}
Chevron	20.1318	0.3974	18.7765^{*}	0.4146^{*}	18.9374^{*}	0.4145^{*}	15.1617^{*}	0.4226^{*}	14.9896^{*}	0.4285^{*}
Coca-cola	25.6783	0.5537	23.9791^{*}	0.5763^{*}	23.6238^*	0.5765^{*}	17.2328^{*}	0.6082^{*}	16.9098^{**}	0.6214^{**}
Walt Disney	21.7675	0.4675	19.1142^{*}	0.4896^{*}	19.0327^{*}	0.4832^{*}	16.0325^{*}	0.5033^{*}	14.3761^{**}	0.5212^{**}
E.I.du Pont	35.0637	0.4843	33.6564^{*}	0.5052^{*}	33.6568*	0.5034^{*}	30.1162^{*}	0.5163^{*}	29.0705^{**}	0.5220^{**}
Exxon	18.0782	0.4762	16.0548^{*}	0.4986^{*}	16.2326^{*}	0.4979^{*}	14.0675^{*}	0.5022^{*}	13.9896^{*}	0.5057^{*}
Home Depot	48.2127	0.3978	47.1215^{*}	0.4044^{*}	47.2128^{*}	0.4056^{*}	44.1217^{*}	0.4127^{*}	43.3768^{**}	0.4295^{**}
Intel	24.9076	0.5754	22.8784^{*}	0.5923^{*}	22.7673^{*}	0.5924^{*}	19.3438^{*}	0.6082^{*}	17.3236^{**}	0.6203^{**}
Johnson&Johnson	19.5654	0.5329	17.2328^{*}	0.5560^{*}	17.5451^{*}	0.5552^{*}	15.1124^{*}	0.5659^{*}	14.6567^{**}	0.5756^{**}
McDonald's	15.6567	0.5643	13.2573^{*}	0.5873^{*}	13.1897^{*}	0.5834^{*}	11.7673^{*}	0.5997^{*}	11.5451*	0.6063^{*}
3M	29.6765	0.5466	26.4542^*	0.5649^{*}	26.3231^*	0.5639^{*}	23.1251*	0.5875^{*}	22.4328**	0.5972^{**}
Procter&Gamble	45.9097	0.4743	39.9897^{*}	0.4948^{*}	39.6764^{*}	0.4933^{*}	35.1216^{*}	0.5056^{*}	34.9981^{**}	0.5211^{**}
AT&T	45.5672	0.4326	43.7135^{*}	0.4544^{*}	43.4542^{*}	0.4583^{*}	39.0403^{*}	0.4631^{*}	39.5654^{**}	0.4749^{**}
United Health	82.3436	0.4348	80.8984^{*}	0.4526^{*}	80.3231*	0.4532^{*}	76.3235^{*}	0.4664^{*}	75.5902**	0.4724^{**}
United Technologies	27.7873	0.4983	25.7875^{*}	0.5130^{*}	25.4342*	0.5151^{*}	23.7761*	0.5267^{*}	22.8731**	0.5371^{**}
Wal-Mart	23.1457	0.5167	20.6563^{*}	0.5342^{*}	20.5351^{*}	0.5364^{*}	18.4342^{*}	0.5546^{*}	17.5451^{**}	0.5672^{**}
Microsoft	21.9876	0.5079	20.7675^{*}	0.5237^{*}	20.0951*	0.5232^{*}	19.5456^{*}	0.5451^{*}	18.9084^{**}	0.5576^{**}
Cisco	28.9082	0.4553	27.8907*	0.4986^{*}	27.4548*	0.4920*	24.3765^{*}	0.5123^{*}	22.8973**	0.5204^{**}

Note: This table reports the results of regression based test on the one-step-ahead and five-step-ahead model predicted credit spreads for 20 Dow Jones firms. The regression is restricted by setting $\beta_1 = 1$, and a single * indicates a model which significantly outperforms Merton model, and a double ** indicates a model which exhibits significant improvement over both Merton model and SV model at 5% significance level.

						$CDS_t = \beta$	$\beta_0 + \beta_1 C \hat{L}$	$\partial S_t + \varepsilon_t$				
	Me	erton mod	el	Me	erton mod	el*		SV model [*]	*		SV mode	1
							Or	ne-step-ahe	ead			
	β_0	β_1	R^2	eta_0	β_1	R^2	β_0	β_1	R^2	β_0	β_1	R^2
Verizon	25.6743	10.8763	0.4097	24.1134	9.8876	0.4392^{*}	24.0387	9.2325	0.4305^{*}	23.2103	8.7894	0.4782^{*}
Boeing	17.2341	7.2321	0.4543	16.0981	6.9831	0.4981^{*}	16.2527	6.9398	0.4921^{*}	15.2329	5.5652	0.5233^{*}
Caterpillar	15.0231	4.2315	0.4871	12.2365	3.3239	0.5239^{*}	12.3436	3.7982	0.5225^{*}	11.0784	2.8235	0.5631^{*}
Chevron	15.2357	3.7865	0.3532	13.6963	3.3238	0.3765^{*}	13.7302	3.2389	0.3786^{*}	11.8764	2.9328	0.4089^{*}
Coca-cola	18.2361	6.3896	0.5349	16.8743	5.9374	0.5762^{*}	16.5346	5.9256	0.5731^{*}	14.2394	5.5453	0.6136^{*}
Walt Disney	16.5239	6.8783	0.4379	14.2395	5.8342	0.4586^{*}	14.1216	5.3439	0.4503^{*}	10.2396	4.2762	0.5024^{*}
E.I.du Pont	14.6485	5.3986	0.4269	11.0876	4.9147	0.4731^{*}	11.2325	4.8549	0.4760^{*}	10.2321	3.9897	0.5088^{*}
Exxon	13.2427	5.4782	0.4325	10.8762	4.9096	0.4658^{*}	10.5547	4.8215	0.4663^{*}	8.7350	3.9093	0.4982^{*}
Home Depot	43.8769	14.2327	0.3643	39.2247	12.8971	0.3820^{*}	39.1314	10.2257	0.3842^{*}	35.5453	8.9876	0.4176^{*}
Intel	17.6453	5.3439	0.5213	13.8763	4.9125	0.5549^{*}	13.6569	4.8786	0.5587^{*}	10.1134	4.1245	0.5932^{*}
Johnson&Johnson	15.4632	9.2375	0.4872	10.1183	8.9095	0.5083^{*}	10.3245	9.0204	0.5042^{*}	8.7762	7.9834	0.5482^{*}
McDonald's	9.3418	14.270	0.5268	7.8385	10.3638	0.5547^{*}	8.0932	10.2325	0.5512^{*}	7.3435	9.0432	0.5983^{*}
3M	21.4549	5.4342	0.4896	15.2247	4.9087	0.5123^{*}	15.0236	4.8368	0.5105^{*}	12.0805	3.7631	0.5547^{*}
Procter&Gamble	39.8734	11.8876	0.4384	35.9083	10.2326	0.4678^{*}	35.5453	10.1124	0.4687^{*}	30.8874	8.4536	0.4915^{*}
AT&T	41.0897	8.4543	0.4057	36.0807	7.9982	0.4349^{*}	36.1257	8.0265	0.4372^{*}	34.2526	7.2526	0.4643^{*}
United Health	75.4643	12.3436	0.3982	70.1120	10.2538	0.4126^{*}	70.3346	10.0437	0.4153^{*}	65.7279	8.9964	0.4368^{*}
United Technologies	22.7674	7.8284	0.4426	17.0201	7.0236	0.4873^{*}	17.2328	6.9634	0.4876^{*}	14.2326	6.0652	0.5236^{*}
Wal-Mart	18.7671	6.3438	0.3872	13.5472	5.9981	0.4261^{*}	13.4649	6.1218	0.4239^{*}	10.7762	5.1127	0.5354^{*}
Microsoft	17.8832	9.3267	0.4763	11.0903	8.5236	0.5036^{*}	11.3267	8.8763	0.5088^{*}	9.8784	7.9492	0.5487^{*}
Cisco	20.7865	7.8983	0.4238	16.5438	6.0325	0.4530^{*}	16.3532	6.3327	0.4521^{*}	13.4582	5.5481	0.4992^{*}

Table 7: The results of regression based model comparison: Panel B

							Fiv	ve-step-ah	ead			
	β_0	β_1	R^2	β_0	β_1	R^2	β_0	β_1	R^2	β_0	β_1	R^2
Verizon	29.8814	9.8354	0.3871	27.9987	8.9293	0.4332^{*}	26.1314	9.2325	0.4299^{*}	23.7662	8.2304	0.4486^{*}
Boeing	22.3307	7.9908	0.4235	19.0987	7.0254	0.4576^{*}	19.8035	7.2398	0.4589^{*}	16.2273	7.0085	0.5305^{*}
Caterpillar	16.3324	5.5539	0.4657	14.1287	5.0332	0.5084^{*}	14.0977	5.1982	0.5018^{*}	12.3436	4.7472	0.5527^{*}
Chevron	17.8952	5.9082	0.3328	15.7765	4.5687	0.3651^{*}	14.8783	4.2389	0.3682^{*}	11.8893	4.0891	0.3982^{*}
Coca-cola	22.9893	6.5434	0.5123	19.9791	6.1214	0.5453^{*}	17.3236	5.9256	0.5456^{*}	14.2321	4.8786	0.5836^{*}
Walt Disney	16.7230	7.1215	0.4087	12.1142	6.9936	0.4534^{*}	12.0324	6.3439	0.4498^{*}	10.9893	6.0027	0.4972^{*}
E.I.du Pont	32.0048	7.5563	0.3982	27.6564	6.5540	0.4431^{*}	26.7976	6.0549	0.4452^{*}	23.4642	5.5453	0.4928^{*}
Exxon	15.8682	6.8789	0.4041	11.0548	6.1214	0.4528^{*}	10.9984	6.0215	0.4502^{*}	8.3432	5.7762	0.4889^{*}
Home Depot	44.0706	13.2528	0.3643	38.1215	11.0893	0.3817^{*}	37.9392	10.2257	0.3785^{*}	40.1195	7.6563	0.4092^{*}
Intel	21.0902	6.1514	0.4846	17.8784	5.5354	0.5124^{*}	16.9892	5.8786	0.5150^{*}	14.2327	4.2270	0.5528^{*}
Johnson&Johnson	15.3340	9.0302	0.4532	10.2328	8.0204	0.4986^{*}	11.0835	8.0204	0.4992^{*}	9.8583	6.5451	0.5334^{*}
McDonald's	12.1917	15.9892	0.4977	9.2573	11.3398	0.5230^{*}	10.9897	10.2325	0.5134^{*}	8.7473	8.3742	0.5769^{*}
3M	25.4746	7.0237	0.4563	20.4542	6.1283	0.4988^{*}	20.8783	6.0368	0.5086^{*}	18.7675	6.0092	0.5431^{*}
Procter&Gamble	41.2873	13.1214	0.4026	35.9897	10.4430	0.4553^{*}	35.1214	10.1124	0.4572^{*}	30.2354	7.6562	0.4833^{*}
AT&T	40.0936	9.0206	0.3532	35.7135	8.9392	0.3839^{*}	36.0332	8.0265	0.3981^{*}	30.2325	7.0643	0.4456^{*}
United Health	76.0235	11.3358	0.3760	70.8984	10.9693	0.4075^{*}	71.2234	10.0437	0.4099^{*}	65.1186	8.5459	0.4224^{*}
United Technologies	23.0071	10.9042	0.4047	19.7875	9.0836	0.4531^{*}	20.0906	8.6634	0.4652^{*}	16.3236	7.5453	0.5096^{*}
Wal-Mart	20.0872	6.8987	0.3321	15.6563	6.2325	0.3674^{*}	16.0102	6.1218	0.3997^{*}	13.9892	6.0547	0.4537^{*}
Microsoft	16.7270	9.5754	0.4537	12.7675	9.0804	0.4776^{*}	13.1125	8.9763	0.4943^{*}	10.1265	7.5652	0.5254^{*}
Cisco	25.2285	9.0203	0.3996	20.8907	8.3215	0.4543^{*}	20.1214	8.3327	0.4491^{*}	16.5453	6.0908	0.4877^{*}

Note: This table reports the results of regression based test on the one-step-ahead and five-step-ahead model predicted credit spreads without any restriction for 20 Dow Jones firms. A single * indicates a model which significantly outperforms Merton model, and a double ** indicates a model which exhibits significant improvement over both Merton model and SV model at 5% significance level.

$CDS_t = \beta_0 + \beta_1 CD$	$\hat{S_M ertont}$	$+\beta_2 CDS$	$V_S V - Men$	$rtont \varepsilon_t$
	β_0	β_1	β_2	R^2
		One-step	o-ahead	
Verizon	22.0932	7.2325	0.5456^{*}	0.4756
Boeing	14.8586	5.0986	0.3321^{*}	0.5236
Caterpillar	11.3432	3.0904	0.4876^{*}	0.5625
Chevron	13.0841	2.8091	0.8673^{*}	0.4172
Coca-cola	14.2574	4.2126	0.7573^{*}	0.6124
Walt Disney	13.0873	5.4341	0.9021^{*}	0.5035
E.I.du Pont	11.2582	3.4742	0.6987^{*}	0.5094
Exxon	10.9821	4.2325	0.5231	0.5021
Home Depot	38.9026	10.9973	0.9081^{*}	0.4357
Intel	14.3304	4.2326	0.8235	0.6032
Johnson&Johnson	12.7651	7.6568	0.7679^{*}	0.5467
McDonald's	7.3235	11.0977	2.9892^{*}	0.6017
3M	18.7673	3.8239	3.1126^{*}	0.5680
Procter&Gamble	35.0427	9.8782	3.2126^{*}	0.5023
AT&T	37.6582	6.5446	2.9893^{*}	0.4632
United Health	72.0824	9.8721	4.5658^{*}	0.4435
United Technologies	18.9032	5.0231	1.3436^{*}	0.5317
Wal-Mart	13.0965	5.2123	4.2456^{*}	0.5329
Microsoft	14.2237	6.0532	3.2196^{*}	0.5504
Cisco	17.2462	5.3638	0.9342^{*}	0.5086

Table 8: The results of regression based model comparison: Panel C

		Five-ste	p-ahead	
Verizon	18.0972	5.1346	1.2346^{*}	0.4475
Boeing	12.0186	6.1523	2.3567^{*}	0.5118
Caterpillar	9.8785	4.2203	0.8762^{*}	0.5564
Chevron	8.9762	4.3537	3.4548^{*}	0.4022
Coca-cola	11.0987	5.4032	2.3346^{*}	0.5801
Walt Disney	7.2305	7.0623	0.9291^{*}	0.4986
E.I.du Pont	19.0872	3.2126	1.2307^{*}	0.5042
Exxon	5.2306	4.3230	0.8582^{*}	0.4903
Home Depot	34.0871	5.0438	3.2096^{*}	0.4184
Intel	11.0924	6.3538	2.0341^{*}	0.5592
Johnson&Johnson	7.6230	4.2325	1.3762^{*}	0.5028
McDonald's	5.0437	5.2351	0.8762^{*}	0.5809
3M	14.0328	4.2316	2.0457^{*}	0.5445
Procter&Gamble	26.1908	4.5216	1.2307^{*}	0.4913
AT&T	24.0874	5.4413	3.4549^{*}	0.4502
United Health	53.4872	5.4342	2.0765^{*}	0.4198
United Technologies	13.2468	5.4092	3.4203^{*}	0.5101
Wal-Mart	10.8976	4.3232	2.3406^{*}	0.4602
Microsoft	8.0723	5.0614	0.5467^{*}	0.5293
Cisco	12.0981	4.5763	3.2760^{*}	0.4902

Note: This table reports the results of incremental information test between the Merton model and SV model in credit spread prediction for 20 Dow Jones firms. A * indicates the coefficient of the variable containing the information provided by the SV model orthogonal to the Merton model(β_2) is significant at 5% significance level.

$CDS_t = \beta_0 + \beta_1 e^{-\beta_1 t}$	$CD\hat{S}_SVt$ -	$-\beta_2 CDS$	$V_S V \hat{J} - S V$	$t\varepsilon_t$
	β_0	β_1	β_2	R^2
		One-ste	p-ahead	
Verizon	18.0235	6.2324	0.8972^{*}	0.4802
Boeing	13.2147	5.6782	2.1193^{*}	0.5384
Caterpillar	9.1213	6.2285	1.4326^{*}	0.5763
Chevron	8.2096	4.3537	0.3564^{*}	0.4328
Coca-cola	12.3536	5.0482	1.2457^{*}	0.6287
Walt Disney	8.5764	8.2136	0.0421	0.5238
E.I.du Pont	7.0638	4.2316	2.4329^{*}	0.5105
Exxon	6.2314	4.3678	0.0879	0.5032
Home Depot	31.0872	5.3427	2.0893^{*}	0.4106
Intel	8.7634	8.9122	1.3236^{*}	0.6209
Johnson&Johnson	8.7762	5.2138	2.7684^{*}	0.5520
McDonald's	6.1132	8.3536	0.0763	0.6108
3M	9.8237	4.1225	0.7861^{*}	0.5899
Procter&Gamble	25.4348	6.1528	3.1427^{*}	0.5084
AT&T	29.8873	5.2326	0.8985^{*}	0.4823
United Health	52.3127	6.3542	0.7874^{*}	0.5126
United Technologies	10.8986	5.3432	0.9891^{*}	0.5409
Wal-Mart	8.2735	4.0526	1.2248^{*}	0.5612
Microsoft	7.2364	5.9872	4.8792*	0.5720
Cisco	11.9087	6.0231	0.6564^{*}	0.5086

Table 9: The results of regression based model comparison: Panel D

		Five-step	o-ahead	
Verizon	15.2423	4.1908	1.2527*	0.4498
Boeing	9.0874	2.1325	0.8976^{*}	0.5226
Caterpillar	6.2678	1.8976	0.0578	0.5483
Chevron	8.9236	1.2324	0.9886^{*}	0.4021
Coca-cola	9.0873	2.3345	0.6513^{*}	0.6027
Walt Disney	6.0986	2.0346	0.7673^{*}	0.4987
E.I.du Pont	7.1551	2.0873	1.3214^{*}	0.5054
Exxon	2.2215	1.5438	0.8762^{*}	0.4991
Home Depot	30.8713	10.7681	0.9084^{*}	0.4157
Intel	8.9725	3.2426	1.8093^{*}	0.5922
Johnson&Johnson	6.5238	5.4341	1.8769^{*}	0.5487
McDonald's	6.5434	8.9762	0.8652^{*}	0.5913
3M	9.0871	2.1562	0.9872^{*}	0.5642
Procter&Gamble	24.6763	8.7609	1.8762^{*}	0.5063
AT&T	30.1817	5.4316	3.2107^{*}	0.4682
United Health	58.3348	7.6562	1.8776^{*}	0.4571
United Technologies	11.7782	3.2426	1.0982^{*}	0.5089
Wal-Mart	8.2125	3.2768	2.3567^{*}	0.4768
Microsoft	7.6562	6.5452	0.7672^{*}	0.5322
Cisco	8.7671	4.2256	1.0908^{*}	0.4985

Note: This table reports the results of incremental information test between the SV model and the SVJ model in credit spread prediction for 20 Dow Jones firms. A * indicates the coefficient of the variable containing the information provided by the SVJ model orthogonal to the SV model (β_2) is significant at 5% significance level.

4.2 CRSP 200 Firms

In addition to the 20 Dow Jones firms, we also analyze 200 randomly selected firms from the CRSP to see the impact of stochastic volatility and jumps on the credit spread prediction of the typical U.S. exchange listed firms. The firm is included only if it is not a firm in the Dow Jones samples, and it has required CDS spread data along with the balance sheet information from year 2008-2013. For these sample firms, we implement MRM algorithm to estimate the SVJ model with the first 993 observations from January 2 2008 to December 30 2011 and compare its ability with Merton model and SV model for the 5-year CDS spread in the last 498 days from January 3, 2012 to December 30, 2013. To save the space, we only report the summary statistics of the model estimation results in Table 10 and the 5-year CDS spread prediction results in Table 11. The regression based test results are presented in Table 12.

As expected, the results are stronger than those of 20 Dow Jones firms, implying that explicitly considering stochastic volatility and jumps are particularly important for relatively small firms. On average, the asset volatilities of these firms exhibit more volatile as suggested by the larger mean value of the estimated σ_V , and the jumps occurred more frequently with larger size as implied by the mean value of the estimated λ and \overline{J} . The SV model and SVJ model still largely outperform the Merton model in both short and long horizon forecasts with the SVJ model always performing the best. The average prediction improvements appear slightly greater than those in Dow Jones firms, with bias reduction of 6.1 basis points and RMSE decreasing by 7 basis point from Merton model to SV model, and further 2 and 2.5 basis points of bias and RMSE reductions from SV model to SVJ model. These improvements are statistically significant according to the regression based tests. Once again, the SVJ model carries incremental information to the Merton model and the SV model for the prediction of 5-year CDS spreads of these firms.

Company name	μ	θ	κ	σ_V	λ	\overline{J}	σ_J	δ	F	MLMLH
Mean	0.0046	0.0382	14.9235	0.4231	0.0032	0.0029	0.3274	0.0058	1.6542×10^5	950.4421
Median	0.0039	0.0314	12.8976	0.3325	0.0030	0.0025	0.2983	0.0044	1.5253×10^{5}	922.3836
10 Percentile	-0.0532	0.0127	8.9923	0.1381	0.0009	0.0009	0.1124	0.0023	9.2327×10^{4}	901.2945
90 Percentile	0.0058	0.0503	17.0342	0.5247	0.0043	0.0051	0.5672	0.0079	2.8789×10^5	980.8632
Min	-0.0038	0.0026	5.6761	0.0762	0.0001	0.0002	0.0573	0.0014	1.2327×10^{4}	876.5331
Max	0.0084	0.0729	20.9894	0.8761	0.0092	0.0074	0.7382	0.0093	3.4542×10^5	1009.2384

Table 10: SVJ structural Model Estimation Results for 200 CRSP firms

Note: This table reports the summary statistics of the parameter estimates of the SVJ model at the final date T with the first 993 equity value observations using MRM for 200 CRSP firms. In estimation, we set the number of state and parameter particles are respectively 500 and 1000. The priors are $\mu \sim N(0,005)$, $(\theta, \kappa, \sigma_V, \lambda, \overline{J}, \sigma_J, \delta) \sim U[(0.001^2, 0, 1 \times 10^5, 0.001, -0.01, 0.01, 1 \times 10^6), (0.2^2, 20, 2, 0.01, -0.01, 0.1, 0.05)].$

	Merton	model	Merton	model*	SV m	odel*	SV n	nodel	SVJ n	nodel
Company Name	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
				Pa	nel A: One	e step ahea	ıd			
Mean	-40.1256	45.8765	-38.9092	42.0894	-38.5436	42.3307	-34.2321	38.8830	-32.0983	36.2579
Median	-33.1092	38.2984	-29.1582	35.0933	-29.2324	35.4226	-26.0986	30.1123	-24.1308	28.1137
10 Percentile	-13.2046	19.8124	-11.8633	16.7877	-11.0203	16.2341	-9.8123	14.8764	-8.4342	13.0629
90 Percentile	-63.9125	68.1001	-61.9929	66.1284	-61.3906	65.9082	-59.2566	62.0193	-57.1214	60.1897
Min	-10.2416	13.0206	-9.2353	11.0965	-9.5427	11.2571	-7.9863	9.0873	-6.2256	8.0974
Max	-57.9882	62.1264	-55.8763	60.0989	-55.1152	60.1217	-51.1896	57.2034	-49.8762	54.2231
				Pa	nel B: Five	e step ahea	ıd			
	Merton	model	Merton	model*	SV m	odel*	SV n	nodel	SVJ n	nodel
Company Name	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
Mean	-45.2326	49.1174	-43.2008	47.0233	-43.2124	47.5762	-39.8762	42.7751	-37.1679	40.2903
Median	-40.1416	42.4676	-38.8567	40.3674	-38.6785	40.0913	-35.6349	35.1123	-34.2986	33.7632
10 Percentile	-18.2008	20.6754	-16.1119	18.3675	-16.3438	18.2046	-13.7382	15.2526	-11.3768	13.9087
90 Percentile	-70.9815	74.3665	-67.2967	72.0034	-67.3872	72.8760	-64.1353	67.8072	-62.0976	65.3321
Min	-13.0086	15.1567	-11.1156	13.8765	-11.2567	13.9624	-9.9886	11.1562	-9.7673	10.0972
Max	-80.1564	85.3561	-78.2073	83.02145	-78.1138	83.4542	-74.8614	79.0051	-72.1562	77.2238

Table 11: 5-year CDS Spread Prediction Results for 200 CRSP firms

Note: This table reports the bias and RMSE of 5-year CDS spread predictions for the 200 CRSP firms from the standard Merton model, the SV model with a fixed volatility state variable (SV model^a) and the standard SV model(SV model^b) for the last 498 days from January 3, 2012 to December 30, 2013. The numbers are expressed in basis point.

			С	$DS_t = \beta_t$	$_0 + C\hat{D}S_t$	$+ \varepsilon_t$				
	Merton	model	Merton	model*	SV m	odel*	SV m	nodel	SVJ n	nodel
	β_0	R^2	β_0	R^2	β_0	R^2	β_0	R^2	β_0	R^2
					One step	o ahead				
Mean	40.1256	0.4765	38.9092	0.4982	38.5436	0.4967	35.2321	0.5283	32.0983	0.5391
Median	33.1092	0.4237	29.1582	0.4539	29.2324	0.4566	26.0986	0.4721	24.1308	0.5026
10 Percentile	13.2046	0.1344	16.7877	0.1507	16.2341	0.1523	14.8764	0.1892	13.0629	0.1904
90 Percentile	63.9125	0.6891	61.9929	0.7256	61.3906	0.7273	59.2566	0.7561	57.1214	0.7793
Min	10.2416	0.1084	9.1084	0.1106	9.5427	0.1123	7.9863	0.1346	6.2256	0.1521
Max	57.9882	0.7823	0.7832	0.8056	55.1152	0.8122	51.1896	0.8402	49.8762	0.8671
					Five step	o ahead				
Mean	45.2326	0.4382	43.2008	0.4511	43.2124	0.4527	39.8762	0.4831	37.1679	0.4952
Median	40.1416	0.3987	38.8567	0.4124	38.6785	0.4118	35.6349	0.4486	34.2986	0.4521
10 Percentile	18.2008	0.0829	16.1119	0.0106	16.3438	0.0112	13.7382	0.0143	11.3768	0.0155
90 Percentile	70.9815	0.5921	67.2967	0.6102	67.3872	0.6097	64.1353	0.6427	62.0976	0.6538
Min	13.0086	0.0633	11.1156	0.0862	11.2567	0.0897	9.9886	0.1084	9.7673	0.1215
Max	80.1564	0.7125	78.2073	0.7334	78.1138	0.7409	74.8614	0.7665	72.1562	0.7801

Table 12: The results of regression based model comparison: Panel A

Note: This table reports the results of regression based test on the one-step-ahead and five-step-ahead model predicted credit spreads for 200 CRSP firms. The regression is restricted by setting $\beta_1 = 1$, and a single * indicates a model which significantly outperforms Merton model, and a double ** indicates a model which exhibits significant improvement over both Merton model and SV model at 5% significance level.

						CDS_t	$=\beta_0+\beta_1$	$C\hat{D}S_t + \varepsilon_t$	L				
	Me	erton mod	el	Me	rton mode	el*	S	V model*		1	SV model		\mathbf{S}
	β_0	β_1	R^2	β_0	β_1	R^2	β_0	β_1	R^2	β_0	β_1	R^2	β_0
							One	e step ahe	ad				
Mean	33.2208	12.3360	0.4236	30.0986	10.2633	0.4439	29.4213	10.5658	0.4672	24.1425	8.3239	0.4963	20.1305
Median	28.7765	10.8287	0.3901	25.8976	9.2255	0.4272	24.7673	9.8767	0.4298	21.0908	8.3321	0.4563	23.1214
10 Percentile	10.1352	5.8765	0.1087	8.7765	3.0041	0.1195	8.9093	2.9762	0.1203	7.6562	2.5453	0.1578	6.9945
90 Percentile	58.9087	15.7736	0.6082	54.3221	14.2006	0.6321	53.8975	14.9871	0.6125	50.9124	12.6573	0.6381	48.0121
Min	8.6523	3.2125	0.0812	7.1998	2.8483	0.1042	7.5452	2.3561	0.1061	6.1276	2.1219	0.1294	5.8782
Max	60.9875	13.2251	0.6982	56.2214	12.7678	0.6754	56.1097	11.0302	0.6972	52.7652	9.0907	0.7321	50.8875
							Fiv	e step ahe	ad				
Mean	35.2351	14.1125	0.4087	30.0986	10.2633	0.4439	29.4213	10.5658	0.4672	24.1425	8.3239	0.4963	20.1305
Median	30.1241	12.3356	0.3761	25.8976	9.2255	0.4272	24.7673	9.8767	0.4298	21.0908	8.3321	0.4563	23.1214
10 Percentile	13.2998	6.0876	0.0986	8.7765	3.0041	0.1195	8.9093	2.9762	0.1203	7.6562	2.5453	0.1578	6.9945
90 Percentile	60.9815	16.2155	0.5871	54.3221	14.2006	0.6321	53.8975	14.9871	0.6125	50.9124	12.6573	0.6381	48.0121
Min	4.8782	5.1086	0.0762	5.2321	4.3230	0.0971	5.6682	3.2145	0.1025	4.2315	3.0987	0.1184	3.5256
Max	70.9398	16.2326	0.6753	66.0431	14.5326	0.6874	66.1135	11.0302	0.6902	63.8012	10.9897	0.7182	60.3236

Table 13: The results of regression based model comparison: Panel B

Note: This table reports the results of regression based test on the one-step-ahead and five-step-ahead model predicted credit spreads without any restriction for 200 CRSP firms. A single * indicates a model which significantly outperforms Merton model, and a double ** indicates a model which exhibits significant improvement over both Merton model and SV model at 5% significance level.

$CDS_t = \beta_0 +$	$\beta_1 CDS_M \hat{\epsilon}$	$ertont + \beta_2$	$_2CDS_SV$	$\hat{-}$ Mertont ε_t
	β_0	β_1	β_2	R^2
		One s	tep ahead	
Mean	12.1145	8.0932	1.3236	0.4651
Median	10.9087	7.2356	0.9872	0.4082
10 Percentile	5.2672	2.8973	0.2314	0.1986
90 Percentile	18.2980	11.0982	2.0452	0.5981
Max	20.1452	12.6753	2.8761	0.6972
Min	3.0487	1.7653	0.0982	0.1065
		Five s	tep ahead	l
Mean	13.0982	7.8341	0.9873	0.4562
Median	12.8076	8.0982	1.2096	0.3983
10 Percentile	6.2324	2.3567	0.4632	0.1703
90 Percentile	19.8763	12.8762	3.1014	0.5709
Max	21.0573	13.2876	3.1247	0.6608
Min	2.1784	1.5408	0.0876	0.0972

Table 14: The results of regression based model comparison: Panel C

Note: This table reports the results of incremental information test between the Merton model and SV model in credit spread prediction for 20 CRSP firms. A * indicates the coefficient of the variable containing the information provided by the SV model orthogonal to the Merton model (β_2) is significant at 5% significance level.

5 Conclusion

This paper extends Merton model to allow for time-varying volatility and jumps in structural credit risk model. The impact of considering these two components on credit risk prediction is also studied. Our simulation experiment shows that with the presence of stochastic asset volatility, the structural model performance is largely improved in terms of both daily and weekly credit spread prediction. Further improvements are detected after adding into the jumps. These improvements in CDS spread prediction can be attributed to three sources including the better mean level estimation, the better track of the dynamic changes, and the better capture of the extreme movements. We further implement the SVJ structural model on 20 Down Jones firms and 200 sovereign countries to test its ability in real data. Our empirical results suggest ignoring asset volatility variability and jumps would lead to a significant underestimation in corporate credit risk predictions, and the underestimation is more severe in small firms. Although our methodological development is presented specifically for the ? model, all the analysis here can be very easily adapted to other SVJ models. In conclusion, a SVJ structural credit risk model has been developed to measure the corporate credit risk exposure, and the importance of allowing for asset volatility dynamics and

$CDS_t = \beta_0 +$	$\beta_1 C D \hat{S}_S V$	$Vt + \beta_2 CD$	$\delta S_S \hat{VJ} - \delta$	$SVt\varepsilon_t$
	β_0	β_1	β_2	R^2
		One step	ahead	
Mean	33.1256	13.0984	0.4956	
Median	28.0764	11.0763	0.4542	
10 Percentile	11.0982	5.8763	0.1561	
90 Percentile	56.7632	13.0465	0.6390	
Min	3.5427	4.3982	0.1195	
Max	69.8263	13.1247	0.7035	
		Five step	ahead	
Mean	7.6521	0.4672	0.5038	
Median	19.0825	6.0528	0.4795	
10 Percentile	8.9073	2.0345	0.1632	
90 Percentile	52.0894	13.1215	0.6578	
Min	4.0897	2.6753	0.1196	
Max	61.0984	9.8723	0.7231	

Table 15: The results of regression based model comparison: Panel D

Note: This table reports the results of incremental information test between the SV model and the SVJ model in credit spread prediction for 200 CRSP firms. A * indicates the coefficient of the variable containing the information provided by the SVJ model orthogonal to the SV model (β_2) is significant at 5% significance level.

jumps in credit risk modeling is also documented.

References

- D.S. Bates. Jumps and stochastic volatility: Exchange rate processes implicit in deutschemark options. *Review of Financial Studies*, 9:69–107, 1996.
- F.X. Diebold and R.S. Mariano. Comparing predictive accuracy. Journal of Business and Economics Statistics, 13:253–263, 1995.
- J.C. Duan and A. Fulop. Estimating the structural credit risk model when equity prices are contaminated by trading noises. *Journal of Econometrics*, 150(2):288–296, 2009.
- Eom, Y. Ho, J. Helwege, and J. Huang. Structural models of corporate bond pricing: An empirical analysis. *Review of Financial Studies*, 4:155–167, 1994.
- A. Fulop and J. Li. Efficient learning via simulation: A marginalized resample-move approach. The Journal of Econometrics, 176:146–161, 2013.
- J. Z. Huang and Z. Hao. Specification analysis of structural credit risk models. Discussion Paper, Federal Reserve Board, Washington, 2008.
- Jones, E. Philip, S. Mason, and E. Rosenfeld. Contingent claims analysis of corporate capital structures: An empirical investigation. *Journal of Finance*, 39:611–625, 1984.
- A. Korteweg and N. Polson. Corporate credit spreads under parameter. *Standfor University Working Paper.*
- N. Tarashev. Theoretical predictions of default: Lessons from firm-level data. *BIS Quarterly Review*, 2005.