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Abstract

This paper exams the impact of allowing for stochastic volatility and jumps (SVJ) in structural

model on corporate credit risk prediction. The SVJ structural model is compared with the

commonly used Merton model throughout a Monte Carlo study and an empirical analysis of 20

Dow Jones firms as well as 200 randomly selected CRSP firms. The simulation study verifies

the better performance of the SVJ model when the constant volatility assumption in the Merton

model is violated in actual asset returns, and three explanations are identified for the superiority

including i) mean level effect: SVJ model better depicts the average level of asset volatility,

and thereby better predicts the average level of credit spread; ii) dynamic change effect: SVJ

model better tracks the changes in credit spread; and (iii) extreme change effect: SVJ model

better captures the extreme movements in credit spread. The empirical analysis ascertains the

importance of recognizing the stochastic volatility and jumps in structural model by showing

that on average the SVJ model raises the spread prediction from the Merton model by 6.5 basis

points in 20 Dow Jones firms and 8 basis points in 200 CRSP firms, which helps explain up

to 8% and 10% of the time-variation in actual credit spreads. Improvements in predictions are

particularly apparent in small firms or when the market is turbulent such as the recent financial

crisis.
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1 Introduction

Over the last decade, the literature has developed sophisticated methods in an attempt to model the

corporate credit risk. Structural and reduced form approaches represent the two primary classes of

such models, and play increasingly important roles in corporate risk management and performance

evaluation processes. While the reduced form approach models credit defaults as exogenous events

driven by a stochastic process, the structural approach provides an explicit relationship between

default risk and corporate capital structure. In this sense, structural models are more referring to

economic fundamentals and provide an endogenous explanation for corporate default.

As the first attempt, Merton model laid the foundation to the structural approach and has served

as the cornerstone for all other structural models. Despite the great success of the Merton model, the

assumption that asset return follows a pure diffusion in the model has long been criticized. There are

many studies showing that the pure diffusion assumption is overly restrictive and causes the Merton

model to estimate the credit risk measures with a large bias. In theory, the log-normal pure diffusion

model fails to reflect many empirical phenomena, such as the asymmetric leptokurtic distribution

of the asset return, volatility smile and the large random fluctuations in asset returns. Since all

of these features play key roles in the structural credit risk modeling, one will produce misleading

estimates of the credit risk once ignoring them. In practice, Jones, Philip, Mason, and Rosenfeld

(1984) analyzed 177 bonds issued by 15 firms and found that the Merton model overestimated bond

prices by 4.5% on average. Eom, Ho, Helwege, and Huang (1994) empirically tested the performance

of Merton model in predicting corporate bond spread, and suggests that the predicted spreads from

the Merton model are too low. Tarashev (2005) claimed that the default probability generated by

the Merton model is significantly less than the empirical default rate, and Huang and Hao (2008)

documented the inability of the existing structural models to capture the dynamic behavior of credit

default swap (CDS) spreads and equity volatility. These empirical findings pointed potential roles

of time-varying asset volatility and jumps in credit risk modeling.

The contribution of this paper is to generalize the structural model to allow for stochastic

volatility and jumps (SVJ) in the underlying asset returns, as well as study the property of the SVJ

structural model in corporate credit risk prediction. Basically, the SVJ model is not novel as it

has been widely used in option pricing literature. However, its application in credit risk modeling

is still an untouched territory. The only work related is Fulop and Li (2013) which showed an

application of the structural model with stochastic volatility (SV) in evaluating the credit risk of
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Lehman Brothers. However, their work mainly focuses on the estimation of the SV structural model.

This paper steps further to also consider jumps and exam the impact of allowing for both stochastic

volatility and jumps in structural model on corporate credit risk prediction. To our best knowledge,

this is the first to explicitly study the benefit of recognizing stochastic volatility and jumps in asset

returns for credit risk prediction. The research is useful for current practice where structural credit

risk models with constant asset volatility still predominate. Specifically, we employ Bates (1996)

model as an example of SVJ model to describe the evolution of the asset returns. It is worth noting

that jumps in Bates (1996) only appear in the return equation and are treated as a poisson process

with constant intensity. The same analysis can be easily generalized to other SVJ models. The

empirical observations in recent financial market turmoils have suggested that jumps as extreme

events tend to be clustered, and jumps in asset returns tend to associated with an abrupt movement

in asset volatility. This lays the possibility to allow for jumps in both asset returns and volatility

and self-exciting jump clustering in structural model to improve credit risk prediction. We leave

these interesting extensions for later work.

Despite its attractiveness, the estimation of the SVJ model poses substantial challenges. In

essence, the SV structural model is a non-linear and non-Gaussian state-space model. But it dif-

fers from the standard state-space model in several ways. First, after allowing the asset return

to have stochastic volatility and jumps, the likelihood function of the observed equity prices is no

longer available in a closed form. The commonly used MLE type estimation cannot be applied.

Furthermore, the additional state variables that determine the level of volatility increase the di-

mension of the latent states. Thirdly, the additional jump related unknowns increase the dimension

of parameter uncertainty. We employ a Bayesian learning algorithm by following the marginalized

resample-move (MRM) approach of Fulop and Li (2013) to solve this estimation problem. This

algorithm is able to deliver exact draws from the joint posteriors of the latent states and the static

parameters.

A Monte Carlo study is conducted to study the property of the SVJ model in corporate credit

spread prediction. The exercise is based on a comprehensive set of simulation designs, which embody

several features of the asset return data. To illustrate the benefit of allowing for time-varying

volatility, we compare the SVJ model with the Merton model under a jump diffusion process with

stochastic volatility and a pure diffusion with constant volatility. To reveal the important role

of jumps, we compare the SVJ model with the SV model based on a jump diffusion process with

stochastic volatility and a stochastic volatility process without jumps. The simulation results suggest
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that when the actual return is a pure diffusion, the results from all the three models are almost

identical with the Merton model performs slightly better. However, in the more realistic situations

where the actual return has a stochastic volatility or has both stochastic volatility and jumps, the

SVJ and SV model largely outperform the Merton model, and a further improvement is spotted from

SV model to SVJ model when there are jumps. In short, the SVJ model turns out to be the best

specification, and three sources are explored to explain its superiority. First, the volatility dynamics

and jumps allowed in SVJ model can better depict the mean level of credit spread. Second, the

SVJ model better tracks the changes in credit spread because of the time-varying volatility and the

more realistic functional form between asset and equity values. Lastly, the jump component in SVJ

model better captures the extreme movements in credit spread.

We further implement the SVJ model on two real samples to empirically evaluate its ability.

The first samples consists of 20 Dow Jones firms to represent the large-cap companies, and the

second includes 200 firms randomly selected from CRSP to represent the general population of the

US corporate sector. From each sample, we indeed find significant stochastic volatility and jumps

in the asset returns. The impact of ignoring asset volatility dynamics and jumps in credit risk

modeling is also studied. We find that the SVJ and SV model always provide better credit spread

predictions than the Merton model, and SVJ model makes further improvement from SV model.

On average, the SVJ model raises the spread prediction from the Merton model by 6.5 basis points

in 20 Dow Jones firms, and 8 basis points in 200 CRSP firms. It helps explain up to 8% and 10%

of the variation in actual credit spreads over time. These prediction improvements are found to be

particularly apparent in small firms or when the market is turbulent such as the recent financial

crisis.

The remainder of this paper is organized as follows. Section 2 presents in details the SVJ model

specification, estimation and application in credit risk prediction. Section 3 conducts a Monte

carlo simulation to study the property of SVJ model in credit risk prediction. Section 5 provides

two empirical analysis of the SVJ structural model using 20 Down Jones firms and 200 randomly

selected CRSP firms, Section 4 concludes.

2 The SVJ structural model

In this section, we give a full description of the SVJ structural model, and introduce marginalized

resample-move algorithm of Fulop and Li (2013) to estimate the model.
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2.1 The model description

We follow up the general set-up of the Merton model, but relax the constant volatility assumption

to allow for stochastic volatility and jumps in asset price evolution. We define the asset value of a

firm and its volatility as St and Vt at time t, and describe their joint dynamics using Bates (1996)

model as follows:

logSt = logSt−1 + (µ− 1

2
σ2
t−1 − λJ)dt+ σt−1

√
dtdW S

t + JtdNt, (1)

σ2
t = σ2

t−1 + κ(θ − σ2
t−1)dt+ σV σt−1

√
dtdW σ

t (2)

where dW S
t and dW σ

t are Wiener processes with correlation ρ. JtdNt denotes the jump component

where N(t) being a compound Poisson process with constant intensity λ and Jt denoting the mag-

nitude of the jump which follows a normal distribution as log(1 + Jt) ∼ N(log(1 + J) − 1
2σ

2
J , σ

2
J).

Bates (1996) model is employed as an example of SVJ model, and the analysis in the paper can be

easily generalized to other SVJ models.

Given that an equity and a zero-coupon debt are two types of outstanding claims of a firm, and

the debt matures at time T with face value F , we have the following accounting identity holds at

every time t

St = Et +Dt, (3)

where Et and Dt respectively denote the market value of equity and debt at time t. The default

occurs in the event that the firm’s assets are less than the face value of the debt, i.e. ST < F , when

debt matures. Otherwise, equity holders step in to repay the debt and keep the balance. Therefore,

the payout to the debt holders at the maturity time T is

DT = min(ST , F ), (4)

and on the other side, the equity holders receive

ET = max(ST − F, 0). (5)

Therefore, the firm’s equity can be regarded as if it was a call option on the total asset value V of
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the firm with the strike price of F and the maturity date T . Assuming the risk-free interest rate is

r, the equity claim in (5) can be priced at time t < T according to the call option pricing formula

as follows:

Et = E(St;σ
2
t , F, r, T − t) = StP1 − Fe−r(T−t)P2 (6)

where

Pj =
1

2
+

1

π

∫ ∞

0
Re(

e−iφln(K)fj(x, σ
2
t , T, φ)

iφ
)dφ (7)

and

fj = exp(Aj +Bjσ
2
t + iφS + λ(T − t)(1 + J)uj+

1
2 × [(1 + J)iφeδ

2(uj iφ−
1
2
φ2) − 1]),

Aj = −2
uj iφ−

1
2
φ2

ρσviφ−κj+γj(1+eγj (T−t))/(1−eγj (T−t))
,

Bj = (r − λJ)iφ(T − t)− κθ(T−t)
σ2
v

(ρσviφ− κj − γj)− 2κθ
σ2
v
log[1 + 1

2 (ρσviφ− κj − γj)
1−eγj (T−t)

γj
],

γj =
√

(ρσviφ− κj)2 − 2σ2
v(ujiφ− 1

2φ
2),

u1 =
1
2 , u2 = −1

2 , κ1 = κ− ρσv, κ2 = κ,

where all the parameters are risk neutral. Similarly, the firm’s debt can be priced by regarding the

payoff of the debt as the difference between a default-free debt and a put option on the total asset

value of the firm with the strike price of F and the maturity date T . We will discuss this further in

section 2.3.

Meanwhile, it is well documented that the observed equity prices can be contaminated by mi-

crostructure noise, and the impact is particular large for small firms or firms in a financial distress.

To incorporate the trading noise into our analysis, we follow up Duan and Fulop (2009) to assume

a multiplicative error structure for the trading noise, and extend the equation (6) as

log(Et) = log(E(St;σ
2
t , F, r, T − t)) + δvt, (8)

where vt is an i.i.d normal random variable, and the option pricing function E(St;σ
2
t , F, r, T − t)

is as shown in equation ((6)). The market microstructure effects are usually complex and can take

many different forms. Huang and Yu (2010) modeled the microstructure noise using a Student-t

distribution, and the noise is likely to be correlated with the equity value. The model estimates

from MRM algorithm would not be consistent if this effect is misspecified. We stay with the

normal distribution assumption in the current work, and leave the further investigation of alternative
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distributions for later work.

2.2 The model estimation

In the absence of trading noise, the SVJ structural model is essentially a nonlinear and non-Gaussian

state-space model with (1) being the measurement equation, and (2) being the latent state equation.

However, different from the standard state-space model, the observation St in the measurement

equation of this model are actually not observed. We need to use the observed equity values instead

to filter the whole system. Since there is a one-to-one relationship between the equity and asset

values, based on the model-impled likelihood function of the asset values, we can easily write out

the likelihood function for equity values to estimate the model.

When trading noises are present, the estimation becomes more complicated. The previous one-

to-one relationship between the equity and asset values is no longer existing. The equity values are

now influenced by both the underlying asset value and the trading noise. Therefore, the estimation

becomes another filtering problem with (8) as a measurement equation, and equation (1) along with

equation (2) being the latent state equations.

More specifically, let FT denotes a time series of the observed equity values, i.e., FT = {E1, ..., ET }.
Θ represents the parameter vector containing eight parameters, i.e., Θ = {µ, λ, J, σJ , κ, θ, σV , ρ}. x
denotes the latent state variables including the asset value St, and its stochastic volatility process σ2

t .

Our objective is to simultaneously estimate the parameter vector Θ and the latent state variable x

based on the information set FT . The marginalized resample-move (MRM) algorithm of Fulop and

Li (2013) is employed to achieve this. The basic idea of this algorithm is that one can break up the

interdependence of the hidden states and the fixed parameter by marginalizing out the states using

a particle filter, and then a Bayesian resample-move algorithm can be applied to the marginalized

system to improve the performance of the algorithm. Throughout the two steps, this algorithm does

deliver exact draws from the joint posterior distribution of the parameters and the state variables.

The estimation procedure for our particular problem using MRM algorithm is detailed as follows.

Starting from a set of weighted samples {(Θ, x
(n)
t−1), ω

(n)
t−1;n = 1, ..., N} that represent the target

distribution p(Θ, x1:t−1|E1:t−1) at time t− 1, where ωt−1 denotes the sample weights, we can arrive

at a set of samplers representing the target distribution p(Θ, x1:t|E1:t) at time t throughout the

following steps:

• Step 1: Augmentation step. For each Θ(n), we run a localized particle filter (see Duan and
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Fulop (2009)) that takes the information of the new observation Et to propagate {x(k,n)t−1 , k =

1, ...,M} to {x(k,n)t , k = 1, ...,M} via p(xt|x(n)t−1, Et, Θ
(n)). Notice that for each n, the hidden

state xt is represented by M particles. Therefore, we have to maintain M ×N particles of the

hidden states throughout the whole process.

• Step 2: Re-weighting step. We update the weights accounting for the new information in

Et to obtained a new set of weighted samples. The incremental weights can be computed by

using the likelihood p(Et|x(n)t , |x(n)t−1, Θ
(n)), and the new weights for each particle as follows

s
(n)
t = s

(n)
t−1 × p(Et|x(n)t , |x(n)t−1, Θ

(n)). (9)

Then, our target distribution p(Θ, x1:t|E1:t) can be represented by a new set of weighted

samples {x(n)t , Θ(n); n = 1, ..., N}.

• Step 3: Resample-move step. This is not necessary for all the time points. It only

implemented to enrich the set of particles and avoid a gradual deterioration of the performance

of the algorithm whenever the effective sample size ESSt =
1

∑n
K=1(π

(k)
t )2

falls below some fixed

value B1, where π
(n)
t =

s
(n)
t

∑n
K=1 s

(k)
t

is the normalized weight. There are two steps involved: 1)

Resample the particles according to the normalized weight π
(n)
t to get an equally-weighted

sample {x(n)t , Θ(n); n = 1, ..., N}; 2) Move each particle through a Metropolis-Hastings kernel

to improve its support and diversity. More details are referred to Fulop and Li (2013).

Meanwhile, this algorithm provides a natural estimate of the marginal likelihood for each new

observation Et, which embeds the model fit information over time and can be used to construct a

sequential Bayes factor for sequential model comparison. The Bayes factor at time t for any models

M1 and M2 has a recursive formula as follows:

BFt ≡
p(E1:t|M1)

p(E1:t|M2)
=

p(Et|E1:t−1,M1)

p(Et|E1:t−1,M2)
BFt−1, (10)

where p(Et|E1:t−1,Mi) is the estimate of the marginal likelihood of the new observation Et based on
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model Mi.

2.3 The model application in credit risk measurement

Once the model is estimated, the most appealing application is to predict corporate bond credit

spread. The credit spread of a risky corporate bond is defined as the premium required to compensate

for the expected loss in the event of default. That is, st = yt − r, where yt is the yield of the risky

corporate bond, and r is the risk-free interest rate. As discussed in section 2.1, the risky debt can

be priced by the difference between a default-free debt and a put option on the total asset value St

of the firm with the strike price of F and the maturity date T . Therefore, the risky bond can be

priced at time t < T as

Bt = Fe−r(T−t) − PHM
t , (11)

where F is the face value of the zero coupon debt at the maturity time, and PHM
t is the price of a

put option on the asset value St with the strike price F and the maturity date T 1

PHM
t = Fe−r(T−t)(1− P2)− St(1− P1). (12)

According to the relationship between face value and the price of the bond, the yield yt of the risky

corporate bond can be derived from

e−yt(T−t)F = Bt, (13)

and thereby the credit spread st can be computed as

st = − 1

T − t
ln(1− PHM

t

Fe−r(T−t)
). (14)

3 Monte Carlo Analysis

In this section, we conduct a simulation study to exam the property of SVJ model throughout com-

paring its performance with Merton model and SV model without jumps in corporate credit spread

prediction. We design three simulation scenarios to reflect different features of the return data,

including a simple pure diffusion (in which the stochastic volatility and jump related parameters

1We refer to section 2.1 for the explicit expressions of P1 and P2.
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(κ, θ, σV , λ, J = 0.002, and σJ = 0.3256) in equation (1) and (2) are zeros), a stochastic volatility

process without jumps (in which the jump related parameters (λ, J = 0.002, and σJ = 0.3256)

in equation (1) and (2) are zeros) and a jump diffusion process with stochastic volatility (which is

exactly as jointly expressed in equation (1) and (2)). The first two scenarios aim to illustrate the

benefit of allowing for time-varying volatility in asset returns, and the last two scenarios are used

to reveal the important role of jumps.

3.1 Simulation Design

Most of the parameters in the simulation are set according to Lehman Brothers analysis of Fulop

and Li (2013), with µ = −0.034, κ = 13.93, θ = 0.004, σV = 0.263, ρ = 0, δ = 0.0018, and

F = 2.734×105. The three additional jump related parameters are calibrated to the mean estimates

of our empirical data as λ = 0.0032, J = 0.0029, and σJ = 0.3274. We set the risk free rate as

0.032, and choose the initial leverage ratio F
S to be equal to 20%, resulting in the initial asset

value S1 = 1.37 × 106, and the initial value of the asset volatility is to be θ. We repeat the

simulation exercise by changing the value of θ from 0.004 to 0.04 in order to investigate how the

model performance changes with the increase of the firm’s financial risk, and change the value of

λ (and J) from 0.0032 (and 0.0029) to 0.010 (and 0.010) to analyze the sensitivity of the model

performance to the extend of jump activities in the asset returns.

In short, we generate 1250 (5-year) daily returns and then compute the firm’s asset values

backward to yield a sample of 1251 asset values. The equity values are calculated using the option

pricing formula displayed in equation (6), and the maturity period of the firm’s debt is chosen to

be 5 years. To mimic the real world, we regard the asset price value as an unknown, and only

utilize the information embedded in the observed equity values to estimate the models. The first

1000 samples are used to estimate the models, and the last 250 samples are left for out-of-sample

prediction evaluation. To lock out Monte Carlo variability, we simulate 100 data sets for each case,

and implement 15 independent runs of MRM algorithm on each data set to get the model parameter

estimates. The number of parameter and state particles used in MRM algorithm are respectively

chosen to be N = 1000 and M = 500. We compute both one-step-ahead and five-step-ahead credit

spread forecasts from the SVJ model, and compare its performance with the Merton model and the

SV model without jumps.

2It is the average of 3-month constant maturity treasury yield used in Fulop and Li (2013)
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3.2 Simulation Results

We compute the bias and RMSE of credit spread predictions from the three models3 for the last

250 samples of each data set, and report the mean of bias and RMSE across the 100 data sets in

Table 1. The third column contains the results for the Merton model, the sixth column has the

results for SV model, and the results of SVJ model are presented in the seventh column. These

results reveal several noteworthy points. Beginning with the first DGP where asset return follows

a pure diffusion process (see Panel A in Table 1), the three models perform quite identically with

the Merton model performing slightly better. It is not surprising given that a complex model with

more parameters (the SV model and SVJ model) will have additional estimation uncertainty. But

the cost appears marginal according to the results. Secondly, when the asset returns do not follow

a pure diffusion (see Panel B and C in Table 1), the SVJ model largely outperforms the Merton

model with far smaller bias and RMSE. Compared with SV model without jumps, the SVJ model

performs quite similarly when asset returns move without jumps, but performs better when asset

returns follow a jump diffusion process. In addition, the improvement from SV model to SVJ model

is more pronounced when both intensity and magnitude of jumps increase. Thirdly, while the three

models provide better forecasts at shorter time horizon (one-step-ahead), the improvement from

Merton model to SV model and SVJ model becomes more pronounced in longer horizon forecasts

(five-step-ahead). Lastly, as the firm financial risk increases, all the models perform worse with larger

prediction bias and RMSE. It implies that the higher the risk is, the harder it is to be accurately

quantified.

Despite these results reveal the advantage of SVJ model, they give no indication about where the

better performance of SVJ model comes from. We conduct a decomposition analysis on the reported

RMSE to answer this question. Intuitively, we can think at least three channels are driving the model

performance differences. First, from the mean level perspective, after allowing for dynamics in asset

volatility, the SV model and SVJ model can better capture the average level of the asset volatility,

and thereby better predict the average level of credit spread. Second, with time-varying volatility

and the implied more realistic functional form between asset and equity values, the SVJ model

can better track the changes in credit spread. Lastly, explicitly considering jumps in SVJ model

3The model predicted spread can be calculated according to equation 14 for SVJ model and SV model with the
corresponding PHM

t . The Merton model predicted spread can be computed as follows:

CDSMerton = −
1

T − t
log(

Vt

F
Φ(−dt) + e

−r(T−t)Φ(dt − σ
√

T − t))− r,

where dt =
ln(

Vt

F
)+(r+σ

2

2
)(T−t)

σ
√
T−t

.

12



can better describe the large random fluctuations in credit spread. The three effects are further

examined as follows.

The mean level effect can be easily identified by looking at the mean spread forecast errors of

these models. We compare the average of the predicted spreads from the three models against the

average of the true spreads, that is the bias we reported in Table 1. Compared to the Merton model,

the always smaller bias in SVJ model and SV model verifies that taking into account the stochastic

property of the asset volatility is helpful to better measure the level of credit spread on average.

Next, we focus on the change effect and define a new SV model where the volatility state variable

is fixed at its stationary level (that is θ) to separately explore the role of time-varying volatility and

the functional form between asset and equity values in tracking the changes of credit spreads. The

bias and RMSE of predictions from this new SV model are reported in the fifth column of Table 1.

While the reduction in bias from Merton model to this model implies that an appropriate functional

form between asset and equity values helps better capture the changes in credit spreads, the rest

discrepancy between this model and the SV model reveals the benefit of allowing for time-varying

volatility. In fact, the two effects can be alternatively separated by looking at a modified Merton

model where the asset volatility is no longer an unknown parameter, but takes its true value at

each time point. This model eliminates the asset volatility estimation uncertainty, and only focus

on the effect of functional form mapping asset values to equity values. To save the space, we do not

report the results of this model, but these results are available upon request. We observe a reduction

of bias and RMSE from Merton model to this model, which reveals the importance of accurately

estimating asset volatility in credit risk prediction. The still better performance of the SV model

compared to this model reveals the benefit of utilizing appropriate option pricing function form in

structural model. At the end, we compare the SVJ model with the SV model to identify the extreme

movement effect. The reduction of bias and RMSE from SV model to SVJ model under the jump

diffusion process with stochastic volatility provides the evidence that explicitly modeling jumps can

better capture the large fluctuations in credit spreads.

In addition, a typical implementation of the Merton model tends to use one-year rolling window

to account for time-varying asset volatility. For better comparability, we estimate the Merton model

with one-year rolling samples, and report the bias and RMSE of the generated predictions in fourth

column of Table 1. In general, both bias and RMSE are reduced from the previous Merton model

with a multi-year fixed samples. This improvement further collaborates the benefit of taking into

account the variability of the asset volatility. More importantly, the rolling strategy does not help

13



the Merton model to overcome the SV model and SVJ model decisively. The still smaller bias and

RMSE of the SV model and the SVJ model suggest that apart from specifying the dynamics of

time-varying volatility, other sources are leading to the better performance of the two models such

as the functional form transforming asset values to equity values.
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Table 1: Simulation study for the model comparison

Merton Model Merton Model* SV model* SV model SVJ model
Panel A: Constant Volatility without Jumps

One step ahead
Bias -0.0005 -0.0004 -0.0004 -0.0006 -0.0006
RMSE 0.0009 0.0008 0.0008 0.0011 0.0011

Five step ahead
Bias -0.0012 -0.0011 -0.0011 -0.0012 -0.0012
RMSE 0.0015 0.0015 0.0015 0.0016 0.0016

Panel B: Stochastic Volatility Process without Jumps
σv = 0.004

One step ahead
Bias -0.0052 -0.0050 -0.0051 -0.0047 -0.0047
RMSE 0.0061 0.0059 0.0060 0.0056 0.0057

Five step ahead
Bias -0.0057 -0.0054 -0.0053 -0.0049 -0.0050
RMSE 0.0063 0.0061 0.0061 0.0058 0.0059

σv = 0.04

One step ahead
Bias -0.0074 -0.0072 -0.0072 -0.0069 -0.0070
RMSE 0.0083 0.0079 0.0080 0.0076 0.0078

Five step ahead
Bias -0.0079 -0.0075 -0.0074 -0.0071 -0.0072
RMSE 0.0087 0.0083 0.0082 0.0079 0.0080

Panel C: Jump Diffusion Process with Stochastic Volatility

σv = 0.004, λ = 0.0032, J = 0.0029

One step ahead
Bias -0.0068 -0.0065 -0.0066 -0.0062 -0.0060
RMSE 0.0063 0.0059 0.0060 0.0056 0.0054

Five step ahead
Bias -0.0073 -0.0068 -0.0070 -0.0067 -0.0066
RMSE 0.0067 0.0064 0.0065 0.0062 0.0060

σv = 0.004, λ = 0.010, J = 0.010

One step ahead
Bias -0.0084 -0.0080 -0.0081 -0.0078 -0.0073
RMSE 0.0089 0.0086 0.0087 0.0081 0.0078

Five step ahead
Bias -0.0090 -0.0087 -0.0086 -0.0082 -0.0079
RMSE 0.0090 0.0087 0.0088 0.0085 0.0081

Note: We simulate 100 data sets with sample size T = 1250 under three GDPs, including a pure diffusion, a stochastic volatility process without

jumps and a jump diffusion process. We implement 15 independent runs of MRM algorithm on the first 1000 observations of each data set to obtain

the model parameter estimates, and then produce the credit spread prediction for the last 250 days. This table reports the mean of bias and RMSE

of credit spread predictions for the last 250 days from different models across the 100 data sets.
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4 Empirical Analysis

We implement the SVJ structural model on two real data sets to empirically assess its ability in credit

risk prediction. The first sample includes 20 Dow Jones firms representing the large-cap companies,

and the second contains 200 randomly selected firms from the CRSP database representing typical

U.S. exchange listed firms. The firm is included in the second sample only if it has the required

CDS spread data and balance sheet information for our sample period and it is not a firm already

contained in the Dow Jones sample. We will compare the SVJ model with Merton model and SV

model in terms of their 5-year CDS spread predictions for these sample firms. We choose CDS

spread to test the model performance due to three reasons. First, the CDS contract is typically

traded on standardized terms, and the transaction data is available publicly. Second, CDS spread is

a relatively pure pricing of default risk of the underlying entity. Lastly, in the short run CDS spread

tends to efficiently respond to changes in credit conditions, so that it is a good credit risk indicator.

4.1 Dow Jones 20 Firms

Our data sample consists of daily 5-year corporate debt CDS spreads4, and all required balance sheet

information of the 20 firms. The sample covers the period of 03/01/2008-31/12/2013, resulting in

a sample size of T = 1490. The data of CDS spreads are taken from Bloomberg, and the balance

sheet information are obtained from WRDS CRSP database. The equity values are computed as

the product of the closing price of equity and the number of shares outstanding. The maturity of

debt is set to 5 years to match with the maturity period of the CDS contracts, and the 3-month

constant maturity treasury yield from the St. Louis FED website is chosen to represent the risk

free rate. The face value of the debt F is treated as an unknown which is determined by the data.

Company name and main statistics of their 5-year CDS spreads are summarized in Table 2, and

Figure 1 displays the average daily equity return and the average 5-year CDS spreads across the 20

Down Jones Firms over the whole sample period. The relatively higher return volatility and CDS

spreads during 2008-2009 suggests the presence of a turbulent period during the recent financial

crisis.

We use the first 993 samples from January 2 2008 to December 30 2011 to estimate the mod-

els, and leave the last 498 days from January 3, 2012 to December 30, 2013 for model forecast

evaluation. The MRM algorithm is implemented with 1000 parameter particles (N=1000) and

4We choose 5-year CDS as it is the most liquid CDS contract traded in U.S market.
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Table 2: Summary Statistics of 5-year CDS Spreads for 20 Dow Jones Companies

Company Name Jan 2008-Dec 2013

5 year CDS spread
Mean Max Min Std

Verizon 68.6144 169.3000 18.6000 29.6478
Boeing 92.9535 322.0000 15.2000 67.3197

Caterpillar 123.1250 504.9100 33.4000 101.0075
Chevron 68.6143 129.0000 20.1000 29.7738
Coca-cola 36.2504 84.5000 17.8000 13.8985

Walt Disney 42.8312 108.5000 19.8000 18.4209
E.I. du Pont 45.4038 207.0000 16.0000 34.9434

Exxon 31.5696 99.4000 12.0000 19.2140
Home Depot 111.2713 330.3000 31.0650 71.5890

Intel 45.1969 83.6060 22.2300 24.5180
Johnson&Johnson 31.7979 70.6000 10.8000 13.8626

Mcdonald 30.3598 63.0000 11.7100 12.0808
3M 40.2012 113.7000 14.6250 24.2850

Procter&Gamble 52.3325 147.1000 19.4000 32.4460
AT&T 38.1561 107.3000 12.4000 17.8618

United Health 118.0969 416.6250 39.1090 84.4500
United Technologies 46.1059 118.3000 19.6100 22.5466

Wal-Mart 47.9782 120.6000 21.7000 25.4582
Microsoft 25.5980 85.0000 7.8104 8.2000
Cisco 49.7668 143.7000 20.4000 23.8078

Note: This table reports the summary statistics of 5-year CDS spreads for 20 Down Jones Firms from

02/01/2008-31/12/2013. The numbers are expressed in basis point.
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Figure 1: The average equity return and average 5-year CDS spread of 20 Dow Jones Firms

Average Equity Return

Average 5-year CDS Spread
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500 state particles (M=500) for each parameter set. A uniform prior for F is used with a lower

bound equal to current liabilities plus 0.5 long term debt (default barrier used in Moody’s KMV

model) and an upper bound equal to total liabilities. The remaining parameters have the fol-

lowing priors: µ ∼ N(0, 005), (θ, κ, σV , λ, J, σJ , δ) ∼ U [(0.0012, 0, 1 × 105, 0.001,−0.01, 0.01, 1 ×
106), (0.22, 20, 2, 0.01, 0.01, 0.1, 0.05)]. Both one-step-ahead and five-step-ahead forecasts are com-

puted for model comparison.

Table 3 reports the estimation results of the SVJ model for the 20 firms5. Firm names are given in

the first column. Full-sample parameter posterior means together with the 5th and 95th percentiles

of the posterior distribution are contained in the next columns. The mean of the log marginal

likelihood is presented in the last column. Figure 2 shows the average sequential estimates of the

filtered asset volatility across these firms along with the average central 90% confidence interval.

These results strongly support the SVJ model from several aspects. First, the stochastic volatility

related parameters (κ and σV ) in all the firms have narrow 90% confidence intervals indicating

that the real asset volatility indeed exhibits variability. This is further corroborated by Figure 2 in

5The estimation results of the Merton model and SV model are not reported here, but they are available upon
request.
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which the average value of the filtered asset volatility across the 20 firms varies substantially over

time with a tight 90% confidence interval. These filtered asset volatilities can efficiently depict all

fluctuations observed in the market with large magnitude and variability in the beginning of the

sample, and relatively small values from the middle towards the end. Second, the jump related

parameters (λ, J and σJ) in all the firms also have tight 90% confidence intervals, but the intervals

are relatively large than those of other parameters. These results confirm the existence of abrupt

movements in asset returns, and the greater uncertainty of these extreme events occurrences. Third,

the mean of the log marginal likelihood from SVJ model is always larger than that of Merton model

and SV model (the mean of the log marginal likelihood of Merton model and SV model are not

reported here, but available upon request) for all the firms, implying that on average the SVJ model

provides better in-sample fit for the observed equity values on average. We also employ sequential

log Bayes factor as shown in equation (10) to compare the three models recursively. We average

the log Bayes factor between the SVJ model and the Merton model or the SV model across the 20

firms, and plot them in Figure 3. It is clear that while the three models perform very similarly at

the beginning, the SVJ model and the SV model shows a huge superiority to the Merton model

during the crisis period as the log Bayes factor between the SVJ model (or the SV model) and the

Merton model reaches a high level at the end of year 2008 and keeps rising onwards until the end of

sample. A further advantage is spotted from SV model to SVJ model. In summary, the SVJ model

is overwhelmingly preferable to Merton model and also superior to the SV model. The advantage

is particularly apparent when the market is turbulent. Note that our analysis so far relies on the

expected values of the posterior distributions of model parameters and states without considering

parameter and state uncertainty. Korteweg and Polson documented the importance of accounting

for parameter uncertainty on corporate bond credit spreads, and therefore it would be interesting to

see whether the rank of the models considered here will be alternated after considering this effect.

We leave this for later work.
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Table 3: SVJ structural Model Estimation Results for 20 Dow Jones Companies

Company name µ θ κ σV λ J σJ δ F MLMLH

Verizon
Mean 0.0046 0.0167 12.578 0.1996 0.0032 0.0012 0.1274 0.0027 1.0945×105

946.720.05 Qtl -0.0797 0.0129 8.437 0.0998 0.0008 0.0009 0.0975 0.0011 8.9570×104

0.95 Qtl 0.1176 0.0210 18.256 0.2765 0.0051 0.0033 0.2986 0.0042 1.3157×105

Boeing
Mean 0.0277 0.0318 10.276 0.1975 0.0057 0.0063 0.1587 0.0017 5.1579×104

925.330.05 Qtl -0.0847 0.0279 8.723 0.1135 0.0023 0.0047 0.0825 0.0003 4.6832×104

0.95 Qtl 0.1466 0.0356 16.759 0.2872 0.0086 0.0105 0.2574 0.0034 5.7229×104

Caterpillar
Mean 0.0810 0.0378 11.098 0.4391 0.0015 0.0027 0.0129 0.0022 4.7439×104

879.610.05 Qtl -0.0498 0.0349 4.675 0.1957 0.0009 0.0012 0.0095 0.0011 4.3608×104

0.95 Qtl 0.2416 0.0397 19.884 0.6332 0.0026 0.0032 0.0153 0.0043 5.0305×104

Chevron
Mean 0.0279 0.0396 15.987 0.4331 0.0025 0.0013 0.0228 0.0048 7.1009×104

895.470.05 Qtl -0.1322 0.0382 6.778 0.2098 0.0014 0.0008 0.0125 0.0045 6.9327×104

0.95 Qtl 0.2005 0.0400 20.912 0.6776 0.0037 0.0024 0.0326 0.0050 7.1918×104

Coca-Cola
Mean 0.0667 0.0377 10.224 0.5331 0.0056 0.0436 0.0275 0.0038 2.2054×105

918.940.05 Qtl -0.0810 0.0357 3.987 0.3207 0.0031 0.0258 0.0156 0.0030 2.0646×105

0.95 Qtl 0.1903 0.0399 18.090 0.6652 0.0072 0.0627 0.0305 0.0046 2.3139×105

Walt Disney
Mean 0.0378 0.0395 17.223 0.3341 0.0065 0.0026 0.3287 0.0048 2.7358×104

874.560.05 Qtl -0.1059 0.0389 9.087 0.1126 0.0042 0.0011 0.2076 0.0043 2.6797×104

0.95 Qtl 0.1793 0.0400 23.998 0.5430 0.0081 0.5127 0.3923 0.0050 2.7681×104

E.I. du Pont
Mean 0.0562 0.0380 10.876 0.4219 0.0041 0.0049 0.1657 0.0039 2.9429×104

894.300.05 Qtl -0.0929 0.0358 2.993 0.2325 0.0036 0.0035 0.0983 0.0029 2.7588×104

0.95 Qtl 0.2131 0.0398 16.095 0.5098 0.0052 0.0057 0.2014 0.0048 3.0414×104

Exxon
Mean -0.0645 0.0396 15.908 0.3348 0.0074 0.0021 0.2573 0.0049 1.1420×105

926.190.05 Qtl -0.1853 0.0382 5.214 0.1980 0.0061 0.0014 0.1786 0.0046 1.0948×105

0.95 Qtl 0.1007 0.0400 22.987 0.5231 0.0089 0.0033 0.3326 0.0050 1.1722×105

Home Depot
Mean 0.0646 0.0395 13.776 0.2241 0.0025 0.0014 0.3659 0.0046 2.3060×104

931.480.05 Qtl -0.0826 0.0389 5.786 0.1087 0.0017 0.0008 0.2219 0.0040 2.2596×104

0.95 Qtl 0.2016 0.0400 20.997 0.3066 0.0034 0.0020 0.4023 0.0050 2.3362×104

Intel
Mean 0.0559 0.0333 12.989 0.3891 0.0014 0.0026 0.2129 0.0017 8.0034×104

886.430.05 Qtl -0.0900 0.0311 5.887 0.2085 0.0007 0.0013 0.1186 0.0005 7.3835×104

0.95 Qtl 0.1974 0.0360 17.224 0.5098 0.0025 0.0034 0.3234 0.0030 8.4765×104
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Johnson & Johnson
Mean -0.0326 0.0231 18.765 0.3321 0.0025 0.0041 0.2235 0.0036 4.1332×104

898.730.05 Qtl -0.1268 0.0211 10.228 0.2653 0.0014 0.0032 0.1764 0.0027 3.6794×104

0.95 Qtl 0.0809 0.0257 29.876 0.5208 0.0033 0.0054 0.3546 0.0048 4.3938×104

Mcdonald
Mean 0.1063 0.0319 12.989 0.3321 0.0041 0.0026 0.4079 0.0045 1.5003×104

944.310.05 Qtl -0.0259 0.0295 7.232 0.2987 0.0021 0.0018 0.2764 0.0040 1.3413×104

0.95 Qtl 0.2459 0.0347 19.887 0.5321 0.0054 0.0039 0.5123 0.0049 1.6026×104

3M
Mean 0.0361 0.0389 10.998 0.4217 0.0028 0.0016 0.1513 0.0047 1.3478×104

821.250.05 Qtl -0.1092 0.0291 3.885 0.2238 0.0010 0.0009 0.1024 0.0042 1.2551×104

0.95 Qtl 0.1642 0.0452 16.989 0.5356 0.0032 0.0025 0.2287 0.0050 1.3939×104

Procter & Gamble
Mean -0.0290 0.0249 17.098 0.3432 0.0037 0.0025 0.2671 0.0043 6.1996×104

850.920.05 Qtl -0.1583 0.0226 10.291 0.2109 0.0022 0.0018 0.1983 0.0037 5.3287×104

0.95 Qtl 0.1010 0.0281 25.439 0.4342 0.0043 0.0031 0.3085 0.0049 6.9547×104

AT/T
Mean -0.0473 0.0285 11.223 0.3238 0.0037 0.0024 0.2026 0.0038 1.1040×105

864.380.05 Qtl -0.1775 0.0253 4.998 0.2901 0.0023 0.0012 0.1514 0.0024 1.0273×105

0.95 Qtl 0.0940 0.0319 16.289 0.5529 0.0042 0.0033 0.3837 0.0046 1.2076×105

United Health
Mean 0.0430 0.0395 13.879 0.3906 0.0015 0.0034 0.2627 0.0046 3.5056×104

795.410.05 Qtl -0.0703 0.0372 7.9981 0.2176 0.0009 0.0023 0.1018 0.0038 3.4302×104

0.95 Qtl 0.1611 0.0432 21.879 0.4432 0.0021 0.0045 0.3132 0.0049 3.5430×104

United Technologies
Mean 0.0273 0.0376 8.2351 0.1198 0.0012 0.0034 0.1517 0.0036 3.2973×104

897.660.05 Qtl -0.1134 0.0321 6.7093 0.0981 0.0008 0.0021 0.1089 0.0023 3.1213×104

0.95 Qtl 0.1905 0.0438 10.2347 0.2865 0.0021 0.0040 0.2286 0.0048 3.4259×104

Wal-Mart
Mean 0.0554 0.0230 12.887 0.3376 0.0014 0.0023 0.1587 0.0046 8.2534×104

823.570.05 Qtl -0.0440 0.0209 5.679 0.1309 0.0007 0.0015 0.1015 0.0042 7.7116×104

0.95 Qtl 0.1750 0.0254 19.824 0.5487 0.0025 0.3231 0.2028 0.0050 8.7963×104

Microsoft
Mean -0.0302 0.0398 15.884 0.5498 0.0045 0.0023 0.1614 0.0049 3.7567×104

897.430.05 Qtl -0.1652 0.0352 9.761 0.2231 0.0033 0.0015 0.1012 0.0032 3.6742×104

0.95 Qtl 0.0894 0.0400 21.325 0.7678 0.0052 0.0037 0.2829 0.0057 3.8314×104

Cisco
Mean -0.0572 0.0398 14.989 0.3241 0.0012 0.0037 0.2124 0.0050 2.9299×104

803.420.05 Qtl -0.1983 0.0352 10.225 0.2256 0.0008 0.0012 0.1215 0.0049 2.9010×104

0.95 Qtl 0.0669 0.0457 20.975 0.5098 0.0023 0.0041 0.3217 0.0065 2.9445×104

Note: This table reports the parameter estimates of the SVJ model at the final date T with the first 993 equity value observations using MRM for

20 Dow Jones firms. In estimation, we set the number of state and parameter particles are respectively 500 and 1000. The priors are µ ∼ N(0, 005),

(θ, κ, σV , λ, J, σJ , δ) ∼ U [(0.0012, 0, 1× 105, 0.001,−0.01, 0.01, 1× 106), (0.22, 20, 2, 0.01,−0.01, 0.1, 0.05)].
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After obtaining the model parameter estimates, together with the risk-free interest rate we can

produce the model implied credit spreads for the whole sample period. To remove the influence

of the priors, we leave an initial learning period of 100 days and begin the spread calculation only

after that. In contrast to the estimation period where the spreads are computed by using estimated

asset volatilities, the spread predictions in the forecast evaluation period are computed using the

predicted asset volatilities. By employing 5-year CDS spread as a proxy of the real credit risk, we

compare the SVJ model with Merton model and SV model in terms of bias and RMSE of their

one-step-ahead and five-step-ahead credit spread predictions. The bias and RMSE of the model

predicted spread have the standard definition as E(CDS − ˆCDS), and

√

E(CDS − ˆCDS)2, where

ˆCDS is the model predicted credit spread and CDS is the actually observed CDS spread.

We firstly look at the model implied CDS spreads in estimation period. Table 4 panel A sum-

marizes the bias and RMSE of the model implied credit spreads for the whole estimation period,

and panel B provides the results for the financial crisis period. Firm names are given in the first

column. The second and third columns report the results of the Merton model, the eighth and ninth

columns contain the results of the SV model, and the last two columns present the results of the

SVJ model. In general, although all the three models underestimate the credit spread, there are

large improvements from Merton model to SV model and SVJ model. The average RMSE across

the firms are reduced around 6 basis points from Merton model to SV model, and further 2 basis

points to SVJ model. The improvement exhibits more pronounced during the crisis period, with

the average RMSE decreasing respectively around 7 and 10 basis points from Merton model to SV

model and SVJ model. We further exam whether the three sources documented in Section 3 are able

to explain these improvements. In terms of the mean level estimation, the SV model successfully

reduces the bias from the Merton model by 5 basis points, and the SVJ model reduces the bias

by 6.5 basis points on average. The bias reduction appears larger during the crisis period, with 7

basis points achieved by the SV model and 9.5 basis points produced by the SVJ model. Next, we

shift attention to the change effect. We compute the implied spreads from a new SV model where

the state volatility is fixed at its stationary level to explore the role of time-varying volatility. The

bias and RMSE of the implied credit spreads from this model are reported in the sixth and seventh

columns of Table 4. While the large bias reduction from Merton model to this model shows that

the mean level effect has been successfully controlled, the still larger RMSE compared to that of

the standard SV model indicates that allowing for asset volatility dynamics helps better track the

dynamic changes of the credit spreads. We also estimate the Merton model using one-year rolling
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Figure 2: Filtered average asset volatility from the SV structural model for 20 Down Jones firms
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Figure 3: Average Sequential log Bayes factors between SV structural model and Merton model for
20 Down Jones firms
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samples, and present the results in fourth and fifth columns of Table 4. The reduced bias and RMSE

from the Merton model with a multi-year fixed sample provides the evidence that the rolling win-

dow estimation is a good way to account for the time-varying volatility. However, the still smaller

bias and RMSE provided by SV and SVJ model corroborate the fact that apart from time-varying

volatility, other sources are leading to the superiority of the SV and SVJ models such an appropriate

functional form between the asset and the equity values. Lastly, we compare SV model and SVJ

model to reveal the role of jumps. The always lower bias and RMSE from SVJ model particularly

during the crisis period confirms that explicitly modeling jumps can better describe the extreme

movements in CDS spreads.

Now, we turn to the model predicted CDS spreads in forecast evaluation period. Table 5 sum-

marizes the bias and RMSE of the spread predictions for the last 498 days of our sample period,

with panel A for one-step-ahead forecasts and panel B for five-step-ahead forecasts. In general, the

rank of the models we observed above is still preserved here. The SV model and SVJ model largely

reduce the prediction bias and RMSE from Merton model in all the cases, and these improvements

can be attributed to the time-varying volatility and the resulting option pricing formula which trans-

forms the asset values to the equity values. The further bias and RMSE reductions are still detected

from SV model to SVJ model, suggesting that explicitly modeling jumps is important to predict

the CDS spread. Meanwhile, these results reveal two additional interesting findings. First, the five-

step-ahead predictions from all the models have larger bias and RMSE than those of one-step-ahead

counterparts, implying that obtaining accurate forecast is more difficult in multi-step-ahead scenario

because of the accumulated forecast errors. More importantly, the prediction improvements from

the Merton model to the SV and SVJ model appear greater at longer horizon. While the average

bias and RMSE across these firms respectively decreased by 4 and 5 basis points from Merton model

to SV model, and further reduction of 1.5 and 1.7 basis points from SV model to SVJ model at

daily horizon (one-step-ahead forecast), the average bias and RMSE are reduced by 5.5 and 6 basis

points from Merton model to SV model, and decrease 1.7 and 2.5 more basis points from SV model

to SVJ model at weekly horizon (five-step-ahead forecast). In summary, ignoring the dynamics of

asset volatility and jumps has larger impact on longer horizon credit spread prediction.

These findings are further illustrated in Figure 4 to give us a visual impression. The figure shows

the Merton model predicted spreads, the SV model predicted spreads and the SVJ model predicted

spreads against the actual 5-year CDS spreads of Chevron over the whole sample period. The top,

middle and bottom panels of Figure 4 respectively present the implied spreads from the Merton
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model, the SV model and the SVJ model against the actual 5-year CDS spreads. While the right of

the right y-axis labels the scale of the model predicted credit spreads, the left of the y-axis labels the

scale of the actual CDS spreads. Apparently, the predicted spreads from the SV model and the SVJ

model track the actual 5-year CDS spreads much better than the counterparts from Merton model

with respect to both the level magnitude and the dynamic changes. The SVJ model offers further

improvement from the SV model in capturing the large spikes in the actual CDS spreads. These

improvements are particularly clear when market is turbulent from 01/09/2008 to 31/12/2009.
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Table 4: 5-year CDS Spread Estimation Results for 20 Dow Jones Companies

Panel A: 02/01/2008-30/12/2011

Merton model Merton model* SV model* SV model SVJ model

Company Name Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Verizon -52.3537 54.3911 -49.8782 52.8986 -48.7274 51.9986 -45.8976 48.1253 -44.8786 47.3578
Boeing -33.6025 42.8716 -31.8976 40.2758 -32.0986 40.1764 -29.8784 38.2189 -27.2135 37.1865

Caterpillar -22.6754 45.2125 -20.8896 43.1845 -21.9456 42.8976 -19.8765 40.9876 -18.9765 39.1236
Chevron -37.0361 42.8225 -35.8976 40.2891 -36.1215 40.1876 -33.1893 38.2935 -32.8976 37.6541
Coca-cola -32.8873 46.9896 -30.1819 44.8976 -31.8765 43.5462 -28.7673 40.8972 -27.1789 39.2373

Walt Disney -31.2267 40.1258 -29.7865 38.1237 -29.8764 38.5643 -26.1798 35.7892 -24.7895 34.1246
E.I.du Pont -32.1876 38.0160 -29.8973 36.8965 -28.9764 36.1214 -26.7893 35.1287 -25.3893 33.2781

Exxon -20.7865 29.7671 -18.7432 27.1893 19.2876 28.0981 -16.2755 23.8971 -15.0987 22.9109
Home Depot -80.2156 94.2896 -77.1985 92.8912 -78.1256 91.2859 -75.8941 89.7667 -75.0915 89.0974

Intel -35.7871 46.7924 -33.8696 44.8952 -32.9761 44.5642 -30.5562 40.8699 -29.7851 39.0876
Johnson&Johnson -20.8953 34.8791 -18.7581 32.9774 -18.0876 31.8908 -15.8916 28.9075 -14.9872 27.0981

Mcdonald -27.4341 29.2104 -25.9796 27.8915 -26.0987 26.9861 -22.8914 23.9194 -21.9532 22.6539
3M -38.1276 44.3381 -36.9806 43.5815 -36.7424 42.8974 -35.8971 39.8017 -34.0911 38.0945

Procter&Gamble -52.1764 65.8932 -50.1677 63.8078 -49.8608 62.1917 -45.9751 59.0137 -44.0898 58.0925
AT&T -63.2178 74.3872 -61.8976 72.9061 -61.9895 72.6543 -58.9871 69.0832 -57.0984 68.1256

United Health -90.2325 101.8786 -87.1437 99.0861 -87.3536 98.7961 -85.9187 95.2426 -84.8913 94.5759
United Technologies -37.6529 45.7893 -35.0861 43.0877 -34.9872 42.9895 -32.9861 39.0853 -31.2678 38.0954

Wal-Mart -45.8972 52.8974 -43.6783 50.0913 -43.0981 49.8125 -40.9916 46.0871 -39.6754 45.5672
Microsoft -20.1974 25.8761 -17.4564 23.9086 -17.0983 23.0546 -15.0897 20.0952 -14.2576 19.2325
Cisco -42.7935 54.8964 -41.8971 53.0892 -40.9897 52.9891 -35.8908 48.0872 -34.9087 47.5415
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Panel B: 02/01/2008-30/12/2009

Merton model Merton model* SV model* SV model SVJ model

Company Name Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Verizon -54.1967 57.8972 -51.7865 53.9801 -51.9861 53.5609 -45.9086 49.0821 -43.2354 46.3576
Boeing -35.9261 44.8921 -31.9082 40.9852 -31.5476 40.6765 -26.7786 35.8987 -23.8901 33.0981

Caterpillar -24.7893 46.9871 -21.8976 42.9025 -21.5802 42.4341 -17.8061 38.9006 -15.8661 35.9081
Chevron -35.1974 44.8975 -32.6976 41.0905 -32.4531 41.2416 -29.9861 36.0871 -26.9087 34.9081
Coca-cola -33.2578 48.9072 -30.8861 45.7656 -29.0854 44.9086 -26.8799 39.0751 -24.0976 37.0908

Walt Disney -32.8976 42.8975 -29.0875 38.0817 -28.9082 37.8981 -24.0835 34.0926 -22.0061 32.0866
E.I.du Pont -34.5092 40.1984 -31.0907 36.3254 -30.9895 36.0278 -26.9895 33.9086 -23.8721 31.0984

Exxon -22.7896 31.8963 -19.7864 28.9086 -19.8076 28.7854 -16.9982 25.0807 -14.0873 23.8956
Home Depot -82.3672 96.1872 -79.8654 93.9086 -79.8753 93.7654 -76.8125 89.3241 -73.9852 87.6635

Intel -37.0981 48.9076 -33.0986 45.7516 -33.1567 45.3479 -31.0086 42.7872 -29.9809 39.0805
Johnson&Johnson -21.9086 36.0783 -18.7756 33.8785 -18.6523 33.7674 -15.8906 31.9077 -13.9765 28.7673

Mcdonald -29.4956 31.9090 -25.0875 29.6797 -25.7872 29.8754 -23.4547 26.8784 -21.0098 23.4569
3M -40.9892 46.1214 -35.4648 43.2215 -35.4647 43.1258 -33.4468 40.9896 -31.9895 37.0965

Procter&Gamble -54.6710 67.0982 -50.1135 64.3437 -50.2326 64.3539 -47.2429 62.1154 -45.4273 60.9894
AT&T -65.0102 75.9035 -62.1157 73.2578 -62.6754 73.5452 -59.8783 68.1195 -57.7672 65.7892

United Health -92.0805 103.4547 -89.7674 99.3246 -89.8923 99.5654 -85.4432 95.0874 -83.1257 92.7759
United Technologies -39.0201 47.2356 -36.1278 44.5371 -36.3260 44.6862 -33.7981 41.0805 -31.8974 39.7763

Wal-Mart -47.0831 54.0756 -43.9987 52.9063 -43.8751 52.5654 -41.9987 48.0906 -39.0852 45.7763
Microsoft -22.7673 28.0974 -19.8784 25.8983 -19.5421 25.5437 -15.9086 23.0667 -14.9621 20.7764
Cisco -44.9087 56.9823 -41.0064 53.0986 -41.2326 53.1215 -38.0906 49.8982 -35.0985 46.1214

Note: This table reports the bias and RMSE of the estimated 5-year CDS spreads from the standard Merton model, the Merton model with rolling

window estimation (Merton model*), the SV model with a fixed volatility state variable (SV model*), the standard SV model and the SVJ model for

20 Down Jones firms. Panel A presents the results of the whole estimation period, and Panel B presents the results for the crisis subsample period.

The numbers are expressed in basis point.
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Table 5: 5-year CDS Spread Prediction Results for 20 Dow Jones Companies

Panel A: One step ahead

Merton model Merton model* SV model* SV model SVJ model

Company Name Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Verizon -30.9876 37.8921 -28.9901 35.1716 -28.6752 35.2765 -25.4647 32.9086 -23.8761 30.7673
Boeing -20.9897 27.8015 -18.3437 25.3291 -18.2276 25.4743 -15.2329 23.8907 -13.4479 21.0908

Caterpillar -17.0071 25.0765 -15.8633 23.9096 -15.6239 23.7674 -13.8976 20.9563 -11.6509 17.7865
Chevron -17.9140 18.9626 -15.8983 16.2426 -15.6658 16.1217 -13.0903 14.0114 -11.7673 12.6532
Coca-cola -23.5782 29.8784 -20.7654 26.5543 -20.5641 26.3987 -18.7675 23.8064 -16.8782 21.0706

Walt Disney -19.9983 25.0985 -17.6662 23.8785 -17.2326 23.4549 -15.4438 20.7672 -13.2986 18.3638
E.I.du Pont -18.9622 20.0491 -16.0876 18.1267 -16.3436 18.4268 -14.0654 14.5657 -13.3236 13.8785

Exxon -15.4467 19.0876 -13.3678 17.6564 -13.4721 17.3439 -11.7674 15.3238 -10.8784 13.2987
Home Depot -50.9873 59.6564 -48.7652 57.0073 -48.5657 56.9893 -45.7862 53.7865 -45.2328 52.8897

Intel -20.8965 29.3437 -17.9972 27.8075 -17.6568 27.4589 -15.9972 24.1316 -13.4786 23.9896
Johnson&Johnson -17.0983 24.6512 -15.0467 22.6439 -15.3231 22.9873 -13.5629 19.9836 -12.9897 18.7654

Mcdonald’s -13.1351 13.6534 -12.0326 12.9897 -12.1678 12.5458 -9.8832 9.7675 -9.5451 9.2108
3M -25.8976 30.9871 -23.6754 28.7673 -23.1617 28.6561 -20.8876 24.3937 -18.5453 22.8784

Procter&Gamble -42.7765 49.0971 -39.9897 47.2137 -39.6764 47.0983 -35.1216 43.7685 -34.9981 43.0256
AT&T -43.2267 50.6562 -40.9871 47.6562 -40.6564 47.2326 -37.6652 43.0061 -37.1215 42.6754

United Health -80.6675 85.1216 -78.9763 83.2786 -78.5467 83.2521 -74.2899 80.9294 -72.7671 79.6536
United Technologies -25.6671 30.6128 -23.4686 28.6564 -23.7865 28.4327 -20.8975 24.3638 -19.8786 23.9897

Wal-Mart -20.8651 34.7869 -18.7675 31.2786 -18.5654 31.0908 -15.7875 28.7674 -13.9725 27.5432
Microsoft -19.8054 22.1187 -17.9795 20.7673 -17.6534 20.5459 -15.3276 17.6563 -14.8765 16.9114
Cisco -25.7655 29.8076 -23.7654 27.8685 -23.4548 27.9871 -20.7642 24.7632 -19.8785 23.9896
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Panel B: five-step-ahead

Merton model Merton model* SV model* SV model SVJ model

Company Name Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Verizon -32.7765 38.9967 -30.9987 36.5643 -30.6752 36.2765 -26.4879 34.7876 -26.1145 31.9802
Boeing -24.8962 29.2897 -22.0987 27.1103 -22.7675 27.1248 -18.6547 24.7375 -17.0102 21.8137

Caterpillar -19.6368 28.4645 -17.1287 26.3439 -17.6239 26.0785 -15.7674 23.7674 -14.9981 20.9563
Chevron -20.1318 23.4547 -18.7765 20.3736 -18.9374 20.1718 -15.1617 18.4347 -14.9896 13.2234
Coca-cola -25.6783 31.7675 -23.9791 29.0807 -23.6238 26.3987 -17.2328 24.1176 -16.9098 22.6761

Walt Disney -21.7675 27.1413 -19.1142 25.0578 -19.0327 25.0436 -16.0325 23.7674 -14.3761 21.4983
E.I.du Pont -35.0637 40.1137 -33.6564 38.3236 -33.6568 38.4805 -30.1162 36.1318 -29.0705 33.9986

Exxon -18.0782 21.3427 -16.0548 19.7674 -16.2326 19.5453 -14.0675 17.1132 -13.9896 14.1129
Home Depot -48.2127 60.8972 -47.1215 58.7863 -47.2128 58.7673 -44.1217 55.5674 -43.3768 52.67653

Intel -24.9076 32.5645 -22.8784 30.7674 -22.7673 30.3739 -19.3438 28.8975 -17.3236 25.1784
Johnson&Johnson -19.5654 26.8973 -17.2328 24.6893 -17.5451 24.5857 -15.1124 22.6763 -14.6567 20.8986

McDonald’s -15.6567 16.4678 -13.2573 14.7873 -13.1897 14.5458 -11.7673 12.4749 -11.5451 10.2108
3M -29.6765 33.7674 -26.4542 29.8943 -26.3231 29.7674 -23.1251 27.1367 -22.4328 26.8785

Procter&Gamble -45.9097 53.5551 -39.9897 47.2137 -39.6764 47.0983 -35.1216 43.7685 -34.9981 41.0256
AT&T -45.5672 53.4849 -43.7135 49.9895 -43.4542 49.1315 -39.0403 45.1218 -39.5654 42.8785

United Health -82.3436 87.3589 -80.8984 85.8973 -80.3231 85.4348 -76.3235 82.7876 -76.0902 79.9536
United Technologies -27.7873 34.5631 -25.7875 32.7865 -25.4342 32.5327 -23.7761 29.8783 -22.8731 27.0982

Wal-Mart -23.1457 36.8123 -20.6563 34.5682 -20.5351 34.7673 -18.4342 31.3432 -17.5451 28.5356
Microsoft -21.9876 25.3245 -20.7675 23.8973 -20.0951 23.5564 -19.5456 20.7675 -18.9084 17.1211
Cisco -28.9082 30.7675 -27.8907 29.9861 -27.4548 29.3210 -24.3765 25.3231 -22.8973 22.8785

Note: This table reports the bias and RMSE of the predicted 5-year CDS spreads from the standard Merton model, the Merton model with rolling

window estimation (Merton model*), the SV model with a fixed volatility state variable (SV model*), the standard SV model and the SVJ model for

20 Down Jones firms. Panel A presents the results for one-step-ahead predictions, and Panel B presents the results for five-step-ahead predictions.

The numbers are expressed in basis point.
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Lastly, we employ a time series regression along with Diebold and Mariano (1995) (DM) test to

reveal whether the above-documented prediction improvements are statistically significant. More

specifically, we regress the 498 predicted spreads from each model on the actual CDS spreads for

each firm

CDSi,t = α0 + α1ICDSi,t + εi,t, i = 1, ..., 20 (15)

where CDSi,t is the actual 5-year CDS spread of firm i at time t, and ICDSi,t is the model predicted

spread of firm i at time t.

To test for the significance of prediction bias, and separate the contribution of the mean level

effect (bias) from the model ability of explaining the time-series variability (changes) of the spreads

in overall forecast accuracy, we firstly run the regression by restricting α1 = 1. In doing so, we can

test for bias on the estimate of α0, and measure the property of the model to explain time-variation

of the actual spreads using the sum-of-squared errors of the fitted regression (as the estimated α0

takes out the effect of bias). The estimation results of the restricted regression for each firm are

presented in Table 6. We report R2 instead of the sum-of-squared errors of the fitted regression,

as the two measures convey the same information, but the former is better to show how much

time-variation of the actual spreads has been explained by the model predicted ones. Consistent

with our expectation, the estimate of α0 are exactly the same as the bias we reported in Table 5.

Meanwhile, the estimated values of α0 are uniformly positive, and statistically significant at the 5%

significance level. More importantly, while the estimated value of α0 decreases from Merton model

to SV model and again to SVJ model, the R2 increases across these models. These findings once

again suggest that although all the structural models considered here under-predict the actual credit

spreads, the underprediction is largely improved after taking into account the stochastic property

of the asset volatility and jumps. Meanwhile, apart from the mean level effect, allowing for time-

varying volatility and jumps can better track the time-variation of the actual spreads. We further

use DM test to exam whether these improvements are statistically significant6. The test results

report a single ∗ when a model significantly outperforms Merton model, and a double ∗∗ if a model

provides significant improvement over both Merton model and SV model. In all the cases there are

significant improvements from Merton model to SV model and SVJ model in terms of both bias

reduction and time-variation explanation. In most cases with four exceptions in one step-ahead

6The significance of the bias reduction is tested relying on a time series of CDSi,t − ICDSi,t from each model, and
as the estimated α0 removes the effect of bias, the significance of the improvements in time-variation explanation is
tested by looking at the squared residuals from the restricted regressions.
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Figure 4: The predicted credit spreads V.S the actual 5-year CDS spreads for Verizon
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forecasts and three exceptions in five-step-ahead forecasts there are further improvements from SV

model to SVJ model.

Next, we run the same regression exercises and across-model comparison without the restriction

on α1 to test the improvements on overall forecast accuracy. The regression results are presented in

Table 7. Despite the hypothesis of the optimal forecast with β0 = 0 and β1 = 0 is rejected in all the

model predicted spreads, there is a clear trend that the positive values of β0 decreases towards zero

and the values of β1 decreases towards one from Merton model to SV model and again to SVJ model.

These provide supportive evidences that to some extent the biased and inefficient spread predictions

from the Merton model are improved by the SV and SVJ model. This is further collaborated by

the increase of R2 across these models in all the firm cases. We conduct DM test again on the

squared residuals of these regressions, and the test results suggest that in all the cases there are

significant improvements from Merton model to SV model and SVJ model, and in most cases with

three exceptions in one step-ahead forecasts and two exceptions in five-step-ahead forecasts there

are further improvements from SV model to SVJ model.

In addition, we test whether the orthogonal information among these models has addictive

prediction power for credit spread. We regress the Merton model predicted spreads on the SV

model predicted spreads to generate a variable ICDS(SV − MER)i,t that contains information

from SV model orthogonal to the Merton model:

ICDS(SV )i,t = β0 + β1ICDS(MER)i,t + εi,t, i = 1, ..., 20, (16)

where ICDS(SV −MER)i,t equals β0 + εi,t. Then, we include ICDS(SV −MER)i,t as an extra

explanatory variable in the regression( 15) to test whether the SV model carries on incremental

information to the Merton model in credit spread prediction. If this is true, the coefficient of

ICDS(SV −MER)t should be significantly positive, and R2 of the fitted regression should increase

from the corresponding ones reported in Table 7. The regression results are presented in Table 8.

The significantly positive α2 and the increase of R2 in all the cases indicates that the SV model

entails extra information for credit spread prediction. We also conduct the same exercise on SV

model and SVJ model to test the addictive power of jumps, and the test results are reported in

Table 9. Most of the estimated α2 in the table are significantly positive with three exceptions. A

further increase of R2 in all the firm cases confirms that more predictive information is explored by

SVJ model.
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Table 6: The results of regression based model comparison: Panel A

CDSt = β0 + ˆCDSt + εt
Merton model Merton model* SV model* SV model SVJ model

One-step-ahead
β0 R2 β0 R2 β0 R2 β0 R2 β0 R2

Verizon 30.9876 0.4672 28.9901* 0.4781 28.6752* 0.4802* 25.4647* 0.4976* 23.8761** 0.5048**
Boeing 20.9897 0.5281 18.3437* 0.5334* 18.2276* 0.5312* 15.2329* 0.5490* 14.5673** 0.5521**

Caterpillar 17.0071 0.5567 15.8633* 0.5621* 15.6239* 0.5652* 13.8976* 0.5737* 13.6509* 0.5792*
Chevron 17.9140 0.4123 15.8983* 0.4286* 15.6658* 0.4245* 13.0903* 0.4306* 12.7673* 0.4389*
Coca-cola 23.5782 0.5872 20.7654* 0.5993* 20.5641* 0.6065* 18.7675* 0.6231* 16.8782** 0.6315**

Walt Disney 19.9983 0.4981 17.6662* 0.5097* 17.2336* 0.5104* 15.4438* 0.5213* 13.2986** 0.5306**
E.I.du Pont 18.9622 0.5054 16.0876* 0.5123* 16.3436* 0.5134* 14.0654* 0.5287* 13.3236** 0.5310**

Exxon 15.4467 0.4982 13.3678* 0.5052* 13.4721* 0.5087* 11.7674* 0.5128* 10.8784* 0.5203*
Home Depot 50.9873 0.4187 48.7652* 0.4234* 48.5657* 0.4256* 45.7862* 0.4389* 45.2328** 0.4402**

Intel 20.8965 0.5982 17.9972* 0.6075* 17.6568* 0.6124* 15.9972* 0.6286* 13.4786** 0.6304**
Johnson&Johnson 17.0983 0.5564 15.0467* 0.5673* 15.3231* 0.5652* 13.5629* 0.5708* 12.9897** 0.5859**

McDonald’s 13.1351 0.5897 12.0326* 0.5921* 12.1678* 0.5934* 9.8832* 0.6037* 9.5451** 0.6128**
3M 25.8976 0.5653 23.6754* 0.5751* 23.1617* 0.5739* 20.8876* 0.5920* 18.5453** 0.6025**

Procter&Gamble 42.7765 0.4982 39.9897* 0.5052* 39.6764* 0.5033* 35.1216* 0.5287* 34.9981** 0.5314**
AT&T 43.2267 0.4546 40.9871* 0.4672* 40.6564* 0.4643* 37.6652* 0.4843* 37.1216** 0.4925**

United Health 80.6675 0.4439 78.9763* 0.4675* 78.5467* 0.4632* 74.2899* 0.4871* 72.7671** 0.4948**
United Technologies 25.6671 0.5124 23.4686* 0.5239* 23.7865* 0.5251* 20.8975* 0.5430* 19.8786* 0.5462*

Wal-Mart 20.8651 0.5452 18.7675* 0.5581* 18.5654* 0.5564* 15.7875* 0.5783* 13.9725** 0.5891**
Microsoft 19.8054 0.5385 17.9795* 0.5418* 17.6534* 0.5432* 15.3276* 0.5637* 14.8765** 0.5829**
Cisco 25.7655 0.4947 23.7654* 0.5153* 23.4548* 0.5120* 20.7642* 0.5358* 19.8785** 0.5402**
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Five-step-ahead
β0 R2 β0 R2 β0 R2 β0 R2 β0 R2

Verizon 32.7765 0.4283 30.9987* 0.4529* 30.6752* 0.4502* 26.4879* 0.4851* 25.1145** 0.4936**
Boeing 24.8962 0.5025 22.0987* 0.5257* 22.7675* 0.5212* 18.6547* 0.5386* 17.0102** 0.5412**

Caterpillar 19.6368 0.5286 17.1287* 0.5433* 17.6239* 0.5452* 15.7674* 0.5637* 14.9981** 0.5690**
Chevron 20.1318 0.3974 18.7765* 0.4146* 18.9374* 0.4145* 15.1617* 0.4226* 14.9896* 0.4285*
Coca-cola 25.6783 0.5537 23.9791* 0.5763* 23.6238* 0.5765* 17.2328* 0.6082* 16.9098** 0.6214**

Walt Disney 21.7675 0.4675 19.1142* 0.4896* 19.0327* 0.4832* 16.0325* 0.5033* 14.3761** 0.5212**
E.I.du Pont 35.0637 0.4843 33.6564* 0.5052* 33.6568* 0.5034* 30.1162* 0.5163* 29.0705** 0.5220**

Exxon 18.0782 0.4762 16.0548* 0.4986* 16.2326* 0.4979* 14.0675* 0.5022* 13.9896* 0.5057*
Home Depot 48.2127 0.3978 47.1215* 0.4044* 47.2128* 0.4056* 44.1217* 0.4127* 43.3768** 0.4295**

Intel 24.9076 0.5754 22.8784* 0.5923* 22.7673* 0.5924* 19.3438* 0.6082* 17.3236** 0.6203**
Johnson&Johnson 19.5654 0.5329 17.2328* 0.5560* 17.5451* 0.5552* 15.1124* 0.5659* 14.6567** 0.5756**

McDonald’s 15.6567 0.5643 13.2573* 0.5873* 13.1897* 0.5834* 11.7673* 0.5997* 11.5451* 0.6063*
3M 29.6765 0.5466 26.4542* 0.5649* 26.3231* 0.5639* 23.1251* 0.5875* 22.4328** 0.5972**

Procter&Gamble 45.9097 0.4743 39.9897* 0.4948* 39.6764* 0.4933* 35.1216* 0.5056* 34.9981** 0.5211**
AT&T 45.5672 0.4326 43.7135* 0.4544* 43.4542* 0.4583* 39.0403* 0.4631* 39.5654** 0.4749**

United Health 82.3436 0.4348 80.8984* 0.4526* 80.3231* 0.4532* 76.3235* 0.4664* 75.5902** 0.4724**
United Technologies 27.7873 0.4983 25.7875* 0.5130* 25.4342* 0.5151* 23.7761* 0.5267* 22.8731** 0.5371**

Wal-Mart 23.1457 0.5167 20.6563* 0.5342* 20.5351* 0.5364* 18.4342* 0.5546* 17.5451** 0.5672**
Microsoft 21.9876 0.5079 20.7675* 0.5237* 20.0951* 0.5232* 19.5456* 0.5451* 18.9084** 0.5576**
Cisco 28.9082 0.4553 27.8907* 0.4986* 27.4548* 0.4920* 24.3765* 0.5123* 22.8973** 0.5204**

Note: This table reports the results of regression based test on the one-step-ahead and five-step-ahead model predicted credit spreads for 20 Dow

Jones firms. The regression is restricted by setting β1 = 1, and a single ∗ indicates a model which significantly outperforms Merton model, and a

double ∗∗ indicates a model which exhibits significant improvement over both Merton model and SV model at 5% significance level.
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Table 7: The results of regression based model comparison: Panel B

CDSt = β0 + β1 ˆCDSt + εt
Merton model Merton model* SV model* SV model

One-step-ahead
β0 β1 R2 β0 β1 R2 β0 β1 R2 β0 β1 R2

Verizon 25.6743 10.8763 0.4097 24.1134 9.8876 0.4392* 24.0387 9.2325 0.4305* 23.2103 8.7894 0.4782*
Boeing 17.2341 7.2321 0.4543 16.0981 6.9831 0.4981* 16.2527 6.9398 0.4921* 15.2329 5.5652 0.5233*

Caterpillar 15.0231 4.2315 0.4871 12.2365 3.3239 0.5239* 12.3436 3.7982 0.5225* 11.0784 2.8235 0.5631*
Chevron 15.2357 3.7865 0.3532 13.6963 3.3238 0.3765* 13.7302 3.2389 0.3786* 11.8764 2.9328 0.4089*
Coca-cola 18.2361 6.3896 0.5349 16.8743 5.9374 0.5762* 16.5346 5.9256 0.5731* 14.2394 5.5453 0.6136*

Walt Disney 16.5239 6.8783 0.4379 14.2395 5.8342 0.4586* 14.1216 5.3439 0.4503* 10.2396 4.2762 0.5024*
E.I.du Pont 14.6485 5.3986 0.4269 11.0876 4.9147 0.4731* 11.2325 4.8549 0.4760* 10.2321 3.9897 0.5088*

Exxon 13.2427 5.4782 0.4325 10.8762 4.9096 0.4658* 10.5547 4.8215 0.4663* 8.7350 3.9093 0.4982*
Home Depot 43.8769 14.2327 0.3643 39.2247 12.8971 0.3820* 39.1314 10.2257 0.3842* 35.5453 8.9876 0.4176*

Intel 17.6453 5.3439 0.5213 13.8763 4.9125 0.5549* 13.6569 4.8786 0.5587* 10.1134 4.1245 0.5932*
Johnson&Johnson 15.4632 9.2375 0.4872 10.1183 8.9095 0.5083* 10.3245 9.0204 0.5042* 8.7762 7.9834 0.5482*

McDonald’s 9.3418 14.270 0.5268 7.8385 10.3638 0.5547* 8.0932 10.2325 0.5512* 7.3435 9.0432 0.5983*
3M 21.4549 5.4342 0.4896 15.2247 4.9087 0.5123* 15.0236 4.8368 0.5105* 12.0805 3.7631 0.5547*

Procter&Gamble 39.8734 11.8876 0.4384 35.9083 10.2326 0.4678* 35.5453 10.1124 0.4687* 30.8874 8.4536 0.4915*
AT&T 41.0897 8.4543 0.4057 36.0807 7.9982 0.4349* 36.1257 8.0265 0.4372* 34.2526 7.2526 0.4643*

United Health 75.4643 12.3436 0.3982 70.1120 10.2538 0.4126* 70.3346 10.0437 0.4153* 65.7279 8.9964 0.4368*
United Technologies 22.7674 7.8284 0.4426 17.0201 7.0236 0.4873* 17.2328 6.9634 0.4876* 14.2326 6.0652 0.5236*

Wal-Mart 18.7671 6.3438 0.3872 13.5472 5.9981 0.4261* 13.4649 6.1218 0.4239* 10.7762 5.1127 0.5354*
Microsoft 17.8832 9.3267 0.4763 11.0903 8.5236 0.5036* 11.3267 8.8763 0.5088* 9.8784 7.9492 0.5487*
Cisco 20.7865 7.8983 0.4238 16.5438 6.0325 0.4530* 16.3532 6.3327 0.4521* 13.4582 5.5481 0.4992*
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Five-step-ahead
β0 β1 R2 β0 β1 R2 β0 β1 R2 β0 β1 R2

Verizon 29.8814 9.8354 0.3871 27.9987 8.9293 0.4332* 26.1314 9.2325 0.4299* 23.7662 8.2304 0.4486*
Boeing 22.3307 7.9908 0.4235 19.0987 7.0254 0.4576* 19.8035 7.2398 0.4589* 16.2273 7.0085 0.5305*

Caterpillar 16.3324 5.5539 0.4657 14.1287 5.0332 0.5084* 14.0977 5.1982 0.5018* 12.3436 4.7472 0.5527*
Chevron 17.8952 5.9082 0.3328 15.7765 4.5687 0.3651* 14.8783 4.2389 0.3682* 11.8893 4.0891 0.3982*
Coca-cola 22.9893 6.5434 0.5123 19.9791 6.1214 0.5453* 17.3236 5.9256 0.5456* 14.2321 4.8786 0.5836*

Walt Disney 16.7230 7.1215 0.4087 12.1142 6.9936 0.4534* 12.0324 6.3439 0.4498* 10.9893 6.0027 0.4972*
E.I.du Pont 32.0048 7.5563 0.3982 27.6564 6.5540 0.4431* 26.7976 6.0549 0.4452* 23.4642 5.5453 0.4928*

Exxon 15.8682 6.8789 0.4041 11.0548 6.1214 0.4528* 10.9984 6.0215 0.4502* 8.3432 5.7762 0.4889*
Home Depot 44.0706 13.2528 0.3643 38.1215 11.0893 0.3817* 37.9392 10.2257 0.3785* 40.1195 7.6563 0.4092*

Intel 21.0902 6.1514 0.4846 17.8784 5.5354 0.5124* 16.9892 5.8786 0.5150* 14.2327 4.2270 0.5528*
Johnson&Johnson 15.3340 9.0302 0.4532 10.2328 8.0204 0.4986* 11.0835 8.0204 0.4992* 9.8583 6.5451 0.5334*

McDonald’s 12.1917 15.9892 0.4977 9.2573 11.3398 0.5230* 10.9897 10.2325 0.5134* 8.7473 8.3742 0.5769*
3M 25.4746 7.0237 0.4563 20.4542 6.1283 0.4988* 20.8783 6.0368 0.5086* 18.7675 6.0092 0.5431*

Procter&Gamble 41.2873 13.1214 0.4026 35.9897 10.4430 0.4553* 35.1214 10.1124 0.4572* 30.2354 7.6562 0.4833*
AT&T 40.0936 9.0206 0.3532 35.7135 8.9392 0.3839* 36.0332 8.0265 0.3981* 30.2325 7.0643 0.4456*

United Health 76.0235 11.3358 0.3760 70.8984 10.9693 0.4075* 71.2234 10.0437 0.4099* 65.1186 8.5459 0.4224*
United Technologies 23.0071 10.9042 0.4047 19.7875 9.0836 0.4531* 20.0906 8.6634 0.4652* 16.3236 7.5453 0.5096*

Wal-Mart 20.0872 6.8987 0.3321 15.6563 6.2325 0.3674* 16.0102 6.1218 0.3997* 13.9892 6.0547 0.4537*
Microsoft 16.7270 9.5754 0.4537 12.7675 9.0804 0.4776* 13.1125 8.9763 0.4943* 10.1265 7.5652 0.5254*
Cisco 25.2285 9.0203 0.3996 20.8907 8.3215 0.4543* 20.1214 8.3327 0.4491* 16.5453 6.0908 0.4877*

Note: This table reports the results of regression based test on the one-step-ahead and five-step-ahead model predicted credit spreads without any

restriction for 20 Dow Jones firms. A single ∗ indicates a model which significantly outperforms Merton model, and a double ∗∗ indicates a model

which exhibits significant improvement over both Merton model and SV model at 5% significance level.
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Table 8: The results of regression based model comparison: Panel C

CDSt = β0 + β1 ˆCDSMertont+ β2 ˆCDSSV −Mertontεt
β0 β1 β2 R2

One-step-ahead
Verizon 22.0932 7.2325 0.5456* 0.4756
Boeing 14.8586 5.0986 0.3321* 0.5236

Caterpillar 11.3432 3.0904 0.4876* 0.5625
Chevron 13.0841 2.8091 0.8673* 0.4172
Coca-cola 14.2574 4.2126 0.7573* 0.6124

Walt Disney 13.0873 5.4341 0.9021* 0.5035
E.I.du Pont 11.2582 3.4742 0.6987* 0.5094

Exxon 10.9821 4.2325 0.5231 0.5021
Home Depot 38.9026 10.9973 0.9081* 0.4357

Intel 14.3304 4.2326 0.8235 0.6032
Johnson&Johnson 12.7651 7.6568 0.7679* 0.5467

McDonald’s 7.3235 11.0977 2.9892* 0.6017
3M 18.7673 3.8239 3.1126* 0.5680

Procter&Gamble 35.0427 9.8782 3.2126* 0.5023
AT&T 37.6582 6.5446 2.9893* 0.4632

United Health 72.0824 9.8721 4.5658* 0.4435
United Technologies 18.9032 5.0231 1.3436* 0.5317

Wal-Mart 13.0965 5.2123 4.2456* 0.5329
Microsoft 14.2237 6.0532 3.2196* 0.5504
Cisco 17.2462 5.3638 0.9342* 0.5086
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Five-step-ahead

Verizon 18.0972 5.1346 1.2346* 0.4475
Boeing 12.0186 6.1523 2.3567* 0.5118

Caterpillar 9.8785 4.2203 0.8762* 0.5564
Chevron 8.9762 4.3537 3.4548* 0.4022
Coca-cola 11.0987 5.4032 2.3346* 0.5801

Walt Disney 7.2305 7.0623 0.9291* 0.4986
E.I.du Pont 19.0872 3.2126 1.2307* 0.5042

Exxon 5.2306 4.3230 0.8582* 0.4903
Home Depot 34.0871 5.0438 3.2096* 0.4184

Intel 11.0924 6.3538 2.0341* 0.5592
Johnson&Johnson 7.6230 4.2325 1.3762* 0.5028

McDonald’s 5.0437 5.2351 0.8762* 0.5809
3M 14.0328 4.2316 2.0457* 0.5445

Procter&Gamble 26.1908 4.5216 1.2307* 0.4913
AT&T 24.0874 5.4413 3.4549* 0.4502

United Health 53.4872 5.4342 2.0765* 0.4198
United Technologies 13.2468 5.4092 3.4203* 0.5101

Wal-Mart 10.8976 4.3232 2.3406* 0.4602
Microsoft 8.0723 5.0614 0.5467* 0.5293
Cisco 12.0981 4.5763 3.2760* 0.4902

Note: This table reports the results of incremental information test between the Merton model and SV model in credit spread prediction for 20 Dow

Jones firms. A ∗ indicates the coefficient of the variable containing the information provided by the SV model orthogonal to the Merton model( β2)

is significant at 5% significance level.
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Table 9: The results of regression based model comparison: Panel D

CDSt = β0 + β1 ˆCDSSV t+ β2 ˆCDSSV J − SV tεt
β0 β1 β2 R2

One-step-ahead
Verizon 18.0235 6.2324 0.8972* 0.4802
Boeing 13.2147 5.6782 2.1193* 0.5384

Caterpillar 9.1213 6.2285 1.4326* 0.5763
Chevron 8.2096 4.3537 0.3564* 0.4328
Coca-cola 12.3536 5.0482 1.2457* 0.6287

Walt Disney 8.5764 8.2136 0.0421 0.5238
E.I.du Pont 7.0638 4.2316 2.4329* 0.5105

Exxon 6.2314 4.3678 0.0879 0.5032
Home Depot 31.0872 5.3427 2.0893* 0.4106

Intel 8.7634 8.9122 1.3236* 0.6209
Johnson&Johnson 8.7762 5.2138 2.7684* 0.5520

McDonald’s 6.1132 8.3536 0.0763 0.6108
3M 9.8237 4.1225 0.7861* 0.5899

Procter&Gamble 25.4348 6.1528 3.1427* 0.5084
AT&T 29.8873 5.2326 0.8985* 0.4823

United Health 52.3127 6.3542 0.7874* 0.5126
United Technologies 10.8986 5.3432 0.9891* 0.5409

Wal-Mart 8.2735 4.0526 1.2248* 0.5612
Microsoft 7.2364 5.9872 4.8792* 0.5720
Cisco 11.9087 6.0231 0.6564* 0.5086
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Five-step-ahead

Verizon 15.2423 4.1908 1.2527* 0.4498
Boeing 9.0874 2.1325 0.8976* 0.5226

Caterpillar 6.2678 1.8976 0.0578 0.5483
Chevron 8.9236 1.2324 0.9886* 0.4021
Coca-cola 9.0873 2.3345 0.6513* 0.6027

Walt Disney 6.0986 2.0346 0.7673* 0.4987
E.I.du Pont 7.1551 2.0873 1.3214* 0.5054

Exxon 2.2215 1.5438 0.8762* 0.4991
Home Depot 30.8713 10.7681 0.9084* 0.4157

Intel 8.9725 3.2426 1.8093* 0.5922
Johnson&Johnson 6.5238 5.4341 1.8769* 0.5487

McDonald’s 6.5434 8.9762 0.8652* 0.5913
3M 9.0871 2.1562 0.9872* 0.5642

Procter&Gamble 24.6763 8.7609 1.8762* 0.5063
AT&T 30.1817 5.4316 3.2107* 0.4682

United Health 58.3348 7.6562 1.8776* 0.4571
United Technologies 11.7782 3.2426 1.0982* 0.5089

Wal-Mart 8.2125 3.2768 2.3567* 0.4768
Microsoft 7.6562 6.5452 0.7672* 0.5322
Cisco 8.7671 4.2256 1.0908* 0.4985

Note: This table reports the results of incremental information test between the SV model and the SVJ model in credit spread prediction for 20 Dow

Jones firms. A ∗ indicates the coefficient of the variable containing the information provided by the SVJ model orthogonal to the SV model( β2) is

significant at 5% significance level.
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4.2 CRSP 200 Firms

In addition to the 20 Dow Jones firms, we also analyze 200 randomly selected firms from the CRSP

to see the impact of stochastic volatility and jumps on the credit spread prediction of the typical

U.S. exchange listed firms. The firm is included only if it is not a firm in the Dow Jones samples,

and it has required CDS spread data along with the balance sheet information from year 2008-2013.

For these sample firms, we implement MRM algorithm to estimate the SVJ model with the first 993

observations from January 2 2008 to December 30 2011 and compare its ability with Merton model

and SV model for the 5-year CDS spread in the last 498 days from January 3, 2012 to December

30, 2013. To save the space, we only report the summary statistics of the model estimation results

in Table 10 and the 5-year CDS spread prediction results in Table 11. The regression based test

results are presented in Table 12.

As expected, the results are stronger than those of 20 Dow Jones firms, implying that explicitly

considering stochastic volatility and jumps are particularly important for relatively small firms. On

average, the asset volatilities of these firms exhibit more volatile as suggested by the larger mean

value of the estimated σV , and the jumps occurred more frequently with larger size as implied by

the mean value of the estimated λ and J . The SV model and SVJ model still largely outperform the

Merton model in both short and long horizon forecasts with the SVJ model always performing the

best. The average prediction improvements appear slightly greater than those in Dow Jones firms,

with bias reduction of 6.1 basis points and RMSE decreasing by 7 basis point from Merton model

to SV model, and further 2 and 2.5 basis points of bias and RMSE reductions from SV model to

SVJ model. These improvements are statistically significant according to the regression based tests.

Once again, the SVJ model carries incremental information to the Merton model and the SV model

for the prediction of 5-year CDS spreads of these firms.
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Table 10: SVJ structural Model Estimation Results for 200 CRSP firms

Company name µ θ κ σV λ J σJ δ F MLMLH

Mean 0.0046 0.0382 14.9235 0.4231 0.0032 0.0029 0.3274 0.0058 1.6542×105 950.4421
Median 0.0039 0.0314 12.8976 0.3325 0.0030 0.0025 0.2983 0.0044 1.5253×105 922.3836

10 Percentile -0.0532 0.0127 8.9923 0.1381 0.0009 0.0009 0.1124 0.0023 9.2327×104 901.2945
90 Percentile 0.0058 0.0503 17.0342 0.5247 0.0043 0.0051 0.5672 0.0079 2.8789×105 980.8632

Min -0.0038 0.0026 5.6761 0.0762 0.0001 0.0002 0.0573 0.0014 1.2327×104 876.5331
Max 0.0084 0.0729 20.9894 0.8761 0.0092 0.0074 0.7382 0.0093 3.4542×105 1009.2384

Note: This table reports the summary statistics of the parameter estimates of the SVJ model at the final date T with the first 993 equity value ob-

servations using MRM for 200 CRSP firms. In estimation, we set the number of state and parameter particles are respectively 500 and 1000. The

priors are µ ∼ N(0, 005), (θ, κ, σV , λ, J, σJ , δ) ∼ U [(0.0012, 0, 1× 105, 0.001,−0.01, 0.01, 1× 106), (0.22, 20, 2, 0.01,−0.01, 0.1, 0.05)].
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Table 11: 5-year CDS Spread Prediction Results for 200 CRSP firms

Merton model Merton model* SV model* SV model SVJ model

Company Name Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: One step ahead

Mean -40.1256 45.8765 -38.9092 42.0894 -38.5436 42.3307 -34.2321 38.8830 -32.0983 36.2579
Median -33.1092 38.2984 -29.1582 35.0933 -29.2324 35.4226 -26.0986 30.1123 -24.1308 28.1137

10 Percentile -13.2046 19.8124 -11.8633 16.7877 -11.0203 16.2341 -9.8123 14.8764 -8.4342 13.0629
90 Percentile -63.9125 68.1001 -61.9929 66.1284 -61.3906 65.9082 -59.2566 62.0193 -57.1214 60.1897

Min -10.2416 13.0206 -9.2353 11.0965 -9.5427 11.2571 -7.9863 9.0873 -6.2256 8.0974
Max -57.9882 62.1264 -55.8763 60.0989 -55.1152 60.1217 -51.1896 57.2034 -49.8762 54.2231

Panel B: Five step ahead

Merton model Merton model* SV model* SV model SVJ model

Company Name Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Mean -45.2326 49.1174 -43.2008 47.0233 -43.2124 47.5762 -39.8762 42.7751 -37.1679 40.2903
Median -40.1416 42.4676 -38.8567 40.3674 -38.6785 40.0913 -35.6349 35.1123 -34.2986 33.7632

10 Percentile -18.2008 20.6754 -16.1119 18.3675 -16.3438 18.2046 -13.7382 15.2526 -11.3768 13.9087
90 Percentile -70.9815 74.3665 -67.2967 72.0034 -67.3872 72.8760 -64.1353 67.8072 -62.0976 65.3321

Min -13.0086 15.1567 -11.1156 13.8765 -11.2567 13.9624 -9.9886 11.1562 -9.7673 10.0972
Max -80.1564 85.3561 -78.2073 83.02145 -78.1138 83.4542 -74.8614 79.0051 -72.1562 77.2238

Note: This table reports the bias and RMSE of 5-year CDS spread predictions for the 200 CRSP firms from the standard Merton model, the SV model

with a fixed volatility state variable (SV modela) and the standard SV model(SV modelb) for the last 498 days from January 3, 2012 to December 30,

2013. The numbers are expressed in basis point.
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Table 12: The results of regression based model comparison: Panel A

CDSt = β0 + ˆCDSt + εt
Merton model Merton model* SV model* SV model SVJ model
β0 R2 β0 R2 β0 R2 β0 R2 β0 R2

One step ahead
Mean 40.1256 0.4765 38.9092 0.4982 38.5436 0.4967 35.2321 0.5283 32.0983 0.5391
Median 33.1092 0.4237 29.1582 0.4539 29.2324 0.4566 26.0986 0.4721 24.1308 0.5026

10 Percentile 13.2046 0.1344 16.7877 0.1507 16.2341 0.1523 14.8764 0.1892 13.0629 0.1904
90 Percentile 63.9125 0.6891 61.9929 0.7256 61.3906 0.7273 59.2566 0.7561 57.1214 0.7793

Min 10.2416 0.1084 9.1084 0.1106 9.5427 0.1123 7.9863 0.1346 6.2256 0.1521
Max 57.9882 0.7823 0.7832 0.8056 55.1152 0.8122 51.1896 0.8402 49.8762 0.8671

Five step ahead
Mean 45.2326 0.4382 43.2008 0.4511 43.2124 0.4527 39.8762 0.4831 37.1679 0.4952
Median 40.1416 0.3987 38.8567 0.4124 38.6785 0.4118 35.6349 0.4486 34.2986 0.4521

10 Percentile 18.2008 0.0829 16.1119 0.0106 16.3438 0.0112 13.7382 0.0143 11.3768 0.0155
90 Percentile 70.9815 0.5921 67.2967 0.6102 67.3872 0.6097 64.1353 0.6427 62.0976 0.6538

Min 13.0086 0.0633 11.1156 0.0862 11.2567 0.0897 9.9886 0.1084 9.7673 0.1215
Max 80.1564 0.7125 78.2073 0.7334 78.1138 0.7409 74.8614 0.7665 72.1562 0.7801

Note: This table reports the results of regression based test on the one-step-ahead and five-step-ahead model predicted credit spreads for 200 CRSP

firms. The regression is restricted by setting β1 = 1, and a single ∗ indicates a model which significantly outperforms Merton model, and a double ∗∗

indicates a model which exhibits significant improvement over both Merton model and SV model at 5% significance level.
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Table 13: The results of regression based model comparison: Panel B

CDSt = β0 + β1 ˆCDSt + εt
Merton model Merton model* SV model* SV model SVJ

β0 β1 R2 β0 β1 R2 β0 β1 R2 β0 β1 R2 β0
One step ahead

Mean 33.2208 12.3360 0.4236 30.0986 10.2633 0.4439 29.4213 10.5658 0.4672 24.1425 8.3239 0.4963 20.1305
Median 28.7765 10.8287 0.3901 25.8976 9.2255 0.4272 24.7673 9.8767 0.4298 21.0908 8.3321 0.4563 23.1214

10 Percentile 10.1352 5.8765 0.1087 8.7765 3.0041 0.1195 8.9093 2.9762 0.1203 7.6562 2.5453 0.1578 6.9945
90 Percentile 58.9087 15.7736 0.6082 54.3221 14.2006 0.6321 53.8975 14.9871 0.6125 50.9124 12.6573 0.6381 48.0121

Min 8.6523 3.2125 0.0812 7.1998 2.8483 0.1042 7.5452 2.3561 0.1061 6.1276 2.1219 0.1294 5.8782
Max 60.9875 13.2251 0.6982 56.2214 12.7678 0.6754 56.1097 11.0302 0.6972 52.7652 9.0907 0.7321 50.8875

Five step ahead
Mean 35.2351 14.1125 0.4087 30.0986 10.2633 0.4439 29.4213 10.5658 0.4672 24.1425 8.3239 0.4963 20.1305
Median 30.1241 12.3356 0.3761 25.8976 9.2255 0.4272 24.7673 9.8767 0.4298 21.0908 8.3321 0.4563 23.1214

10 Percentile 13.2998 6.0876 0.0986 8.7765 3.0041 0.1195 8.9093 2.9762 0.1203 7.6562 2.5453 0.1578 6.9945
90 Percentile 60.9815 16.2155 0.5871 54.3221 14.2006 0.6321 53.8975 14.9871 0.6125 50.9124 12.6573 0.6381 48.0121

Min 4.8782 5.1086 0.0762 5.2321 4.3230 0.0971 5.6682 3.2145 0.1025 4.2315 3.0987 0.1184 3.5256
Max 70.9398 16.2326 0.6753 66.0431 14.5326 0.6874 66.1135 11.0302 0.6902 63.8012 10.9897 0.7182 60.3236

Note: This table reports the results of regression based test on the one-step-ahead and five-step-ahead model predicted credit spreads without any

restriction for 200 CRSP firms. A single ∗ indicates a model which significantly outperforms Merton model, and a double ∗∗ indicates a model which

exhibits significant improvement over both Merton model and SV model at 5% significance level.
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Table 14: The results of regression based model comparison: Panel C

CDSt = β0 + β1 ˆCDSMertont+ β2 ˆCDSSV −Mertontεt
β0 β1 β2 R2

One step ahead
Mean 12.1145 8.0932 1.3236 0.4651
Median 10.9087 7.2356 0.9872 0.4082

10 Percentile 5.2672 2.8973 0.2314 0.1986
90 Percentile 18.2980 11.0982 2.0452 0.5981

Max 20.1452 12.6753 2.8761 0.6972
Min 3.0487 1.7653 0.0982 0.1065

Five step ahead
Mean 13.0982 7.8341 0.9873 0.4562
Median 12.8076 8.0982 1.2096 0.3983

10 Percentile 6.2324 2.3567 0.4632 0.1703
90 Percentile 19.8763 12.8762 3.1014 0.5709

Max 21.0573 13.2876 3.1247 0.6608
Min 2.1784 1.5408 0.0876 0.0972

Note: This table reports the results of incremental information test between the Merton model and SV model

in credit spread prediction for 20 CRSP firms. A ∗ indicates the coefficient of the variable containing the infor-

mation provided by the SV model orthogonal to the Merton model( β2) is significant at 5% significance level.

5 Conclusion

This paper extends Merton model to allow for time-varying volatility and jumps in structural credit

risk model. The impact of considering these two components on credit risk prediction is also studied.

Our simulation experiment shows that with the presence of stochastic asset volatility, the structural

model performance is largely improved in terms of both daily and weekly credit spread prediction.

Further improvements are detected after adding into the jumps. These improvements in CDS

spread prediction can be attributed to three sources including the better mean level estimation,

the better track of the dynamic changes, and the better capture of the extreme movements. We

further implement the SVJ structural model on 20 Down Jones firms and 200 sovereign countries

to test its ability in real data. Our empirical results suggest ignoring asset volatility variability

and jumps would lead to a significant underestimation in corporate credit risk predictions, and

the underestimation is more severe in small firms. Although our methodological development is

presented specifically for the ? model, all the analysis here can be very easily adapted to other

SVJ models. In conclusion, a SVJ structural credit risk model has been developed to measure the

corporate credit risk exposure, and the importance of allowing for asset volatility dynamics and
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Table 15: The results of regression based model comparison: Panel D

CDSt = β0 + β1 ˆCDSSV t+ β2 ˆCDSSV J − SV tεt
β0 β1 β2 R2

One step ahead
Mean 33.1256 13.0984 0.4956
Median 28.0764 11.0763 0.4542

10 Percentile 11.0982 5.8763 0.1561
90 Percentile 56.7632 13.0465 0.6390

Min 3.5427 4.3982 0.1195
Max 69.8263 13.1247 0.7035

Five step ahead
Mean 7.6521 0.4672 0.5038
Median 19.0825 6.0528 0.4795

10 Percentile 8.9073 2.0345 0.1632
90 Percentile 52.0894 13.1215 0.6578

Min 4.0897 2.6753 0.1196
Max 61.0984 9.8723 0.7231

Note: This table reports the results of incremental information test between the SV model and the SVJ model

in credit spread prediction for 200 CRSP firms. A ∗ indicates the coefficient of the variable containing the in-

formation provided by the SVJ model orthogonal to the SV model( β2) is significant at 5% significance level.

jumps in credit risk modeling is also documented.
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