Porohyperelastic finite element model for the kangaroo humeral head cartilage based on experimental study and the consolidation theory

, , & (2014) Porohyperelastic finite element model for the kangaroo humeral head cartilage based on experimental study and the consolidation theory. In Liu, G R & Guan, Z W (Eds.) Proceedings of the 5th International Conference on Computational Methods (Volume 1, 2014). Scientech Publisher llc, USA, United States of America, pp. 1-10.

[img]
Preview
Accepted Version (PDF 358kB)
315-1431-1-PB.pdf.

View at publisher

Description

Solid-extracellular fluid interaction is believed to play an important role in the strain-rate dependent mechanical behaviors of shoulder articular cartilages. It is believed that the kangaroo shoulder joint is anatomically and biomechanically similar to human shoulder joint and it is easy to get in Australia. Therefore, the kangaroo humeral head cartilage was used as the suitable tissue for the study in this paper. Indentation tests from quasi-static (10-4/sec) to moderately high strain-rate (10-2/sec) on kangaroo humeral head cartilage tissues were conduced to investigate the strain-rate dependent behaviors. A finite element (FE) model was then developed, in which cartilage was conceptualized as a porous solid matrix filled with incompressible fluids. In this model, the solid matrix was modeled as an isotropic hyperelastic material and the percolating fluid follows Darcy’s law. Using inverse FE procedure, the constitutive parameters related to stiffness, compressibility of the solid matrix and permeability were obtained from the experimental results. The effect of solid-extracellular fluid interaction and drag force (the resistance to fluid movement) on strain-rate dependent behavior was investigated by comparing the influence of constant, strain dependent and strain-rate dependent permeability on FE model prediction. The newly developed porohyperelastic cartilage model with the inclusion of strain-rate dependent permeability was found to be able to predict the strain-rate dependent behaviors of cartilages.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

106 since deposited on 23 Oct 2014
7 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 77952
Item Type: Chapter in Book, Report or Conference volume (Conference contribution)
ORCID iD:
Gu, YuanTongorcid.org/0000-0002-2770-5014
Measurements or Duration: 10 pages
ISBN: 2374-3948
Pure ID: 32637514
Divisions: Past > QUT Faculties & Divisions > Science & Engineering Faculty
Funding:
Copyright Owner: Copyright 2014 [please consult the author]
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 23 Oct 2014 01:27
Last Modified: 02 Mar 2024 11:16