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ABSTRACT 

Crew Scheduling is one stage of operational planning in transportation systems 

to which mathematical and algorithmic optimisation techniques can be applied. Crew 

Scheduling Problem (CSP) in the transportation industry represents a computationally 

difficult combinatorial optimisation problem. The large number of tasks (trips) to 

include and the complicated operational and contractual requirements are the main 

reasons for the complexity of the problem. Nevertheless, solving CSP has been one of 

the most important focuses of the transportation industry because it affects the 

company’s profitability and its service quality. An optimal crew schedule is essential 

to ensure efficient and reliable operations of transportation services. Furthermore, the 

cyclic nature of the crew scheduling application makes the CSP a good candidate for 

optimisation. A small improvement to the crew schedules can lead to accumulated 

savings that produce large annual cost savings. The difficulty of solving CSP yet its 

enormous practical significance, have led to a large number of proposed solution 

techniques. However, unlike CSP in other modes of transportation such as airline and 

bus which have been intensively studied, railway CSP is less cited in literature. 

Railway crew scheduling is domain specific and there has been no developed solving 

method which has been applied universally. Models and algorithms are designed 

mainly for a specific case and may not readily be applied in different applications.  

Railway CSP is the process of allocating train services to the crew duties based 

on the published train timetable while satisfying operational and contractual 

requirements. The problem is restricted by many constraints and it belongs to the class 

of NP-hard (nondeterministic polynomial-time hard). CSP is more frequently 

formulated mathematically, as either set covering problem or set partitioning problem, 

and then solved analytically or approximately. Even though some studies have been 

done on CSP using a wide variety of solution techniques, the problem is still difficult 

to solve. CSP involves real-life constraints which are difficult to handle, such as crew 

breaks, elapsed time and the requirement to return the crews to their home depots at 

the end of their duty. Furthermore, an optimisation model should be well designed by 

which all the relevant parameters of the problem can be incorporated. One way of 

dealing with the problem is to develop a specific model that is capable of incorporating 

important features of the problem and can be solved using a wide range of methods.  

This research has developed and analysed two railway crew scheduling models. 

The first is mathematical programming (MP)-based model which is formulated as a 

mixed integer programming (MIP) while the second is constraint programming (CP)-

based model. The objective of the optimisation models is to minimise the number of 

crew duties by reducing idle transition times. Duties are generated by arranging 

scheduled trips over a set of duties and sequentially ordering the set of trips within 

each of duties. The integration of relief opportunities period (ROP) into models would 

enable the train crew to be relieved at any relief point (RP) within the interval of ROP. 
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Existing models and algorithms usually only consider relieving a crew at the beginning 

of the interval of relief opportunities which may be impractical. The inclusion of the 

ROP into models has not been studied in depth. Allowing the train crew to be relieved 

at any RP during the ROP will provide better representation of real-world conditions 

and improve the robustness of the schedule.  

Due to the combinatorial nature of the CSP, heuristic methods are the most 

promising approach for solving the problem. The main limitation with many of 

conventional heuristic algorithms is their difficulty to escape from locally optimal 

solutions. The search is usually conducted from a single point in the solution space, 

then continues until there is no possible improvement. This type of local search method 

can easily get trapped in local optima. In an attempt to address this problem, several 

metaheuristics approaches have emerged for solutions to combinatorial complex 

problems such as the simulated annealing (SA) and tabu search (TS). SA and TS have 

been applied successfully to solve many combinatorial optimisation problems in 

various practical settings. Despite the potential application of metaheuristics to solve 

combinatorial optimisation problems, very few attempts have been made to tackle 

crew scheduling related problems in the literature applying metaheusristics. 

SA and TS algorithms have been utilised in this study to improve solutions and 

to derive near-optimal solutions. Initial solution for railway CSP is generated by a 

constructive heuristic (CH) and then it is improved by a hybrid constructive heuristic 

SA (HCHSA) algorithm. Both the CH and the HCHSA algorithms produced 

acceptable solutions, although the produced solutions are not guaranteed to be an 

optimal solution. The HCHSA algorithm significantly improves the solution produced 

by the CH. The HCHSA algorithm increases the average driving time by 3.06% and 

decreases the average excess cost by 3.35%. Overall, the HCHSA algorithm increases 

the total crew working time and reduces the number of crew duties for all datasets. As 

the number of crew duties corresponds to the number of crew needed, significant 

savings can be gained on the annual cost of crew related expenses. The solutions 

produced by the HCHTS algorithm, which was composed of a three-phase heuristic, 

indicate that the proposed algorithm is able to generate near-optimal feasible solutions 

within an acceptable computational time. This is indicated by the average Q value 

which is fairly close to zero. An aggregation procedure has a significant effect in 

reducing the problem size such that the proposed TS-based algorithms are able to 

handle large-sized railway CSP and solve it within an acceptable computational time. 

The neighbourhood structure also contributes to the effectiveness of the search 

process. The solutions obtained by the hybrid CP and SA algorithm (HCPSA) and the 

hybrid TS and SA algorithm (HTSSA) also give an indication of the effectiveness of 

hybridisation of an exact method and metaheuristics as well as hybridisation of 

metaheuristics (TS and SA) to produce good acceptable solutions in a reasonable 

computational time for large-sized instances. 
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 Introduction 

This chapter presents an overview and a brief explanation of research 

background. The context of the research and the crew scheduling related issues are 

briefly explained. The chapter also outlines the structure of the thesis. 

1.1 RESEARCH BACKGROUND 

The transportation industry is a capital-intensive sector which involves a large 

number of resources. Optimum utilisation of the available resources has been one of 

the main targets of the transportation industry, in striving to reduce operational costs 

with a better service quality level. Operations crew is one of the resources that has a 

great impact on the operational performance of the transportation system. Effective 

management of this resource can considerably reduce operational costs and increase 

the efficiency of the entire systems. The crew scheduling problem (CSP) in the 

transportation industry is a typical optimisation problem concerned with finding the 

optimum arrangement of a set of activities while subjected to specified constraints. An 

activity in this regard is the assignment of a crew to a set of scheduled trips in such a 

way that the generated crew duties conform to the predefined work rules and 

regulations. Optimisation criterion can be considered as either minimising a time 

(cost)-based objective or maximising resource utilisation-based objective.  

CSP falls into the category of combinatorial complex optimisation problem. As 

the computation progresses, the number of potential solutions is sequentially 

compounded leading to a large number of choices. CSP has been proved to be NP-

hard (Fischetti et al. 1987, 1989), for which no known method is able to obtain an 

optimal solution in polynomial time. Because of its computational complexity and 

application potential, CSP has remained one of challenging optimisation problems.   

Crew scheduling is one stage of planning and scheduling problem that can be 

modelled and solved using mathematical optimisation techniques. However, the 

process of crew scheduling at large transportation organisations is very complex.  

This is because of the large number of tasks (trips) to cover and the complex 

operational and contractual requirements involved.  

http://or.journal.informs.org/search?author1=Matteo+Fischetti&sortspec=date&submit=Submit
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The study on CSP mainly relied on the traditional set covering and set 

partitioning formulations. Various solution techniques have been offered to solve these 

models. In both the set covering and the set partitioning formulations, the decision 

variable is a binary integer variable which represents whether or not a duty (roundtrip, 

pairing) is selected as work for a crew member. The constraint in the set covering 

problem consists of a matrix of binary values, which defines that each piece of work 

is covered by a duty at least once. Each column represents one possible roundtrip or 

work to be performed by an individual crew member over a defined period of time. 

The set partitioning problem is similar to the set covering problem, but for the set 

partitioning formulation the constraint becomes equal to one, meaning that each task 

is covered exactly once. The main difficulty in applying the exact methods to solve 

CSP is that in determining all possible solutions. For CSP with a large number of trips, 

there can be an unmanageably large number of possible roundtrips. As a consequence, 

the problem becomes a time-consuming process of enumerating all the possible 

roundtrips. For this reason, there is a requirement of large-scale solution techniques 

such as column generation-based methods or sub problem optimisations. The concept 

of column generation is to solve a sequence of reduced problems (master problem) in 

which each reduced problem contains a small fraction of the set of variables (columns). 

Bengtsson et al. (2007) formulated a general crew pairing problem with the objective 

function being to minimise the cost of selected pairing and the cost of violating soft 

constraints. The research combines resource constraints, k-shortest path enumeration, 

and label merging techniques and shows that a column generation approach is able to 

heuristically solve large and highly complex railway pairing problems in a reasonable 

time. Given the size and complexity of the railway operation, the researchers indicate 

the necessity of combined optimisation techniques. Nishi et al. (2011) proposed a 

column generation with dual inequality for railway crew scheduling. Computational 

results have shown that the proposed technique can accelerate the convergence of 

conventional column generation for a large data set application. Yan and Tu (2002), 

however, stated that column generation-based methods could be inefficient because 

when the crew scheduling is formulated as a traditional set covering problem, the 

obtained optimal solutions could be non-integer solutions. Other techniques should 

then be incorporated to refine the non-integer solutions. Bangert (2012) has also noted 

that the method of enumeration is not realistic when the number of options is too large 

and cannot be practically listed. De Leone et al. (2011) proposed a mathematical model 
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to solve a CSP. Since their proposed model can only handle small- to medium-sized 

problems, a greedy randomised adaptive search procedure has then been offered to 

solve large instances.   

Due to the combinatorial nature of CSP, heuristic methods are the most 

promising approach for solving the problem. There has been an emerging approach 

toward the heuristics and metaheuristics search methods for solutions to combinatorial 

complex problems. Some of these approaches are inspired by natural phenomena. 

They are usually not sensitive to initial solutions and enable the application of parallel 

processing. Additionally, since the process of searching a solution is not limited to a 

certain domain in the solution space, the chance of being trapped into local optima is 

much less. Simulated Annealing (SA) and Tabu Search (TS) are such methods and 

they have become promising search techniques to find solutions for combinatorial 

optimisation problems. 

1.2 CONTEXT OF THE RESEARCH 

Crew planning and scheduling in railway transport are highly complicated 

problems because of the size of the instances and the type and number of involved 

constraints. CSP is concerned with finding an optimal way of allocating crews to 

perform their duties in such a way to cover all travelling tasks in a published timetable. 

Due to its computational complexity, CSP is still a significant topic of research. Many 

researchers and practitioners have devoted considerable effort to solve this problem. 

However, the majority of the work to date in this area has come from European, 

American, and Asian researches. Very limited research has been done to examine CSP 

in the Australian railway industry. Furthermore, the existing models and algorithms 

for the railway CSP are usually designed for a specific application area. As the 

operating procedures and regulations vary between railway operators, the policies and 

workplace agreements specifically dictate the condition of a problem might not be 

applicable to other situations.  

To address the deficiency, this research studies CSP and develops an analytical 

model for railway CSP. Based on this research problem, this research addresses several 

questions;  
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i. What are the existing modelling and solution approaches for generic CSP 

and railway CSP?  

ii. What are the real-life constraints that need to be included in developing a 

model for railway CSP?  

iii. What is the suitable modelling approach for crew scheduling in the  railway 

industry?  

iv. How this complex problem can be solved in a reasonable time frame. 

The research objectives are established based on the research questions to drive 

the research process. The aim of this research then are;  

i. To investigate the existing approaches in modelling and solving generic 

CSP and railway CSP.   

ii. To identify real-life constraints which directly influence the development 

of a model for railway CSP and integrate them into the developed model.  

iii. To design and develop an analytical model and algorithms for railway CSP.  

iv. Design innovative algorithms to solve the model developed for this study. 

The research was based on a combined research strategy of literature review, 

analysis, and discussions to explore relevant information. The overall research consists 

of three main stages, namely problem identification; model development and 

solutions; and sensitivity analysis and implementation recommendations. 

At the first stage, problem identification was initiated through an extensive 

literature review on the area of CSP in the transportation systems in general. After 

reviewing the existing literature, the scope of the problem was narrowed down to 

railway CSP. The objectives of this stage were to have a better understanding of the 

topic to be addressed; to identify relevant information; to identify the gap in the 

research area and the position of research in the context of existing researches; and to 

identify models and algorithms that have been used to solve the generic CSP and 

specifically railway CSP. Furthermore, identification of problem was required to 

clarify the need for research which leads to the research questions and research 

objectives. The literature review process was conducted throughout the research period 

to reflect and accommodate new information. A brief summary of the literature review 

is presented in Chapter 2.  
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The second stage is the model development and solutions. Modelling and 

optimisation of railway CSP has been be approached through the application of 

mathematical programming (MP), constraint programming (CP) methods, and 

heuristics/metaheuristics techniques. A mathematical model is a mathematical 

representation of a real problem. The model should express important features of the 

problem under study in the form of mathematical functions of decision variables, and 

express the relationships among them using appropriate equations or inequalities. 

Real-world problems are usually too complex to capture all details. A model is usually 

designed by simplifying features but it still provides a sufficiently precise 

representation of the main problem characteristics such that the solutions obtained 

remain valid to the problem under study to an acceptable degree of approximation. 

Therefore, developing a mathematical model may involve making approximations and 

adjustments, and sometimes ignoring or adjusting features which are difficult to 

represent mathematically.  

In this research, railway CSP was formulated based on MP, as a Mixed Integer 

Programming (MIP), and CP. The choice to model railway CSP as MP and CP was 

motivated by the fact that they allow complex constraints to be incorporated. Once the 

problem has been formulated then a solution has to be found using the models. 

Optimisation programming language such as Xpress-Optimizer (FICO) and CPLEX 

Optimization Studio (IBM ILOG) softwares are used for solving the models. 

Constructive heuristics and metaheuristics techniques have also been applied in this 

research to improve solutions and computational performances. 

The last stage is sensitivity analysis and implementation recommendations stage. 

It includes validation and verification of model as well as a comprehensive sensitivity 

analysis. The solution obtained was refined for practical feasibility. If necessary, 

modifications should be carried out in the models and the process in this stage may be 

repeated as needed.  

1.3 SIGNIFICANCE OF THE RESEARCH 

The research presented in this thesis focuses on developing models and 

algorithms for railway CSP. The proposed mathematical model was formulated based 

on data provided by Queensland Rail (QR), Australia combined with analysis and 

information retrieved from literature. Some preliminary solutions can be obtained for 
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railway CSP by solving the models using standard optimisation programming 

languages such as Xpress-Optimizer (FICO) and CPLEX Optimization Studio 

(IBM ILOG). However, because of the large number of decision variables and 

constraints, e.g. a set of crew home depots, a set of relief points, a set of scheduled 

trips with predetermined starting and ending times at each station, crew breaks, elapsed 

time and the requirement to return the crews to their home depots at the end of their 

duty, analytical solution is difficult to obtain especially for large–sized instances. 

Therefore, metaheuristics techniques such as the Tabu Search (TS) and Simulated 

Annealing (SA) were applied to solve the problem. Initial solution for both the SA and 

TS was generated by applying constructive heuristics. For relatively smaller data sets, 

the underlying problem can be solved to optimality analytically by the proposed MP 

and CP models, while for larger data sets, it can be solved approximately by the 

proposed hybrid heuristics/metaheuristics-based algorithms.  

This research is significant in developing new models and solution methods for 

crew scheduling in the railway industry. The proposed models and algorithms consider 

challenging practical situations for a number of reasons. The model is general and 

flexible enough to be adapted to different locations and modes of transportation. The 

optimisation models incorporate a complex set of railway crew scheduling constraints 

and can be easily adapted to include additional constraints. The optimisation models 

include a specific real-life constraint in which a crew can be relieved during the 

interval of relief opportunities. Existing models and algorithms usually only consider 

relieving a crew at the beginning of the interval of relief opportunities which may be 

impractical. Allowing the train crew to be relieved at any relief point (RP) during the 

relief opportunities period (ROP) will provide a better representation of real-world 

conditions and improve the robustness of the schedule. Several appropriate techniques 

have been used to solve the models and algorithms, with flexibility in terms of 

efficiency and scalability. In addition, the proposed models can be solved by a wide 

range of techniques. 

1.4 THESIS OUTLINE 

This thesis consists of six chapters. Following this introductory chapter, 

Chapter 2 gives an overview of CSP along with the models and algorithms which 

have been used to solve the problem. The objective of this chapter is to acquire an 
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understanding of the previous researches that have been conducted in this area. It 

presents the application of mathematical programming approaches, exact algorithms, 

as well as heuristics and metaheuristics techniques for solving the problem. The 

literature review process has been conducted throughout the research period to reflect 

and accommodate new publications. Chapter 3 presents a brief description of the 

railway CSP and the detailed formulation of railway crew scheduling model. Chapter 

4 presents the formulation of the CP model along with its solution techniques. 

Chapter 5 presents heuristics and metaheuristics techniques to solve the problem. It 

gives detailed explanation of the proposed constructive heuristics, the hybrid 

constructive heuristics and metaheuristics, as well as the hybrid metaheuristics 

method with the computational experiments on each solution approach. Chapter 6 

concludes this thesis with some recommendations for further study.  
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 Literature Review 

2.1 PROBLEM BACKGROUND AND DEFINITION 

The Crew Scheduling Problem (CSP) is a well-known combinatorial 

optimisation in the transportation systems such as railways, airlines, public mass 

transit, and buses. CSP is the construction of a minimum cost set of duties for crew 

members in such a way that each task is covered and all restrictions imposed by 

governmental regulations, union enterprise agreements, and company policies are 

satisfied. A task or trip is the part of work to be assigned to one crew. A duty (shift) is 

a sequence of individual trips that return the crew to its starting point. CSP is one of 

the most important planning and scheduling problems that can be modelled and solved 

using mathematical optimisation techniques. The process of crew scheduling in the 

transportation industry however, is very complex. The large number of tasks (trips) to 

include and the complicated operational and contractual requirements are the main 

reasons for the complexity of the problem. Practical work schedules have to be 

produced which must satisfy a large set of constraints, and might also take into account 

preferences of individual crew members. 

Many factors need to be identified when developing a crew scheduling model.  

A proper description of the processes involved is necessary before building a suitable 

model to clearly understand the implication of all related activities. CSP requires 

definition of the work to be performed in a given planning horizon. While there has 

been significant work in the area of CSP in general, very few optimisation models have 

been formulated to solve railway CSP. The developed models and algorithms are 

mainly designed for a particular condition and might not be readily adapted to another 

situation. 

Railway crew scheduling can be described as follows. There is a railway network 

where passenger trains travel from one station to the next station according to a 

published train schedule. There are depots in the railway network to which sets of crew 

members are allocated. Crew members are required to perform a set of activities to 

meet the planned schedule. The problem is to construct work schedules for crew 

members located in the depots such that they comply with the predefined work 
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practices and regulations. The problem can be approached by identifying the two sub 

problems of crew scheduling and crew rostering, which may be modelled sequentially. 

Both crew scheduling and crew rostering problems require finding minimum cost 

sequences through a given set of tasks. Analysing crew scheduling will be based on 

depots as personnel bases where crew members are positioned.  

The research on CSP has mainly focused on the mass transit and airline industry. 

The airline CSP, in particular, has received extensive interest due to the high crew 

related expenses encountered by airlines. Airline CSP has been studied, for example, 

in (Arabeyre et al. 1969; Barnhart et al. 1995; Chu et al. 1997; Yan and Chang, 2002; 

Goumopoulos and Housos, 2004; Gopalakrishnan and Johnson, 2005). CSP in railway 

industry is similar to the CSP in airline industry in terms of time horizons as they may 

contain short-haul and long-haul trips. CSP in both airlines and railways applications 

also involve a large number of tasks and a complex set of constraints. Railway CSP, 

however, is even more complex than in airline because problem instances are much 

larger than in the airline CSP (Caprara et al. 1998). Moreover, real-world constraints 

are more difficult to handle such as crew breaks, elapsed time, and other restrictions 

that must be considered. Also, there is a special constraint that might influence the 

modelling phase, such as a crew has to return to his/her home depot at the end of his/her 

daily duty or return to different home depots after a certain period of time. 

Early study on CSP for railway application can be found in Tykulsker et al. 

(1985). This work constructs rail crew schedules and rosters. An enumeration 

approach, controlled by user-parameters, is used to construct a set of feasible crew 

duties. This set is reduced with the help of heuristic procedures. A set covering 

problem is used to select the best from the remaining set of possible crew duties. This 

program was developed for and implemented at New Jersey Transit Corporation.   

Morgado and Martins (1992) also presented early work on the crew scheduling 

application, ESCALAS for the Portuguese Railways. The system uses a graphic, 

highly intuitive interface, and allows four different modes of operation, manual 

operation, semiautomatic operation, fully automatic operation and mixed mode. The 

main purpose of the development of ESCALAS was to create a decision support 

system in the area of human resource management. A ‘what-if’ scenario can be 

conducted through modification of parameters and rules in this system, allowing the 

verification of consequences of changing labour rules or changing the structure of the 
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network. The system can generate alternative schedules using different scheduling 

criteria and enable the evaluation of the cost of the solution to be considered.   

2.2 MATHEMATICAL PROGRAMMING APPROACH  

Planning and scheduling problems encountered in the transportation industry can 

be formulated as linear program or linear integer program, or general mathematical 

program. The most widely used method of solving CSP in the literature has been 

through modelling CSP as a set covering problem (SCP) or set partitioning problem 

(SPP). The formulations consist of a binary integer variable that represents whether or 

not a roundtrip is selected as a work for a crew member. The constraints consist of a 

matrix of binary values that indicate if a duty j covers a task i. A row in this 0-1 matrix 

shows which duties cover a single task. A column corresponds to one possible 

roundtrip for an individual crew member over a defined time horizon. The constraint 

in the SCP consists of a matrix of binary values, which defines that each piece of work 

is covered by a duty at least once. This implies that deadheading is allowed that is the 

crew can travel as a passenger for repositioning.  

The SCP formulation of the CSP is as follows: 

 

 

Min   cj xj  
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The SPP models the CSP as a problem of finding a minimum cost crew roundtrips that 

covers each task exactly once. The SPP formulation is as follows: 

 

Min   cj xj  
 j∈D    

 

 

Subject to 

 

  aij xj  = 1                                   

j∈D    

 

xj ∈ {0,1}, 

   

 

 i ∈ T,    

 

 j ∈ D      

 

Where: cj = cost of pairing  

 

 

 

 

T is the set of trips,   

D is the set of feasible duties. 

 

Caprara et al. (1997) formulated crew scheduling for the Italian railways as a set 

covering problem, using an approach applied for airline crew scheduling. Rail crew 

scheduling and rail crew rostering are solved by finding a minimum cost sequences of 

trips and duties, respectively. The crew scheduling phase is formulated as a set 

covering problem with variables are associated with the circuits of the graph, and 

solved using an iterative Lagrangean heuristic procedure. According to Caprara et al. 

(1997), considerable savings can be found through a clever sequencing of the duties 

obtained in the crew scheduling phase. Therefore, the objective of this phase has to 

take into account the characteristics of the duties selected and their implication in the 

subsequent rostering phase. The crew rostering phase is modelled as an integer linear 

program, with variables are associated with the edges of the graph, which is solved by 

Lagrangean relaxation and a heuristic technique. Caprara et al. (1997) have noted that 

the choice of a suitable model and algorithm strongly depends on the particular 

structure of the problem in hand. The algorithm developed in this research is capable 

of providing near-optimal solutions to the crew scheduling and crew rostering 

problems within limited computational time.  

A further work by Caprara et al. (1999) provided a thorough overview of the 

types of crew planning problems that a typical European railway company has to carry 
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out where track management and service operations are split. This study emphasises 

the particular experiences of the Italian state railways, which have generated and 

applied a computerised crew planning system called ALPI, with optimisation based 

approaches to crew planning problem. The solution of this crew planning system is 

obtained by decomposing it into three phases, namely pairing generation, pairing 

optimisation and rostering optimisation. Given a planned timetable for the train 

services, crew planning is concerned with building the work schedules of train crew 

(drivers and conductors). The pairing generation phase requires the determination of a 

set of feasible pairings from the given timetabled trips. A pairing is a trip sequence 

starting and ending at the same depot, and subject to the specified constraints. The 

pairing generation phase implemented a depth-first enumerative algorithm and 

backtracks when infeasibilities are detected. In the pairing optimisation phase an 

iterative Lagrangean relaxation heuristic is applied for solving a set covering model. 

The approach consists of three main steps. The first step is aimed at finding a near-

optimal Lagrangian multiplier vector. The next step uses the retrieved information 

provided from the vector and sequences the pairings of the incumbent best solution. 

The last step is to select a subset of pairings with a high probability of being in an 

optimal solution. The three-step procedure is iterated and after each application of the 

three-step procedure, a refining method is applied to improve the solution. This 

research, however, does not mention how this refining method works. A constructive 

heuristic procedure then creates one feasible roster at a time by choosing in turn the 

pairings to be sequenced consecutively. This experiment achieves promising results 

and points out one possible improvement that could be gained by using a feed-backing 

mechanism between phase two and three. The use of the set covering model in this 

study implies that it allows coverage of work requirements more than once, meaning 

that deadheading is allowed. This study, however, does not show how to handle this 

situation.  

The exact SCP algorithms proposed in the literature can solve instances with up 

to a few hundred trips and a few thousand duties (Caprara et al. 1997). When dealing 

with larger problems, one has to adopt heuristic algorithms. Research by Caprara et al. 

(2001) used constructive heuristics with relaxation techniques to solve the CSP. This 

research divided the CSP for an Italian railway into three parts: pairing generation, 

pairing optimisation, and roster optimisation. The problem is one of generating cost 
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efficient rosters that cover all timetabled train trips. A depth-first branch and bound 

method is first employed to enumerate all feasible pairings for all depots. Heuristics 

are used to reduce the feasible pairing set. The study experimentally shows that 

solution quality can be substantially improved if the pairing optimisation and roster 

optimisation phases of the process can be iterated on through a feedback mechanism. 

Freling et al. (2004) also formulated both crew scheduling and crew rostering 

problems as an SPP model. They presented a decision support system for airline and 

railway crew scheduling. The focus of their study is on how to apply a branch-and-

price algorithm for a practical application. Both crew scheduling and crew rostering 

problem are formulated as a SPP model. The crew scheduling sequences trips into 

duties, and the crew rostering assigns duties for individual crew members. The 

objectives are to minimise the number of uncovered tasks and minimise the total cost 

of the duties or rosters selected in the solution. A column generation method is utilised, 

dealing with a large number of feasible duties or rosters which correlates to a large 

number of columns. In this research, nodes can be selected by a depth-first-search, 

best-first-search, or combination of these two. The computational results give an 

interesting comparison obtained with the approach in which crew scheduling was 

carried out before crew rostering, and an approach in which these two planning 

problems were solved in an integrated method.  

Kroon and Fischetti (2000) described the intelligent information systems TURNI 

that are used by the Dutch railway operator NS Reizigers for supporting the planning 

processes of scheduling train drivers and guards efficiently. The primary model of the 

TURNI system is a set covering model with a number of additional constraints and is 

solved by applying dynamic column generation techniques, Lagrangean relaxation and 

effective heuristics.  This study illustrates the use of the software and the underlying 

model by the Noord-Oost case, which involves the scheduling of train drivers and 

guards for four interconnected intercity lines of NS Reizigers. The Noord-Oost case 

was carried out with the aim of obtaining an efficient schedule for the drivers and 

guards, with a high robustness with regard to the transfer of delays of trains. Apart 

from the advantage of the powerful algorithm, the TURNI system’s drawback is that 

its user-system interface is relatively simple and that its data handling facilities are 

limited. Therefore, the findings from this study suggest integrating with the CREW, a 

commercially available system that uses techniques originating from artificial 
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intelligence which was customised to the situation at NS Reizigers. This integration 

could provide an intelligent information system for supporting the scheduling of train 

drivers and guards. 

Subsequent study by Kroon and Fischetti (2001) described the use of a set 

covering model with additional constraints for scheduling train drivers and conductors 

with the objective of obtaining an improved quality and punctuality in the train 

services provided to the customers. This project generates efficient and acceptable 

schedules for the drivers and conductors, with a high robustness with respect to the 

transfer of delays of trains. The set covering model is solved by dynamic column 

generation techniques, Lagrangean relaxation and constructive heuristics. The 

experiment successfully solved instances with up to about 2500 trips which could be 

handled effectively within a computational time of about one hour. A promising result 

was also found in a number of experiments with much larger instances. Given the 

complexity of the practical crew scheduling problems, this research suggests that the 

most important part of an intelligent system to provide a practical solution of the 

problems should be a powerful algorithm that does not only consider the feasibility of 

the individual duties, but also the feasibility of the whole schedule. 

The main difficulty with the SPP and SCP formulations of the CSP is that in 

determining all possible roundtrips. In the SPP and SCP formulations, the matrix of 

constraints contains columns for every possible roundtrip. For a CSP with a large 

number of trips, it will produce an extremely large number of columns hence, an 

unmanageably large number of possible roundtrips. Because of the large number of 

decision variables associated with combinatorial explosion of the problem, there is a 

requirement of large-scale optimisation techniques such as column generation. 

Therefore, for a very large CSP, column generation-based techniques are employed to 

solve the SCP or SPP formulations.  

The concept of column generation is to solve a sequence of reduced problems 

(master problem) in which each reduced problem contains a small fraction of the set 

of variables (columns). When a reduced problem is solved, a new set of columns (sub-

problem) is obtained by using dual information of the solution. The sub-problem or an 

auxiliary problem is usually formulated as a restricted shortest path problem. The 

restricted shortest path problem however, is difficult to solve and it also needs other 
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optimisation methods such as dynamic programming algorithms or branch-and-bound 

methods. 

Research by Freling et al. (2001) presented a heuristic algorithm for scheduling 

train crews at Dutch Railways (NS). The railway crew scheduling problem is 

formulated as a set covering model with side constraints. The side constraints 

correspond to the high level constraints dealing with sets of duties. Medium level 

constraints deal with the construction of paths during the column generation procedure, 

while low level constraints deal with the construction of the network. This research 

uses a column generation approach to solve the LP relaxation of the IP formulation 

and a branch-and-price heuristic to find integer solutions. New columns are generated 

implicitly using a dynamic programming algorithm. Several acceleration techniques 

are applied to speed up the algorithm in order to solve a larger-scale train crews 

scheduling. The researchers, however, claimed that as the approach is general in 

nature, it can be applied to the CSP in different contexts.  Although the results are very 

promising, care is needed when drawing conclusions based on one instance only. 

Therefore, a further research effort is necessary to test the algorithm and its variations 

on other instances as well.  

Alfieri et al. (2007) presented the case of scheduling train drivers on a railway 

sub network. Train driver scheduling involves the construction of feasible duties from 

a set of trips to be serviced by a number of train drivers. Each duty consists of a 

sequence of trips to be carried out by a single train driver on a single day. The duties 

should be such that each trip is covered by at least one duty, each duty satisfies 

feasibility constraints, and additional constraints involving the complete schedule are 

satisfied while one or several objectives are met. This research also uses a set covering 

problem based on an implicit column generation solution approach and focuses on 

minimising the number of duties and on maximising the robustness of the obtained 

schedule for outside disruptions. A heuristic procedure is presented to find an initial 

feasible solution together with a heuristic branch-and-price algorithm based on a 

dynamic programming algorithm for the pricing-out of columns. This approach is 

tested on the timetable of the intercity trains of NS Reizigers, the largest Dutch 

operator of passenger trains. Although the proposed approaches are considered 

acceptable, the findings suggest an improvement in the algorithm by studying further 

several issues such as how many columns are to be added in each iteration of the 
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pricing algorithm for speeding up the convergence of the algorithm, and how to find 

the best stop criterion for terminating the column generation in a certain node. 

Another research which studied large scale crew scheduling problems arising at 

the Dutch railway operator, Netherlands Railways (NS) was conducted by Abbink et 

al. (2007). They presented several methods of partitioning large instances into several 

smaller ones. These approaches are used to create a weekly crew schedule for drivers 

and conductors. The four different partitioning methods are weekday partitioning, 

geographical partitioning, line based partitioning, and column information 

partitioning. These smaller instances are then solved with the commercially available 

crew scheduling algorithm TURNI. These partitioning methods are then compared 

with each other. It is reported that all methods significantly improve the solution. The 

mathematical model for the CSP containing two days without tasks overnight is as 

follows. T1 and T2 are the set of tasks for day 1 and day 2, respectively. D1 and D2 

denote the set of duties for these days. The subset Di
1 (Di

2) of D1 (D2) consists of the 

set of duties containing task i. The binary decision variables xj (and yj) indicate whether 

duty j ∈ D1 (D2) is included in the solution or not. Every duty j has positive costs cj. 

Moreover, S is the set of additional constraints and ls and us are the lower and upper 

bound for constraint s ∈ S. Finally, vj
s (and wj

s) are the weight of duty j ∈ D1 (D2) for 

constraints s. Then the CSP formulation is as follows. 

 

Min   cj xj   +     cj yj   
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Equation (1) is the objective function, which states that the sum of the duty cost 

is minimised. Constraints (2) and (3) guarantee that for each task i, at least one duty 
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that contains this task is selected. Note that only duties of day 1 (2) can contain tasks 

of day 1 (2). It sometimes may be better to perform a task more than once. If, for 

example, the number of tasks going out of a crew base differs from the number of tasks 

going into the crew base in one day, over-covering is necessary. Moreover, even if 

over-covering is unnecessary, it may be cheaper to allow over-covering. Constraint (4) 

is an additional constraint. For example, a crew base for which the total number of 

duties on both days is limited to 50. Then, ls = 0 and us = 50 and vj
s (wj

s) = 1 for all 

duties belonging to this base and vj
s (wj

s) = 0 for all other duties. For some additional 

constraints it is allowed to violate the constraint at the cost of a penalty. The last two 

sets of constraints (5, 6) indicate that the decision variables are binary. Even though 

they were able to solve the problem, this approach could not model the problem 

completely. 

Bengtsson et al. (2007) also studied the crew pairing problem at the large 

European railway, Deutsche Bahn. A mathematical formulation of the general crew 

pairing problem is presented with the objective is to minimise the cost of selected 

pairing and the cost of violating soft constraints.  

Kwan (2010) discussed a case study of an automatic optimising train crew 

scheduling system, TrainTRACS. The optimisation technique of TrainTRACS is 

formulated mathematically as an integer linear program (ILP) based on set covering. 

Train crew scheduling is partitioned into segments, which are permuted and 

recombined with breaks and other crew activities to form crew shifts.  The objective 

function is to minimise the total cost and the total number of crew shifts, subject to the 

constraints that each train work piece has to be covered by at least one shift, and that 

using a fraction of a shift is not allowed. The mathematical model is as follows. 

 

 

Min 

         n                                        n 

w1     cj xj    +    w2     xj                                  
       j = 1                                  j = 1                     

(1) 

 

Subject to 

  n 
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i = 1, 2, ....., m  

 

j =  1, 2, ....., n 
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Where n is the number of candidate shifts, m is the number of 

work pieces, cj   is the cost of shift j,   
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w1 and w2 are weight constants. 

 

 

The ILP is solved in two stages. The first stage ignores the integer constraints. 

The relaxed LP is solved using the revised simplex method with column generation. 

The second stage uses the branch-and-bound method to search for an all integer 

solution.  The optimal continuous solution from the first stage is utilised in setting 

the target integer number of shifts to be used and making branching decision in the 

second stage. Given a set of train unit diagram, a solution of crew schedule consists 

of a set of legal shifts. The construction of a shift must conform to the general 

working condition of the crew. Within a shift, a crew normally takes a meal break 

and the shift usually contains two or more spells of work. A spell is a period of time 

a crew works continuously on a train. Because of the train crew scheduling is a very 

hard combinatorial optimisation problem TrainTRACS takes many years of 

incremental research and development and is currently mainly used by UK’s train 

operating companies.  

Lezaun et al. (2007) described an applied study conducted by the regional rail 

passenger carrier EuskoTren (Spain), on how to assign drivers’ annual workload 

equally. The allocation is subject to the working conditions’ requirements and the 

preferences of employees. To meet such requirements the company assigns a higher 

work-load to those drivers willing to take it, counting the hours as overtime if the driver 

has already been assigned full complement of hours, or else hires additional drivers. 

The proposed solution is obtained in four related steps, at each of which a binary 

programming problem is solved using commercial software. Step one builds five lists 

of weekly multi shift patterns that contain all the shifts in the week. Step two involves 

the partially rotating annual assignment of patterns to drivers, while step three includes 

the extraction of shifts by reducing services on public holidays. The last step 

incorporates the duration in hours into the shifts already assigned. The achieved 

solution is able to assign all drivers a similar number of morning, evening, and night 
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shifts with Sunday off nearly the same number of days and hours per year. Although 

the obtained result in this study is satisfactory, Lezaun et al. (2007) still have suggested 

a possibility for improvement.   

Beasley and Cao (1996) described a tree search algorithm for solving a generic 

crew scheduling problem. The crew scheduling problem is defined as a problem of 

assigning K crews to N tasks with fixed start and finish times such that each crew does 

not exceed the limit of the total working time. To provide a lower bound, a Lagrangean 

relaxation of a zero-one integer programming formulation is applied and it is improved 

by sub gradient optimisation. A tree search (branch-and-bound) procedure is then 

applied to find optimal solution of the crew scheduling problem.  Computational 

results indicate that the proposed algorithm can solve relatively large-sized problems.  

A further work by Beasley and Cao (1998) studied a dynamic programming 

based algorithm for solving a generic crew scheduling problem. A Lagrangean based 

penalty procedure is used to derive a lower bound and sub gradient optimisation which 

is then used to maximize the lower bound obtained from the previous step. 

Computational results show that the developed algorithm can solve large problems 

optimally.  

Chu and Chan (1998) presented the problem of crew scheduling for the Hong 

Kong Light Rail Transit (LRT), a rail transit division of Kowloon-Canton Railway 

Corporation. The project aims at automating the complex schedule construction, 

adopting an optimisation modelling approach, and amenable for decomposition into 

separate solution stages. The resulting crew schedule has been constructed iteratively 

in a reasonable computational time. Although some issues in the LRT system are not 

incorporated in this produced software, Chu and Chan (1998) have stated that it can 

be used as a good starting point for further crew schedule constructions, leading to a 

continuous improvement on the LRT’s scheduling system.  

Ernst et al. (2001) presented the crew scheduling problem faced by Australian 

railways and developed an optimisation model that constructs crew parings and rosters.  

Given a rail network with a number of depots and train trips, this study first 

distinguishes between the planning problem, which is one of deciding the total number 

of crews and their distribution across the network. The problem is formulated as an 

integrated model to generate cyclic rosters and non-cyclic rosters in which under-

coverage and over-coverage of specific duties is allowed. Even though they have 
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included several constraints, they still have solved a relaxed method of the problem 

and suggest the need for a better method in their conclusions. 

Caprara et al. (1998) proposed a general model of crew rostering problems 

(CRP) for airline or railway applications. The CRP objective is for finding a feasible 

set of rosters, covering all the duties and minimising the total number of weeks in the 

rosters. The global number of crews required every day to cover all duties is equal to 

k times the total number of weeks. Thus the minimisation of the number of weeks 

implies the minimisation of the global number of crews required. Integer Linear 

Programming (ILP) model for CRP is based on the graph-theoretical formulation 

which is relaxed in a Lagrangean way and obtains the objective function. A 

constructive heuristic then uses the information obtained from the solution of the 

previous relaxed problem to constructs one roster at a time. The heuristic chooses in 

turn the duties to be sequenced consecutively in the roster. When a roster has been 

completed, all the duties it contains are removed from the problem. The process is 

repeated on the remaining duties until all duties have been sequenced. The approach 

has been applied on to the real-world railway CRP proposed by Ferrovie dello Stato 

SpA within the FARO competition. The computational results from this railway 

application involving up to 1000 duties shows that the proposed approach achieves 

lower and upper bound values that are typically very close, within a short 

computational time.  

Sodhi and Norris (2004) presented a general modelling approach to crew 

rostering at the London Underground. The approach decomposes the overall crew 

rostering problem into stages, which are solved with a general mixed integer linear 

programming (MILP) solver, graph-theoretic, manual approaches, and allowing 

general solution techniques to be applied at each stage. The primary objective is to 

maximise the weighted sum of regular weekends, of pairs of consecutive days off not 

including weekends, and of long weekends. The secondary objective is to minimise 

the violation of soft constraints for the specific duty assignment. Despite the ability of 

this computer-assisted approach to solve crew rostering for the London Underground, 

Sodhi and Norris (2004) have noted that the shortcoming of this approach is its 

inability to handle constraints that cannot be captured at the node or arc level.  
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2.3 NETWORK FLOW APPROACH  

The network flow approach has been used in several studies on the CSP. An 

attempt towards this approach was proposed by Vaidyanathan et al. (2007), who 

described a network flow-based approach to solve the railroad CSP arising on North 

American railroads. The CSP is formulated as an integer program on a space-time 

network, enforcing the first-in-first-out requirement by including side constraints 

where the objective is to minimise the total cost of crew wages, the cost of 

deadheading, the cost of crew detentions, and the cost of train delays. The network is 

created in such a way to accommodate all Federal Railway Administration (FRA) 

regulations and trade union work rules. The computational results in this research show 

that the perturbation method outperforms the other approaches in terms of solution 

time and solution quality. Yan and Tu (2002) introduced a network model to solve an 

airline cabin crew scheduling. The network simplex method is applied to solve the 

problem. A flow decomposition algorithm is then applied to get the pairing from the 

integer solutions.  The network flow approach however, is difficulty to apply in highly 

constrained practical-sized optimisation problems. Therefore, this approach has been 

successful for small- to moderately-sized real-world problems.  

2.4 METAHEURISTICS APPROACH  

Metaheuristics have become a popular approach in tackling the complexity of 

practical scheduling problems. Metaheuristics are typically high-level heuristic 

strategies which guide the search to avoid being trapped in local optima. The main 

limitation with many of conventional heuristic algorithms is their difficulty to escape 

from locally optimal solutions. The search is usually conducted from a single point in 

the solution space and continuously searches for better and improved solutions until 

there is no possible improvement. In an attempt to deal with this problem, several 

metaheuristics approaches have emerged such as Simulated Annealing (SA), Tabu 

Search (TS), and Genetic Algorithms (GAs).  

SA derives from physical science, notably the second law of thermodynamics. 

The method is motivated by an analogy to the physical process of annealing, where 

the temperature of a material is reduced to achieve its thermal equilibrium (Kirkpatrick 

et al. 1983). This principle is applied in combinatorial optimisation problems to 
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minimise the objective function value. The advantage of this technique is that it can 

avoid local optima by allowing the acceptance of non-improving solutions 

occasionally in the hope that a better solution may be found later on. 

SA has been applied to the CSP by a number of researchers. Emden and 

Proksch (1999) solved an airline CSP using a SA approach. The result indicates that 

the SA produces good quality solutions, but requires longer processing times than 

simpler heuristics. Lucic and Teodovoric (1999) also applied a SA approach to solve 

a multi-objective CSP for airline pilots. In general, SA based solution approaches to 

the CSPs have produced acceptable near-optimal solutions but have not been shown 

to be as effective as other methods. 

TS has also been used to solve the CSP. TS is a higher level heuristic introduced 

by Glover (1977, 1986). TS is an iterative improvement procedure and it can be 

combined with other search techniques to make the search more efficient. TS avoids 

becoming trapped in local optima by exploiting memory and data structures that 

prevent cycling and induces the exploration of new regions. One of the attempts 

towards this direction was proposed by Cavique et al. (1999), who solved a CSP for 

Lisbon Underground. A heuristic search is proposed to minimise the number of 

necessary duties for a determined planning period. The methods based on the TS obtain 

better results in terms of solution quality even though require longer computational 

times.   

Shen and Kwan (2001) used TS in transit CSP, but produced solutions that were 

substandard to other methods. They, however, show that refining a TS procedure has 

the potential to produce better solutions.  Chew et al. (2001) presented a report on an 

optimisation-based approach to develop a computerised train-operator scheduling 

system that has been implemented at Singapore Mass Rapid Transit (SMRT). The 

approach includes a combination of optimisation techniques, a bipartite matching 

algorithm and a TS algorithm. The objective is to minimise the system wide crew-

related costs and to address concern with respect to the number of split duties. The 

developed system improves and automates the current manual scheduling process at 

SMRT and produces applicable schedules in comparison with the manual process. 

Cabrera and Rubio (2009) conducted a research using the TS approach for solving a 

CSP. The objective is to assign a subset of the duties to each crew in such a way to 

minimise cost and no trip is left unassigned by considering a number of constraints. 
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The problem is retrieved from a railway public company in Valparaiso, Chile called 

Metro Regional Valparaiso (MERVAL), which served from Valparaiso to Limache. 

The findings from this study show that the hybrid algorithm produces very good 

solutions in adequate computational time. They have suggested hybridisation of other 

different solution techniques to improve resource allocation in the transportation 

industry.   

Elizondo et al. (2010) proposed methods to address operation management 

problems which emerge in underground passenger transport. The problem is to 

generate duty and identify an optimal trip set that the conductors should complete in 

one workday. The objective of the problem is to minimise the number of conductors 

required and minimise total idle time between trips. The problem is modelled and 

solved using a constructive hybrid approach. The obtained results are compared with 

two alternative approaches, based on TS and a greedy method.  The TS technique 

provides better results in terms of idle time than both the hybrid and the greedy 

methods. Although their proposed methods address the two objectives separately, they 

have suggested solving the problem as a multi-objective optimisation. 

As was explained earlier, many of the traditional heuristic algorithms use 

iterative improvement techniques where the search is started at a single point in the 

search space. During a single iteration, a new point is selected from the current point.  

If the new point provides a better solution, then the new point becomes the current 

point. It is clear that such a local search only exploits the best solution for possible 

improvement. Random search such as SA, on the other hand, explores the search 

space ignoring the exploitation of the promising regions of the space. Genetic 

Algorithms (GAs) emerged as a powerful technique by performing these two 

objectives, exploiting the best solutions and exploring the search space. As 

Michalewicz (1996) has noted, GAs are a class of general purpose (domain 

independent) search methods that strike a remarkable balance between exploration 

and exploitation of the search space. 

GAs have been successfully applied to optimisation problems for planning and 

scheduling in the transportation contexts. GA-based approaches have been used in 

several crew scheduling related problems and have produced good quality solutions, 

but cannot guarantee optimal solutions. Research which was conducted by Lee and 

Chen (2003) found that a GA approach provides a flexible structure for driver 
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scheduling problems with multiple objectives and various constraints. This research 

applies a mathematical programming approach and a GA approach for solving a 

driver scheduling problem at Taiwan Railway administration (TRA). The problem 

consists of generating feasible duties, creating a schedule of duties for a depot, and 

circulating duties in the schedule into a roster for each driver. Some heuristics 

methods are developed and used for generating pairing. A bi-objective SCP is then 

used in the pairing optimisation phase with the primary objective and the secondary 

objective are to minimise the total number of duties and to minimise the 

compensation for the selected duties, respectively. A commercial software LINDO is 

used to solve the linear integer programming. The outputs of the pairing optimisation 

are passed into the rostering phase to generate individual rosters for a depot. The GA 

uses a binary coding scheme for the SCP while for the rostering problem uses non-

binary coding scheme. The study indicates that the solution obtained by GA in 

general gives better results for the TRA and provides a flexible structure for driver 

scheduling problem with multiple objectives and various constraints.   

Park and Ryu (2006) proposed a GA to solve the pairing optimisation for subway 

CSP. The pairing optimisation is modelled by using a maximal covering problem 

(MCP) and is solved by applying the developed GA. The GA employs greedy 

heuristics in crossover and mutation operators to improve the efficiency of the search. 

A new chromosome structure incorporates unexpressed genes as a way of preserving 

diversity of population. While the genes in both expressed and unexpressed parts 

evolve, only the genes in the expressed part are used when an individual is evaluated. 

Experiments with large real-world data have shown that the GA outperforms other 

level search algorithms such as SA and TS.  

Metaheuristics have become a popular approach in tackling the complexity of 

practical optimisation problems such as the CSP. Although metaheuristics cannot 

guarantee optimality of their solutions, they have shown a very good performance in 

solving real-world optimisation problems. Metaheuristics represent a general type of 

solution method that illustrates the interaction between local improvement procedures 

and higher level strategies to facilitate the algorithm for both escaping local optima 

and exhaustively searching a feasible region. By applying metaheuristics, a good 

feasible solution for a large number of input data can usually be obtained in a 

reasonable amount of computational time.  
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2.5 CONCLUSION  

In this chapter, a survey of the CSP has been presented. The objective of this 

chapter is to acquire an understanding of the previous researches that have been 

conducted in this area. The literature review process has been conducted throughout 

the research period to reflect and accommodate new publications. The review has 

revealed that very few studies have been conducted on the practical crew scheduling 

in the railway industry. The existing approaches in solving the CSP are classified 

according to the exact mathematical models and algorithms, heuristics and 

metaheuristics. As the CSP belongs to the class of NP-hard, the efforts have been 

directed to the use of metaheuristic algorithms which are capable of producing good 

feasible solutions within reasonable computational time. 

 

 



 

Chapter 3: Railway Crew Scheduling Model 27 

 Railway Crew Scheduling 

Model 

3.1 SCHEDULING PROBLEM  

Scheduling is the process of allocating resources to activities over time. In a 

typical scheduling problem, resources are scarce and constrained in various ways. 

Most practical scheduling problems belong to a special class of NP-hard problems 

for which no polynomial time algorithm has been found. The algorithms in this class 

normally have exponential time behaviour, and hence there is no fast solution method 

exists for the problems yet. This means that, in the case of large scheduling problems, 

no optimal solutions can be found in a reasonable computational time. Therefore, we 

have to be satisfied with a feasible schedule rather than optimal schedule for a given 

problem. 

Real-world optimisation problems are usually too complex to capture all 

details. A model is usually a simplification that provides a sufficiently precise 

representation of the main features such that the solutions obtained to the problem 

under study still remain valid to an acceptable degree of approximation. Therefore, 

developing a mathematical model usually involves making approximations and 

adjustments, and sometimes ignoring or relaxing features which are difficult to 

formulate.  

Because of the complexity of the scheduling problems, several different 

solution approaches have been offered such as through the application of 

mathematical models and optimisation methods, simulation techniques, artificial 

intelligence techniques, expert systems techniques, and metaheuristics techniques.  

CSP involves real-life constraints which are difficult to handle, such as crew 

breaks, elapsed time and the requirement to return the crews to their home depots at 

the end of their duty. Furthermore, an optimisation model should be well designed 

such that all relevant parameters related to the problem can be incorporated. One way 

of dealing with the problem is to invent a specific model representation that is capable 

of incorporating important features of the problem, and it can be solved using a wide 

range of methods. This research develops a mathematical optimisation model for 
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railway CSP. The objective of the model is to minimise the number of crew duties by 

minimising total idle transition times. The optimisation model incorporates a 

complex set of railway crew scheduling constraints encountered in real-life situation. 

The integration of relief opportunities period (ROP) into the model, in particular, 

offers flexibility in where and when crew can be relieved. This will  enhance the 

robustness of the schedule and provide a better representation of real railway crew 

scheduling conditions. Although the optimisation model presented in this chapter, 

was designed in the context of railway CSP, it is general and can be easily adapted to 

different locations and modes of transportation. Furthermore, the proposed 

mathematical model in this research can be extended to the integration of vehicle and 

CSPs with ROP. 

3.2 CREW SCHEDULING PROBLEM (CSP) 

The generic CSP is the construction of a minimum cost work schedule for crew 

members in such a way that all restrictions imposed by governmental regulations, 

union enterprise agreements, and company specific rules are satisfied. The CSP 

includes two sequential and interconnected sub problems, the crew pairing problem 

and the crew rostering problem. The crew pairing problem, which is the focus of this 

study, is the assignment of crew members to scheduled tasks (trips) that have to be 

serviced subject to operational and contractual requirements. The assignment of 

crews seeks to find a minimum cost sequences of a given set of trips.  The sequence 

of trips to be carried out by one crew is called a duty (pairing, roundtrip) and it is 

usually last for one day (a working day of a crew). Then the subsequent problem, the 

crew rostering problem, is the arrangement of the generated duties into sequence of 

duties to be performed by an individual crew member over a defined period of time. 

3.3 RAILWAY CREW SCHEDULING PROBLEM  

Railway CSP involves a rail network where trains travel along specified train 

lines from one station to a subsequent station according to the published train schedule. 

There are a number of depots in the railway network to which each crew member is 

positioned. Crew members are responsible for performing a given set of activities to 

meet the train schedule. The railway crew scheduling under study consists of a set of 

crew home depots (HDs), a set of relief points (RPs), a set of scheduled train trips with 
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fixed starting and ending times at each station. The problem is to construct minimum 

cost crew duties based on the train timetable while satisfying operational and 

contractual requirements.  

The crew in this case is the train crew which consists of a train driver and a 

conductor, and they are considered as a team. A crew typically operates a train starting 

from a HD, travelling from one station to the next, taking a break at a specified location 

(relief point) within a specified time (relief time), and then operates another train back 

and terminate at the same HD. The railway CSP in this context is to specify the 

sequence of trips to be performed by the crew.  

The passenger railway operator in this study was Queensland Rail (QR) 

Australia. The railway operator offers regular train service on specified lines in the 

network. A line is characterized by a departure station and an arrival station with a 

number of intermediate stations. When the line is served by a single crew, the sequence 

of trips can be treated as an individual trip. Examples of such lines are the Ferny Grove 

(FYG) line and the Beenleigh (BNH) line. The FYG line mainly serves the train trip 

from FNY to Park Road station. However, there are also scheduled trips from FNY to 

other terminal stations such as Cleveland (CVN), Corinda (CQD), and Bowen Hills 

(BHI). The same situation also occurs on the other lines in the QR network. The QR 

network is shown in Figure 3.1. 
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Figure 3.1  Map of QR Network. 

                                         Source: www.queenslandrail.com.au 

 

 

http://www.queenslandrail.com.au/
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The train crew scheduling in this study has the following inputs. A set of HDs 

and a set of RPs, a set of scheduled trips with fixed starting and ending times, and 

predetermined driving times between all pair of stations. A train crew duty (shift) 

contains a meal break (MB) which starts and ends within a specific period as 

determined in the union collective agreement. The MB begins after the completion of 

the third hour and finishes before the completion of the sixth hour, relative to the start 

of the duty (shift).  For example, crews sign on at 08:00 and sign off at 16:00, then the 

earliest MB will be at 11:00 to 11:30 and the latest MB will be at 13:29 to 13:59. 

Figure 3.2 illustrates two possible alternatives of crew relief. The first condition is 

when 0.5 h MB occurs at the earliest time and the second condition is when the MB 

occurs at the latest time. A sequence of trips in a duty (shift) is shown in Figure 3.3. 

As can be seen from this figure, a MB divides a duty into two partial duties with 

different durations. The 1st part of a duty is the period from the start of a duty to the 

start of the MB, whereas the 2nd part of a duty is the period from the end of the MB to 

the end of the duty. Every single horizontal blue bar in Figure 3.3 represents a trip. 

Transition time or turnaround time within a partial duty is the time incurred between 

trips which may include the time required by the crew to move from one end to the 

other end of the train at platform and drives the train away in the opposite direction. 

Transition time in a duty (shift) is the time period between trips of different partial 

duties (MB) which includes crew relieving related activities.   
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Figure 3.2  Two possible combination of partial duties in the shift. 

Figure 3.3  A sample of the sequence of trips in the shift. 
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The railway network involves interconnected segments of train tracks. Each 

segment of train journeys consists of a sequence of trips that must be serviced. Figure 

3.4 illustrates an example of a train timetable. The route of trains can be traced by 

straightening the traveling path of trains in the train timetable. Each trip in the 

timetable must be serviced by a train. The railway CSP is to specify the sequence of 

trips to be performed by the crew. A train journey begins and ends at a crew HD, and 

can feasibly be serviced by a single crew. 

 

 

  

 

 

 

 

  

 

 

 

 

 

 
 

 

 

Figure 3.4  An example of a train timetable. 

 

 

 

 

A train service is the overall journey accomplished by a vehicle from the time it 

begins at its first station until it arrives at its last station. A vehicle block specifies the 

sequence of trips made by a train during a service work day. It contains pieces of 

segments in which crew relief may be done at the both end of each segment. Each crew 

belongs to one crew base (HD) and the crew has to start (sign on) and end (sign off) 

his/her duty (daily work shift) at the same crew depot (HD). The spread time is the 

time elapsed between the crew sign on and the crew sign off in a duty. The time interval 

between the earliest break and the latest break corresponds to the transition period 

between two consecutive pieces of duty, and is defined as a relief opportunities period 

(ROP). The ROP is a period of time within which a train crew is allowed to be relieved. 

Any RP can be chosen for crew relief within the two limits of the ROP. The set of 
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crew HDs is a subset of the set of RPs. This transition period includes the time spent 

for taking a meal and other crew relieving related activities such as handing over a 

train to (from) another train crew. An example of vehicle blocks and a crew duty with 

ROP is shown in Figure 3.5.   

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 
 

 

 
 

 

 

 

Figure 3.5  An example of vehicle blocks with ROP. 

 

 

 

The path of a train is indicated by the blue lines and the purple lines, as shown 

in the diagram of Figure 3.5. The blue lines show the movement of a train from the 

Station 1 (Depot A) to the terminal at Station n, with transition times (short dwell 

times) at each station. Crew arriving at stop n can be relieved at this point and take a 

MB at an away depot (Depot B). The relieved crew may then continue with another 

vehicle block passing through the same terminal station or RP. Alternatively, the crew 

may return directly along the route in the opposite direction (the purple lines) and take 

a MB at the HD (Depot A). When more trips are considered, the network becomes 

denser and more paths need to be evaluated. A duty covers a set of consecutive trip 

segments in a block. The 1st part of a duty (duty stretch) is the period from the start of 

a duty to the start of the MB, whereas the 2nd part of a duty is the period from the end 
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of the MB to the end of the duty. Transition time (idle interval) between two 

consecutive trips in each partial duty is the time incurred between the departure time 

of the next trip and the arrival time of the previous trip.  

The railway transportation industry imposes a complex set of operational and 

contractual requirements correspond to the work regulations for the crew. For safety 

reasons, for example, there is a restriction on the length of continuous driving time. A 

crew will be required to take a break when the total continuous driving time on the 

same vehicle has reached a maximum limit. In the formation of duties, crew schedule 

should satisfy several constraints corresponding to work load regulations. There are 

predetermined maximum and minimum durations of a duty. A minimum of 0.5 h for a 

MB is required in a duty (shift). A crew takes a break only at a RP and the changeover 

of trains is at the same RP. 

3.3.1 Terminology  

As there is no uniform terminology for the CSP in the literature, the following 

terms are used in this study to clearly define the problem.  

 Trip is the movement of a train from one station to the next station at specified 

times according to the train timetable. Each trip is characterised by a train, a 

departure time, a departure station, an arrival time, and an arrival station.  

 Trip segment (or segment for short), is part of a vehicle block contains a sequence 

of trips in which crew relief can be performed at both ends of each segment.  

 Crew is the train crew which consists of a train driver and a conductor and they are 

considered as a team.  

 Vehicle block is the sequence of trips assigned to the same vehicle during a service 

workday. It contains pieces of segments in which crew relief may be performed at 

both ends of each segment. 

 Duty (shift) is the work to be carried out by a train crew in one day. It begins and 

ends at the same crew depot. In a duty, there are two partial duties and a MB in 

between. Partial duty is the sequence of trips serviced by a train crew on the same 

vehicle without a long rest. The 1st part of a duty (duty stretch) is the period from 

the start of a duty to the start of the MB, whereas the 2nd part of a duty is the period 

from the end of the MB to the end of the duty.  
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 Transition time (idle interval) is the time incurred between two consecutive trips 

in the same partial duty. It is the difference between the departure time of the next 

trip and the arrival time of the previous trip.  

 Driving period is the total time spent by a train crew driving trips in the duty 

including transition times (short dwell times) between consecutive trips. 

 Home depot (HD) is the work location at which a train crew is positioned to begin 

and end his duty.  

 Relief opportunities period (ROP) is the time period within which a train crew has 

a chance to be relieved at a specified location.  

 Relief point (RP) is the location at which a train crew can be relieved.  

 Working time is the total duration of train crew working from the start to the end 

of the duty, performing both driving activities and non-driving activities.  

 Changeover is the relieving of a train crew and taking over the responsibility for 

the train by another crew. 

3.3.2 Input Data  

Train timetables generally show all train movements along a particular route. 

Each entry of the timetable specifies element of the sequence of trips assigned to a 

particular train with time and location of train stops. The timetable lists the route to 

follow by trains through the rail network with the times and locations of scheduled 

train services. The input data comes in the form of a two dimensional table where each 

row represents one trip. A sample train schedule with 12 trips is given in Table 3.1. 

The data are retrieved from the operational environment of lines in the railway 

network. By considering this initial segment, we derived artificial data as problem 

instances.   
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Table 3.1  A sample train schedule with 12 trips. 

 

Train ID 

 

Departure 

Station 

(ds) 

Departure 

Time 

(dt) 

(hh:mm) 

Arrival 

Station 

(as) 

Arrival 

Time 

(at) 

(hh:mm) 

 

L001 A 05:00 B 05:24 

L002 A 05:30 B 05:54 

L003 A 06:00 B 06:24 

 

L001 B 05:25 C 06:35 

L002 B 05:55 C 07:03 

L003 B 06:25 C 07:34 

 

L201 

 
C 04:28 B 05:41 

L202 C 04:59 B 06:08 

L203 C 05:27 B 06:37 

 

L201 B 05:42 A 06:08 

L202 B 06:08 A 06:38 

L203 B 06:38 A 07:02 

     

 

 

3.3.3 Operational and Contractual Requirements  

The railway transportation industry imposes a complex set of operational and 

contractual requirements correspond to the work regulations for the crew. The 

regulations are defined in the enterprise agreement and in the company policies and 

procedures. For a safety reason, for example, there is a restriction on the length of 

continuous driving time. A crew will be required to take a break when the total 

continuous driving time on the same vehicle has reached a maximum limit. Feasible 

crew duties should satisfy several constraints corresponding to work load regulations. 

The formation of a feasible crew schedule is restricted by a complex set of rules and 

regulations. The rules and regulations may vary between railway operators. The 

commonly applied rules for railway CSP considered in the proposed model are given 

as follows:  

 The minimum and maximum duration of working time; 

 The maximum spread time (elapsed time). The spread time is the time elapsed 

between sign-on and sign-off in the duty (shift); 

 The maximum continuous driving time. A crew will be required to take a break 

when the continuous driving time has reached a certain limit; 
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 There must be a MB of at least 0.5 h between the third and the sixth hour relative 

to the start of the duty (shift). A MB is required in between consecutive partial 

duties;   

 A crew has to start and end (sign-on and sign-off) his/her daily shift at the same 

depot; 

 The crews take a break only at a RP and the changeover of trains is at the same RP. 

 

A crew schedule should also take into account extra time needed by the train 

crew to perform other functions associated with crewing of a train. These include 

preparing a train at the first start of a run, handing over (taking over) a train to (from) 

another train crew, secure a train at the end of its run and the time spent by the crew 

walking to (from) the signing-off (on)  point from (to) the train. 

3.4 DEVELOPMENT OF MATHEMATICAL MODEL 

The scheduling problem is modelled as equations written in a set of algebraic 

notations. Solving the problem would then require solving the equations that represent 

the problem. Mathematical programming has three main components, namely a set of 

decision variables, constraints over these variables and an objective function to be 

optimised. The objective function represents the goal of the problem in terms of 

decision variables. It is a function of the variables which is used to navigate and select 

among possible solutions. Constraints put a limit on the outcome of finding a solution. 

The decision variables are the unknown values or decisions that are to be optimised. 

In this case, the basic assumption is that the problem is linear. In mathematical 

terminology, the objective is a linear function and the constraints are linear equations 

and inequalities. Such a problem is called a linear program and the process of 

modelling and solving this problem is called linear programming. Mixed Integer 

Programming (MIP) consists of constraints and an objective function where decision 

variables may have either discrete or continuous domains. Thus, in MIP some of 

decision variables required to have integer values. 

Railway crew scheduling is considered as a highly constrained problem. The 

problem of forming a minimum cost set of duties which cover all the trips in a 

timetable is a difficult combinatorial optimization problem. A mathematical modelling 

approach for handling the problem is presented in this section. It generates a number 
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of duties and computes the time of each duty. The crew scheduling problem in this 

context is to specify the sequences of trips to be performed by the crews. The goal is 

to determine a schedule which includes the details of the sequence of trips to be 

performed by a crew in one duty (shift). The shift is divided into two partial duties 

with different durations.   

The train crew scheduling requires scheduling all trips in a published train 

timetable into a set of train crew duties such that the crews perform feasible sequence 

of trips with minimum cost. Railway CSP has the following inputs. A set of crew HDs 

and a set of RPs, a set of scheduled train trips with fixed starting and ending times, and 

predetermined driving times between all pair of stations. Based on the descriptions 

presented in Chapter 3, railway CSP is formulated mathematically as a mixed integer 

programming (MIP) and this is presented in the following section. 

3.5 RAILWAY CREW SCHEDULING MODEL   

This section presents a mathematical model for railway crew scheduling. The 

optimisation model integrates the two phases of pairing generation and pairing 

optimisation by simultaneously sequencing trips into feasible duties and minimising 

total elapsed time of any duties. The optimisation model incorporates commonly 

encountered real-life railway crew scheduling constraints, particularly the inclusion of 

the time interval of relief opportunities. Existing models usually only consider 

relieving crew at the beginning of the interval of relief opportunities, which may be 

impractical. Allowing the train crew to be relieved at any relief point within the interval 

of relief opportunities offers flexibility. This will improve the robustness of the 

schedule and provide a better representation of real-world conditions. Computational 

results obtained from randomly generated instances indicate that the optimisation 

model can produce feasible railway crew schedules within a reasonable computational 

time.  

The following notations are used through the description of the model. 
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3.5.1 Notations 

 

Indices 
 

i,  i'          

j,  j'               

k, k'             

ohd         

thd          

orp          

trp           

ots           

 

train trip  

duty  

shift 

originate at crew HD 

terminate at crew HD  

originate at RP  

terminate at RP 

originate and terminate at any station 

Sets 

 

I    

Iohd   

Ithd 

Iorp 

Itrp 

Iots 

J            

Ji 

K 

Kj    

set of all trips 

set of trips that originate at crew HD  (Iohd ⊆ I) 

set of trips that terminate at crew HD  (Ithd ⊆ I) 

set of trips that originate at RP  (Iorp ⊆ I) 

set of trips that terminate at RP  (Itrp ⊆ I) 

set of trips that can be sequential in the same duty (Iots ⊆ I) 

set of duties 

set of duties which can contain trip i (Ji ⊆ J) 

set of shifts 

set of shifts for duty j  (Kj ⊆ K) 

Parameters 

 

tijk  

ζii’jk  

𝜁ii’j(j+1)k     

𝜁ii’k(k+1)     

𝛼jk  

𝛼'jk  

𝛿'(j+1)k  

δ(j+1)k  

dti  

driving time of trip i in duty j of shift k 

transition time from trip i to trip i’ in the j th duty of shift k 

transition time from trip i of the 1st duty to the trip i’ of the 2nd duty of shift k 

transition time from trip i of shift k to trip i’ of the next shift  

minimum duration of 1st part of a duty in shift k 

maximum duration of 1st part of a duty in shift k 

minimum duration of 2nd part of a duty in shift k 

maximum duration of 2nd  part of a duty in shift k 

departure time of trip i 



 

Chapter 3: Railway Crew Scheduling Model 41 

ati  

dsi  

asi  

Wtmax  

Wtmin  

Wtk  

Stk  

Stmax 

arrival time of trip i 

departure station of trip i 

arrival station of trip i 

normal working time per shift  

minimum working time allowed per shift  

actual driving time in  shift k   

spread time of  shift k 

maximum spread time allowed per shift 

 

Variables 

 

vijk  

wijk  

xii’jk  

 

yijk  

 

zii’j(j+1)k   

 

 

zii’k(k+1)    

 

 

U   

𝜎ijk  

𝜗ijk       

∈ {0,1} 

∈ {0,1}  

∈ {0,1} 

 

∈ {0,1}  

 

∈ {0,1}           

 

 

∈ {0,1}           

 

 

∈ {0,1} 

∈   ℝ   

∈   ℝ                   

binary variable for assignment of trip i in duty j of shift k 

binary variable for assignment of i as the first trip in duty j of shift k 

binary variable denotes that the assignment of i is followed by i’  in 

duty j of shift  k 

binary variable denotes that the assignment of i as the last trip in duty 

j of shift k 

binary transition variable denotes that the assignment of i at the end of 

a partial duty j to  be followed by i’  at the beginning of the subsequent 

partial duty of shift k 

binary transition variable denotes that the assignment of  i  at  the end 

of the duty (shift) to be followed by i’  at the beginning of the 

subsequent duty (shift) 

binary variable 

starting time of trip i  in duty j of shift k 

completion time of trip i  in duty j of shift k 

 

3.5.2 Objective Function  

The objective function is designed to minimise the total number of duties by 

minimising idle transition times. The idle transition times includes the idle intervals 

between trips and an idle transition during a MB. The function consists of driving 

period and non-driving period.  
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Min   (  ∑   ∑  tijk vijk  +   ∑   ∑  𝜁ii’jk  xii’jk    +  ∑  𝜁ii’j(j+1)k  zii’j(j+1)k  )     
                      j ∈ Ji   i ∈ Ik                                           j ∈Ji     i, 𝑖′ ∈ Ik                                 i, 𝑖′ ∈ Ik    
 

∀  i, i′ ∈ I, i ≠ i′,  j ∈ Ji,,  k  ∈  Kj 

 

 

(1)  

 

3.5.3 Constaints  

Equation (2) is the trip assignment. It enforces every trip i to be allocated in exactly 

one duty j of shift k.   

 

∑    ∑   vijk    =   1            
k ∈ Kj  j ∈ Ji                                   

∀ i  ∈  I    (2) 

 

This equation implies that no deadheading is allowed. A crew has to wait for the 

next trip at a RP and the changeover of trains is at the same RP. When the assignment 

of trip i is followed by trip i′ in the same duty, a sequence of the trips is enforced via 

constraint (3). Trips i and trip i′ are consecutive only in the case that the binary variable 

xii’jk   = 1. Similarly, constraint (4) denotes that the assignment of trip i in duty j is 

followed by trip i′ at the next duty j′. The transition variable zii’j(j+1)k  is activated when 

both vijk  and vi’(j+1)k   are equal to one. As a result, one transition from trip i to trip i′ 

occurs at the end of any partial duty if and only if trip i′ is assigned in the subsequent 

partial duty.   

 

xii’jk     ≥  vijk  +  vi’jk  −  1                                 

zii’j(j+1)k     ≥   vijk + vi’(j+1)k   − 1                                  

∀  i, i′ ∈  Ik , i ≠ i′,  j ∈ J,  k  ∈  Kj  

∀  i, i′ ∈  Ik , i ≠  i′,  j ∈ J,  k  ∈  Kj 

(3) 

(4) 

 

Constraint (5a) ensures that no overlap is allowed. The start time of trip i′ in any 

duty require the completion of the previous trip. Constraint (5b) and constraint (5c) are 

included to ensure a connectivity of the trip sequences. 
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atijk   +  ζii’jk  xii’jk   ≤  dti’jk                                 

asijk  vijk  
 =  dsi’jk  vijk  

asijk  vijk  =  dsi’ (j+1)k  wijk                             

∀   i, i′ ∈  Ik , i ≠  i′,  j ∈ J,  k  ∈ Kj 

∀   i, i′ ∈  Ik , i ≠  i′,  j ∈ J,  k  ∈ Kj 

∀  i, i′ ∈  Ik , i ≠  i′,  j ∈ J,  k  ∈  Kj                                               

(5a) 

(5b) 

(5c) 

 

Constraint (6a) and constraint (6b) denote the relation between the start and 

completion times in a duty. The completion time of the last trip in a duty is greater 

than or equal to the start time of the first trip plus the total driving time and the total 

transition time in the duty.           

 

  atijk  ≥   dtijk  +  ∑  tijk vijk   
                                              i ∈ Ik       

   

 𝜗ijk  ≥   𝜎ijk   +  ∑  tijk vijk  +  ∑  ζii’jk  xii’jk    
                                           i ∈ Ik                            i, 𝑖′ ∈ Ik    

      

∀  j ∈ J,  k  ∈  Kj                                                                           

    

∀  j ∈ J,  k  ∈  Kj                                             

(6a)  

 

(6b) 

 

Constraint (7a), along with constraint (7b), constraint (8a), and constraint (8b), indicate 

that the total continuous driving time in the 1st part of a duty should be greater than or 

equal to the minimum allowable duration of the 1st part of a duty in shift k (𝛼jk) and 

the total continuous driving time of the 2nd part of a duty should be less than or equal 

to the maximum duration of the 2nd part of a duty in shift k (δ(j+1)k). Otherwise, the total 

continuous driving time of the 1st part of a duty should be less than or equal to the 

maximum duration of the 1st part of a duty in shift k (𝛼'jk) and the total continuous 

driving time of the 2nd part of a duty should be greater than or equal to the minimum 

duration of the 2nd part of a duty in shift k (𝛿'(j+1)k). The set of constraints satisfy a 

condition in which a train crew takes a MB at the earliest or latest times or in any time 

between the two limits (Figure 3.6).  
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∑  tijk vijk  +  ∑ 𝜁ii’jk  xii’jk   ≥ 𝛼jk  U                                  
i ∈ Ik                          i, 𝑖′ ∈ Ik   

 

∑  tijk vijk  +  ∑ 𝜁ii’jk  xii’jk  ≤  𝛼'jk (1 – U)                          
i ∈ Ik                          i, 𝑖′ ∈ Ik   
 

∑  ti(j+1)k vi(j+1)k  + ∑  𝜁ii’(j+1)k   xii’(j+1)k  ≤  δ (j+1)k U              
i ∈ Ik                                         i, 𝑖′ ∈ Ik   

 

∑  ti(j+1)k vi(j+1)k + ∑  𝜁ii’(j+1)k  xii’(j+1)k  ≥ 𝛿'(j+1)k (1 – U)      
i ∈ Ik                                       i, 𝑖′ ∈ Ik   

 

  ∀  j ∈ J,  k ∈  Kj                      

∀  j ∈ J,  k ∈  Kj                                                   

∀  j ∈ J,  k ∈  Kj                      

∀  j ∈ J,  k ∈  Kj                                             

(7a)  

(7b) 

(8a) 

(8b) 

 

 

 

 

   

                                      
                                                                                                                                                                                                    

 

 

               αjk                   𝜁ii’j(j+1)k                            δ (j+1)k                          time 

 

                               08:00        09:00        10:00       11:00        12:00        13:00       14:00        15:00         16:00  
 

 

                                                                                           

 

 

    
                                                                                                                                                           

 

 

                                                                                                                                  
                                                  𝛼'jk                                  𝜁ii’j(j+1)k      δ'(j+1)k        time 

 
   

                                08:00        09:00        10:00       11:00        12:00        13:00       14:00        15:00         16:00    

 

  
 

 
 

 

Figure 3.6  Two combinations of partial duties in the shift. 

 

 

Equation (9a) calculates the total actual driving time in shift k (Wtk), which is 

equal to the total working time of all partial duties in the shift. Constraint (9b) states 

that the total actual driving time within the shift must not exceed the upper bound 

(Wtmax) and the lower bound (Wtmin). 

     

       

 

    earliest 

MB 

 

 

 

 

      𝜁ii’jk 

 

 

 

 

     

 
 

 

 

  

  
 

   

  

     

 

 

 

𝜁ii’jk    latest 

MB 
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∑   ∑ tijk vijk    +   ∑   ∑ 𝜁ii’jk  xii’jk    ≤    Wtk                                
j ∈ Ji   i ∈ Ik                                   j ∈ Ji    i, 𝑖′ ∈ Ik          

 

 Wtmin    ≤    Wtk    ≤    Wtmax 

∀  j ∈ J,  k ∈  Kj                                                           

 

(9a) 

 

(9b) 

 

Constraint (10a) restricts the spread time of a shift from exceeding the maximum 

allowed total spread time. Spread time of a shift (Stk) is equal to the total working time 

plus the transition time between each partial duty (MB). The relation between the last 

trip i in partial duty j of shift k and the start of trip i + 1 in the next partial duty j + 1 of 

shift k is given by equation (10b). 

 

∑   ∑ tijk vijk   +   ∑   ∑  𝜁ii’jk  xii’jk    +   ∑  𝜁ii’j(j+1)k  zii’j(j+1)k     ≤    Stmax 
 j ∈ Ji  i ∈ Ik                                          j ∈Ji     i, 𝑖′ ∈ Ik                                   i, 𝑖′ ∈ Ik                             

∀  j ∈ J, k ∈  Kj 

 

∑ 𝜁ii’jk xii’jk  +  ∑ tijk vijk  +  ∑ 𝜁ii’(j+1)k   xii’(j+1)k   =   ∑ 𝜁i(i+1)(j+1)k   xi(i+1)(j+1)k  
                                        i ∈ Ik                                                                                                                                              
+  ∑ ti(j+1)k vi(j+1)k   +  ∑ 𝜁i(i+1)jk xi(i+1)jk       

       i ∈ Ik                                                                                                                                                                                                                  

 ∀  i, i’ ∈  Ik , i ≠  i’, j ∈ J,  k  ∈ Kj 

 

(10a)  

 

 

 

(10b) 

 

Considering that each duty consists of at least one trip, only one trip can be the 

first or the last one in each duty. Equation (11) expresses the requirement that the first 

trip in the 1st part of a duty which is also the first trip of the corresponding duty (shift) 

should originate from a HD. Equation (12) states that the last trip in a duty should 

terminate at a HD or at a RP. Equation (13) ensures that each trip, except the first trip, 

is assigned after another trip. Similarly, equation (14) ensures that each trip, except the 

last trip, is assigned before another trip. Equation (15) expresses that for each trip 

which terminated the 1st part of a duty, there is a transition time (MB) from this trip to 

the first trip in the subsequent part of a duty. Similarly, equation (16) expresses that 

for each trip which originated a duty, there is a transition time from the last trip of the 

previous duty to the current duty. Equation (17) ensures that for each trip which 

terminated a duty (shift), there is a transition time from this trip to the first trip of the 

next duty (sign off to sign on). Similarly, equation (18) ensures that for each trip which 

originated a duty (shift), there is a transition time from the last trip of the previous duty 



 

Chapter 3: Railway Crew Scheduling Model 46 

(shift) to the first trip of the current duty (shift). Constraints (19) and (20) are the 

variable restrictions for 7 binary variables and 2 real variables, respectively. 

 

∑  wijk  =   1                                                   
 i ∈ Iohd     

 

 

∑  yijk   =   1                                                                                                     
 i ∈ Ithd  ∪  Itrp        

   

 

∑  xii’jk     =   vi’jk     –   wijk                                   
i ∈ Iots  , i ≠ 𝑖′             
        

  

∑ xii’jk     =   vijk     –   yijk                                                                     
𝑖′ ∈ Iots  , i′ ≠ 𝑖      
 

 

∑ zii’j(j+1)k     =  wi’(j+1)k                                    
i  ∈ Ithd  ∪  Itrp     

       

 

∑ zii’j(j+1)k     =    yijk 

𝑖′ ∈ Iohd  ∪  Iorp           

 

 

∑ zii’k(k+1)   =  wi’j(k+1) 

i  ∈ Ithd  ∪  Itrp             

 

 

∑ zii’k(k+1)    =  yijk 

𝑖′ ∈ Iohd  ∪  Iorp           

                                 

∀  j ∈ J,  k  ∈  Kj                                                           

 

∀  j ∈ J,  k  ∈  Kj        

 

∀  i’ ∈ Iots ,  j ∈ J, k ∈  Kj      

 

∀  i ∈ Iots ,  j ∈ J, k  ∈  Kj          

 

∀  i’ ∈ Iohd  ∪ Iorp ,  j ∈ J, k ∈ Kj      

 

∀  i ∈ Ithd  ∪ Itrp ,  j ∈ J, k  ∈  Kj   

 

∀  i’ ∈ Iohd  ,   j ∈ J, k  ∈ Kj          

 

∀  i ∈ Ithd  ∪ Itrp ,  j ∈ J,  k  ∈ Kj                                                                                                                                                                                                                                                                                                                                       

(11) 

 

(12) 

 

(13) 

 

(14) 

 

(15)  

 

(16)  

 

(17)  

 

(18) 

vijk ∈ {0,1}, wijk ∈ {0,1}, 

xii’jk  ∈ {0,1}, yijk ∈ {0,1},   

zii’j(j+1)k ∈ {0,1}, 

zii’k(k+1) ∈ {0,1},   

U ∈ {0,1}   

  

 

(19) 

𝜎ijk  ∈  ℝ , 

𝜗ijk  ∈  ℝ 

  

(20) 

 

Generally, these constraints can be divided into four groups. The first group 

focuses on the scheduling and sequencing trips (Constraints 2 – 6); the second group 

addresses the duty restrictions (Constraints 7 – 10); the third group determines the 

assignment and sequencing of trips in a duty (Constraints 11 – 18), and the remaining 

group restricts the value of variables (Constraints 19 – 20). 
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3.6 MP SOLUTION TECHNIQUE    

Real-life optimisation applications involve various complex constraints that are 

difficult to find satisfactory solutions. An optimisation approach works by exploring 

the search space to find the optimum solution according to an objective function while 

satisfying given constraints. It determines a value of cost to minimise or of profit to 

maximise. The exact solution approaches refer to the methods which can obtain 

optimal solution and prove its optimality. Some well-known exact methods for solving 

mathematical formulations are branch-and-bound, branch-and-cut, branch-and-price, 

and dynamic programming. MIP solvers, such as Xpress-Optimization (FICO) and 

CPLEX (ILOG, Inc.), employ branch-and-cut which is a combination of branch-and-

bound and cutting-plane techniques. 

Branch-and-bound is a classic method for solving the IP. In branch-and-bound, 

the problem is decomposed recursively into a disjunction of smaller sub-problems by 

a tree search. This decomposition creates further branch nodes and stop decomposing 

when the node is either pruned (reach feasibility or optimality) or a leaf node is reached 

(have assigned value to all variables). Thus, these smaller subsets were evaluated until 

best solution is found.  

The first node of the branch-and-bound search tree can contains the relaxed 

linear programming solution and has two designated bound, an upper bound (UB) and 

a lower bound (LB). The optimal integer solution will be between these two bounds. 

An optimal integer solution is reached when a feasible integer solution is achieved at 

a node that has an upper bound greater than or equal to the upper bound at any other 

ending node. 

The branch and bound method can be used for mixed integer problems, except 

only variables with integer restrictions are rounded down to achieve the initial lower 

bound and only integer variables are branched on. When determining which variable 

to branch from, the greatest fractional part is selected from among only those variables 

that must be integer. The optimal solution is reached when a feasible solution is 

generated at a node that has integer values for those variables requiring integers and 

that has reached the maximum upper bound of all ending nodes (Taylor, 2009). MIPs 

apply relaxation methods. Relaxation of a MIP is a strategy used such that (a) any 

solution to the MIP corresponds to a feasible solution to the relaxed problem, and (b) 
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each solution to the MIP has an objective function value greater than or equal to that 

of the corresponding solution to the relaxed problem. MIP techniques examine a subset 

of possible solutions and do not explicitly examine every possible combination of 

discrete solutions and use optimisation theory to prove that no other solution can be 

better than the best one found. This type of technique is known as implicit enumeration 

(Smith and Taskın, 2007). 

Optimal solutions can be obtained for CSP by solving the model using standard 

optimisation programming languages such as Xpress-Optimizer (FICO) and 

CPLEX Optimization Studio (IBM ILOG). Xpress-Optimization uses branch-and-

bound algorithm to solve MIP. This was used to obtain the solutions and includes 

classes of cutting-planes which are generated during optimisation. Using the Xpress-

Optimization solver, the results indicate that it is difficult to solve a practical 

optimisation problem using pure MIP method particularly for large-sized instances. 

This is because the practical optimisation problem involves a large number of variables 

and constraints. The standard branch and bound technique employed by the Xpress-

Optimization begins by solving the linear programming relaxation which is obtained 

by removing some restrictions in the mixed integer program. The number of feasible 

duties will increase with the number of trips included in the problem as well as the 

increase of runtimes. The overall computational results of the mathematical model by 

Xpress-Optimization are given in Appendix A of this thesis. 

3.7 CONCLUSION 

Railway CSP represents a computationally difficult problem because of the size 

of the instances and the complex structure of operational constraints. In this chapter, 

an alternative mathematical model for railway CSP has been presented. The 

optimisation model integrates the two phases of pairing generation and pairing 

optimisation by simultaneously sequencing trips into feasible duties and minimising 

total elapsed time of any duty. Crew scheduling constraints in which the crews have 

to return to their home depot at the end of the shift are included in the model. The 

flexibility of this model comes in the inclusion of the time interval of relief 

opportunities, allowing the crew to be relieved during the ROP. The MIP model 

involves binary variables which determine whether a trip is assigned in a duty or not, 

whether it is the first trip, followed by the next trip or it is the last trip. The number of 

these variables will increase significantly with the number of trips included in the 
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problem. Optimisation Programming Language (ILOG OPL Studio) software was 

used to obtain the solutions. Modelling with ILOG OPL Studio was done by firstly 

declaring of data and variables. Then was followed by defining the objective function 

and constraints. The overall results suggest that improvement should be made in terms 

of search strategy and the time consumed by the methods to obtain final results. From 

a practical viewpoint, the proposed model and its solution technique can be integrated 

with other search techniques to find better solutions.  
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 Constraint Programming 

This chapter describes Constraint Programming (CP) with the solution 

techniques applied to solve the problem. CP is a structured technique with natural way 

in expressing optimisation problems by means of variables and constraints through the 

application of constraint propagation mechanism based on the tree search structure for 

the solving process.  

4.1 CONSTRAINT PROGRAMMING (CP)  

CP converged from different areas of optimisation, computer science and 

artificial intelligence (AI) (Hooker, 2002). It incorporates both a modelling and a 

problem solving paradigm. CP is a structured computer programming technique that 

provides a natural way of expressing a wide variety of algorithmic problems.   

CP is an effective technique for solving large combinatorial optimisation 

problems and has proven a success in various application areas. The strength of CP is 

due to the clear separation between model and solver. The problem is stated 

declaratively in terms of variables and constraints and modelling the relations of the 

entities in the problem is engaged in. This model is then passed to a constraint solver, 

which will return a solution to the problem.  

Several operations research (OR) techniques have been applied to tackle the 

crew planning and scheduling problems. The OR applications incorporate various 

kinds of enumeration strategies that are usually embedded in complex computer 

programs. Barták et al. (2010) noted that constraint satisfaction offers a very good 

framework for integrating OR techniques in more general AI solving algorithms. The 

primary technology for this integration is based on the concept of global constraints. 

Global constraints accommodate efficient algorithms to solve well defined sub-

problems while they still can be combined with other constraints for modelling the 

side features of the problem. Global constraints coupled with sophisticated search 

techniques are the main strength behind the success of constraint-based scheduling. 

Rodosek et al. (1999) have introduced a hybrid algorithm to reduce the solution 

space by integrating constraint logic programming and mixed integer 
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programming using both the local constraint propagation and the global constraint 

propagation. Milano and Wallace (2010) presented an important survey on how CP 

can be applied to exploit linear programming within various hybrid algorithms and can 

enhance Lagrangian relaxation, Benders decomposition and column generation 

techniques. Gualandi and Malucelli (2013) reviewed the applications of the CP-based 

column generation framework to solve several complex real-life optimisation 

problems.  

Railway crew scheduling represents a very complex problem due to the presence 

of conflicting constraints that have to be satisfied and the huge search space that has 

to be explored. The straightforward approach is used to be applied to this problem is 

generate and test approach. Thus a complete roundtrip is generated and then tested its 

feasibility. CP in contrasts applies a different method of computation, which is the 

constraint and generates one. When a solution is found, its objective value is stored. 

A new constraint is subsequently added to the problem while imposing the value of 

the objective function to be better than the best previously found. 

A combinatorial optimisation problem in CP is modelled as a set of variables, 

the objects the problem deals with, and a set of constraints representing the 

relationships among the objects. A CP system implements these variables and 

constraints and provides a solution procedure of assigning variables subject to all the 

constraints. Thus the solution to CP is an assignment to each variable a value from its 

domain such that all the problem constraints are satisfied. The objective is to find the 

minimum solution with complete assignment of values to the variables. 

Even though some work has been done on the CSP using a wide variety of 

solution techniques, the problem is still hard to solve. CP is one of the techniques that 

has drawn increased attention in recent years and has been successfully applied to the 

scheduling problems (Lustig and Puget, 2001). Sellmann et al. (2002) applied CP 

based column generation framework and CP based heuristic tree search. The objective 

of their study is to assign lines of work to a set of crew members and minimise the cost 

of that assignment. The researchers have shown how CP can be incorporated to 

overcome typical deficiencies of OR approach. Silva (2001) combined CP and linear 

programming (LP) for solving bus driver scheduling problem. This study found that 

CP can handle complex real life constraints easily and constraint propagation can 

improve the efficiency of generating duties.  
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Despite the fact that CP is an emergent and promising approach for solving large 

combinatorial optimisation problems, very little research has applied this method to 

the CSP. This study presents a CP formulation and solution methodology to solve the 

railway CSP. The CP formulation incorporates commonly encountered real-life 

railway crew scheduling constraints. A computational experiment was carried out on 

randomly generated problem instances which are based on the data from Queensland 

Rail (QR), Australia.  

The approach to solve the railway CSP follows several stages. Firstly, the train 

segment is divided into trips for each depot. A duty (roundtrip, pairing) is defined as 

a sequence of trips which can be assigned to a crew that starts and ends at the same 

crew depot. The overall modelling approach can be seen in Figure 4.1. The 

optimisation model sequences the trips into feasible duties and minimises the total 

elapsed time of the duties (shifts).  A number of feasible duties will be generated for 

a depot. The best subset will then be selected from all the generated duties based on 

the minimum cost of duties.  
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Figure 4.1  Modelling approach. 

 

 

4.1.1 Constraint Propagation and Search   

The process of inference is called constraint propagation. Constraint propagation 

is the main inference method in constraint programming systems. It is an efficient 

inference mechanism using concurrently working propagators that accumulates 

information in a constraint group. It infers that certain values cannot be part of certain 

variable domains anymore if they violate some constraint. The entities that perform 

constraint propagation are called propagators. A propagator removes values from 

variable domains that cannot be part of any solution of its constraint. Constraint 

distribution divides the problem into corresponding cases when constraint propagation 

cannot proceed any further. By iterating propagation and distribution, propagation will 

ultimately resolve a solution to the problem. 
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Many algorithms for solving CP systematically search through the possible 

assignments of values to variables. Such algorithms are guaranteed to find a solution, 

if one exists, or to prove that the problem is insolvable. Therefore, the systematic 

search algorithms are complete. The main disadvantage of these algorithms is that they 

take a very long time to perform it. There are two main classes of systematic search 

algorithms. The first one is the algorithms that search the space of complete 

assignments, i.e., the assignments of all variables, till they find the complete 

assignment that satisfies all the constraints, and the second one is the algorithms that 

extend a partial consistent assignment to a complete assignment that satisfies all the 

constraints.  

4.1.2 Tree Structure    

Trees are a type of nonlinear structure where the data are organised such that 

items of information are related by branches. Trees can describe the relationship 

among their elements or objects and represent them naturally. Relationships such as 

one to one and one to many are among those that can always be found in real life, 

and can be easily described by trees. The ability of trees to organise data and represent 

them naturally is useful in solving a wide variety of algorithmic problems. 

Horowitz and Sahni (1987) define a tree as a finite set of nodes in which there 

is a specially designated node called the root, and the remaining nodes are partitioned 

into n  0 disjoint sets T1,…..,Tn where T1,…..,Tn are called the subtrees of the root. 

The node is the item of information contained in the tree. A sample tree is given in 

Figure 4.2. This tree has 13 nodes, each item of data being a single letter for 

simplicity. 
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Figure 4.2  A sample tree with 13 nodes. 

 

The number of subtrees of a node is called its degree. The degree of A is 3, of 

C is 0, of D is 2, etc. Nodes that have degree zero are called terminal nodes or external 

nodes, i.e. C, F, H, J, K, L, M. The other nodes are referred to as non-terminal nodes 

or internal nodes. The degree of a tree is the maximum degree of a node in the tree. 

The tree in Figure 4.2 has degree 3. 

The relationship between a node and its successors is described as a parent – 

child relationship. The predecessor of a node X is said to be the node X’s parent and 

a successor of a node X is said to be the node X’s child. Thus, considering the tree in 

Figure 4.2, the children of B are E, F, and G and the parent of B is A. Every node that 

is not a terminal node has at least one child. The nodes of the same parent are said to 

be siblings. 

Each node in a tree is at a certain level in that tree. The root node is at level 

one, and if a node is at level l, then its children are at level l + 1. Figure 4.3 shows 

the levels of nodes in the tree. The height or depth of a tree is defined as the maximum 

level associated with any of its nodes. Figure 4.3 contains 10 nodes and has a height 

of 4.  
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Figure 4.3  A sample tree with 4 levels. 

 

A binary tree is characterized by the fact that each node can have at most two 

branches, each sub-tree is identified as being either the left or right sub-tree of its 

parent, and a binary tree may be empty (Stubbs and Webre, 1993). Horowitz and 

Sahni (1987) define a binary tree as a finite set of nodes which is either empty or 

consists of a root and two disjoint binary trees called the left sub-tree and the right 

sub-tree. Figure 4.4 shows two samples of binary trees with 9 nodes and a height of 

4.   

 

 

 

 

 

                                                                            (a)                                  (b)              

 

Figure 4.4  Binary trees. 

(a). A binary tree with 9 nodes 

(b). A complete binary tree with 9 nodes 

 

A binary tree is drawn with the root at the top and with the left and right children 

always positioned to the left and right of their parent, respectively. An external node 

has no children and an internal node has at most two children. If every internal node 

in a binary tree has nonempty left and right sub-trees, the tree is termed a complete 

binary tree (Figure 4.4 (b)). A complete binary tree of depth d is a binary tree having 

2d  1 nodes. For example, a complete binary tree of depth 4 as shown in Figure 4.5 
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has a number of 24 – 1 = 15 nodes, which is the maximum number of nodes this 

binary tree can have. 

 

 

 

 

 

 

 

Figure 4.5  A complete binary tree of depth 4. 

 

 

In a complete binary tree, each node is either an internal node with two 

nonempty left and right subtrees, or an external node having no children nodes. In 

such a binary tree, the number of external nodes always exceeds the number of 

internal nodes by one. This relationship can be termed as n1 = n0 + 1 where n1 is the 

number of external nodes and n0 is the number of internal nodes (Horowitz and Sahni, 

1987).  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 4.6  The sequence in which the node of the tree are visited for 

  preorder (ABDHIECFGJK), inorder (HDIBEAFCJGK)  

and postorder (HIDEBFJKGCA). 
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Postorder traversal is commonly referred to as Polish expression and has been 

widely used as representation of the slicing tree for many algorithmic problems 

(Figure 4.6). A tree search starts at the root and explores nodes from this point, 

searching for a goal node that satisfies certain conditions. For some problems, any 

goal node is acceptable but for other problems, a minimum-depth goal node is 

required or a goal node nearest to the root.  

Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree 

structure, or graph. It starts at the root and explores a path all the way to a branch 

before backtracking and exploring another path. DFS is an uninformed search that 

progresses by expanding the first child node of the search tree that appears and thus 

going further down until a goal node is found, or until it reaches a node that has no 

children. Then the search backtracks, returning to the most recent node it hasn't 

finished exploring. DFS is mainly used to find any solution when cost is not an issue. 

DFS follows the following rules:  

1. Select an unvisited node x, visit it, and treat as the current node.  

2. Find an unvisited neighbor of the current node, visit it, and make it the new current 

node.  

3. If the current node has no unvisited neighbors, backtrack to its parent, and make 

that parent the new current node. 

4. Repeat steps 3 and 4 until no more nodes can be visited.  

5. If there are still unvisited nodes, repeat from step 1.  

DFS is not good for tall trees when it is possible to over commit to a bad path 

early. It may miss a complete solution because it focused on checking the first partial 

path and did not test the others in the queue. 

Breadth-first search (BFS) is one of the simplest algorithms for searching a 

graph. It explores nodes nearest the root before exploring nodes further away. BFS is 

an uninformed search  method that aims to expand and examine all nodes or 

combination of sequences by systematically searching through every solution. It 

exhaustively searches the entire graph or sequence without considering the goal until 

it finds it. BFS is mainly used to find a solution at minimum distance from the root of 

a search tree. 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Uninformed_search
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Backtracking
http://en.wikipedia.org/wiki/Uninformed_search
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BFS follows the following rules:  

1. Select an unvisited node x, visit it, treat as the root in a BFS tree being formed. 

This level is called the current level.  

2. From each node z in the current level, in the order in which the level nodes were 

visited, visit all the unvisited neighbors of z. The newly visited nodes from this 

level form a new level that becomes the next current level.  

3. Repeat step 2 until no more nodes can be visited.  

4. If there are still unvisited nodes, repeat from Step 1. 

BFS is not good for fat trees where the nodes have high branching factors. It may also 

be a bad choice when several partial paths lead to the same node several levels down 

(bottleneck). It is not always fast but it may never miss a complete solution. 

Backtracking is the most common algorithm for performing systematic search. 

It is a methodical way of trying out various sequences of decisions to find a feasible 

solution. Backtracking algorithm is a recursive method of building up feasible 

solutions to a combinatorial optimisation problem one step at a time (Kreher and 

Stinson, 1999). Backtracking comprises of doing a DFS of the state space tree, 

checking whether each node is promising and if the node is non-promising 

backtracking to the parent node.  

Backtracking is an algorithm design technique for solving problems in which the 

number of choices increases at least exponentially with their initial size. This approach 

makes it possible to solve many large instances of NP-hard problems in an acceptable 

computational time. 

4.2 CONSTRAINT PROGRAMMING MODEL  

The CP formulation has the objective of minimising the completion time of the 

crew duties that consists of continuous driving time, transition time between trips, and 

transition times between trips of different duties. In this section, model subscripts, sets, 

parameters and model variables are presented followed by problem constraints and 

their explanations in detail. 
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Indices 

 

i,  i′          

j   j′             

k  k′                    

Index for trip  

Index for duty 

Index for shift 

 

Sets 

 
 

I            

J     

Ji 

K 

Kj    

Set of all trips 

Set of all duties 

Set of duties which can contain trip i (Ji ⊆ J) 

Set of all shifts 

Set of shifts for duty j  (Kj ⊆ K) 

 

Parameters 

 

𝛼jk  

𝛼'jk  

𝛿'(j+1)k   

δ(j+1)k  

𝜁ii’ jk 

𝜁ii’ j(j+1)k 

dti  

ati  

dsi  

asi  

ti  

Trmax 

Tomax 

Trmin 

Tomin 

Wdmax 

Wtmax  

Wtmin  

Stk  

Stmax 

minimum duration of 1st part of a duty in the shift k 

maximum duration of 1st part of a duty in shift k 

minimum duration of 2nd part of a duty in shift k 

maximum duration of 2nd  part of a duty in shift k 

transition time of trip i in the same partial duty j  

transition time of trip i of different partial duties j  

departure time of trip i 

arrival time of trip i 

departure station of trip i 

arrival station of trip i 

traveling time of trip i  

maximum transition time in the same partial duty 

maximum transition time between partial duties (ROP) 

minimum transition time in the same partial duty 

minimum transition time between partial duties (ROP) 

maximum continuous driving time allowed per duty 

normal working time per shift  

minimum working time allowed per shift  

spread time of  shift k 

maximum spread time allowed per shift  
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Variables 

 

 𝑥ijk 

 𝑦ii′jk 

 

 zii′j(j+1)k   

 

 𝜎ijk 

  

∈{0,1} binary variable for the assignment of trip i to duty j of shift k 

∈{0,1} binary variable that denotes whether a transition time occurs 

from trip i to trip i′  in duty j of shift  k 

∈{0,1} binary variable that denotes whether a transition time appears 

between duties in shift k 

∈  ℝ  departure time of trip i in duty j of shift k 

Objective function 

The objective is to minimise the total working time of the crew (Cmax). 

 

Min  Cmax            (1) 

The maximum completion time should be greater than or equal to the arrival 

time of all the last trips of all duties. Thus, completion of all traveling tasks is given 

by expression (2).  

 

Cmax  ≥   𝜎ijk  +  ∑  ∑ ti 𝑥ijk  +  ∑  ∑ 𝜁ii′jk  𝑦ii′jk    +  ∑ 𝜁ii′j(j+1)k  zii′j(j+1)k             
                                           j ∈ Ji   i ∈ Ik                     j ∈ Ji   i, 𝑖′ ∈ Ik                            i, 𝑖′ ∈ Ik      

         ∀  i, i′ ∈ I, i ≠ i′,  j ∈ Ji,,  k  ∈  Kj 

 

 

(2) 

Both discrete variable and continuous variable are used in this model. There are 

three discrete decision variables that are; the decision about whether to assign trip i in 

duty j of shift k (𝑥ijk); the decision about whether a transition time occurs in the duty 

(𝑦ii′jk); and the decision about whether a transition time between duties appears in the 

shift ( zii′j(j+1)k). The continuous variable is the departure time of trip i in duty j of shift 

k (𝜎ijk). 

The decision variable trip i (𝑥ijk) is declared as an activity. An activity in the 

schedule is considered as a non-pre-emptive in which the activity cannot be 

interrupted. Each trip must be serviced without interruption from its departure time to 

its arrival time. The amount of time to be used by all the trips is unknown value in a 

given time interval. This means that the time capacity required by all the trips in a duty 

can vary over time, provided that the duty duration is not exceeded. In this crew 
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scheduling problem, the complexity increase as the duty duration is not constant over 

time but ranging between two predefined limits.   

Various related constraints for scheduling and sequencing trips to complete a 

duty are included in the model. When an activity is declared, the equation (3) is 

automatically included in the system.  

 

dti   +  ti   =  ati                     ∀  i  ∈  I  (3)   

A chain of activities can be enforced by using the following precedence constraint.   

 

ati  +  𝜁ii′jk    ≤  dti′         

⟹   𝜁ii′jk  =  dti′ –  ati                    

  

∀  i, i′ ∈ I, i ≠ i′,  j ∈ Ji,  k  ∈  Kj 

 

(4) 

 

When trips are allocated on the same duty j, the sequence of these trips can be 

enforced by using the following expression (5). This expression implies that when trip 

i and trip i′ are allocated in duty j, transition time occurs either from trip i to trip i′ or 

from trip i′ to trip i. 

⋁ 𝑥ijk 
     j ∈ Ji 

⋀  
 

 

⋁ 𝑥i′jk    
     j ∈ Ji 

 

⟹   𝑦ii′jk    ⋁   𝑦i′ijk 

 

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji , k  ∈  Kj 

 

 

(5) 

 

      The duties can be regarded as unary resources in which two trips assigned in the 

same duty cannot overlap in time. The set Ji represents the set of duties that can 

contain trip i. The trip i can be either starts before trip i′ or starts after trip i′. All trips 

that will be in the same duty are related by constraint (6) and constraint (7).  

( 𝜎ijk   +   ti  𝑥ijk  +  𝜁ii′jk  𝑦ii′jk     ≤    𝜎i′jk  ) 

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

      ⋁ 

(𝜎i′jk   +   ti′ 𝑥i′jk  +  𝜁ii′jk  𝑦ii′jk     ≤   𝜎ijk   ) 

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

 

 

(6) 

 

 

 

(7) 

The start time of trip i′ in any duty requires the completion of the previous trip 

i.  Similarly, the start time of the 2nd part of a duty at every shift k requires the 

completion of the 1st duty. This can be stated by the following expression (8) and 

expression (9). 
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( 𝜎ijk   + ∑ ti  𝑥ijk +  ∑ 𝜁ii′jk  𝑦ii′jk  +  𝜁ii′j(j+1)k  zii′j(j+1)k      ≤  𝜎i′jk  )  
                      i  ∈ Ik                      i, 𝑖′ ∈ Ik   

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

      ⋁ 

(𝜎i’jk   + ∑ ti′  𝑥i′jk   +  ∑ 𝜁ii′jk  𝑦ii′jk  +  𝜁ii′j(j+1)k  zii′j(j+1)k    ≤  𝜎ijk   ) 
                       𝑖′ ∈ Ik                       i, 𝑖′ ∈ Ik   

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 
 

 

 

 

(8) 

 

 

 

(9) 

Constraint (10) is included to ensure connectivity of the trip sequence in a duty. 

Whereas constraint (11) and constraint (12) ensure that both the transition time 

between trips in the sequence of the same duty and the transition time between trips of 

different duties do not exceed the maximum and minimum allowed transition times. 

Constraint (13) ensures that the allowed maximum continuous driving time is not 

violated in each duty.  

( 𝜎ijk   +   ti  𝑥ijk    ≤  𝜎i′jk  )   ⋀   (dsi  =  asi ) 

                                                             ∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

( ∑ 𝜁ii′jk  𝑦ii′jk   ≤  Trmax)    ⋀    ( ∑ 𝜁ii′jk  𝑦ii′jk   ≥  Trmin) 
      i, 𝑖′ ∈ Ik                                                                         i, 𝑖′ ∈ Ik 

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

( ∑ 𝜁ii′j(j+1)k   zii′j(j+1)k   ≤  Tomax)   ⋀  ( ∑ 𝜁ii′j(j+1)k   zii′j(j+1)k   ≥ Tomin) 
      i, 𝑖′ ∈ Ik                                                                                         i, 𝑖′ ∈ Ik 

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

( ∑ ti  𝑥ijk   ≤   Wdmax )    ⋀      ( ∑ ti  𝑥i(j+1)k  ≤   Wdmax ) 
      i ∈ Ik                                                                                  i ∈ Ik          

                                               ∀  i ∈ I,  j ∈ Ji, k ∈ Kj 

                           

 

(10) 

 

 

(11) 
 

 

 

(12) 

 

 

 

(13) 

The set of constraints (14), (15), (16), and (17) indicates that the total continuous 

driving time in the 1st part of a duty should be greater than or equal to the minimum 

duration of the 1st part of a duty in shift k (𝛼jk) and the total continuous driving time of 

the 2nd part of a duty should be less than or equal to the maximum duration of the 2nd 

duty in shift k (𝛿(j+1)k). Otherwise, the total continuous driving time of the 1st part of a 

duty should be less than or equal to the maximum duration of the 1st part of a duty in 

shift k (𝛼'jk) and the total continuous driving time of the 2nd part of a duty should be 

greater than or equal to the minimum duration of the 2nd duty in shift k (δ'(j+1)k) (see 

Figure 3.6). This set of constraints enforces to satisfy a condition of either the crew 

takes a MB at the earliest time or the crew takes a MB at the latest time. This set of 

constraints also accommodates conditions in which the crew takes a MB between the 

earliest break time and the latest break time in the shift. 
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(∑  ti  𝑥ijk   +   ∑  𝜁ii′jk  𝑦ii′jk      ≥   𝛼jk)    ⋀       
    i ∈ Ik                            i, 𝑖′ ∈ Ik   

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

(∑ ti  𝑥i(j+1)k   +   ∑  𝜁ii′ (j+1)k  𝑦ii′ (j+1)k    ≤   δ (j+1)k )  ⋁   
    i ∈ Ik                                   i, 𝑖′ ∈ Ik    

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

(∑  ti  𝑥ijk  +   ∑  𝜁ii′jk  𝑦ii′jk      ≥   𝛼'jk )    ⋀         
    i ∈ Ik                            i, 𝑖′ ∈ Ik    

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

(∑ ti  𝑥i(j+1)k  +  ∑  𝜁ii′ (j+1)k  𝑦ii′ (j+1)k   ≤    δ'(j+1)k )      
    i ∈ Ik                                i, 𝑖′ ∈ Ik   

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 
 

  

(14) 

 

 

(15) 

 

 

(16) 

 

 

(17) 

Constraint (18) and constraint (19) calculate the total actual driving time in shift 

k (Wtk) which is equal to the total working time of all duties in the shift.  The total 

actual driving time within this shift must not exceed the upper bound (Wtmax) and lower 

bound (Wtmin). 

(∑   ∑  ti  𝑥ijk   +  ∑   ∑  𝜁ii′jk  𝑦ii′jk    ≤  Wtmax )        
    j ∈ Ji   i ∈ Ik                               j ∈ Ji   i, 𝑖′ ∈ Ik                        

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

               ⋀ 

(∑   ∑  ti  𝑥ijk   +  ∑   ∑  𝜁ii′jk 𝑦ii′jk     ≥  Wtmin )       
    j ∈ Ji   i ∈ Ik                              j ∈ Ji   i, 𝑖′ ∈ Ik               

∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

                                           

 

 

 

(18) 

 

 

 

(19) 

  

Constraint (20) restricts the spread time of a shift from exceeding the maximum 

allowed total spread time. The spread time of a shift (Stk) is equal to the total working 

time plus the transition time between duties (ROs). The third term in the left hand side 

of this equation is the transition time between duties in a shift. This transition time is 

the time required by the crew to take a MB during the period of ROs in the shift. 

Constraint (21) and constraint (22) are the variable restrictions for 3 binary variables 

and 1 real variable, respectively. 

 

∑   ∑  ti 𝑥ijk   +  ∑   ∑ 𝜁ii′jk  𝑦ii′jk    +  ∑ 𝜁ii′j(j+1)k  zii′j(j+1)k     ≤   Stmax          

j ∈ Ji   i ∈ Ik                                          j ∈Ji     i, 𝑖′ ∈ Ik                                i, 𝑖′ ∈ Ik                                   
                                   ∀  i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj 

 

 

 

(20) 

𝑥ijk  ∈ {0,1},  𝑦ii′jk  ∈{0,1},  zii′j(j+1)k  ∈{0,1} 

𝜎ijk  ∈  ℝ   

 

 (21) 

(22) 
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4.2.1 Solution Techniques   

The CP problem is characterised by a set of decision variables and their domains, 

and a set of constraints involving these variables. The set of variables is denoted by X 

and each variable xi  ∈ X, has a finite domain of possible values that the variable can 

take. A set of constraints C restricts the values the variables can simultaneously 

acquire. The problem definition is completed by a branching strategy which is also 

known as enumeration or search strategy. 

Searching for solutions is performed by means of a tree search algorithm. 

Although the propagation engine is effective, the number of nodes may still be too 

large and leads to a very long optimisation process and extremely large memory usage. 

To avoid such tendency, the search may be limited in a number of ways. The first one 

is by setting a maximum computational time. The search process will terminate as soon 

as the computational time exceeds this limit. The second is by setting a maximum 

number of nodes to explore. The search process will terminate when the number of 

explored nodes exceeds this threshold. The third is by setting a maximum depth for 

the search tree to explore. The branch-and-bound will only explore nodes of the search 

tree up to this maximum depth. The forth is by setting the number of solutions. The 

search process will terminate when this acceptable number of solution is reached. The 

last is by setting a maximum number of backtracks. When exploring the search tree, 

the algorithm may backtrack or it returns to the parent node of the current node to 

explore a new branch. Thus the search process will terminate when the number of 

backtracks is reached. Optimisation programming language such as ILOG OPL Studio 

allows a number of instructions for the search procedure. Instructions such as 

‘timeLimit’ limits the CPU time in seconds, ‘firstSolution(n)’ returns the first n 

solutions only, and instruction ‘failLimit’ limit the number of failures. In this study, 

we apply the ‘timeLimit’ instruction to terminate the search according to the given 

time limit.   

A search strategy defines the traversal of the search tree. The test problems were 

solved with different search mechanisms of depth first search (DFS) and best first 

search (BFS). The DFS is similar to the BFS from the algorithmic point of view. The 

DFS starts at the root node and the search proceeds by moving downward to its first 

descendant. This process backtracks to the parent node when a leaf is reached and then 

continues to its next descendant, if it exists. The DFS has an advantage that it needs 
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small memory, while the BFS can improve the algorithm’s convergence speed. We 

applied the DFS because it exhaustively explores the search tree and handles memory 

management better. However, if maximum depth is very large, the DFS may take very 

long to find a solution or will not discover it at all. 

Given a set of travelling tasks (trips) from a train timetable, the variables can be 

declared which correspond to the sequence of trips covered by one duty. In addition to 

this, the constraints that dictate the feasibility of the duty can be further stated such as 

the time required between trips and maximum continuous driving time allowed. A 

search procedure will then be carried out to generate potential trip sequences. The 

optimised solution is a schedule which satisfies all constraints and minimises the 

objective function or equivalently the highest possible crew utilisation. 

4.2.2 Computational Results   

The CP model was formulated using ILOG OPL Development Studio 6.3. This 

commercial package can help with modelling and integrating CP components and 

mathematical programming. The data contains information about the train 

identification with its departure time, its departure station, its arrival time and its 

arrival station. The input data are retrieved from the operational environment of one 

line in the railway network. By considering this initial data, we derived several test 

data as problem instances.   

This railway crew scheduling can be regarded as a resource allocation problem, 

where each activity has to be assigned to a resource. A natural way in modelling such 

a problem would be to have one decision variable for each activity and then define the 

set of activities assigned to each resource and ensure that the connectivity constraints 

such as the minimum time required between trips are not violated.  

The scheduler module of OPL Studio provides several ways of representing the 

types of resource. A global constraint represents that a value equal one when activity 

trip i has been assigned to the resource identified as duty j which is element of the set 

of alternative resources J. Any given activity requires a predefined length of slot of 

capacity j. Given a set of duties J with given time capacity, a set of trips with known 

travelling time and transition times between trips, the scheduling problem then decide 

which trips to assign to a duty in such a way that all related constraints are satisfied. 

Alternatively, the decision variables can be modelled using arrays of interval variables. 
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This variable represents the trips and captures the departure time, arrival time and 

travelling time of each trip if it is present in the schedule. The length of this interval is 

equal to its arrival time minus its departure time or equivalently the distance between 

the start time of the earliest scheduled trip of the duty and the end time of the latest 

scheduled trip of the duty.  

In disjunctive scheduling, each resource can execute at most one activity at a 

time. To prevent the trips within a duty which may overlap each other in time when 

they are assigned to the same resource, we eliminated the value of resource that has 

been assigned to those activities from the domains of all activities. To be categorised 

as feasible, a duty has to satisfy many constraints. For example, the departure time of 

the trip i plus duration of the driving time is less than or equal to the departure time of 

the next trip i′. The arrival station of the previous trip i must be the same as the 

departure station of the next trip i′. Every duty (shift) should start and end at the same 

depot and the total working time should be less than or equal to the maximum working 

time allowed. The feasible duties compose a schedule and for a schedule to 

be acceptable it has to minimise total working time of the crew. By imposing 

constraints for the actual driving time and the spread time allowed on the model, the 

optimisation model eventually minimises the variation of spread times from the regular 

crew working time. The total working time of the crew consists of driving period and 

non-driving period. The non-driving periods or idle time of the crew corresponds to 

the transition times in this model. Ultimately, a feasible schedule is any acceptable 

schedule with the highest utilisation of crew to increase productivity. 

The CP model was tested using generated random instances by assuming the 

time interval between trips is 10 minutes (120 trips per line with 2 lines). Normal daily 

working time was equal to 8 hours and maximum spread time allowed was set to be 

12 hours. The minimum length and maximum length of working periods of the 1st duty 

were set to be 3 hours and 5.5 hours, respectively. Whereas the minimum length and 

maximum length of working periods of the 2nd duty were set to be 2 hours and 4.5 

hours, respectively. The computational results obtained from all the generated problem 

instances are summarised in Table 4.1. 
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Table 4.1  Computational results of CP with randomly generated problem instances. 

 
 

Search DFS 

Instance 

No. 

of 

Trips 

Feasible 

Duties 

(FDs) 

Avg. 

Traveling 

Time 

(min) 

Avg. 

Transition 

Time 

(MB) 

 

Driving 

Time  

(%)  
        

DT-01 25 6 469 30 0.869 

DT-02 45 11 480 30 0.888 

DT-03 65 17 478 30 0.885 

DT-04 85 24 487 30 0.902 

DT-05 105 35 477 30 0.883 

DT-06 125 41 479 30 0.887 

DT-07 145 48 465 40 0.861 

DT-08 165 52 483 35 0.894 

DT-19 185 63 488 45 0.904 

DT-10 205 69 485 35 0.898 

DT-11 225 74 485 35 0.898 

Search BFS 

Instance 

No. 

of 

Trips 

Feasible 

Duties 

(FDs) 

Avg. 

Traveling  

Time 

(min) 

Avg. 

Transition 

Time 

(MB) 

 

Driving 

Time 

(%)  

      

DT-01 25 6 467 30 0.865 

DT-02 45 11 479 30 0.888 

DT-03 65 17 479 30 0.887 

DT-04 85 24 488 30 0.898 

DT-05 105 35 477 40 0.887 

DT-06 125 42 477 35 0.887 

DT-07 145 47 480 37 0.888 

DT-08 165 50 488 35 0.904 

DT-19 185 63 480 40 0.888 

DT-10 205 70 485 40 0.898 

DT-11 225 74 478 35 0.885 
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The size of the problem increases considerably with the increase of the number 

of trips included. Several different data sets were considered in this study with the 

number of feasible duties (FDs) ranging from 6 to 74. The number of FDs will increase 

with the number of trips included in the problem as indicated by the CP model. Driving 

time of the crew is the ratio between the total working time and the total spread time 

in the shift. This driving time was used to measure the performance of the obtained 

schedules (productivity rate). By analysing the results, we noted that the productivity 

rate of the crew increase slightly with the size of the instances with some fluctuations. 

The crew driving time percentage for each data instance is shown in Figure 4.7. 

 

 
 

Figure 4.7  Driving time of the crew based on the search methods. 
 

 

The smallest problem size considered had 272 variables and 3034 constraints 

and the largest problem size had 1118 variables and 12284 constraints. As can be seen 

in Table 4.2, the DFS approach required slightly more computational time than the 

BFS method. Computational results have shown that in most cases, there was no 

significant improvement after one hour of running time. Therefore, a time limit of 60 

minutes was imposed for each data set.  
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       Table 4.2  Computational performances based on the search methods. 

 

Search   DFS                                                  BFS 

Instance 
CPU 

time*  
Variables Constraints 

CPU 

time*  
Variables Constraints 

       

DT-01 1.08 272 3034 1.05 299 3106 

DT-02 3.25 488 5367 3.16 386 5354 

DT-03 17.34 822 8736 15.12 500 8921 

DT-04 73.05 978 10715 66.14 755 10722 

DT-05 90.02 979 10799 90.02 823 11343 

DT-06 119.12 996 11288 103.51 890 11616 

DT-07 147.44 1022 12126 145.09 1107 12201 

DT-08 188.17 1024 12132 180.04 1108 12239 

DT-19 222.36 1031 12180 204.96 1108 12255 

DT-10 255.38 1033 12186 239.58 1116 12282 

DT-11 297.87 1035 12217 269.60 1118 12284 

   * In seconds using Intel Core 2 Duo 1.96 GHz Processor with 3.46 GB of RAM. 

 

The experimental results showed that the CP model produced optimal solutions 

for most problem instances. The average relative deviation of all datasets from the 

optimum is less than 5%. However, when more trips were included in the problem, 

both the DFS and the BFS methods failed to achieve optimality. 

The model sometimes failed to schedule a few trips but the overall results 

indicate that the model can produce feasible schedules within a reasonable 

computational time. The results obtained indicate that the CP approach is very 

sensitive to the increase of the problem size. Also, by using commercial CP software 

with a default search strategy sometimes lead to unpredictable results. It can be noted 

that the embedded basic search strategies is not sufficient especially for solving 

practical large-sized problems. The CP model has to be coupled with suitable user 

defined search techniques which instantiate the variables to improve the performance 

of the method. Figure 4.8 shows that the number of variables and constraints of the 

problem have a positive correlation with the increase of the problem size.  
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Figure 4.8  Variables and constrains of the search methods. 

 

 

4.3 CONCLUSION 

This chapter presents a CP-based model and its solution approach to solve 

railway CSP. The objective of the model is to minimise the total working time by 

minimising variation of spread times from the regular crew working time. The best 

solution obtained by the DFS or the BFS methods is used as the base in determining 

the relative deviation of solutions from the optimal. In a few cases, both the DFS and 

the BFS failed to reach optimality when solving small-sized datasets, but the relative 

deviation is very small and can still be considered as acceptable solutions. The CP 

formulation, however, is more natural in representing the problem and requires much 

fewer variables and constraints than MIP-based methodologies. This is due to the 

global constraint that capable of representing complex relationships between variables 

which in turn provides effective domain reduction. Using the CP technique, the model 

provides acceptable results in all test datasets. The overall results indicate that the CP 

model can produce feasible railway crew schedules within a reasonable computational 

time. 
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 Metaheuristics 

The CSP falls into the category of combinatorial complex optimisation problem. 

As the computation progresses, the number of potential solutions is sequentially 

compounded leading to a large number of possibilities. Due to the combinatorial nature 

of the CSP, heuristic algorithms are the most promising approach for solving the 

problem. The main limitation with many of conventional heuristic algorithms is their 

difficulty to escape from locally optimal solutions. The search is usually conducted 

from a single point in the solution space and continuously searches for improved 

solutions until there is no possible improvement. This local search method makes the 

search easily trapped in local optima. In an attempt to deal with this problem, several 

metaheuristics approaches have emerged for solutions to combinatorial complex 

problems such as simulated annealing (SA), tabu search (TS), genetic algorithms 

(GAs), ant colony optimisation (ACO), and particle swarm optimisation (PSO). These 

approaches are not sensitive to initial solutions and allow the application of parallel 

processing. 

5.1 OPTIMISATION PROBLEM   

Practical optimisation problems involve a high complexity and require extensive 

computational times because of the number of potential solutions. The approximate 

methods are generally used to resolve this class of problems. These methods are based 

on an iterative exploration of the search space to find a good quality solution in 

reasonable computational times. Figure 5.1 illustrates the global minimum and the 

local minimum in the solution space. The approximate methods, among others are the 

neighbourhood methods, such as Local Search, Simulated Annealing (SA), and Tabu 

Search (TS). 

 

 

 

 



 

Chapter 5: Metaheuristics 74 

 

 

 

 

 

 

 

 

 

Figure 5.1  Global optimum of a minimisation criterion in the solution space. 

 

5.1.1 Combinatorial Optimisation Problem    

Combinatorial optimisation can be regarded as optimising a linear function 

based on other linear functions over a finite set of possible solutions. Combinatorial 

optimisation is the discipline of decision making in case of discrete alternatives and 

can be regarded as optimising a linear function based on other linear functions over a 

finite or infinite number of possible solutions (Aarts & Lenstra, 2003). A combinatorial 

optimisation problem P = (s, f) can be defined by;  

 a set of variables X = {x1,..., xn};} 

 variable domains d1, ...,dn; 

 constraints among variables; 

 an objective function f to be maximised or minimised; 

The set of all possible solutions is S = {s = {(x1,v1),.....,( xn,vn)} | vi ∈ di, s satisfies 

all the constraints}. Each element of the set S can be seen as a candidate solution. S is 

called a search space or solution space. The solution of a combinatorial optimisation 

problem is the element of S, s* ∈ S, with optimum objective function value. Objective 

function f is a function that measures the value of each solution in S. In the case of 

minimising objective function value, f(s*) ≤ f(s), ∀s ∈ S. s* is called a globally optimal 

solution of (S, f) and the set S* ⊆ S is called the set of globally optimal solutions. 

The difficulty of solving combinatorial optimisation problems yet their great 

practical importance, have led to a large number of proposed solution techniques. The 

existing solution methods for solving combinatorial optimisation problems can be 

classified as either exact or approximate algorithms. Exact algorithms can guarantee 

Local minimum 
Global minimum 
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to find an optimal solution (if there is one exists) or prove that no feasible solution 

exists. When optimal solutions cannot be computed efficiently in practice, it is usual 

to find a good trade-off between optimality and efficiency.  

5.1.2 NP-Complete Problems and Combinatorial Explosion     

A decision problem can be expressed as a problem that requires a ‘yes’ or ‘no’ 

answer. The class P refers to the set of all decision problems for which polynomial 

time algorithms exist. The class of P is the class of problem solvable in polynomial 

time and it has at least one algorithm to solve it. A hard or intractable problem requires 

solution time which is an exponential function of its problem size. The class NP 

(nondeterministic polynomial-time) is a class of problems in which its solution can 

only be guessed and evaluated in polynomial time with no known rule to make such 

guess, hence non-deterministic. This class includes most combinatorial optimisation 

problems and all problems that are in P, P ⊆ NP. Within the class NP there are the NP-

complete problems. The NP-complete problems are by definition the hardest problems 

in the class NP. If one NP-complete problem can be proved to be solvable in 

polynomial time, then each problem in NP can be solved in polynomial time, thus P = 

NP would follow.  

Computational complexity is the measurement of how much resource is required 

to solve the problem. When an algorithm is designed to solve a particular problem, it 

is important to know how much time and space an implementation will consume.  

Mathematical methods can often be applied to predict how much time and space 

required by an algorithm before it is implemented in the form of a computer program.  

Having understood that will help save work in order to test its performance and to 

decide what kind of solution technique is suitable. If the problem is hard, finding exact 

optimal solution may be impractical and therefore have to resort to an approximate 

solution obtained by heuristics. 

Since most practical combinatorial optimisation problems are NP-hard, it cannot 

guarantee to obtain an optimum solution. In spite of the numerous studies on this type 

of problems, no efficient algorithm had been found yet for solving the problems. 

Therefore, the use of heuristics and/or metaheuristics is very promising and is 

completely justified in obtaining approximate solutions when solving such difficult 

problems. 
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5.2 CONSTRUCTIVE HEURISTICS   

Constructive heuristics build a solution by iteratively add solution components 

until a feasible solution has been found. Neighbourhood search methods are iterative 

procedures in which a neighbourhood 𝒩(s) is defined for each feasible solution, and 

the next solution is searched among the solutions in 𝒩(s). The neighbourhood of a 

solution is obtained by moving each pair of consecutive or non-consecutive positions 

of the sequence that represents the solution. Local search explore the search space by 

moving from solutions to its neighbouring solutions in the hope improving the value 

of the objective function. Local searches are based on the definition of a set 𝒩(s) of 

solutions in the neighbourhood of any solution s.  

5.2.1 Initial Solution by Constructive Heuristic (CH)    

Local search explores the neighbourhood 𝒩(s) of a current solution iteratively 

and finds a better solution sb ∈ 𝒩(s) according to some criteria. The initial solution is 

constructed by means of a constructive heuristic from an ordered list of trips with their 

attributes to form crew duties. We break down this phase into two sub-phases. The 

first is the initialising phase that includes listing all vehicle blocks in ascending order 

of start time, vb = {vb1, vb2,…, vbn}; and grouping them based on the length of run, lr = 

{lr1, lr2,…, lrn}. Cutting vehicle blocks into trip segments is also performed in this 

phase ts = {ts1, ts2,…, tsn}. Some vehicle blocks may have sufficient length to be divided 

into two straight runs that are approximately equal to the length of regular working 

hours (8 h) each. Other vehicle blocks may be divided into one straight run of 8 h with 

a piece left over. The remaining of the vehicle blocks do not need to be divided as they 

have sufficient length to form one straight run with no pieces left over. The second is 

combining phase which is joining trip segments by progressively selecting uncovered 

trip segments from a block to create feasible duties. The CH method is described in a 

pseudo code form in Algorithm 5.1. It is desirable to construct feasible schedules that 

will minimise idle transition times and maximise the length of the route per cycle time. 

The cycle time is the time spent to drive a round trip plus idle intervals on a route. 
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The pseudo code of the CH algorithm is as follows: 

 
 

Algorithm 5.1: Generating initial solutions  

1      procedure Constructive_Heuristics() 

2      Input all relevant data: trip list, vehicle blocks, parameters, and constraints; 

3  Output: initial solutions S0; 

4  begin Initialisation () 

5        // first phase 

6        i    l to I  (I  total number of trips)  ∀ i ∈ vb; 

7        vb  {vb1, vb2,  vb3, …, vbn} in ascending starting time order,  ∀ i ∈ vb;    

8         lr  {lr1, lr2,…, lrn} ∀ i ∈ vb; 

9         ts   {ts1, ts2,…, tsn} ∀ i ∈ vb; 

10        // second phase 

11        n    l to N (N number of trip segments);  

12        list trip segments sequentially; 

13        S0   = ∅ ; 

14        n  ≠ ∅ ; 

15         while (n   tsn  1) do 

16               allocate trip segments into time slots based on the starting time of the trip;     

17               S0
  S0

  ∪ {i}; 

18              n   n  \ {i};   

19               determine possible trip segment combinations;     

20          end while     

21          S0  S0
 + 1; 

22  return (S0);  

23  end 
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5.3 SIMULATED ANNEALING (SA)   

SA is a variant of local (neighbourhood) search which is based on an analog of 

cooling solid material. The  material is heated past its melting point, then it cooled 

back slowly until it crystallizes into a solid state (low-energy state). This process is  

known as annealing. At high temperatures, the atoms in the material have high energies 

and more freedom to arrange themselves. When the temperature is reduced, the atom 

energies decrease. The structural properties of the cooled solid depend on the rate of 

cooling. Metropolis et al. (1953) simulated the change in energy of the system as it 

cools, until it converges to a steady frozen state.   

This basic concept of SA derived from the analogy with the thermodynamic 

annealing process and it is widely used for solving combinatorial optimisation 

problems. At temperature T, the moves are accepted based on probability P and this 

probability is compared with a randomly generated number between (0, 1). T 

represents control parameter in the heuristic.  SA algorithm generates a perturbation 

and calculates the resulting energy change, ∆E = f (S'
max) – f (Sc

max) which represents a 

change in objective function value.  If energy has decreased then the system moves to 

the new state, otherwise the new state is accepted with the probability. Higher energy 

state solutions are accepted if the calculated probability is higher than the randomly 

generated number.    

This technique can be applied to minimization problems based on consecutive 

update steps where the update step length is proportional to parameters which can play 

the role of a temperature. Acceptance probability is dependent on the control 

parameter, T and magnitude of increase in objective value, ∆E. When ∆E is small, 

acceptance probability is high. When T is high, acceptance probability is high. As T 

decreases, acceptance probability decreases. The process of moving from one state to 

the next is repeated for a number of iterations at the current temperature, then the 

temperature is decreased and the same process is repeated until the system freezes into 

a steady state. In terms of search methods, SA is a stochastic local search method. It 

always accepts a selected better local solution and it allows accepting a worse local 

solution to avoid getting stuck at a local optimum, with a probability which is gradually 

decreased as the algorithm proceeds. 
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The following notations are used through the description of the SA and HCHSA 

algorithms. 

 

 

S : set of feasible solutions 

N (s) : set of neighbourhood solutions 

s´ : generated solution (sample solution from neighbourhood)  s´ ∈  S 

sc : current solution 

sb : best solution found 

f (S'
max) : function value of neighbourhood solution 

f (Sc
max) : function value of current solution 

f (Sb
max) : function value of best solution 

T0 : initial temperature 

Tc : current temperature 

R : uniformly distributed random number between 0 and 1 

α : cooling rate 

imax : maximum iteration 

 

 

SA can be described in the pseudo code as follows: 

 

 
Algorithm 5.2:  Simulated Annealing 

1 procedure Simulated_Annealing() 

2 Input: initial schedules; 

3 Output: best solutions sb; 

4 begin Simulated_Annealing() 

5      define_neighbourhood_structure(); 

6      sc
    get_initial_solution (S) ; 

7      sb   sc; 

8      T   initial_temperature(); 

9      while (¬ stopping_criterion) 

10             search_neighbourhood   true; 

11             while (search_neighbourhood) 

12                   s´   sample_solution_from_neighbourhood(𝒩(s)); 

13                   if  ( f (s´) >  f (s) ) then 

14                       Paccept    exp ( f (s) – f (s´) / T ) ; 
15                   else 

16                       Paccept   1; 

17                   end if 

18                   if (random()  <  Paccept  ) then 

19                        sc  s´ ; 

20                        search_neighbourhood   false; 

21                   else 

22                        search_neighbourhood  searching_current_neighbourhood(); 

23                   end if 

24                   if (sc < sb ) then 

25                        sb   sc; 

26                   end if 

27             end while 
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28              T   update_temperature(T); 

29      end while 
30 return sb;     

31 end    
 

5.3.1 Solution Improvement by Hybrid Constructive Heuristic Simulated 

Annealing (HCHSA)    

SA is motivated by an analogy to the physical process of annealing, where the 

temperature of a material is reduced to achieve its thermal equilibrium (Kirkpatrick et 

al. 1983). This principle is applied in combinatorial optimisation problems to optimise 

the objective function value. The advantage of this technique is that it can avoid local 

optima by occasionally allowing the acceptance of non-improving solutions in the 

hope that a better solution may be found later on. 

We utilize the SA metaheuristic to improve solution and to derive a near-optimal 

solution. The design of SA algorithm to solve the railway crew scheduling generally 

consists of four components, an objective function (analogue of energy) to be 

optimised; the neighbourhood structure that defines how to efficiently generate 

random solutions from neighbourhood; an acceptance criterion that is a criterion for 

accepting or rejecting a new generated solution; and a cooling schedule. 

Implementation details of the proposed HCHSA algorithm are given as follows: 

a) Initial sequence. An initial schedule is obtained from the best schedule returned 

by the CH algorithm. This schedule is assumed as the current solution. A set of 

scheduled trips, ℐ = {i1, i2, i3, ….. , in}, that need to be serviced during a defined 

period of time is identified by its departure station, departure time, arrival station, 

arrival time, represented by vector dsi, dti, asi, ati, respectively. The algorithm 

sorts an array ℐ = {i(0), … , i(n–1)} of n trips in increasing order of departure 

time. Every iteration removes an element from the input data, inserting it into 

the correct position and simultaneously moves the data in the already-sorted list, 

until no input elements remain. Initialising can be considered as the process of 

queuing all the trips in the right order to their assigned duties. The constraints 

considered in this case are connectivity restrictions, traveling times and 

transition times.  

b) Neighbourhood structure. The neighbourhood structure defines a method of 

generating alternative solution from a current solution. We generate the 
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neighbourhood using swap and insert mechanisms. The neighbourhood structure 

proposed in Elizondo et al. (2010) is adapted for our problem. Two different 

duties sx and sy , with the number of trips v and w, respectively,  are selected and 

denoted as,  sx = {ix1, ix2, … , ixm, ix,m+1, … , ixv} and  sy = {iy1, iy2, … , iyn, iy,n+1, 

… , iyw}. The swap operation is performed on the selected duties by exchanging 

the position of trip segments (ts) between two blocks. The swap operation is only 

performed on duties with trip segments originate and terminate at the same crew 

depot. The insert operation is performed by moving one trip segment to another 

duty. This operation is only applied to the trip segments that arrive and depart 

from stations with a local connection.  

c) Acceptance criterion. Given the initial configuration, a small perturbation is 

performed by exchanging a piece of the trip between two duties and moving a 

piece of the trip within one duty to another. The change in the objective function 

value is then calculated. If it gives a better solution, the new solution is accepted. 

Otherwise it still has a chance to be accepted with a particular condition that is 

the value of the function f (ΔE) = 𝑒−Δ𝐸/𝑇 is greater than a randomly generated 

value between 0 and 1. When the solution is accepted, the current neighbourhood 

configuration is updated as the algorithm proceeds.  

d) Cooling schedule. An annealing or a cooling schedule consists of (i) the initial 

value of temperature parameter T0, (ii) the cooling factor (a method of gradually 

decreasing the value of Tc), (iii) the number of iterations to be performed at each 

Tc before it is decreased, and (iv) the stopping criterion to terminate the 

algorithm. 

The overall method of the proposed HCHSA algorithm is captured in the pseudo-code 

form in Algorithm 5.1 and Algorithm 5.3. 

 
Algorithm 5.3: Simulated Annealing  

1 procedure Simulated_Annealing() 

2 Input : initial solutions S0; 

3 Output: best found solutions (duties); 

4 begin Simulated_Annealing() 

5 // initialisation step 

6       select an initial solution and set it as the current solution; 

7       sc
    s ∈ S;    

8       calculate Sc
max;  

9       sb   sc; 

10       f (Sb
max)   f (Sc

max);  
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11       select an initial temperature, T0; 

12       Tc    T0; 

13       select maximum iterations imax;  

14       select temperature reduction function,  α  (cooling rate); 

15       initialise step counter i  0; 

16       define neighbourhood structure(); 

17 // iterative step 

18       while (i  <  imax  and  Tc  >  T0 ) 

19             search neighbourhood; 

20             generate solution from neighbourhood,  s ∈ 𝒩(s); 

21              s´  s ∈ 𝒩(s);     

22             evaluate sample solution from neighbourhood;  

23             Δ𝐸 = f (S'
max) –  f (Sc

max)    
24             if  Δ𝐸  <  0  then 

25                  sc    s´; 

26                  if  f (Sc
max)   <   f (Sb

max)  then     

27                       f (Sb
max)    f (Sc

max);   

28                  end if 

29             else 
30                  generate random number ℛ ~ (0,1); 

31                  Paccept  =  𝑒−Δ𝐸/𝑇       

32             if  ℛ  <  Paccept  ) then 

33                  sc    s´ ;    

34                  f (Sc
max)     f (S'

max) ; 
35             end if 

36             Tc    α Tc ; 

37              i   i + 1; 

38             end if 
39             update temperature T; 

40             Tc      Tc (i) ; 
41             return (sb , f (Sb

max)); 

42       end while 

43 end 
                  

 

5.4 TABU SEARCH (TS) 

TS is a higher level heuristic originally introduced by Glover (1986). TS has 

been successful in solving many combinatorial optimisation problems in various 

practical settings. The fundamental idea of TS is the use of search history to guide the 

search process while escaping local optima. It occasionally accepts non-improved 

solutions to prevent returning to recently visited solutions and caught up in cycles. By 

directing the search away from local optima, other region in the search space can be 

explored. This is accomplished by maintaining a search history of recently visited 

candidate solutions stored in a tabu list such that the algorithm prevents the search 

reconsidering those candidate solutions for a certain number of iterations. The 

recorded search history is expressed by a list of prohibitive moves. A corresponding 
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move or transition from a current solution to another solution is acceptable if it is not 

tabu or if a certain aspiration criterion is satisfied. When a move is accepted, then it 

becomes tabu in the next iterations. This means that this move is forbidden unless an 

aspiration level is fulfilled. The aspiration criterion is a measure for accepting tabu 

moves and it may be applied to allow all moves that lead to a neighbour with a better 

objective function value than the previously obtained solutions. Whenever a new 

candidate solution is adopted, it goes in the tabu list and the selected neighbouring 

solution replaces the current solution. The neighbourhood 𝒩(sc) is modified to 𝒩(ℋ, 

sc) and the recorded search history ℋ is dynamically updated as the algorithm 

proceeds. If the tabu list exceeds the tabu list length, the oldest candidate solution is 

removed and it is no longer tabu to reconsider. After evaluating all neighbours, the one 

with the best objective function value is selected from amongst those that satisfy the 

aspiration level. When termination criteria are met, the algorithm is stopped. Otherwise 

the tabu list is updated and the process continues.   

The notations that are used through the description of the TS algorithm are given as 

follows. 

 

S 

si  

sc 

sb 

f (s) 

𝒩(s) 

𝒩t (s)   

𝒩a(s)   

TL 

AC 

: the set of feasible solutions 

: the initial solution 

: the current solution, sc ∈  S 

: the best solution found 

: the objective function of solution s 

: the set of neighbourhood of  s ∈ S 

: neighbour solution that do not violate tabu condition 

: neighbour solution that meet aspiration criteria 

: tabu list 

: aspiration criterion 
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TS can be described in the pseudo code as follows: 
 

 

Algorithm 5.4:  Tabu Search 

1 procedure Tabu_Search() 

2 Input: related data; 

3 Output: best found solutions; 

4 begin Tabu_Search() 

5     sc
    generate initial solution (s ∈ S); 

6     sb   sc; 

7     set AC = f (sb) 

8     initialize_tabu list TL() ∅ ; 
9     while ( ¬ stopping criterion) 

10           determine neighbourhood  of current solution sc; 

11           𝒩t (s)    (𝒩(s))  select best non-tabu solution;         
12           𝒩a(s)    (𝒩(s))  select solution that meet aspiration criteria; 

13           sc   get best current solution (𝒩t (s) ⋃ 𝒩a(s)) ∖ TL(); 

14           if  (sc < sb)  then 

15                sb   sc; 

16           end if 
17           update TL(); 

18     end while 
19 return sb; 

20 end 
 

5.4.1 Proposed Hybrid Constructive Heuristic and Tabu Search (HCHTS) 

A combinatorial optimisation problem with a minimisation objective is a 

problem that requires an optimal solution s* ∈ S such that f (s*) ≤ f (s) ∀s ∈ S, where 

S is the finite set of all possible solutions. The railway CSP in this study is described 

as follows. There is a set of scheduled trips, {i1, i2, ... , in}, ∀ in ∈ I(n). A trip is identified 

by the train, its departure station, its departure time, its arrival station, and its arrival 

time, represented by a quintuple vector t, dsi, dti, asi, ati, respectively. There is a set of 

vehicle blocks, {vb1, vb2, ... , vbn}, ∀ vbn ∈ V(b). There is a set of all trip segments, {ts1, 

ts2, … , tsn}, ∀ tsn ∈ Ts(n) and a set of trip segment in line ℓ in the network, denoted by 

Ts (l). A graph G = (V, A), where V = {v0 x,y, v1 x,y, v2 x,y, ... , vn x,y } ⊆ HDs ∪ RPs is the 

vertex set. A = {(vi x,y, vj x,y): vi x,y, vj x,y  ∈ V,  i ≠ j } is the arc set, and dij represents the 

travel distance in time for each (vi, vj). Note that the subscript x and y are used to refer 

to the time and location of the node, respectively. We first apply aggregation procedure 

to combine trips between two adjacent RPs into a trip segment. The aggregation 

procedure is intended to reduce the problem size. The scheduled trips to be aggregated 

should be based on the same vehicle block and train line. The aggregation procedure 

is described in the pseudo code below. 
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Algorithm 5.5:  Aggregation Method 

1 procedure Aggregation_Method() 

2 Input: a set of nodes v x,y ∈ Vx,y ; 

3 Output: a set of aggregated nodes v 'x,y ∈ V 'x,y ; 

4 begin Aggregation_Method()  

5       {vi' x,y, vj' x,y}   ∅; 

6        dij   0;   

7        𝜔  0 (max continuous driving time); 

8     repeat 

9         for {vi x,y, vj x,y} ∈ Vx,y  do 

10             sorts the nodes in increasing order of departure time; 

11             if  (vi x,y, vj x,y)  ∈ HDs ∪ RPs  and  (vi x,y, vj x,y)  ∈ V(b)  then   

12                  if  (vi x,y, vj x,y)  ∈ Ts(n)   and  tij    𝜔  then   

13                       (i'x,y, j'x,y)    (ix,y,  jx,y);  

14                       dij    dij;     

15                       𝜔   dij; 

16                       V x,y    Vx,y \ (ix,y,  jx,y);    

17                  end if    

18             end if 

19                 {vi' x,y, vj' x,y}  (i'x,y, j'x,y) ;  

20                 V 'x,y    {vi'x,y, vj'x,y}; 

21         end for 

22     until Vx,y = ∅ 

23 return V 'x,y ; 

24 end 

 
 

 

Figure 5.2 shows a subset of the pattern of train movements from a real train 

timetable. The horizontal red line is a point of reference for inbound and outbound 

trains. Inbound services are trains heading towards this point, while outbound services 

are the trains moving away from this point. The time flows from left to right along the 

horizontal axis.  

 

 

 

 

 

 

 

 



 

Chapter 5: Metaheuristics 86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2  A subset of the pattern of train movements on lines of the rail network.  

 

 

The problem is in a symmetric form in which the forward and reverse directions 

of crew movements are indistinguishable. If a crew travels from, point A (HD), for 

example, it first goes along segment (Ax,y, a
+

1 x,y) on line ℓ1 and reach point X (Figure 

5.3). This route is recorded in the tabu list, the traveling time of this move is also 

recorded and the immediate predecessor i' and successor i'' are identified. When the 

travel reaches point X, there are several possible routes that can be pursued for 

continuation. The transition time from point X to each of the possible route is analysed 

and checked whether it satisfies the connectivity constraints. Every time the travel 

reaches a location which serves as a RP, the total traveling time is calculated to check 

the possibility for crew relief and to ensure no violation of the allowed maximum 

continuous traveling time. A crew may get on and off at a RP or at a terminal location 

along the route. The reverse order of crew movement is not allowed unless the trip 

sequence has reached a RP or the trip has no successor. Now, at point X, the travel can 

continue outbound either along (X, b-
1 x,y) or (X x,y, a

-
1 x,y). Suppose the route (X, a-

1 x,y) 

is selected, the tabu list now is TL = {(Ax,y, a
+

1 x,y) → ( a+
1 x,y, X x,y) → (X x,y, a

-
1x,y) → (a-

1x,y, a
-
1(x,y)) }. A part of the flexible tabu list length is used as the ongoing tabu active 

status.  
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Figure 5.3  Schematic illustration of crew movements in the rail network. 

 

 

 

At every point, there are several possible paths to take for a crew to complete the 

roundtrip. 1). Continue with the same train on the same line (orange line). 2). Continue 

with a different train on the same line (purple dotted line). 3). Continue with a different 

train on the same line in opposite direction (blue dotted line). 4). Continue with a 

different train on a different line in the network (invisible in Figure 5.3). The sequence 

of trip is progressively constructed in forward order. The goal is to construct minimal 

cost roundtrips for the crews to cover every trip possible without violating the given 

constraints. We use a crew roundtrip construction heuristic to generate an initial 

solution sc
 as the starting point of the search. The produced solutions are then refined 

by the TS-based algorithm. The overall procedure is outlined in the pseudo code below 

in Algorithm 5.6.  

 

 

 

 
        (        ) Crew on the same direction train and drive on the same line 
      (        ) Crew change train and drive on the same line  
      (        ) Crew change train and drive on the opposite direction line 
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Algorithm 5.6:  Tabu Search 

1 procedure Tabu_Search() 

2 Input: trip list, vehicle blocks, parameters, and constraints; 

3 Output: best found solutions; 

4 begin Tabu_Search() 

5     sc
  ←  generate initial solution (s ∈ S0); 

6     sb  ←  sc; 

7     set no. of iterations ← 0;  

8     set the aspiration function AC = f (sb); 

9     initialise_tabu list TL() ← ∅; 

10     while ( ¬ stopping criterion) 

11            candidate solution list 𝜓  ← ∅; 

12            determine neighbourhood of current solution sc; 

13            for sc ∈ 𝒩(s)   

14                  for each trip segment  tsn ∈ Ts(n) select randomly one of the move m;                  

15                       select best non-tabu move m ∈ ℳ  such that m ∉ TL();  

16                       apply transition from s to s' →  𝒩(s) = {s´| = s ⨁ m, m ∈ ℳ}; 

17                       ts  ← tsn ∖{Ts(n)};    

18                        include attributes of recent move m into the tabu list TL(); 

19                       𝜓  ←  𝜓   ⋃  sc; 

20                  end for 

21             end for 

22             evaluate the current solution sc from candidate solution list 𝜓; 

23             sc ←  get best current solution {𝒩nt (s) ⋃ 𝒩ac(s)} ∖ TL(); 

24             if  f (sc)  <  f (sb)  then 

25                   set  sb ←  sc; 

26            end if 
27            update TL(); 

28      end while 
29 return sb; 

30 end 
 

 

 

 

The proposed TS based algorithm for solving railway CSP generally consists of 

four main elements; a solution representation; the neighbourhood structure; an 

aspiration criterion; and a stopping criterion. Implementation details of the proposed 

algorithm are as follows: 

a) Solution representation and evaluation. A feasible solution consists of a number 

of trips, idle intervals between trips in the partial duty, and a transition period in 

between two partial duties for a crew MB represented by 𝑡𝑗𝑘 
𝑖 , 𝜁 𝑗𝑘

𝑖𝑖′  , and  𝜁 𝑗𝑗′𝑘
𝑖𝑖′  

respectively, while satisfying the given constraints, i.e  Eqs. (2) – (20).  

b) Neighbourhood structure. A neighbourhood search method 𝒩(s) is defined to 

allow iterative search for the next solution amongst the possible solutions in 𝒩(s). 

A possible solution in neighbourhood 𝒩(s) can be selected by applying a move. 
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Thus, a move m to solution s is a transition from a current solution to its 

neighbouring solution, where m is the member of a set of moves ℳ. Given a 

solution ( 𝑡𝑗𝑘 
𝑖 , 𝜁 𝑗𝑘

𝑖𝑖′  ,  𝜁 𝑗𝑗′𝑘
𝑖𝑖′  ), the neighbourhood is defined by a swap and insert 

mechanism such that, 𝒩(s) = {s´| = s ⨁ m, m ∈ ℳ}. A swap-based neighbourhood 

operation is performed on the selected partial duties by exchanging the position of 

trip segments. A swap operation exchanges the values of 𝑡𝑗𝑘 
𝑖 = 1 and 𝑡𝑗𝑘 

𝑖′  = 0 to 𝑡𝑗𝑘 
𝑖 = 

0 and 𝑡𝑗𝑘 
𝑖′  = 1, where i ≠ i´. If the move m was applied to the solution s, then it is 

evaluated by Δ(s, m) = f (s ⨁ m) – f (s). The swap operation is only performed on 

duties with trip segments originating and terminating at the same crew depot. The 

insert operation is performed by moving one trip segment to another duty. This 

operation is only applied to trip segments that arrive and depart from stations with 

a local connection.  

c) Aspiration criterion. The objective function f (s) is used as an aspiration level for 

non-tabu solution. When the transition is within the tabu restriction and it is a non-

improving move, then the optimal solution is reselected as this phase move and the 

move is recorded in the tabu list. If the move is outside of the tabu restriction or if 

it belongs to the tabu restriction but satisfy the aspiration criterion, then this move 

is recorded in the tabu list and the tabu status is adjusted accordingly. Thus a tabu 

move may be accepted if it produces a solution with a better function value than 

the best current function value. The best found solution f (sb) is then updated.  

d) Stopping criterion. The stopping criterion is defined to terminate the TS. The 

number of sequential iterations without improved objective function value is used 

as a termination criterion. Figure 5.4 shows the flow chart of TS algorithm. 
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Figure 5.4  Flow chart of TS-based algorithm. 
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5.5 HYBRID CONSTRAINT PROGRAMMING AND SIMULATED 

ANNEALING (HCPSA)   

Hybridising CP and SA is based on the idea of combining the strength of CP 

method and metaheuristics to derive better solutions for the problem under study. By 

hybridising with exact techniques such as CP, the performance of the algorithm can be 

improved by reducing computational time, improving the effectiveness of the search, 

and limiting the search space, in such a way that it leads the search to the promising 

region. The solution method consists of a two-phase algorithm. The first phase is the 

construction of an initial solution by CP. The obtained initial solution is then improved 

by SA metaheuristic. The overall procedure for generating initial solution by CP is 

given in the pseudo code as below. 

 

 
Algorithm 5.7:  Initial solution construction by CP 

1 procedure CP() 

2 Input: trip list, vehicle blocks, parameters, and constraints; 

3 Output: best initial solutions; 

4 begin CP() 

5     set  sb ←  sc; 

6     while i ≤ number of trip do 

7            select a trip segment ts  ← tsn ∖{Ts(n)};    

8            evaluate the selected variable; 

9            if ts is feasible  then 

10                 i ← i  + 1; 

11            else 

12                select a trip segment ts  ← tsn ∖{Ts(n)};    

13            end if 

14            if  current function value f (sc)  <  best function value f (sb)  then 

15                set  sb ←  sc; 

16            end if 

17      end while 
18 return sb; 

19 end 
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5.6 HYBRID TABU SEARCH AND SIMULATED ANNEALING (HTSSA) 

The proposed hybrid constructive heuristic and TS algorithm seems to have 

comparatively larger computational time. It can be noted that the initial feasible 

solution generated for the TS algorithm affects the successful implementation of the 

algorithm. The possibility of cycling is still remain as the tabu list uses deterministic 

means. Elements stored in the tabu list depend on a tabu tenure which defines the tabu 

list size and how long to use a memory. However, the aspiration criteria can deal with 

this possibility and prevent the search from getting trapped into a local optima. This 

feature allows the search to check condition of acceptance and to override the tabu 

status on a candidate solution. It provides a means of backtracking of recent solutions, 

leading to a different path towards an improved solution. To exploit and combine the 

advantages of individual metaheuristic, a hybrid optimisation method which combine 

TS and SA is proposed. More specifically, the initial feasible solution obtained from 

the constructive heuristic is used as input for the HTSSA algorithm.  

The following notations are used through the description of the HTSSA algorithm. 

 

S : set of feasible solutions 

N (s) : set of neighbourhood solutions 

s´ : generated solution from neighbourhood s´ ∈  S 

sc : current solution 

sb : best solution found 

f (s') : function value of neighbourhood solution 

f (sc) : function value of current solution 

f (sb) : function value of best solution 

T0 : initial temperature 

Tc : current temperature 

R : uniformly distributed random number between 0 and 1 

α : cooling rate 

imax : maximum iteration 
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Algorithm 5.8:  Hybrid Tabu Search Simulated Annealing (HTSSA) 

1 procedure HTSSA() 

2 Input: initial solutions; 

3 Output: best found solutions; 

4 begin HTSSA() 

5     sc
  ←  get the initial solution (s ∈ S0); 

6     sb  ←  sc; 

7     f (sb)   ←  f (sc); 

8     select an initial temperature, T0; 

9     𝑇𝑐  ←  T0; 

10     select temperature reduction function, 𝛼 (cooling rate); 

11     initialise step counter i ← 0; 

12     set the aspiration function AC = f (sb); 

13     initialise_tabu list TL() ← ∅; 

14     while ( ¬ stopping criterion) 

15            candidate solution list 𝜓  ← ∅; 

16            determine neighbourhood of current solution sc; 

17            for sc ∈ 𝒩(s)   

18                  for each trip segment  tsn ∈ Ts(n) select randomly one of the move m;                  

19                        select best non-tabu move m ∈ ℳ  such that m ∉ TL();  

20                        apply transition from s to s' →  𝒩(s) = {s´| = s ⨁ m, m ∈ ℳ}; 

21                        ts  ← tsn ∖{Ts(n)};    

22                        include attributes of recent move m into the tabu list TL(); 

23                        𝜓  ←  𝜓   ⋃  sc; 

24                  end 

25             end             

26             evaluate the current solution sc from candidate solution list 𝜓; 

27             sc ←  get best current solution {𝒩t (s) ⋃ 𝒩a(s)} ∖ TL(); 

28             if  f (sc)  <  f (sb) then 

29                   set  sb ←  sc; 

30             else 

31                  generate random number ℛ ~ (0,1); 

32                  Paccept  =  𝑒−Δ𝐸/𝑇                    

33                  if  ℛ  <  Paccept  ) then 

34                        sc  ←  s´;     

35                        f (sc)  ←  f (s´);    

36                  end if 

37             end if 
38             update TL(); 

39             𝑇𝑐 ←  𝛼𝑇𝑐;  
40             i  ← i + 1; 

41             update temperature T; 

42             𝑇𝑐  ←  𝑇𝑐 (i);        

43     end while  

44 return (sb , f (sb)); 

45 end  
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5.7 COMPUTATIONAL EXPERIMENTS   

To evaluate the scheduling methods presented in Chapter 5 of this thesis, 

benchmark instances were randomly generated for the problem with 24-h scheduling 

horizons. A sample train schedule with 12 trips is given in Table 3.1 in Chapter 3. The 

railway crew scheduling in this study is to create a feasible set of crew duties to cover 

a given set of trips. A feasible crew duty (shift) includes one or two partial duties, a 

period of MB, idle transition times, and the sign-on and sign-off activities. The 

accumulated time represents the crew total working time.  

5.7.1 Constructive Heuristic (CH) 

The exact solution of the mathematical model was obtained using Xpress-

Optimizer (FICO) algorithms for mixed integer problems. 3 HDs and 5 RPs were 

considered with the number of trips varied between 25 and 120 trips for instances 

solved by Xpress-Optimizer and the HCHSA algorithm. Whereas the number of trips 

varied between 258 and 732 trips for instances solved by the CH and HCHSA 

algorithms. All trips in a day were divided into four different intervals, 05.00 – 08.59; 

09.00 – 12.59; 13.00 – 16.59; and 17.00 – 22.59. Normal daily working time was fixed 

to 8 h and maximum spread time allowed was 12 h. The minimum and maximum 

lengths of working periods of the 1st part of a duty were 3 h and 5.5 h, respectively. 

Whereas the minimum and maximum lengths of working periods of the 2nd part of a 

duty were set to 2 h and 4.5 h, respectively. The length of the ROP was 2.5 h within 

which a MB of minimum 0.5 h is required between the third and the sixth hours of an 

8 h duty. There was a time allowance of about 10 min for signing-on or signing-off 

when a crew starts or ends his duty at a HD. Table 5.1 presents computational results, 

i.e. the number of feasible duties, the total objective value, driving time, excess cost, 

and run time in seconds.  
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Table 5.1  Computational results of the Constructive Heuristic (CH). 

 

 

Instance 
# 

Trips 

# 

Duties 

Objective 

Value 

Total 

Elapsed 

Time 

Driving 

Time 

Excess 

Cost 

CPU 

Time 

Average 

Working 

Time 

(min) (%) (%) (sec) (min) 

  

  DH-01 258 112 54882 60376 90.90 10.01 012 490.02 

DH-02 350 121 60257 66935 90.02 11.08 020 497.98 

DH-03 425 139 68943 78522 87.80 13.89 028 495.79 

DH-04 455 156 79095 91125 86.80 15.21 043 507.02 

DH-05 470 153 85526 96218 88.89 12.5 057 555.36 

DH-06 485 160 80480 89425 90.00 11.11 067 503.00 

DH-07 550 157 84309 95807 88.00 13.64 089 537.00 

DH-08 582 162 82135 94413 87.00 14.95 112 507.01 

DH-19 607 169 82810 97538 84.90 17.79 124 490.00 

DH-10 625 172 84795 97712 86.78 15.23 146 492.90 

DH-11 660 176 87120 102294 85.17 17.42 341 495.00 

DH-12 732 182 89874 105704 85.02 17.61 595 493.81 

 

All small-sized instances were solved to optimality by Xpress-Optimizer. As can 

be seen from Table 5.2, the computational time increases significantly as the size of 

the instance become larger. The largest instance was solved by Xpress-Optimizer with 

a reasonable computational time.  

 

Table 5.2  Computational results of the Mathematical Programming (MP) and the Hybrid 

Constructive Heuristic Simulated Annealing (HCHSA) algorithm.  

 

 

         

Instances 

No. 

of 

Trips 

Feasible 

Duties 

(FDs) 

Objective 

value 

(Ext) 

Driving 

Time 

(%) 

CPU 

time 

(sec) 

(Ext) 

 

Objective 

value 

(HCHSA) 

CPU time 

(sec) 

(HCHSA) 

 

RPD 

(%) 

     

DM-01 25 

45 

65 

6 

11 

16 

2944 

5407 

7851 

0.95 

0.93 

0.93 

0.42  

0.88 

1.09 

 

2944 

5407 

7851 

0.0001 

0.0001 

0.0002 

0 

0 

0 

DM-02 70 

90 

105 

23 

28 

33 

11288 

13710 

16205 

0.94 

0.91 

0.92 

1.73 

3.50 

9.24 

 

11288 

13710 

16205 

0.0004 

0.0006 

0.0019 

0 

0 

0 

DM-03 110 

115 

120 

35 

36 

38 

17166 

17685 

18601 

0.87 

0.82 

0.80 

121.51 

2262.04 

15927.33 

17166 

17685 

18601 

0.0033 

0.0085 

0.0127 

0 

0 

0 
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5.7.2 Simulated Annealing (SA) and Hybrid Constructive Heuristic Simulated 

Annealing (HCHSA) 

The HCHSA algorithm was able to solve all small-sized problems with 

computational time less than one second. We used relative percentage deviation as a 

performance measure to further evaluate the obtained solutions for the small-sized 

problems. This was calculated by the following equation; 

RPD (%) = {[S(Alg) – S(Ext)] / S(Ext)} × 100%  

where S(Alg) is the objective value of the solution obtained by the HCHSA algorithm 

and S(Ext) is the objective value of the optimal solution given by the Xpress Optimizer. 

The proposed algorithms were implemented in Microsoft Visual C# and run on 

an Intel Core 2 Duo 1.96 GHz Processor with 3.46 GB of RAM under Microsoft 

Windows XP operating system. The computational results obtained from both the CH 

and the HCHSA algorithms are summarised in Table 5.1 and Table 5.3, respectively. 

The number of trips per duty varies because of the length of a trip also varies. On 

average, the number of trips in each duty varies from 3 to 6 trips. The problem of 

smaller size corresponds to a higher percentage of driving time with less computational 

times. This is because smaller sized problems can be better optimised due to a more 

exhaustive search. For larger problems, long idle transition times remain high as 

indicated by a lower percentage of driving time. This is due to the fact that services at 

different times of the day have different frequency. Early morning and late afternoon 

hours have higher service frequency than that of the middle day. It seems that the more 

the trips we include the higher probability of the delay.  

The driving time is used to measure the performance of the obtained schedules 

(productivity rate). Driving time of the crew is the ratio between the total working time 

(Wt) and the total spread time or elapsed time (Et) in a duty. Excess cost (Ec) was 

calculated as follows.  Ec (%) = {(Et – Wt) / Wt} × 100%.  Both the CH and the 

HCHSA algorithms produced acceptable solutions, although the produced solutions 

are not guaranteed to be an optimal solution. The CH algorithm was sometimes unable 

to include some trip segments and left them out unscheduled. In all cases, the HCHSA 

algorithm was able to produce better solutions than the CH in terms of the solution 

quality and the runtime. As can be seen from Table 5.3, the HCHSA algorithm 

significantly improves the solution produced by the CH. The HCHSA algorithm 

increases the average driving time by 3.06% and decreases the average excess cost by 
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3.35%. Furthermore, the number of leftovers in the HCHSA is smaller than that in the 

CH. Overall, the HCHSA algorithm increases the total crew working time and reduces 

the number of crew duties for all datasets. As the number of crew duties corresponds 

to the number of crew needed, significant savings can be gained on the annual cost of 

crew related expenses.   

 

Table 5.3  Computational results of the Hybrid Constructive Heuristic and Simulated Annealing 

(HCHSA) algorithm. 

 

 

Instance 
# 

Trips 

# 

Duties 

Objective 

Value 

Total 

Elapsed 

Time 

Driving 

Time 

Excess 

Cost 

CPU 

Time 

Average 

Working 

Time 

(min) (%) (%) (sec) (min) 

  

  DH-01 258 105 51345 54045 95.00 5.26 007 489.00 

DH-02 350 117 58146 62526 92.99 7.53 014 496.97 

DH-03 425 133 65825 72338 91.00 9.89 018 494.92 

DH-04 455 142 71722 79693 90.00 11.11 032 505.08 

DH-05 470 145 80762 87805 91.98 8.72 048 556.98 

DH-06 485 157 78657 85476 92.02 8.67 055 501.00 

DH-07 550 155 83120 92352 90.00 11.11 064 536.26 

DH-08 582 162 81840 92007 88.95 12.42 093 505.19 

DH-19 607 167 81679 93884 87.00 14.94 116 489.10 

DH-10 625 172 84965 96404 88.13 13.46 130 493.98 

DH-11 660 174 86371 97999 88.13 13.46 336 496.39 

DH-12 732 178 88255 100285 88.00 13.63 582 495.81 

 

 

To measure the quality of solutions obtained by the algorithms, the upper and 

lower bound values were calculated as follows.  Q  =  (objective value – LB) / (UB – 

LB) where 0 ≤ Q ≤ 1 (Burdett and Kozan, 2010). The equation describes approximately 

the quality of the solution in the search space. If Q value is close to zero then the 

obtained solution is near to the optimal solution. The Q values of solutions obtained 

by both the CH and HCHSA algorithms can be seen in the chart of Figure 5.5. The Q 

value shown in Figure 5.5 is enough to validate the quality of the proposed algorithms. 
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Figure 5.5  Q values of the CH and HCHSA solutions. 

 

 

 Figure 5.6 shows Q values of the SA solutions. The average Q values of all 

instances is 0.063 which indicates that the SA algorithm can produce good quality 

feasible solutions for all datasets. 

 

 

Figure 5.6  Q values of the SA solutions. 
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 With regard to the SA algorithm, the initial temperature T0 was set to be large to 

allow the search exploring some areas of the solution space with low level quality 

solutions hence, accepting a worse solution at the beginning of the search. A large 

neighbourhood is more attractive because it tends to find much better solution in one 

local search step than in the small neighbourhoods. However, a large neighbourhood 

is associated with long search process to come up with a better neighbouring solution. 

Large neighbourhood may also lead to a potential bottleneck for local search when 

searching a better neighbouring solution. The temperature was updated in each 

iteration by applying geometric cooling schedule where 𝑇𝑐= 𝛼𝑇𝑐. We applied a 

cooling factor of 0.93, 0.95, and 0.97 as the temperature reduction should be controlled 

by a constant cooling factor with the value approximately close to one (Kirkpatrick, 

1983). Altering this parameter however, did not have a significant effect on the final 

objective value after 500 iterations. Computational results of SA algorithm are given 

in Table 5.4 below. 

 

 

Table 5.4  Computational results of the Simulated Annealing (SA) algorithm. 

 

Instance 
# 

Trips 

# 

Duties 

Objective 

Value 

Total 

Elapsed 

Time 

Driving 

Time 

Excess 

Cost 

CPU 

Time 

Average 

Working 

Time 

(min) (%) (%) (sec) (min) 

  

  DH-01 258 110 55172 59850 92.184 8.48 009 501.57 

DH-02 350 119 61114 68355 89.407 11.85 020 513.56 

DH-03 425 137 70717 79412 89.051 12.30 024 516.18 

DH-04 455 155 77571 87633 88.517 12.97 039 500.45 

DH-05 470 150 76987 86979 88.512 12.98 055 513.24 

DH-06 485 152 78992 89273 88.484 13.01 062 519.68 

DH-07 550 151 81167 91750 88.466 13.04 079 537.53 

DH-08 582 165 82195 93585 87.830 13.86 105 498.15 

DH-19 607 168 84531 96252 87.822 13.87 120 503.16 

DH-10 625 171 84946 101361 83.805 19.32 141 496.76 

DH-11 660 173 84355 101855 82.819 20.75 336 487.60 

DH-12 732 180 86621 107197 80.805 23.75 585 481.23 
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Figure 5.7  Objective values by varying cooling factor (). 

 

Sensitivity analysis was performed by changing each parameter while keeping 

the others fixed for multiple runs. Figure 5.7 shows the objective function values 

obtained by varying cooling factor of the SA. As can be seen from this figure, there is 

no significant effect of cooling factor on the improvement of the objective function 

value. It does show however, that on average, better results can be obtained with 

cooling factor () between 0.95 and 0.97. 

5.7.3 Hybrid Constructive Heuristic and Tabu Search (HCHTS) 

Constructive heuristics look for solutions in a reasonable computational time, 

even though there is no guarantee of reaching optimality. The same applies to the 

metaheuristics, by which a certain trade-off of local search and randomisation is 

applied. A random search provides a method of escaping local optima by moving away 

wandering other region in the solution space. In this way, metaheuristics become 

suitable for searching the global optimum. 

A computational experiment was conducted to solve randomly generated 

benchmark instances with 24-h scheduling horizons. A feasible crew duty (shift) 

represents an accumulated total working time for the crew consisting of one or two 

partial duties, a period of MB, idle transition times, and the sign-on and sign-off 

8.8E+04

8.8E+04

8.8E+04

8.8E+04

8.8E+04

8.9E+04

0.90 0.92 0.94 0.96 0.98 1.00

O
b

je
ct

iv
e 

V
al

u
e

Cooling factor ()

Objective Value

Alpha



 

Chapter 5: Metaheuristics 101 

activities. Normal daily working time was equivalent to 8 h and maximum spread time 

allowed was set at 12 h. We used the same parameter settings with the one applied by 

CH and SA algorithm. The minimum and maximum lengths of working periods for 

the 1st part of a duty were set to 3 h and 5.5 h, respectively. The minimum and 

maximums lengths for the 2nd part of a duty were set to 2 h and 4.5 h, respectively. 

The length of the ROP is 2.5 h within which a minimum 0.5 h MB is required between 

the third and the sixth hours of the crew working period. There is a time allowance of 

about 10 min for sign-on or sign-off when a crew starts or ends his duty at a HD. The 

proposed mathematical model was solved by Xpress-Optimizer (FICO) algorithms for 

mixed integer problems to obtain exact solution and this solution was used as a 

reference for the TS metaheuristic approach. We considered 3 HDs and 5 RPs. The 

number of trips varied between 25 and 120 for instances solved by Xpress-Optimizer. 

For larger datasets in which Xpress-Optimizer was unable to find optimal solutions, 

the numbers of trips varied between 250 and 750 and were approximately solved by 

the proposed TS-based algorithm. Although Xpress-Optimizer was capable of finding 

optimal solutions for smaller problem instances, it was unable to solve considerably 

larger test instances examined in this study. We used relative percentage deviation as 

a performance measure to further evaluate the solutions for the small-sized problems. 

The relative percentage deviation indicates that an average gap between the optimal 

solutions obtained by Xpress Optimizer and the proposed algorithm for small-sized 

problems up to 200 trips is less than 3.5%. 

 The proposed algorithm was implemented in Microsoft Visual C# and 

computational experiments were executed on an Intel Core 2 Duo running at 1.96 GHz 

Processor with 3.46 GB of RAM. In this study, the multi depots CSP concerns 

constructing a set of crew roundtrips such that each crew roundtrip starts and ends at 

the same crew HD. Each trip is covered once and the total crew working time does not 

exceed the maximum allowable limit. It is desirable to construct feasible schedules 

that will minimise the time gap between trips (idle transition times) and maximise the 

length of the route per cycle time. A crew cycle time is the time spent to drive a round 

trip plus idle intervals while on a route. For this reason, frequent relieving should be 

avoided and a crew needs to work on the same train for as long as possible. Figure 5.8, 

Figure 5.9, and Figure 5.10 show a subset of train schedule on lines in the rail network. 

 



 

Chapter 5: Metaheuristics 102 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8  A subset of the train schedule on lines in the rail network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9  A subset of the train schedule on lines in the rail network. 
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Figure 5.10  A subset of the train schedule on lines in the rail network. 

 

 

Figure 5.11 shows an illustrative example of a train crew schedule. Each 

distinctly coloured line in the figure represents a crew roundtrip. As seen in the figure, 

the train crew TCr_001, for example, departs from a crew HD A at 05:00 and travels 

for 3 hours and 18 minutes, takes a MB for 39 minutes, from 08:18 to 08:57 at HD A, 

and terminates at 12:35 at the same crew HD A. The total length of the crew duty is 7 

hours 35 minutes. The average duty period of all crew roundtrips is 8 hour 5 minutes. 

The time gap between the arrival of the previous trip and the departure of the next trip 

should not exceed the minimum transition time allowed.  

Two partial duties are merged by connecting the selected RP locations of trip 

segments where a train crew takes a MB. It may not always be possible to combine 

two partial duties to form a crew duty with a time length of approximately equal to the 

regular working hours of 8 h. Therefore, a balance is needed by considering the crew’s 

working hour guarantee and overtime. If eight hour is set as the working hour 

guarantee, then the crew will be paid for 8 h even if they work less than 8 h. While if 

the crew work time exceeds 8 h, they will be paid extra. 
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Figure 5.11  An example of generated crew roundtrips. 

 

 

Each distinctly coloured line represents a crew roundtrip. As seen in the figure, 

the train crew TCr_001 departs from a crew HD A at 05:00 and travels for 3 hours and 

18 minutes, takes a MB for 39 minutes, from 08:18 to 08:57 at HD A, and terminates 

at 12:35 at the same crew HD A. The total length of the crew duty is 7 hours 35 

minutes.  

TCr_002 departs from a crew HD A at 05:30 and travels for 3 hours and 29 

minutes, takes a MB for 58 minutes, from 08:59 to 09:57 at HD A, and terminates at 

13:48 at the same crew HD A. The total length of the crew duty is 8 hours 18 minutes.  

TCr_003 departs from a crew HD A at 06:00 and travels for 4 hours and 25 

minutes, takes a MB for 39 minutes, from 10:25 to 11:04 at away depot, and terminates 

at 13:33 at the same crew HD A. The total length of the crew duty is 7 hours 33 

minutes.  

TCr_004 departs from a crew HD B at 04:28 and travels for 3 hours and 37 

minutes, takes a MB for 54 minutes, from 08:05 to 08:59 at HD B, and terminates at 

12:33 at the same crew HD B. The total length of the crew duty is 8 hours 5 minutes.  
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TCr_005 departs from a crew HD B at 05:27 and travels for 3 hours and 32 

minutes, takes a MB for 30 minutes, from 08:59 to 09:29 at HD B, and terminates at 

13:43 at the same crew HD B. The total length of the crew duty is 8 hours 16 minutes.  

TCr_006 departs from a crew HD B at 06:00 and travels for 5 hours and 33 

minutes, takes a late MB for 39 minutes, from 11:33 to 12:12 at HD B, and terminates 

at 13:42 at the same crew HD B. The total length of the crew duty is 7 hours 42 

minutes.  

TCr_007 departs from a crew HD B at 04:59 and travels for 3 hours and 51 

minutes, takes a late MB for 37 minutes, from 08:50 to 09:27 at away depot (HD A), 

and terminates at 14:03 at the same crew HD B. The total length of the crew duty is 9 

hours 4 minutes. The average duty period of all crew roundtrips shown in Figure 5.12 

is 8 hour 5 minutes.     
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Figure 5.12  An example Gantt chart of the train crew schedule. 

 

 

 

 

Table 5.5 shows the computational results, i.e. the number of crew roundtrips 

(duties), objective function values, the driving times, excess cost, and the run times. 

The performance of the obtained schedules (productivity rate) was measured by the 

driving time percentage. The driving time of the crew is the ratio between the total 

working time (Wt) and the total spread time or elapsed time (Et) in a duty. Excess cost 

(Ec) was calculated as follows.  Ec (%) = {(Et – Wt) / Wt} × 100%.   
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Table 5.5  Computational results of the Hybrid Constructive Heuristic and Tabu Search (HCHTS) 

algorithm. 

 

Instance 
# 

Trips 

# 

Duties 

Objective 

Value 

Total 

Elapsed 

Time 

Driving 

Time 

Excess 

Cost 

CPU 

Time 

Average 

Working 

Time 

(min) (%) (%) (sec) (min) 

  

  DH-01 258 99 52256 55527 94.10 6.26 009 527.84 

DH-02 350 115 62569 67861 92.20 8.46 019 544.08 

DH-03 425 130 65697 73569 89.30 11.98 024 505.36 

DH-04 455 140 67994 78244 86.90 15.07 038 485.67 

DH-05 470 147 76185 85707 88.89 12.50 052 518.27 

DH-06 485 155 80251 88191 91.00 9.89 061 517.75 

DH-07 550 152 81667 91887 88.88 12.51 077 537.28 

DH-08 582 165 82175 94802 86.68 15.37 108 498.03 

DH-19 607 169 81804 94139 86.90 15.08 121 484.05 

DH-10 625 171 85014 95521 89.00 12.36 142 497.16 

DH-11 660 172 83032 97011 85.59 16.84 340 482.74 

DH-12 732 175 86430 100711 85.82 16.52 590 493.89 

 

 

 

Average crew working time for small-sized instances is 515.74 min, medium-

sized instances is 517.83 min, and large-sized instances is 489.46 min. It seems that 

for small- to medium-sized instances, the average crew working time is slightly higher 

than the average crew working time for large-sized problems (Figure 5.13). This is 

because long idle transition times occur when more trips were included as a result of 

congestions. This observation is also confirmed by a lower driving time percentage of 

large-sized problems compared to the driving times percentage of small-sized to 

medium-sized instances. Driving time percentage for small-sized instance, medium-

sized instance and large-sized instances are 90.63, 88.88, and 86.83, respectively.   
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Figure 5.13  Average crew working time of all datasets. 

 

 

The performance of HCHTS algorithm was evaluated by measuring the average 

computational time and the best solution found. The overall solution of all datasets can 

be obtained in less than 10 min of computational time. The algorithm is quite robust 

as indicated by the small coefficient of variation from average. The length of tabu list 

seems contributes an important effect in the search process. With the increasing 

number of iterations, the solution is improved. The number of sequential iterations 

without improved objective function value is used as the termination criterion. The 

best found solution was compared with the upper and lower bound values to measure 

the quality of solutions obtained by the algorithm. This was calculated as follows. Q = 

(objective value – LB) / (UB – LB) where 0 ≤ Q ≤ 1 (Burdett and Kozan, 2010). The 

Q value approximately indicates the quality of the solution in the search space. The 

obtained solution is near to the optimal when the Q value is close to zero. The Q value 

is used to validate the quality of solutions obtained by the proposed algorithm. The Q 

values of solutions obtained by the proposed algorithm can be seen in the chart of 

Figure 5.14. On average, the Q values of solutions by HCHTS algorithm is 0.068. 
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Figure 5.14  Q values of the HCHTS algorithm. 

  

 

5.7.4 Hybrid Constraint Programming and Simulated Annealing (HCPSA) 

Computational experiments were conducted based on the same generated 

benchmark instances to make the performance of each approach are comparable. 

Computational results of the hybrid CP and SA are presented in Table 5.6. Overall 

results indicate that the proposed approach yields good acceptable solution. The 

average Q values of solutions by HCPSA algorithm shown in Figure 5.15 is 0.067. 
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Table 5.6  Computational results of the Hybrid Constraint Programming and Simulated Annealing 

(HCPSA) algorithm. 

 

 

Instance 
# 

Trips 

# 

Duties 

Objective 

Value 

Total 

Elapsed 

Time 

Driving 

Time 

Excess 

Cost 

CPU 

Time 

Average 

Working 

Time 

(min) (%) (%) (sec) (min) 

  

  DH-01 258 107 52275 55619 93.99 6.40 007 488.55 

DH-02 350 114 62540 67146 93.14 7.37 016 548.60 

DH-03 425 128 65478 73146 89.52 11.71 022 511.55 

DH-04 455 138 67966 77826 87.33 14.51 037 492.51 

DH-05 470 146 76177 85686 88.90 12.48 051 521.76 

DH-06 485 154 80248 87683 91.52 9.27 060 521.09 

DH-07 550 152 81667 91887 88.88 12.51 075 537.28 

DH-08 582 165 82175 94802 86.68 15.37 108 498.03 

DH-19 607 169 81804 94139 86.90 15.08 121 484.05 

DH-10 625 171 85014 95521 89.00 12.36 142 497.16 

DH-11 660 172 83032 97011 85.59 16.84 340 482.74 

DH-12 732 175 86433 100711 85.82 16.52 590 493.89 

 

 

 
 

Figure 5.15  Q values of the HCPSA solutions. 
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5.7.5 Hybrid Tabu Search and Simulated Annealing (HTSSA) 

The performance of HTSSA algorithm was evaluated by measuring the average 

computational time and the best solution found. The performance of the HTSSA 

algorithm was tested ten times on each randomly generated datasets. The parameters 

examined for TS algorithm were the tabu list size and the number of iterations. The 

obtained results indicate that smaller tabu list sizes more likely to get trapped and find 

it difficult to escape from a certain point in the solution space. On the other hand, larger 

tabu list sizes seem do not give a thorough search for obtaining improved 

neighbourhood solution. The overall solution of all datasets can be obtained in less 

than 10 min of computational time. The algorithm is quite robust as indicated by the 

small coefficient of variation from average. The length of tabu list seems contributes 

an important effect in the search process. 

 

 
Table 5.7  Computational results of the Hybrid Tabu Search and Simulated Annealing (HTSSA) 

algorithm. 

 

Instance 
# 

Trips 

# 

Duties 

Objective 

Value 

Total 

Elapsed 

Time 

Driving 

Time 

Excess 

Cost 

CPU 

Time 

Average 

Working 

Time 

(min) (%) (%) (sec) (min) 

  

  DH-01 258 97 51703 54742 94.45 5.88 007 533.02 

DH-02 350 113 61880 67103 92.22 8.44 013 547.61 

DH-03 425 130 65337 73152 89.32 11.96 022 502.59 

DH-04 455 138 67533 77486 87.15 14.74 034 489.37 

DH-05 470 145 75208 84638 88.86 12.54 052 518.68 

DH-06 485 155 80106 88044 90.98 9.91 060 516.81 

DH-07 550 151 81450 91605 88.91 12.47 073 539.40 

DH-08 582 165 82136 94761 86.68 15.37 110 497.79 

DH-19 607 167 80832 93045 86.87 15.11 125 484.02 

DH-10 625 168 83523 93792 89.05 12.29 141 497.16 

DH-11 660 171 82549 96426 85.61 16.81 336 482.74 

DH-12 732 173 85442 99524 85.85 16.48 587 493.88 
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Figure 5.16 Q values of the HTSSA solutions. 

 

 

 

An aggregation procedure has a significant effect in reducing the problem size 

such that the proposed algorithm is able to handle large-sized railway CSP and solve 

it within an acceptable computational time. The neighbourhood structure also 

contributes to the effectiveness of the search process. Q values of the HTSSA solutions 

indicate that the algorithm can obtain good quality solution for all datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Q
V

a
lu

e

Instance

Q value of the HTSSA algorithm

HTSSA alg.



 

Chapter 5: Metaheuristics 113 

5.8 CONVERGENCE ANALYSIS OF THE PROPOSED HEURISTICS / 

METAHEURISTICS 

This section investigates the convergence of the heuristics and metaheuristics 

applied in this study. A stopping criterion should be defined to terminate the algorithm. 

The stopping criterion can be a maximum number of iterations, such as after 1000 

iterations. The iteration limits can be determined in an experimental way and it usually 

depends on the size and structure of the problem. Another termination criterion is a 

maximum allowed execution time, such as after 5 minutes computational time. A good 

trade-off between setting computational time early or late to stop should be applied, 

because if the algorithm terminates too late, it wastes the computational time. 

Conversely, if the algorithm terminates too early, the optimum solution may not be 

reached yet. Additionally, the number of sequential iterations without improvement in 

the objective function value can be used as a termination criterion. This criterion is 

more frequently used and it was also used as a stopping criterion to solve the problem 

under study. Standard deviation was also calculated to know how much variation exists 

from the average. High standard deviation indicates that the data points are spread out 

over a large range of values. Low standard deviation indicates that the data points tend 

to be very close to the mean.  

Figure 5.17 shows a line chart of the objective function values vs the number of 

iterations of the local search heuristic and metaheuristics. This is a two dimensional 

graph in which the number of iterations is plotted on the X-axis and the objection 

function value is plotted on the Y-axis.  
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Figure 5.17  Objective value improvement with the number of iterations. 

 

 

 

As can be seen from this figure, in general, the algorithms improved the solutions 

with the increasing number of iterations and they significantly improved the obtained 

solutions within the first 200 iterations. The minimisation of the objective function 

values then tends to be stagnant at about 500 iterations and thereafter the solutions 

show no sign of advancement and algorithms indicate a tendency of convergence. The 

number of sequential iterations without improved objective function value was used 

as the termination criterion. To prove convergence of the proposed algorithm, standard 

deviation was also calculated to shows the extent of variation from the average. It is 

observed that the standard deviation tends to decrease as the number of iterations i  

, which means that the data points are getting closer to the mean as the number of 

iterations increases. It can be noted that in general the hybrid TS and SA algorithm 

(HTSSA) outperforms all other heuristics/metaheuristics shown in the figure. All 

algorithms give a similar trend. Overall, the HTSSA gives the best result with average 

crew working time is 8.477 h. 

5.9 CONCLUSION 

Heuristics and metaheuristics-based algorithms as well as hybrid 

heuristics/metaheuristics to solve railway CSP have been presented in this chapter. The 

objective of the algorithms is to find minimum time crew roundtrips by minimising 

idle interval between trips and an idle transition between partial duties. Computational 
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results indicated that the proposed algorithms are able to generate feasible near-

optimal solutions within an acceptable computational time, as indicated by the average 

Q values of all methods which are fairly close to zero. An aggregation procedure 

inserted in the proposed algorithms has a significant effect in reducing the problem 

size such that the algorithms are able to handle large-sized railway CSP and solve it 

within a reasonable computational time. The neighbourhood structure also contributes 

to the effectiveness of the search process. The optimisation approaches incorporate a 

complex set of railway crew scheduling constraints and can be easily adjusted to 

include additional constraints. A specific constraint in which a crew can be relieved 

during the interval of ROP gives more flexibility on crew schedule. In that way, the 

proposed methods will enable crew members to flexibly choose the relief time and 

location in their duties. The proposed algorithms produced good acceptable solutions 

and can solve medium- to large-sized instances under study. The proposed 

optimisation methods for solving railway CSP can be improved to develop a decision 

support system to solve real-world railway CSP. Furthermore, the model and 

algorithms proposed in this study can be extended to the integration of vehicle and 

CSPs with ROP. 
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 Conclusions and 

Recommendations  

This study has developed models and algorithms to solve the problem. The need 

for studying railway CSP has been highlighted in chapter 1. The general research 

methodology has also been explained in chapter 1. A survey on the existing modelling 

and solution approaches for CSP has indicated that there is limited study on CSP, 

particularly on the railway CSP. The study on CSP has relied mainly on the existing 

models such as the SCP and SPP formulations and then solves the problem analytically 

or approximately, as indicated in chapter 2. This suggests the need for improving the 

existing models by integrating real-life crew scheduling constraints into a developed 

model. The railway CSP models developed in this study include a specific crew 

scheduling constraint in the models such that they enable the crew to be relieved during 

the ROP. Integrating this specific constraint in the proposed models will enhance the 

robustness of the schedule and provide a better representation of real railway crew 

scheduling conditions. The detailed formulation of the MP-based model and the CP-

based model with its solution technique are presented in chapter 3 and chapter 4, 

respectively. Chapter 5, presents metaheuristics techniques to solve railway CSP. 

Constructive heuristics, hybrid SA- and TS-based algorithms were designed to 

improve both the solutions and the computational performances. This chapter also 

includes the computational results and analysis of the proposed algorithms. 

Subsequently, the chapter 6 provides the conclusions and recommendations for further 

study. 

6.1 CONCLUSIONS 

In this thesis, models and algorithms for railway CSP have been presented. 

Railway CSP is the process of allocating train services to the crew duties based on the 

published train timetable while satisfying operational and contractual requirements. 

The problem is restricted by many constraints and it belongs to the class of NP-hard. 

The objective of the models and algorithms is to minimise the number of crew duties 

by minimising total idle transition times. The idle transition times includes idle 

intervals between trips and an idle interval between partial duties. These unproductive 
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parts of a crew duty (shift) contribute the most to the optimisation potential of the crew 

scheduling. The mathematical model includes the interval of relief opportunities, 

allowing a train crew to be relieved at any RP during the ROP. Small-sized to medium-

sized instances can be solved to optimality analytically by applying the developed 

mathematical model. CP based approach to solve railway crew scheduling is able to 

obtain best solutions through the DFS and BFS methods. In a few cases, both the DFS 

and BFS failed to reach optimality. However, the relative deviation is very small and 

thereby can still be considered as acceptable solutions. CP formulation is more natural 

in representing the problem and requires much fewer variables and constraints than the 

MIP-based methodologies. This is due to the global constraint that capable of 

representing complex relationships between variables which in turn provides effective 

domain reduction. Using CP technique, the model provides acceptable results in all 

test datasets. However, the problem in its entirety is complex because of the presence 

of conflicting constraints. The overall results indicate that the CP model can produce 

feasible railway crew schedules of small- to medium-sized instances within a 

reasonable computational time.  

Railway CSP is mathematically intractable due to the number of possible trip 

combinations and the complexity of the involved constraints. To handle the difficulty 

due to the combinatorial explosion of the problem, hybrid constructive heuristics and 

metaheuristics are proposed to solve the problem. The overall results indicate that the 

proposed algorithms can produce near-optimal railway crew schedules of large-sized 

datasets within an acceptable computational time. This study also shows the 

effectiveness of the hybridization of local search constructive heuristics and 

metaheuristics in solving a highly constrained combinatorial optimisation problem.  

HCHTS algorithm has been presented in this thesis to solve multi depots railway 

CSP. The objective of the algorithm is to find minimum time crew roundtrips by 

minimising idle interval between trips and an idle transition between partial duties. 

Small-sized instances are solved to optimality by applying the proposed mathematical 

model. The obtained results are then compared against the solution produced by the 

HCHTS algorithm which was composed of a three-phase heuristic. Computational 

results indicated that the proposed algorithm is able to generate near-optimal feasible 

solutions within an acceptable computational time, as indicated by the average Q 

values which is fairly close to zero. An aggregation procedure has a significant effect 
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in reducing the problem size such that the proposed algorithm is able to handle large-

sized railway CSP and solve it within an acceptable computational time. The 

neighbourhood structure also contributes to the effectiveness of the search process. 

With regard to the HCPSA and HTSSA algorithms, the results obtained indicate that 

the proposed algorithms can obtain good acceptable solutions within a reasonable 

computational time. Overall, the HTSSA algorithm gives the best objective function 

value with less computational times. 

The developed optimisation models and algorithms involve a complex set of 

railway crew scheduling constraints and they can be easily adapted to include 

additional constraints. The models and algorithms incorporate a specific constraint in 

which a crew can be relieved during the interval of relief opportunities period. In that 

way, the proposed models and algorithms will enable crews to flexibly choose the 

relief time and location in their duties. Although the models and algorithms are 

presented in the context of railway CSP, they are general and flexible enough to be 

adapted to different locations and modes of transportation. In addition, the proposed 

models can be solved using a wide range of techniques. 

6.2 RECOMMENDATIONS FOR FURTHER RESEARCH 

This study has raised a number of issues which might be interesting topics for 

further work. These are summarised as follows. 

 Investigation of railway crew scheduling models. In this research, two 

alternative models based on MP and CP for railway crew scheduling have 

been developed. It would be valuable for further investigation by analysing 

and comparing their performance. Further research to solve these models 

should focus on improving search techniques and integrating these models 

with other solution methods to combine the strength of the techniques. 

Although we have developed models for railway CSP, these models can be 

applied to other modes of transportation. The proposed models deal with the 

construction of duties (shifts) with one period of ROs (straight runs). These 

models can also be easily extended to model a situation in which a duty may 

contain more than two pieces of work (split runs). Furthermore, the models 

can be applied to the integration of vehicle and crew scheduling problems 

with ROP. 
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The complexity of railway CSP might hinder in capturing all details, 

thereby it might be interesting to develop a simulation model to analyse the 

real operations and evaluate the effect of constraints on the performance of 

the crew schedules. A simulation model can measure the impact of crew 

utilisation under different scenarios, for example, by varying cost 

parameters such as crew operating cost, deadhead cost, and train operating 

cost.  

 Investigation of metaheuristics. SA and TS-based algorithm have been 

applied to solve railway CSP in this research. Local search heuristics for 

generating initial solutions for the SA and TS are worthwhile for further 

investigation. It might also be interesting to analyse the performance of the 

SA and TS using different neighbourhood structures. Even though there 

have been numerous studies conducted to determine the optimum 

parameter setting of SA and TS applications, more experiments are needed 

to identify suitable parameters of SA and TS to solve crew scheduling 

related problems.  

Other metaheuristics that are suitable for solving combinatorial 

optimisation problems should be further applied on the crew scheduling 

related problems. These metaheuristics include genetic algorithms, ant 

colony optimisations, particle swarm optimisations, and bee algorithms.  

There are many aspects of railway CSP that need to be incorporated in 

future research such as train delay, deadheading, and crew balance at each 

HD. Moreover, it would be interesting to consider the dynamic crew 

scheduling (Huisman and Wagelmans, 2006), as this challenging problem 

might provide better solutions than the static one. Although a large body of 

research has been made in the area of generic CSP, there are still many 

aspects of the CSP that need to be further studied and investigated. Models 

and algorithms which are able to incorporate many aspects of the challenging 

practical situations and advanced solution techniques are inevitable. 

Because many interesting issues have not been investigated, the findings 

obtained in this study should provide a reference for further work. 
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Appendices  

APPENDIX A–1 

Computational Results of Mathematical Programming (MP) 

 

 

 

Figure A. 1 The number of variables and constraints of a small-sized instance solved by the 

mathematical model. 

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance. 

 

 

 

 

 

Figure A. 2  Matrix (row view) of a solution by mathematical model. 

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance. 
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Figure A. 3  Output/input of the mathematical model. 

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance. 

 

 

 

 

 

 
Figure A. 4  Last n solutions found by the optimizer. 

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance. 
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Figure A. 5  The objective function model and the objective value. 

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance. 

 

 

 

 

 

 
Figure A. 6  The objective and iteration. 

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance. 
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Figure A. 7  The graph history of solution values. 

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance. 

 

 

 

 

 

Figure A. 8  The MIP gap and objective. 

Screen shot of the Xpress Optimizer (FICO) solution on small-sized instances. 
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Figure A. 9  The MIP gap and objective. 

Screen shot of the Xpress Optimizer (FICO) solution on small-sized instances. 

 

 

 

 

 
Figure A. 10  The MIP gap and objective. 

Screen shot of the Xpress Optimizer (FICO) solution on small-sized instances. 
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APPENDIX B–1 

CPLEX Constraint Programming (CP) Model  

 

 
/********************************************* 

 * OPL 6.3 Model 

 * Author: n7269102 

 * Creation Date: 06/09/2011 at 12:05:40 PM 

 *********************************************/ 

 

  

 using CP; 

  

 /********* 

 /* Data */ 

 /********/ 

    

 tuple Trip { 

  key string tripID;   // trip (train ID) 

  string depSta;                      // departure station 

  int depTime;          // departure time 

  string arrSta;    // arrival station 

  int arrTime;                        // arrival time 

   int traTime;    // travelingTime 

 }; 

  

 {Trip} Trips = ...;         // list of trips 

  

 int nbCrews = ...;  

 int nbmaxShifts = ...;  

 int minInterShiftRest = ...;  

 int maxIntraShiftWork = ...;  

 int maxShiftDuration = ...;  

  

 range Crews = 1 .. nbCrews; 

 range Shifts = 1 .. nbmaxShifts; 

  

 tuple Alternative { 

   Trip trip; 

  int crew; 

  int shift; 

 }; 

  

 {Alternative} Alternatives = {<t,c,s> | t in Trips, c in Crews, s 

in Shifts}; 

   

   

 /**********************/ 

 /* Decision Variables */ 

 /**********************/ 

    

 dvar interval trip [t in Trips] optional in t.depTime .. t.arrTime 

size t.traTime; 

 dvar interval alt [a in Alternatives] optional; 

 dvar interval shift [c in Crews][s in Shifts] optional in 

0..maxShiftDuration; 
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 /**********************/ 

 /* Objective Function */ 

 /**********************/ 

   

 // Minimize total number of duties (shifts) 

  

 minimize sum (c in Crews, s in Shifts) presenceOf (shift[c][s]); 

  

 subject to { 

  

 forall (t in Trips) 

  alternative (trip[t], all(a in Alternatives: a.trip==t) 

alt[a]); 

 

 

 /***************/ 

 /* Constraints */ 

 /***************/ 

   

 // station (***) sequence 

  forall (t in Trips){ 

  forall (s in Trips: s.depSta==t.arrSta) { 

  endBeforeStart (trip[t], trip[s]); 

  presenceOf (trip[s]) => presenceOf (trip[t]);}}  

  

 // time (***) sequence 

 forall (t in Trips){ 

  forall (s in Trips: s.depTime >= t.arrTime) { 

  endBeforeStart (trip[t], trip[s]); 

  presenceOf (trip[s]) => presenceOf (trip[t]);}}  

    

 // shift sequence for each crew  

 forall (c in Crews, s in 1..nbmaxShifts-1) 

  endBeforeStart (shift[c][s], shift[c][s+1], 

minInterShiftRest); 

   

   

 // shift optionality chain for each crew  

 forall (c in Crews, s in 1..nbmaxShifts-1) 

  presenceOf (shift[c][s+1]) => presenceOf (shift[c][s]); 

   

 forall (c in Crews, s in Shifts){ 

 // shift spanning interval 

  span (shift[c][s], all(a in Alternatives: a.crew==c && 

a.shift==s) alt[a]); 

 // max intra shift work constraint 

   sum (a in Alternatives: a.crew==c && a.shift==s) lengthOf 

(alt[a]) <= maxIntraShiftWork; 

 // crew unary capacity during shift  

   noOverlap (all(a in Alternatives: a.crew==c && a.shift==s) 

alt[a]);} 

   

 } 

 

 

 

 

 



 

Appendices 136 

APPENDIX B–2 

CPLEX Data Example  

/********************************************* 

 * OPL 6.3 Data 

 * Author: n7269102 

 * Creation Date: 06/09/2011 at 12:05:40 PM 

 *********************************************/ 

 

 nbCrews = 35;  

 nbmaxShifts = 3;  

 minInterShiftRest = 30;  

 maxIntraShiftWork = 240;  

 maxShiftDuration = 720;  

 Trips = {  

 < F06, FYG, 300, BNH, 395, 95 >,  

 < F14, FYG, 330, BNH, 423, 93 >, 

 < F18, FYG, 360, BNH, 454, 94 >, 

 < F26, FYG, 390, BNH, 485, 95 >, 

 < F28, FYG, 426, BNH, 515, 89 >, 

 < F30, FYG, 446, BNH, 539, 93 >, 

 < F32, FYG, 475, BNH, 570, 95 >, 

 < F34, FYG, 510, BNH, 605, 95 >, 

 < F29, BNH, 520, FYG, 620, 100 >, 

 < F35, BNH, 650, FYG, 750, 100 >, 

 < F37, BNH, 760, FYG, 860, 100 >, 

 < F38, BNH, 865, FYG, 950, 85  >, 

 < B06, FYG, 300, BHI, 324, 24 >,  

 < B14, FYG, 330, BHI, 354, 24 >, 

 < B18, FYG, 360, BHI, 384, 24 >, 

 < B26, FYG, 390, BHI, 414, 24 >, 

 < B28, FYG, 426, BHI, 446, 20 >, 

 < B30, FYG, 446, BHI, 470, 24 >, 

 < B32, FYG, 475, BHI, 499, 24 >, 

 < B06a, BHI, 325, BNH, 395, 70 >,  

 < B14a, BHI, 355, BNH, 423, 68 >, 

 < B18a, BHI, 385, BNH, 454, 69 >, 

 < B26a, BHI, 415, BNH, 485, 70 >, 

 < B28a, BHI, 447, BNH, 515, 68 >, 

 < B30a, BHI, 471, BNH, 539, 68 >, 

 < B32a, BHI, 500, BNH, 570, 70 >, 

 < E07, BNH, 268, BHI, 341, 73 >,  

 < E11, BNH, 299, BHI, 368, 69 >, 

 < E13, BNH, 327, BHI, 397, 70 >, 

 < E19, BNH, 358, BHI, 428, 70 >, 

 < E25, BNH, 389, BHI, 459, 70 >, 

 < E29, BNH, 402, BHI, 472, 70 >, 

 < E31, BNH, 419, BHI, 490, 71 >, 

 < E35, BNH, 449, BHI, 514, 65 >, 

 < E07a, BHI, 342, FYG, 368, 26 >,  

 < E11a, BHI, 369, FYG, 398, 30 >, 

 < E13a, BHI, 398, FYG, 422, 24 >, 

 < E19a, BHI, 429, FYG, 454, 25 >, 

 < E25a, BHI, 460, FYG, 485, 25 >, 

 < E29a, BHI, 473, FYG, 498, 25 >, 

 < E31a, BHI, 491, FYG, 518, 27 >, 

 < E35a, BHI, 515, FYG, 539, 24 >, 

 < E37a, BHI, 553, FYG, 578, 25 >, 

 < E41a, BHI, 609, FYG, 635, 26 >, 

  

 }; 
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APPENDIX C–1 

Simulated Annealing Selected C# Code  

 

 

 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Data.OleDb; 
using System.Data; 
using System.Data.Odbc; 
 
namespace SchedulingProject 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            Console.WriteLine(" "); 
 
// initialise parameters 
            int depTime = 0; 
            int arrTime = 0; 
            int travTime = 0; 
            int dutyCap = 0; 
            int MaxDutyCapAllowed = 540; 
            int dutyMin = 180; 
            int transTime = 5; 
 
// SA variables for temperature and cooling rate 
 
            int iteration = 0; 
            int maxIteration = 1000000; 
            double currentTemp = 10000.0; 
            double alpha = 0.975; 
 
            Console.WriteLine("\nInitial State:"); 
            Display(state); 
            Console.WriteLine("Initial Energy: " + energy.ToString("F2")); 
            Console.WriteLine("\nSimulated Annealing "); 
            Console.WriteLine("Init Temp = " + currentTemp.ToString("F1")+ 
"\n"); 
 
// Provider=Microsoft.Jet.OLEDB.4.0;Data Source="C:\Documents and 
Settings\n7269102\My Documents\TimeTable\SchedulingDB.mdb" 
// define the connection string 
 
            string strAccessConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data 
Source=C:\\Documents and Settings\\n7269102\\My Documents\\ 
TimeTable\\SchedulingDB.mdb"; 
 
            OleDbConnection myAccessConn = new OleDbConnection(strAccessConn); 
            myAccessConn.Open();   
// open the connection 
            Console.WriteLine("database connected"); 
 
// accessing Table  
            string strAccessSelectTable2a = "SELECT * FROM Iots1 "; 
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            OleDbCommand myAccessCommandTable2a = new 
OleDbCommand(strAccessSelectTable2a, myAccessConn);  
 
// execute the command, get the result in datareader 
 
            OleDbDataReader myDataReaderTable2a =  

myAccessCommandTable2a.ExecuteReader();            
            string[,] table2adata = new string[50, 6]; 
            int row = 0; 
            int coloumn = 0; 
            while (myDataReaderTable2a.Read()) 
            { 
 
            table2adata[row, coloumn] = myDataReaderTable2a.GetString(0);                
table2adata[row, coloumn + 1] = myDataReaderTable2a.GetString(1);                
table2adata[row, coloumn + 2] = myDataReaderTable2a[2].ToString();                
table2adata[row, coloumn + 3] = myDataReaderTable2a.GetString(3);  
                table2adata[row, coloumn + 4] = 
myDataReaderTable2a[4].ToString(); 
                table2adata[row, coloumn + 5] = 
myDataReaderTable2a[5].ToString();  
 
                row = row + 1; 
                coloumn = 0; 
            } 
            string strAccessSelectTable2b = "SELECT * FROM Iots2 "; 
            OleDbCommand myAccessCommandTable2b = new  

OleDbCommand(strAccessSelectTable2b, myAccessConn); 
            OleDbDataReader myDataReaderTable2b =  
 
// execute this command, get the result in datareader 
 
myAccessCommandTable2b.ExecuteReader(); 
            string[,] table2bdata = new string[50, 6]; 
            int row2b = 0; 
            int coloumn2b = 0; 
            while (myDataReaderTable2b.Read()) 
            { 
                table2bdata[row2b, coloumn2b] = 
myDataReaderTable2b.GetString(0); 
                table2bdata[row2b, coloumn2b + 1] = 
myDataReaderTable2b.GetString(1); 
                table2bdata[row2b, coloumn2b + 2] = 
myDataReaderTable2b[2].ToString(); 
                table2bdata[row2b, coloumn2b + 3] = 
myDataReaderTable2b.GetString(3); 
                table2bdata[row2b, coloumn2b + 4] = 
myDataReaderTable2b[4].ToString(); 
                table2bdata[row2b, coloumn2b + 5] = 
myDataReaderTable2b[5].ToString(); 
                row2b = row2b + 1; 
                coloumn2b = 0; 
            } 
 
            string strAccessSelectTable3= "SELECT * FROM Ithd "; 
            OleDbCommand myAccessCommandTable3= new 
OleDbCommand(strAccessSelectTable3 ,myAccessConn);  
            OleDbDataReader myDataReaderTable3 = 
myAccessCommandTable3.ExecuteReader(); 
            string[,] table3data = new string[50, 6]; 
            int row3 = 0; 
            int coloumn3 = 0; 
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            while (myDataReaderTable3.Read()) 
            { 
                table3data[row3, coloumn3] = myDataReaderTable3.GetString(0); 
                table3data[row3, coloumn3 + 1] = 
myDataReaderTable3.GetString(1); 
                table3data[row3, coloumn3 + 2] = 
myDataReaderTable3[2].ToString(); 
                table3data[row3, coloumn3 + 3] = 
myDataReaderTable3.GetString(3); 
                table3data[row3, coloumn3 + 4] = 
myDataReaderTable3[4].ToString(); 
                table3data[row3, coloumn3 + 5] = 
myDataReaderTable3[5].ToString(); 
 
                row3 = row3 + 1; 
                coloumn3 = 0; 
            } 
 
 
            string strAccessSelect = "SELECT * FROM Iohd order by dT asc"; 
            DataSet myDataSet = new DataSet(); 
 
            OleDbCommand myAccessCommand = new OleDbCommand(strAccessSelect, 
myAccessConn);  
            OleDbDataReader myDataReader = myAccessCommand.ExecuteReader(); 
            int rowtable2a = 0; 
            int rowtable2b = 0; 
            int rowtable3 = 0; 
 
            while (myDataReader.Read()) 
            { 
                while (dutyCapacity <= dutyMax) 
                { 
                    string baseidValue = myDataReader["ID"].ToString(); 
 
                    string baseDepartStationValue = 
myDataReader["dS"].ToString(); 
                    string baseArriveStationValue = 
myDataReader["aS"].ToString(); 
                    int baseDepartTimeValue = 
int.Parse(myDataReader["dT"].ToString()); 
 
                    int baseArriveTimeValue = 
int.Parse(myDataReader["aT"].ToString()); 
 
                    travTime = baseArriveTimeValue - baseDepartTimeValue; 
                    duty = travTime; 
                    dutyCap = duty + dutyCap; 
 
                    Console.Write("Base Value of Travelling Time" + 
travellingTime); Console.Write("Base Value of Duty Capacity" + dutyCap); 
                    Console.WriteLine(); 
 
                     
                    while (!table2adata[rowtable2a, 
1].Equals(baseArriveStationValue) && !((int.Parse(table2adata[rowtable2a, 2]) 
- baseArriveTimeValue) <= transitionTime)) 
                    { 
                        rowtable2a = rowtable2a + 1; 
                    } 
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                    while (!table2bdata[rowtable2b, 
1].Equals(table2adata[rowtable2a, 1])) 
                    { 
                        rowtable2b = rowtable2b + 1; 
                    } 
 
                    while (!table3data[rowtable3, 
1].Equals(table2bdata[rowtable2b, 1])) 
                    { 
                        rowtable3 = rowtable3 + 1; 
                    } 
 
                    rowtable2a = rowtable2a + 1; 
                    rowtable2b = rowtable2b + 1; 
                    rowtable3 = rowtable3 + 1; 
public Cap() 
            { 
                trips = new List<Trip>(); 
            } 
            void AddTrip(Trip i) 
            { 
                if ((TotalTravTime + i.TravTime) < MaxDutyCapAllowed) 
                    trips.Add(i); 
            } 
            public void Calculate(List<Trip> trips) 
            { 
                foreach (Trip i in Sort(trips)) 
                { 
                    AddTrip(i); 
                } 
            } 
            List<Trip> Sort(List<Trip> inputTrips) 
            { 
                List<Trip> choosenTrips = new List<Trip>(); 
                for (int i = 0; i < inputTrips.Count; i++) 
                { 
                    int j = -1; 
                    if (i == 0) 
                    { 
                        choosenTrips.Add(inputTrips[i]); 
                    } 
                    if (i > 0) 
                    { 
                        if (!Recursive(inputTrips, choosenTrips, i, 
choosenTrips.Count - 1, false, ref j)) 
                        { 
                            choosenTrips.Add(inputTrips[i]); 
                        } 
                    } 
                } 
                return choosenTrips; 
            } 
 
            bool Recursive(List<Trip> capTrips, List<Trip> choosenTrips, int 
i, int lastBound, bool dec, ref int indxToAdd) 
            { 
                if (!(lastBound < 0)) 
                { 
                    if (capTrips[i].ResultWV < 
choosenTrips[lastBound].ResultWV) 
                    { 
                        indxToAdd = lastBound; 
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                    } 
                    return Recursive(capTrips, choosenTrips, i, lastBound - 1, 
true, ref indxToAdd); 
                } 
                if (indxToAdd > -1) 
                { 
                    choosenTrips.Insert(indxToAdd, capTrips[i]); 
                    return true; 
                } 
                return false; 
            } 
            #region IEnumerable<Trip> Members 
            IEnumerator<Trip> IEnumerable<Trip>.GetEnumerator() 
            { 
                foreach (Trip i in trips) 
                    yield return i; 
            } 
            #endregion 
  
            #region IEnumerable Members 
            System.Collections.IEnumerator 
System.Collections.IEnumerable.GetEnumerator() 
            { 
                return trips.GetEnumerator(); 
            } 
 
            #endregion 
  
            public int TotalTravTime 
            { 
                get 
                { 
                    var sum = 0; 
                    foreach (Trip i in this) 
                    { 
                        sum += i.TravTime; 
                    } 
                    return sum; 
                } 
            } 
 
            public class Trip 
            { 
                public string TripID { get; set; } public int TravTime { get; 
set; } public int Value { get; set; } public int Result { get { return  
TravTime-Value; } } 
 
                public override string ToString() 
                { 
                    return "TripID : " + TripID + "  TravelingTime : " + 
TravTime +   "   TransTime : "   + Value; 
                } 
            } 
        } 
  
    class Program 
    { 
 
        static void Main(string[] args) 
        { 
 
            List<Cap.Trip> capTrips = new List<Cap.Trip>(); 
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            Cap b = new Cap(); 
            b.Calculate(capTrips); 
            b.All(x => { Console.WriteLine(x); return true; }); 
            Console.WriteLine(b.Sum(x ===> x.TravTime)); 
            Console.ReadKey(); 
        } 
 
    } 
 
 
                random = new Random(0); 
                int numCrews = 35; 
                int numTrips = 500; 
                double[][]Datasets = myDatasets(numCrews, numTrips); 
                int[] state = RandomState(Datasets); 
                double energy = Energy(state, Datasets); 
                int[] bestState = state; 
                double bestEnergy = energy; 
                double adjacentEnergy; 
                int[] adjacentState; 
 
                 
                while (iteration < maxIteration && currentTemp > 0.0001) 
                { 
                    adjacentState = AdjacentState(state, Datasets); 
                    adjacentEnergy = Energy(adjacentState, Datasets); 
                    if (adjacentEnergy < bestEnergy) 
                    { 
                        bestState = adjacentState; 
                        bestEnergy = adjacentEnergy; 
                        Console.WriteLine("New best solution found:"); 
                        Display(bestState); 
                        Console.WriteLine("Energy = " + 
bestEnergy.ToString("F2") + "\n"); 
                    } 
 
                    double p = random.NextDouble(); 
                    if (AcceptanceProb(energy, adjacentEnergy, currentTemp)>p) 
                    { 
                        state = adjacentState; 
                        energy = adjacentEnergy; 
                    } 
                    currentTemp = currentTemp * alpha; 
                    ++iteration; 
                } 
                 
                while (iteration < maxIteration && currentTemp > 0.0001) 
                { 
 
                Console.Write("Temperature reached "); 
                Console.WriteLine("at iteration " + iteration); 
                Console.WriteLine("Simulated Annealing complete"); 
                Console.WriteLine("\n------------------------- "); 
                Console.WriteLine("\nBest found solution: "); 
                Display(bestState); 
                Console.WriteLine("Best energy = " + bestEnergy.ToString("F2") 
+ "\n"); 
                Interpret(bestState, Datasets); 
                Console.WriteLine("\nEnd Simulated Annealing \n"); 
                Console.WriteLine("\n------------------------- "); 
                Console.ReadLine(); 
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            } 
            catch (Exception ex) 
            { 
                Console.WriteLine(ex.Message); 
                Console.ReadLine(); 

  Console.ReadLine(); 
                Console.ReadLine(); 
            } 
        } 
 
         
        static double[][] myDatasets(int numCrews, int numTrips) 
        { 
            double[][] result = new double[numTrips][]; 
            for (int c = 0; c < result.Length; ++c) result[c] = new 
double[numTrips]; 
 
             
        } 
 
        static int[] RandomState(double[][]Datasets) 
        { 
            int numCrews = Datasets.Length; 
            int numTrips = Datasets[0].Length; 
            int[] state = new int[numTrips]; 
            for (int t = 0; t < numTrips; ++t) 
            { 
                int c = random.Next(0, numCrews); 
                while (Datasets[c][t] == 0.0) 
                { 
                    ++c; 
                    if (c > numCrews - 1) c = 0; 
                } 
                state[t] = c; 
            } 
            return state; 
        } 
        static int[] AdjacentState(int[] currentState, double[][]Datasets) 
        { 
 
            int numCrews = Datasets.Length; 
            int numTrips = Datasets[0].Length; 
            int[] state = new int[numTrips]; 
            int trip = random.Next(0, numTrips); 
            int crew = random.Next(0, numCrews); 
 
            while (Datasets[crew][trip] == 0.0) 
            { 
                ++crew; if (crew > numCrews - 1) crew = 0; 
            } 
            currentState.CopyTo(state, 0); 
            state[trip] = crew; 
            return state; 
        } 
 
        static double Energy(int[] state, double[][] Datasets) 
        { 
            double result = 0.0; 
            for (int t = 0; t < state.Length; ++t) 
            { 
                int crew = state[t]; 
                double time = Datasets[crew][t]; 
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                result += time; 
            } 
 
            int numCrews = Datasets.Length; 
            int[] numJobs = new int[numCrews]; 
            for (int t = 0; t < state.Length; ++t) 
            { 
                int crew = state[t]; 
                ++numJobs[crew]; 
                if (numJobs[crew] > 1) result += 7.30; 
            } return result; 
        } 
 
        static double AcceptanceProb(double energy, double adjacentEnergy, 
             double currentTemp) 
        { 
            if (adjacentEnergy < energy) 
                return 1.0; 
            else 
                return Math.Exp((energy - adjacentEnergy) / currentTemp); 
        } 
 
 
        static void Display(double[][] matrix) 
        { 
            for (int i = 0; i < mat.Length; ++i) 
            { 
                for (int j = 0; j < mat [i].Length; ++j) 
                Console.Write(mat [i][j].ToString("F2") + " "); 
                Console.WriteLine(""); 
                Console.WriteLine(" ----------------------------------- "); 
          Console.WriteLine(" ----------------------------------- "); 
 
            } 
        } 
        static void Display(int[] vector) 
        { 
            for (int i = 0; i < vector.Length; ++i) 
            Console.Write(vector[i] + " "); 
            Console.WriteLine(""); 
        } 
        static void Interpret(int[] state, double[][] Datasets) 
        { 
            for (int t = 0; t < state.Length; ++t) 
            { 
                int c = state[t]; 
                Console.Write("Trip [" + t + "] assigned to crew "); 
                Console.WriteLine(c + ", " + Datasets[c][t].ToString("F2")); 
                Console.WriteLine(" ----------------------------------- "); 
                Console.WriteLine(" ----------------------------------- "); 
 
            } 
        } 
    } 
}                              
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