
MODELLING AND OPTIMISATION OF

RAILWAY CREW SCHEDULING

Rosmalina Hanafi

BEng (Mechanical Engineering)

MEng (Industrial Engineering)

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Principal Supervisor: Professor Erhan Kozan

Decision Science Discipline, Science and Engineering Faculty

 Queensland University of Technology

Brisbane, Australia

2014

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING i

Copyright © 2014

All rights reserved

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING ii

KEYWORDS

Combinatorial Optimisation, Constraint Programming, Constructive Heuristics,

Hybrid Algorithms, Mathematical Programming, Metaheuristics, Railway Crew

Scheduling, Simulated Annealing, Tabu Search.

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING iii

ABSTRACT

Crew Scheduling is one stage of operational planning in transportation systems

to which mathematical and algorithmic optimisation techniques can be applied. Crew

Scheduling Problem (CSP) in the transportation industry represents a computationally

difficult combinatorial optimisation problem. The large number of tasks (trips) to

include and the complicated operational and contractual requirements are the main

reasons for the complexity of the problem. Nevertheless, solving CSP has been one of

the most important focuses of the transportation industry because it affects the

company’s profitability and its service quality. An optimal crew schedule is essential

to ensure efficient and reliable operations of transportation services. Furthermore, the

cyclic nature of the crew scheduling application makes the CSP a good candidate for

optimisation. A small improvement to the crew schedules can lead to accumulated

savings that produce large annual cost savings. The difficulty of solving CSP yet its

enormous practical significance, have led to a large number of proposed solution

techniques. However, unlike CSP in other modes of transportation such as airline and

bus which have been intensively studied, railway CSP is less cited in literature.

Railway crew scheduling is domain specific and there has been no developed solving

method which has been applied universally. Models and algorithms are designed

mainly for a specific case and may not readily be applied in different applications.

Railway CSP is the process of allocating train services to the crew duties based

on the published train timetable while satisfying operational and contractual

requirements. The problem is restricted by many constraints and it belongs to the class

of NP-hard (nondeterministic polynomial-time hard). CSP is more frequently

formulated mathematically, as either set covering problem or set partitioning problem,

and then solved analytically or approximately. Even though some studies have been

done on CSP using a wide variety of solution techniques, the problem is still difficult

to solve. CSP involves real-life constraints which are difficult to handle, such as crew

breaks, elapsed time and the requirement to return the crews to their home depots at

the end of their duty. Furthermore, an optimisation model should be well designed by

which all the relevant parameters of the problem can be incorporated. One way of

dealing with the problem is to develop a specific model that is capable of incorporating

important features of the problem and can be solved using a wide range of methods.

This research has developed and analysed two railway crew scheduling models.

The first is mathematical programming (MP)-based model which is formulated as a

mixed integer programming (MIP) while the second is constraint programming (CP)-

based model. The objective of the optimisation models is to minimise the number of

crew duties by reducing idle transition times. Duties are generated by arranging

scheduled trips over a set of duties and sequentially ordering the set of trips within

each of duties. The integration of relief opportunities period (ROP) into models would

enable the train crew to be relieved at any relief point (RP) within the interval of ROP.

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING iv

Existing models and algorithms usually only consider relieving a crew at the beginning

of the interval of relief opportunities which may be impractical. The inclusion of the

ROP into models has not been studied in depth. Allowing the train crew to be relieved

at any RP during the ROP will provide better representation of real-world conditions

and improve the robustness of the schedule.

Due to the combinatorial nature of the CSP, heuristic methods are the most

promising approach for solving the problem. The main limitation with many of

conventional heuristic algorithms is their difficulty to escape from locally optimal

solutions. The search is usually conducted from a single point in the solution space,

then continues until there is no possible improvement. This type of local search method

can easily get trapped in local optima. In an attempt to address this problem, several

metaheuristics approaches have emerged for solutions to combinatorial complex

problems such as the simulated annealing (SA) and tabu search (TS). SA and TS have

been applied successfully to solve many combinatorial optimisation problems in

various practical settings. Despite the potential application of metaheuristics to solve

combinatorial optimisation problems, very few attempts have been made to tackle

crew scheduling related problems in the literature applying metaheusristics.

SA and TS algorithms have been utilised in this study to improve solutions and

to derive near-optimal solutions. Initial solution for railway CSP is generated by a

constructive heuristic (CH) and then it is improved by a hybrid constructive heuristic

SA (HCHSA) algorithm. Both the CH and the HCHSA algorithms produced

acceptable solutions, although the produced solutions are not guaranteed to be an

optimal solution. The HCHSA algorithm significantly improves the solution produced

by the CH. The HCHSA algorithm increases the average driving time by 3.06% and

decreases the average excess cost by 3.35%. Overall, the HCHSA algorithm increases

the total crew working time and reduces the number of crew duties for all datasets. As

the number of crew duties corresponds to the number of crew needed, significant

savings can be gained on the annual cost of crew related expenses. The solutions

produced by the HCHTS algorithm, which was composed of a three-phase heuristic,

indicate that the proposed algorithm is able to generate near-optimal feasible solutions

within an acceptable computational time. This is indicated by the average Q value

which is fairly close to zero. An aggregation procedure has a significant effect in

reducing the problem size such that the proposed TS-based algorithms are able to

handle large-sized railway CSP and solve it within an acceptable computational time.

The neighbourhood structure also contributes to the effectiveness of the search

process. The solutions obtained by the hybrid CP and SA algorithm (HCPSA) and the

hybrid TS and SA algorithm (HTSSA) also give an indication of the effectiveness of

hybridisation of an exact method and metaheuristics as well as hybridisation of

metaheuristics (TS and SA) to produce good acceptable solutions in a reasonable

computational time for large-sized instances.

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING v

TABLE OF CONTENTS

Keywords ... ii

Abstract ... iii

Table of Contents .. v

List of Figures .. vii

List of Tables .. viii

List of Abbreviations ..ix

Publications Arising from This Research .. x

Statement of Original Authorship ..xi

Acknowledgements .. xii

 INTRODUCTION ... 1

1.1 Research Background .. 1

1.2 Context of the Research ... 3

1.3 Significance of the Research .. 5

1.4 Thesis Outline .. 6

 LITERATURE REVIEW ... 9

2.1 Problem Background and Definition ... 9

2.2 Mathematical Programming Approach .. 11

2.3 Network Flow Approach .. 22

2.4 Metaheuristics Approach ... 22

2.5 Conclusion ... 26

 RAILWAY CREW SCHEDULING MODEL ... 27

3.1 Scheduling Problem ... 27

3.2 Crew Scheduling Problem (CSP) ... 28

3.3 Railway Crew Scheduling Problem ... 28
3.3.1 Terminology ... 35
3.3.2 Input Data ... 36
3.3.3 Operational and Contractual Requirements .. 37

3.4 Development of Mathematical Model ... 38

3.5 Railway Crew Scheduling Model .. 39
3.5.1 Notations ... 40
3.5.2 Objective Function.. 41
3.5.3 Constaints ... 42

3.6 MP Solution Technique ... 47

3.7 Conclusion ... 48

 CONSTRAINT PROGRAMMING .. 51

4.1 Constraint Programming (CP) ... 51
4.1.1 Constraint Propagation and Search ... 54
4.1.2 Tree Structure ... 55

4.2 Constraint Programming Model ... 60
4.2.1 Solution Techniques ... 66

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING vi

4.2.2 Computational Results .. 67

4.3 Conclusion ... 72

 METAHEURISTICS ... 73

5.1 Optimisation Problem .. 73
5.1.1 Combinatorial Optimisation Problem ... 74
5.1.2 NP-Complete Problems and Combinatorial Explosion .. 75

5.2 Constructive Heuristics .. 76
5.2.1 Initial Solution by Constructive Heuristic (CH) ... 76

5.3 Simulated Annealing (SA) ... 78
5.3.1 Solution Improvement by Hybrid Constructive Heuristic Simulated Annealing

(HCHSA) .. 80

5.4 Tabu Search (TS) ... 82
5.4.1 Proposed Hybrid Constructive Heuristic and Tabu Search (HCHTS) 84

5.5 Hybrid Constraint Programming and Simulated Annealing (HCPSA) 91

5.6 Hybrid Tabu Search and Simulated Annealing (HTSSA) ... 92

5.7 Computational Experiments... 94
5.7.1 Constructive Heuristic (CH) ... 94
5.7.2 Simulated Annealing (SA) and Hybrid Constructive Heuristic Simulated

Annealing (HCHSA) .. 96
5.7.3 Hybrid Constructive Heuristic and Tabu Search (HCHTS) .. 100
5.7.4 Hybrid Constraint Programming and Simulated Annealing (HCPSA) 109
5.7.5 Hybrid Tabu Search and Simulated Annealing (HTSSA) .. 111

5.8 Convergence Analysis of the Proposed Heuristics / Metaheuristics .. 113

5.9 Conclusion ... 114

 CONCLUSIONS AND RECOMMENDATIONS ... 117

6.1 Conclusions.. 117

6.2 Recommendations for Further Research .. 119

REFERENCES .. 121

APPENDICES ... 129
APPENDIX A–1 Computational Results of Mathematical Programming (MP) 129
APPENDIX B–1 CPLEX Constraint Programming (CP) Model .. 134
APPENDIX B–2 CPLEX Data Example ... 136
APPENDIX C–1 Simulated Annealing Selected C# Code .. 137

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING vii

LIST OF FIGURES

Figure 3.1 Map of QR Network. ... 30

Figure 3.2 Two possible combination of partial duties in the shift. .. 32

Figure 3.3 A sample of the sequence of trips in the shift. ... 32

Figure 3.4 An example of a train timetable. .. 33

Figure 3.5 An example of vehicle blocks with ROP. .. 34

Figure 3.6 Two combinations of partial duties in the shift. ... 44

Figure 4.1 Modelling approach. .. 54

Figure 4.2 A sample tree with 13 nodes. ... 56

Figure 4.3 A sample tree with 4 levels. ... 57

Figure 4.4 Binary trees. ... 57

Figure 4.5 A complete binary tree of depth 4. ... 58

Figure 4.6 The sequence in which the node of the tree are visited for .. 58

Figure 4.7 Driving time of the crew based on the search methods. ... 70

Figure 4.8 Variable and constrains of the search methods. ... 72

Figure 5.1 Global optimum of a minimisation criterion in the solution space. 74

Figure 5.2 A subset of the pattern of train movements on lines of the rail network. 86

Figure 5.3 Schematic illustration of crew movements in the rail network. ... 87

Figure 5.4 Flow chart of TS-based algorithm. ... 90

Figure 5.5 Q values of the CH and HCHSA solutions. ... 98

Figure 5.6 Q values of the SA solutions. ... 98

Figure 5.7 Objective values by varying cooling factor (). .. 100

Figure 5.8 A subset of the train schedule on lines in the rail network. .. 102

Figure 5.9 A subset of the train schedule on lines in the rail network. .. 102

Figure 5.10 A subset of the train schedule on lines in the rail network. .. 103

Figure 5.11 An example of generated crew roundtrips. .. 104

Figure 5.12 An example Gantt chart of the train crew schedule. .. 106

Figure 5.13 Average crew working time of all datasets. ... 108

Figure 5.14 Q values of the HCHTS algorithm. .. 109

Figure 5.15 Q values of the HCPSA solutions. ... 110

Figure 5.16 Q values of the HTSSA solutions. .. 112

Figure 5.17 Objective value improvement with the number of iterations. .. 114

file:///C:/Users/Lina/Desktop/MY%20THESIS%2028042014/n7269102%20R_Hanafi/Final%20Submission%2020102014/New%20folder/R_Hanafi_Thesis%2030102014.docx%23_Toc402427074
file:///C:/Users/Lina/Desktop/MY%20THESIS%2028042014/n7269102%20R_Hanafi/Final%20Submission%2020102014/New%20folder/R_Hanafi_Thesis%2030102014.docx%23_Toc402427075

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING viii

LIST OF TABLES

Table 3.1 A sample train schedule with 12 trips. .. 37

Table 4.1 Computational results of CP with randomly generated problem instances. 69

Table 4.2 Computational performances based on the search methods. ... 71

Table 5.1 Computational results of the Constructive Heuristic (CH). ... 95

Table 5.2 Computational results of the Mathematical Programming (MP) and the Hybrid

Constructive Heuristic Simulated Annealing (HCHSA) algorithm...................................... 95

Table 5.3 Computational results of the Hybrid Constructive Heuristic and Simulated

Annealing (HCHSA) algorithm. .. 97

Table 5.4 Computational results of the Simulated Annealing (SA) algorithm. 99

Table 5.5 Computational results of the Hybrid Constructive Heuristic and Tabu Search

(HCHTS) algorithm. .. 107

Table 5.6 Computational results of the Hybrid Constraint Programming and Simulated

Annealing (HCPSA) algorithm. ... 110

Table 5.7 Computational results of the Hybrid Tabu Search and Simulated Annealing

(HTSSA) algorithm. ... 111

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING ix

LIST OF ABBREVIATIONS

CP Constraint Programming

CSP Crew Scheduling Problem

HCHSA Hybrid Constructive Heuristic Simulated Annealing

HCPSA

Hybrid Constraint Programming Simulated Annealing

HD Home Depot

HTSSA Hybrid Tabu Search Simulated Annealing

IP Integer Programming

LP

Linear Programming

MB Meal Break

MIP

Mixed Integer Programming

MP Mathematical Programming

ROP Relief Opportunities Period

RP Relief Point

SA Simulated Annealing

SCP Set Covering Problem

SPP Set Partitioning Problem

TS

Tabu Search

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING x

PUBLICATIONS ARISING FROM THIS

RESEARCH

Published Journal Papers

Hanafi, R., and Kozan, E. (2014). A hybrid constructive heuristic and simulated

annealing for railway crew scheduling. Computers & Industrial Engineering, 70, 11-

19. Available online 16 January 2014, ISSN 0360-8352, doi:

http://dx.doi.org/10.1016/j.cie.2014.01.002

Hanafi, R., and Kozan, E. (2012). A constraint programming approach for railway

crew scheduling. Annals of Operations Research. (under review)

Hanafi, R., and Kozan, E. (2014). Multi depots railway crew scheduling: model and

algorithms. International Journal of Production Economics. (under review)

Refereed Conference Paper

Hanafi, R., and Kozan, E. (2012). A flexible optimisation model for the railway crew

scheduling problem. In Günther, H. O., Kim, K. H., Kopfer, H. (Eds.), International

Conference on Logistics and Maritime Systems (pp. 159–169). Bremen, Germany.

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING xi

STATEMENT OF ORIGINAL AUTHORSHIP

The work contained in this thesis has not been previously submitted to meet

requirements for an award at this or any other higher education institution. To the best

of my knowledge and belief, the thesis contains no material previously published or

written by another person except where due reference is made.

Signature:

Date: 20 October 2014

QUT Verified Signature

MODELLING AND OPTIMISATION OF RAILWAY CREW SCHEDULING xii

ACKNOWLEDGEMENTS

I would like to acknowledge and sincerely thank my Principal Supervisor Professor

Erhan Kozan for his continuous support and encouragement throughout my study. His

expertise in his field has helped me to keep making progress and enabled me to get

through all stages of my research journey. My appreciation is extended to the members

of research committee, Professor Paul Hyland, Professor Vo Anh, and Adjunct

Associate Professor Paul Corry for review, comments, and suggestions.

I thank the Service Planning Manager Mr Graeme Sang, the Allocation Coordinator

Mr Scott Brown, and the Vocational Support Unit Manager Mr Eric Whittington at

Queensland Rail (QR), Australia for the visit and for providing me with supported

materials.

I am thankful to many people in ISS QUT International Team E for various help during

my study, especially to Elkin Dario Giraldo, Zia Song, Thara Jayaratne, and Christine

Wang.

I thank all members of the Decision Science Discipline Group at QUT, to make my

PhD study within Decision Science Discipline Group is a good experience.

I thank my fellow research students Hazreen Harith, Maryam Shirmohammadi, Candra

Dharmayanti, Diah Parami Dewi, and Ellya Zulaikha, for discussions and friendship.

I enjoyed the interactions with which have enriched my social life during my PhD

study in the last few years.

I thank my friends Mel, Gina, Ben, Phoenix, Iris, Kath, Cansu, Matt, Astrid, Muthu,

Steve, Amber, and Sam, for all the fun we have had and for making my stay in Brisbane

much more pleasurable.

My sincere thanks go to my beloved family members, for all of their love, great

support, and unending encouragement. Their support enabled me to cope with

challenges during my study. Without them, this journey would not have been possible.

Chapter 1: Introduction 1

 Introduction

This chapter presents an overview and a brief explanation of research

background. The context of the research and the crew scheduling related issues are

briefly explained. The chapter also outlines the structure of the thesis.

1.1 RESEARCH BACKGROUND

The transportation industry is a capital-intensive sector which involves a large

number of resources. Optimum utilisation of the available resources has been one of

the main targets of the transportation industry, in striving to reduce operational costs

with a better service quality level. Operations crew is one of the resources that has a

great impact on the operational performance of the transportation system. Effective

management of this resource can considerably reduce operational costs and increase

the efficiency of the entire systems. The crew scheduling problem (CSP) in the

transportation industry is a typical optimisation problem concerned with finding the

optimum arrangement of a set of activities while subjected to specified constraints. An

activity in this regard is the assignment of a crew to a set of scheduled trips in such a

way that the generated crew duties conform to the predefined work rules and

regulations. Optimisation criterion can be considered as either minimising a time

(cost)-based objective or maximising resource utilisation-based objective.

CSP falls into the category of combinatorial complex optimisation problem. As

the computation progresses, the number of potential solutions is sequentially

compounded leading to a large number of choices. CSP has been proved to be NP-

hard (Fischetti et al. 1987, 1989), for which no known method is able to obtain an

optimal solution in polynomial time. Because of its computational complexity and

application potential, CSP has remained one of challenging optimisation problems.

Crew scheduling is one stage of planning and scheduling problem that can be

modelled and solved using mathematical optimisation techniques. However, the

process of crew scheduling at large transportation organisations is very complex.

This is because of the large number of tasks (trips) to cover and the complex

operational and contractual requirements involved.

http://or.journal.informs.org/search?author1=Matteo+Fischetti&sortspec=date&submit=Submit

Chapter 1: Introduction 2

The study on CSP mainly relied on the traditional set covering and set

partitioning formulations. Various solution techniques have been offered to solve these

models. In both the set covering and the set partitioning formulations, the decision

variable is a binary integer variable which represents whether or not a duty (roundtrip,

pairing) is selected as work for a crew member. The constraint in the set covering

problem consists of a matrix of binary values, which defines that each piece of work

is covered by a duty at least once. Each column represents one possible roundtrip or

work to be performed by an individual crew member over a defined period of time.

The set partitioning problem is similar to the set covering problem, but for the set

partitioning formulation the constraint becomes equal to one, meaning that each task

is covered exactly once. The main difficulty in applying the exact methods to solve

CSP is that in determining all possible solutions. For CSP with a large number of trips,

there can be an unmanageably large number of possible roundtrips. As a consequence,

the problem becomes a time-consuming process of enumerating all the possible

roundtrips. For this reason, there is a requirement of large-scale solution techniques

such as column generation-based methods or sub problem optimisations. The concept

of column generation is to solve a sequence of reduced problems (master problem) in

which each reduced problem contains a small fraction of the set of variables (columns).

Bengtsson et al. (2007) formulated a general crew pairing problem with the objective

function being to minimise the cost of selected pairing and the cost of violating soft

constraints. The research combines resource constraints, k-shortest path enumeration,

and label merging techniques and shows that a column generation approach is able to

heuristically solve large and highly complex railway pairing problems in a reasonable

time. Given the size and complexity of the railway operation, the researchers indicate

the necessity of combined optimisation techniques. Nishi et al. (2011) proposed a

column generation with dual inequality for railway crew scheduling. Computational

results have shown that the proposed technique can accelerate the convergence of

conventional column generation for a large data set application. Yan and Tu (2002),

however, stated that column generation-based methods could be inefficient because

when the crew scheduling is formulated as a traditional set covering problem, the

obtained optimal solutions could be non-integer solutions. Other techniques should

then be incorporated to refine the non-integer solutions. Bangert (2012) has also noted

that the method of enumeration is not realistic when the number of options is too large

and cannot be practically listed. De Leone et al. (2011) proposed a mathematical model

Chapter 1: Introduction 3

to solve a CSP. Since their proposed model can only handle small- to medium-sized

problems, a greedy randomised adaptive search procedure has then been offered to

solve large instances.

Due to the combinatorial nature of CSP, heuristic methods are the most

promising approach for solving the problem. There has been an emerging approach

toward the heuristics and metaheuristics search methods for solutions to combinatorial

complex problems. Some of these approaches are inspired by natural phenomena.

They are usually not sensitive to initial solutions and enable the application of parallel

processing. Additionally, since the process of searching a solution is not limited to a

certain domain in the solution space, the chance of being trapped into local optima is

much less. Simulated Annealing (SA) and Tabu Search (TS) are such methods and

they have become promising search techniques to find solutions for combinatorial

optimisation problems.

1.2 CONTEXT OF THE RESEARCH

Crew planning and scheduling in railway transport are highly complicated

problems because of the size of the instances and the type and number of involved

constraints. CSP is concerned with finding an optimal way of allocating crews to

perform their duties in such a way to cover all travelling tasks in a published timetable.

Due to its computational complexity, CSP is still a significant topic of research. Many

researchers and practitioners have devoted considerable effort to solve this problem.

However, the majority of the work to date in this area has come from European,

American, and Asian researches. Very limited research has been done to examine CSP

in the Australian railway industry. Furthermore, the existing models and algorithms

for the railway CSP are usually designed for a specific application area. As the

operating procedures and regulations vary between railway operators, the policies and

workplace agreements specifically dictate the condition of a problem might not be

applicable to other situations.

To address the deficiency, this research studies CSP and develops an analytical

model for railway CSP. Based on this research problem, this research addresses several

questions;

Chapter 1: Introduction 4

i. What are the existing modelling and solution approaches for generic CSP

and railway CSP?

ii. What are the real-life constraints that need to be included in developing a

model for railway CSP?

iii. What is the suitable modelling approach for crew scheduling in the railway

industry?

iv. How this complex problem can be solved in a reasonable time frame.

The research objectives are established based on the research questions to drive

the research process. The aim of this research then are;

i. To investigate the existing approaches in modelling and solving generic

CSP and railway CSP.

ii. To identify real-life constraints which directly influence the development

of a model for railway CSP and integrate them into the developed model.

iii. To design and develop an analytical model and algorithms for railway CSP.

iv. Design innovative algorithms to solve the model developed for this study.

The research was based on a combined research strategy of literature review,

analysis, and discussions to explore relevant information. The overall research consists

of three main stages, namely problem identification; model development and

solutions; and sensitivity analysis and implementation recommendations.

At the first stage, problem identification was initiated through an extensive

literature review on the area of CSP in the transportation systems in general. After

reviewing the existing literature, the scope of the problem was narrowed down to

railway CSP. The objectives of this stage were to have a better understanding of the

topic to be addressed; to identify relevant information; to identify the gap in the

research area and the position of research in the context of existing researches; and to

identify models and algorithms that have been used to solve the generic CSP and

specifically railway CSP. Furthermore, identification of problem was required to

clarify the need for research which leads to the research questions and research

objectives. The literature review process was conducted throughout the research period

to reflect and accommodate new information. A brief summary of the literature review

is presented in Chapter 2.

Chapter 1: Introduction 5

The second stage is the model development and solutions. Modelling and

optimisation of railway CSP has been be approached through the application of

mathematical programming (MP), constraint programming (CP) methods, and

heuristics/metaheuristics techniques. A mathematical model is a mathematical

representation of a real problem. The model should express important features of the

problem under study in the form of mathematical functions of decision variables, and

express the relationships among them using appropriate equations or inequalities.

Real-world problems are usually too complex to capture all details. A model is usually

designed by simplifying features but it still provides a sufficiently precise

representation of the main problem characteristics such that the solutions obtained

remain valid to the problem under study to an acceptable degree of approximation.

Therefore, developing a mathematical model may involve making approximations and

adjustments, and sometimes ignoring or adjusting features which are difficult to

represent mathematically.

In this research, railway CSP was formulated based on MP, as a Mixed Integer

Programming (MIP), and CP. The choice to model railway CSP as MP and CP was

motivated by the fact that they allow complex constraints to be incorporated. Once the

problem has been formulated then a solution has to be found using the models.

Optimisation programming language such as Xpress-Optimizer (FICO) and CPLEX

Optimization Studio (IBM ILOG) softwares are used for solving the models.

Constructive heuristics and metaheuristics techniques have also been applied in this

research to improve solutions and computational performances.

The last stage is sensitivity analysis and implementation recommendations stage.

It includes validation and verification of model as well as a comprehensive sensitivity

analysis. The solution obtained was refined for practical feasibility. If necessary,

modifications should be carried out in the models and the process in this stage may be

repeated as needed.

1.3 SIGNIFICANCE OF THE RESEARCH

The research presented in this thesis focuses on developing models and

algorithms for railway CSP. The proposed mathematical model was formulated based

on data provided by Queensland Rail (QR), Australia combined with analysis and

information retrieved from literature. Some preliminary solutions can be obtained for

Chapter 1: Introduction 6

railway CSP by solving the models using standard optimisation programming

languages such as Xpress-Optimizer (FICO) and CPLEX Optimization Studio

(IBM ILOG). However, because of the large number of decision variables and

constraints, e.g. a set of crew home depots, a set of relief points, a set of scheduled

trips with predetermined starting and ending times at each station, crew breaks, elapsed

time and the requirement to return the crews to their home depots at the end of their

duty, analytical solution is difficult to obtain especially for large–sized instances.

Therefore, metaheuristics techniques such as the Tabu Search (TS) and Simulated

Annealing (SA) were applied to solve the problem. Initial solution for both the SA and

TS was generated by applying constructive heuristics. For relatively smaller data sets,

the underlying problem can be solved to optimality analytically by the proposed MP

and CP models, while for larger data sets, it can be solved approximately by the

proposed hybrid heuristics/metaheuristics-based algorithms.

This research is significant in developing new models and solution methods for

crew scheduling in the railway industry. The proposed models and algorithms consider

challenging practical situations for a number of reasons. The model is general and

flexible enough to be adapted to different locations and modes of transportation. The

optimisation models incorporate a complex set of railway crew scheduling constraints

and can be easily adapted to include additional constraints. The optimisation models

include a specific real-life constraint in which a crew can be relieved during the

interval of relief opportunities. Existing models and algorithms usually only consider

relieving a crew at the beginning of the interval of relief opportunities which may be

impractical. Allowing the train crew to be relieved at any relief point (RP) during the

relief opportunities period (ROP) will provide a better representation of real-world

conditions and improve the robustness of the schedule. Several appropriate techniques

have been used to solve the models and algorithms, with flexibility in terms of

efficiency and scalability. In addition, the proposed models can be solved by a wide

range of techniques.

1.4 THESIS OUTLINE

This thesis consists of six chapters. Following this introductory chapter,

Chapter 2 gives an overview of CSP along with the models and algorithms which

have been used to solve the problem. The objective of this chapter is to acquire an

Chapter 1: Introduction 7

understanding of the previous researches that have been conducted in this area. It

presents the application of mathematical programming approaches, exact algorithms,

as well as heuristics and metaheuristics techniques for solving the problem. The

literature review process has been conducted throughout the research period to reflect

and accommodate new publications. Chapter 3 presents a brief description of the

railway CSP and the detailed formulation of railway crew scheduling model. Chapter

4 presents the formulation of the CP model along with its solution techniques.

Chapter 5 presents heuristics and metaheuristics techniques to solve the problem. It

gives detailed explanation of the proposed constructive heuristics, the hybrid

constructive heuristics and metaheuristics, as well as the hybrid metaheuristics

method with the computational experiments on each solution approach. Chapter 6

concludes this thesis with some recommendations for further study.

Chapter 2: Literature Review 9

 Literature Review

2.1 PROBLEM BACKGROUND AND DEFINITION

The Crew Scheduling Problem (CSP) is a well-known combinatorial

optimisation in the transportation systems such as railways, airlines, public mass

transit, and buses. CSP is the construction of a minimum cost set of duties for crew

members in such a way that each task is covered and all restrictions imposed by

governmental regulations, union enterprise agreements, and company policies are

satisfied. A task or trip is the part of work to be assigned to one crew. A duty (shift) is

a sequence of individual trips that return the crew to its starting point. CSP is one of

the most important planning and scheduling problems that can be modelled and solved

using mathematical optimisation techniques. The process of crew scheduling in the

transportation industry however, is very complex. The large number of tasks (trips) to

include and the complicated operational and contractual requirements are the main

reasons for the complexity of the problem. Practical work schedules have to be

produced which must satisfy a large set of constraints, and might also take into account

preferences of individual crew members.

Many factors need to be identified when developing a crew scheduling model.

A proper description of the processes involved is necessary before building a suitable

model to clearly understand the implication of all related activities. CSP requires

definition of the work to be performed in a given planning horizon. While there has

been significant work in the area of CSP in general, very few optimisation models have

been formulated to solve railway CSP. The developed models and algorithms are

mainly designed for a particular condition and might not be readily adapted to another

situation.

Railway crew scheduling can be described as follows. There is a railway network

where passenger trains travel from one station to the next station according to a

published train schedule. There are depots in the railway network to which sets of crew

members are allocated. Crew members are required to perform a set of activities to

meet the planned schedule. The problem is to construct work schedules for crew

members located in the depots such that they comply with the predefined work

Chapter 2: Literature Review 10

practices and regulations. The problem can be approached by identifying the two sub

problems of crew scheduling and crew rostering, which may be modelled sequentially.

Both crew scheduling and crew rostering problems require finding minimum cost

sequences through a given set of tasks. Analysing crew scheduling will be based on

depots as personnel bases where crew members are positioned.

The research on CSP has mainly focused on the mass transit and airline industry.

The airline CSP, in particular, has received extensive interest due to the high crew

related expenses encountered by airlines. Airline CSP has been studied, for example,

in (Arabeyre et al. 1969; Barnhart et al. 1995; Chu et al. 1997; Yan and Chang, 2002;

Goumopoulos and Housos, 2004; Gopalakrishnan and Johnson, 2005). CSP in railway

industry is similar to the CSP in airline industry in terms of time horizons as they may

contain short-haul and long-haul trips. CSP in both airlines and railways applications

also involve a large number of tasks and a complex set of constraints. Railway CSP,

however, is even more complex than in airline because problem instances are much

larger than in the airline CSP (Caprara et al. 1998). Moreover, real-world constraints

are more difficult to handle such as crew breaks, elapsed time, and other restrictions

that must be considered. Also, there is a special constraint that might influence the

modelling phase, such as a crew has to return to his/her home depot at the end of his/her

daily duty or return to different home depots after a certain period of time.

Early study on CSP for railway application can be found in Tykulsker et al.

(1985). This work constructs rail crew schedules and rosters. An enumeration

approach, controlled by user-parameters, is used to construct a set of feasible crew

duties. This set is reduced with the help of heuristic procedures. A set covering

problem is used to select the best from the remaining set of possible crew duties. This

program was developed for and implemented at New Jersey Transit Corporation.

Morgado and Martins (1992) also presented early work on the crew scheduling

application, ESCALAS for the Portuguese Railways. The system uses a graphic,

highly intuitive interface, and allows four different modes of operation, manual

operation, semiautomatic operation, fully automatic operation and mixed mode. The

main purpose of the development of ESCALAS was to create a decision support

system in the area of human resource management. A ‘what-if’ scenario can be

conducted through modification of parameters and rules in this system, allowing the

verification of consequences of changing labour rules or changing the structure of the

Chapter 2: Literature Review 11

network. The system can generate alternative schedules using different scheduling

criteria and enable the evaluation of the cost of the solution to be considered.

2.2 MATHEMATICAL PROGRAMMING APPROACH

Planning and scheduling problems encountered in the transportation industry can

be formulated as linear program or linear integer program, or general mathematical

program. The most widely used method of solving CSP in the literature has been

through modelling CSP as a set covering problem (SCP) or set partitioning problem

(SPP). The formulations consist of a binary integer variable that represents whether or

not a roundtrip is selected as a work for a crew member. The constraints consist of a

matrix of binary values that indicate if a duty j covers a task i. A row in this 0-1 matrix

shows which duties cover a single task. A column corresponds to one possible

roundtrip for an individual crew member over a defined time horizon. The constraint

in the SCP consists of a matrix of binary values, which defines that each piece of work

is covered by a duty at least once. This implies that deadheading is allowed that is the

crew can travel as a passenger for repositioning.

The SCP formulation of the CSP is as follows:

Min  cj xj
j∈ D

Subject to

 aij xj ≥ 1

j∈ D

xj ∈ {0,1},

 i ∈ T,

 j ∈ D

Where: cj = cost of pairing

T is the set of trips,

D is the set of feasible duties.






otherwise0

trequiremenworkcovers pairing1 ij
aij

Chapter 2: Literature Review 12

The SPP models the CSP as a problem of finding a minimum cost crew roundtrips that

covers each task exactly once. The SPP formulation is as follows:

Min  cj xj
 j∈D

Subject to

 aij xj = 1

j∈D

xj ∈ {0,1},

 i ∈ T,

 j ∈ D

Where: cj = cost of pairing

T is the set of trips,

D is the set of feasible duties.

Caprara et al. (1997) formulated crew scheduling for the Italian railways as a set

covering problem, using an approach applied for airline crew scheduling. Rail crew

scheduling and rail crew rostering are solved by finding a minimum cost sequences of

trips and duties, respectively. The crew scheduling phase is formulated as a set

covering problem with variables are associated with the circuits of the graph, and

solved using an iterative Lagrangean heuristic procedure. According to Caprara et al.

(1997), considerable savings can be found through a clever sequencing of the duties

obtained in the crew scheduling phase. Therefore, the objective of this phase has to

take into account the characteristics of the duties selected and their implication in the

subsequent rostering phase. The crew rostering phase is modelled as an integer linear

program, with variables are associated with the edges of the graph, which is solved by

Lagrangean relaxation and a heuristic technique. Caprara et al. (1997) have noted that

the choice of a suitable model and algorithm strongly depends on the particular

structure of the problem in hand. The algorithm developed in this research is capable

of providing near-optimal solutions to the crew scheduling and crew rostering

problems within limited computational time.

A further work by Caprara et al. (1999) provided a thorough overview of the

types of crew planning problems that a typical European railway company has to carry






otherwise0

trequiremenworkcovers pairing1 ij
aij

Chapter 2: Literature Review 13

out where track management and service operations are split. This study emphasises

the particular experiences of the Italian state railways, which have generated and

applied a computerised crew planning system called ALPI, with optimisation based

approaches to crew planning problem. The solution of this crew planning system is

obtained by decomposing it into three phases, namely pairing generation, pairing

optimisation and rostering optimisation. Given a planned timetable for the train

services, crew planning is concerned with building the work schedules of train crew

(drivers and conductors). The pairing generation phase requires the determination of a

set of feasible pairings from the given timetabled trips. A pairing is a trip sequence

starting and ending at the same depot, and subject to the specified constraints. The

pairing generation phase implemented a depth-first enumerative algorithm and

backtracks when infeasibilities are detected. In the pairing optimisation phase an

iterative Lagrangean relaxation heuristic is applied for solving a set covering model.

The approach consists of three main steps. The first step is aimed at finding a near-

optimal Lagrangian multiplier vector. The next step uses the retrieved information

provided from the vector and sequences the pairings of the incumbent best solution.

The last step is to select a subset of pairings with a high probability of being in an

optimal solution. The three-step procedure is iterated and after each application of the

three-step procedure, a refining method is applied to improve the solution. This

research, however, does not mention how this refining method works. A constructive

heuristic procedure then creates one feasible roster at a time by choosing in turn the

pairings to be sequenced consecutively. This experiment achieves promising results

and points out one possible improvement that could be gained by using a feed-backing

mechanism between phase two and three. The use of the set covering model in this

study implies that it allows coverage of work requirements more than once, meaning

that deadheading is allowed. This study, however, does not show how to handle this

situation.

The exact SCP algorithms proposed in the literature can solve instances with up

to a few hundred trips and a few thousand duties (Caprara et al. 1997). When dealing

with larger problems, one has to adopt heuristic algorithms. Research by Caprara et al.

(2001) used constructive heuristics with relaxation techniques to solve the CSP. This

research divided the CSP for an Italian railway into three parts: pairing generation,

pairing optimisation, and roster optimisation. The problem is one of generating cost

Chapter 2: Literature Review 14

efficient rosters that cover all timetabled train trips. A depth-first branch and bound

method is first employed to enumerate all feasible pairings for all depots. Heuristics

are used to reduce the feasible pairing set. The study experimentally shows that

solution quality can be substantially improved if the pairing optimisation and roster

optimisation phases of the process can be iterated on through a feedback mechanism.

Freling et al. (2004) also formulated both crew scheduling and crew rostering

problems as an SPP model. They presented a decision support system for airline and

railway crew scheduling. The focus of their study is on how to apply a branch-and-

price algorithm for a practical application. Both crew scheduling and crew rostering

problem are formulated as a SPP model. The crew scheduling sequences trips into

duties, and the crew rostering assigns duties for individual crew members. The

objectives are to minimise the number of uncovered tasks and minimise the total cost

of the duties or rosters selected in the solution. A column generation method is utilised,

dealing with a large number of feasible duties or rosters which correlates to a large

number of columns. In this research, nodes can be selected by a depth-first-search,

best-first-search, or combination of these two. The computational results give an

interesting comparison obtained with the approach in which crew scheduling was

carried out before crew rostering, and an approach in which these two planning

problems were solved in an integrated method.

Kroon and Fischetti (2000) described the intelligent information systems TURNI

that are used by the Dutch railway operator NS Reizigers for supporting the planning

processes of scheduling train drivers and guards efficiently. The primary model of the

TURNI system is a set covering model with a number of additional constraints and is

solved by applying dynamic column generation techniques, Lagrangean relaxation and

effective heuristics. This study illustrates the use of the software and the underlying

model by the Noord-Oost case, which involves the scheduling of train drivers and

guards for four interconnected intercity lines of NS Reizigers. The Noord-Oost case

was carried out with the aim of obtaining an efficient schedule for the drivers and

guards, with a high robustness with regard to the transfer of delays of trains. Apart

from the advantage of the powerful algorithm, the TURNI system’s drawback is that

its user-system interface is relatively simple and that its data handling facilities are

limited. Therefore, the findings from this study suggest integrating with the CREW, a

commercially available system that uses techniques originating from artificial

Chapter 2: Literature Review 15

intelligence which was customised to the situation at NS Reizigers. This integration

could provide an intelligent information system for supporting the scheduling of train

drivers and guards.

Subsequent study by Kroon and Fischetti (2001) described the use of a set

covering model with additional constraints for scheduling train drivers and conductors

with the objective of obtaining an improved quality and punctuality in the train

services provided to the customers. This project generates efficient and acceptable

schedules for the drivers and conductors, with a high robustness with respect to the

transfer of delays of trains. The set covering model is solved by dynamic column

generation techniques, Lagrangean relaxation and constructive heuristics. The

experiment successfully solved instances with up to about 2500 trips which could be

handled effectively within a computational time of about one hour. A promising result

was also found in a number of experiments with much larger instances. Given the

complexity of the practical crew scheduling problems, this research suggests that the

most important part of an intelligent system to provide a practical solution of the

problems should be a powerful algorithm that does not only consider the feasibility of

the individual duties, but also the feasibility of the whole schedule.

The main difficulty with the SPP and SCP formulations of the CSP is that in

determining all possible roundtrips. In the SPP and SCP formulations, the matrix of

constraints contains columns for every possible roundtrip. For a CSP with a large

number of trips, it will produce an extremely large number of columns hence, an

unmanageably large number of possible roundtrips. Because of the large number of

decision variables associated with combinatorial explosion of the problem, there is a

requirement of large-scale optimisation techniques such as column generation.

Therefore, for a very large CSP, column generation-based techniques are employed to

solve the SCP or SPP formulations.

The concept of column generation is to solve a sequence of reduced problems

(master problem) in which each reduced problem contains a small fraction of the set

of variables (columns). When a reduced problem is solved, a new set of columns (sub-

problem) is obtained by using dual information of the solution. The sub-problem or an

auxiliary problem is usually formulated as a restricted shortest path problem. The

restricted shortest path problem however, is difficult to solve and it also needs other

Chapter 2: Literature Review 16

optimisation methods such as dynamic programming algorithms or branch-and-bound

methods.

Research by Freling et al. (2001) presented a heuristic algorithm for scheduling

train crews at Dutch Railways (NS). The railway crew scheduling problem is

formulated as a set covering model with side constraints. The side constraints

correspond to the high level constraints dealing with sets of duties. Medium level

constraints deal with the construction of paths during the column generation procedure,

while low level constraints deal with the construction of the network. This research

uses a column generation approach to solve the LP relaxation of the IP formulation

and a branch-and-price heuristic to find integer solutions. New columns are generated

implicitly using a dynamic programming algorithm. Several acceleration techniques

are applied to speed up the algorithm in order to solve a larger-scale train crews

scheduling. The researchers, however, claimed that as the approach is general in

nature, it can be applied to the CSP in different contexts. Although the results are very

promising, care is needed when drawing conclusions based on one instance only.

Therefore, a further research effort is necessary to test the algorithm and its variations

on other instances as well.

Alfieri et al. (2007) presented the case of scheduling train drivers on a railway

sub network. Train driver scheduling involves the construction of feasible duties from

a set of trips to be serviced by a number of train drivers. Each duty consists of a

sequence of trips to be carried out by a single train driver on a single day. The duties

should be such that each trip is covered by at least one duty, each duty satisfies

feasibility constraints, and additional constraints involving the complete schedule are

satisfied while one or several objectives are met. This research also uses a set covering

problem based on an implicit column generation solution approach and focuses on

minimising the number of duties and on maximising the robustness of the obtained

schedule for outside disruptions. A heuristic procedure is presented to find an initial

feasible solution together with a heuristic branch-and-price algorithm based on a

dynamic programming algorithm for the pricing-out of columns. This approach is

tested on the timetable of the intercity trains of NS Reizigers, the largest Dutch

operator of passenger trains. Although the proposed approaches are considered

acceptable, the findings suggest an improvement in the algorithm by studying further

several issues such as how many columns are to be added in each iteration of the

Chapter 2: Literature Review 17

pricing algorithm for speeding up the convergence of the algorithm, and how to find

the best stop criterion for terminating the column generation in a certain node.

Another research which studied large scale crew scheduling problems arising at

the Dutch railway operator, Netherlands Railways (NS) was conducted by Abbink et

al. (2007). They presented several methods of partitioning large instances into several

smaller ones. These approaches are used to create a weekly crew schedule for drivers

and conductors. The four different partitioning methods are weekday partitioning,

geographical partitioning, line based partitioning, and column information

partitioning. These smaller instances are then solved with the commercially available

crew scheduling algorithm TURNI. These partitioning methods are then compared

with each other. It is reported that all methods significantly improve the solution. The

mathematical model for the CSP containing two days without tasks overnight is as

follows. T1 and T2 are the set of tasks for day 1 and day 2, respectively. D1 and D2

denote the set of duties for these days. The subset Di
1 (Di

2) of D1 (D2) consists of the

set of duties containing task i. The binary decision variables xj (and yj) indicate whether

duty j ∈ D1 (D2) is included in the solution or not. Every duty j has positive costs cj.

Moreover, S is the set of additional constraints and ls and us are the lower and upper

bound for constraint s ∈ S. Finally, vj
s (and wj

s) are the weight of duty j ∈ D1 (D2) for

constraints s. Then the CSP formulation is as follows.

Min  cj xj +  cj yj

j∈D1 j∈D2

(1)

Subject to  xj ≥ 1
 j∈Di

1

 yj ≥ 1
j∈Di

2

ls ≤  vj
s
 xj +  wj

s
 yj ≤ us

j∈D1 j∈D2

xj ∈ {0,1}

yj ∈ {0,1}

∀i ∈ T1

∀i ∈ T2

∀s ∈ S

∀j ∈ D1

∀j ∈ D2

(2)

(3)

(4)

(5)

(6)

Equation (1) is the objective function, which states that the sum of the duty cost

is minimised. Constraints (2) and (3) guarantee that for each task i, at least one duty

Chapter 2: Literature Review 18

that contains this task is selected. Note that only duties of day 1 (2) can contain tasks

of day 1 (2). It sometimes may be better to perform a task more than once. If, for

example, the number of tasks going out of a crew base differs from the number of tasks

going into the crew base in one day, over-covering is necessary. Moreover, even if

over-covering is unnecessary, it may be cheaper to allow over-covering. Constraint (4)

is an additional constraint. For example, a crew base for which the total number of

duties on both days is limited to 50. Then, ls = 0 and us = 50 and vj
s (wj

s) = 1 for all

duties belonging to this base and vj
s (wj

s) = 0 for all other duties. For some additional

constraints it is allowed to violate the constraint at the cost of a penalty. The last two

sets of constraints (5, 6) indicate that the decision variables are binary. Even though

they were able to solve the problem, this approach could not model the problem

completely.

Bengtsson et al. (2007) also studied the crew pairing problem at the large

European railway, Deutsche Bahn. A mathematical formulation of the general crew

pairing problem is presented with the objective is to minimise the cost of selected

pairing and the cost of violating soft constraints.

Kwan (2010) discussed a case study of an automatic optimising train crew

scheduling system, TrainTRACS. The optimisation technique of TrainTRACS is

formulated mathematically as an integer linear program (ILP) based on set covering.

Train crew scheduling is partitioned into segments, which are permuted and

recombined with breaks and other crew activities to form crew shifts. The objective

function is to minimise the total cost and the total number of crew shifts, subject to the

constraints that each train work piece has to be covered by at least one shift, and that

using a fraction of a shift is not allowed. The mathematical model is as follows.

Min

 n n

w1  cj xj + w2  xj
 j = 1 j = 1

(1)

Subject to

 n

 aij xj ≥ 1
j = 1

xj = 0 or 1

i = 1, 2,, m

j = 1, 2,, n

(2)

(3)

Where n is the number of candidate shifts, m is the number of

work pieces, cj is the cost of shift j,

Chapter 2: Literature Review 19

w1 and w2 are weight constants.

The ILP is solved in two stages. The first stage ignores the integer constraints.

The relaxed LP is solved using the revised simplex method with column generation.

The second stage uses the branch-and-bound method to search for an all integer

solution. The optimal continuous solution from the first stage is utilised in setting

the target integer number of shifts to be used and making branching decision in the

second stage. Given a set of train unit diagram, a solution of crew schedule consists

of a set of legal shifts. The construction of a shift must conform to the general

working condition of the crew. Within a shift, a crew normally takes a meal break

and the shift usually contains two or more spells of work. A spell is a period of time

a crew works continuously on a train. Because of the train crew scheduling is a very

hard combinatorial optimisation problem TrainTRACS takes many years of

incremental research and development and is currently mainly used by UK’s train

operating companies.

Lezaun et al. (2007) described an applied study conducted by the regional rail

passenger carrier EuskoTren (Spain), on how to assign drivers’ annual workload

equally. The allocation is subject to the working conditions’ requirements and the

preferences of employees. To meet such requirements the company assigns a higher

work-load to those drivers willing to take it, counting the hours as overtime if the driver

has already been assigned full complement of hours, or else hires additional drivers.

The proposed solution is obtained in four related steps, at each of which a binary

programming problem is solved using commercial software. Step one builds five lists

of weekly multi shift patterns that contain all the shifts in the week. Step two involves

the partially rotating annual assignment of patterns to drivers, while step three includes

the extraction of shifts by reducing services on public holidays. The last step

incorporates the duration in hours into the shifts already assigned. The achieved

solution is able to assign all drivers a similar number of morning, evening, and night






otherwise0

 selected is shift if1 j
xj






otherwise0

 shift by covered is piece work if1 ji
aij

Chapter 2: Literature Review 20

shifts with Sunday off nearly the same number of days and hours per year. Although

the obtained result in this study is satisfactory, Lezaun et al. (2007) still have suggested

a possibility for improvement.

Beasley and Cao (1996) described a tree search algorithm for solving a generic

crew scheduling problem. The crew scheduling problem is defined as a problem of

assigning K crews to N tasks with fixed start and finish times such that each crew does

not exceed the limit of the total working time. To provide a lower bound, a Lagrangean

relaxation of a zero-one integer programming formulation is applied and it is improved

by sub gradient optimisation. A tree search (branch-and-bound) procedure is then

applied to find optimal solution of the crew scheduling problem. Computational

results indicate that the proposed algorithm can solve relatively large-sized problems.

A further work by Beasley and Cao (1998) studied a dynamic programming

based algorithm for solving a generic crew scheduling problem. A Lagrangean based

penalty procedure is used to derive a lower bound and sub gradient optimisation which

is then used to maximize the lower bound obtained from the previous step.

Computational results show that the developed algorithm can solve large problems

optimally.

Chu and Chan (1998) presented the problem of crew scheduling for the Hong

Kong Light Rail Transit (LRT), a rail transit division of Kowloon-Canton Railway

Corporation. The project aims at automating the complex schedule construction,

adopting an optimisation modelling approach, and amenable for decomposition into

separate solution stages. The resulting crew schedule has been constructed iteratively

in a reasonable computational time. Although some issues in the LRT system are not

incorporated in this produced software, Chu and Chan (1998) have stated that it can

be used as a good starting point for further crew schedule constructions, leading to a

continuous improvement on the LRT’s scheduling system.

Ernst et al. (2001) presented the crew scheduling problem faced by Australian

railways and developed an optimisation model that constructs crew parings and rosters.

Given a rail network with a number of depots and train trips, this study first

distinguishes between the planning problem, which is one of deciding the total number

of crews and their distribution across the network. The problem is formulated as an

integrated model to generate cyclic rosters and non-cyclic rosters in which under-

coverage and over-coverage of specific duties is allowed. Even though they have

Chapter 2: Literature Review 21

included several constraints, they still have solved a relaxed method of the problem

and suggest the need for a better method in their conclusions.

Caprara et al. (1998) proposed a general model of crew rostering problems

(CRP) for airline or railway applications. The CRP objective is for finding a feasible

set of rosters, covering all the duties and minimising the total number of weeks in the

rosters. The global number of crews required every day to cover all duties is equal to

k times the total number of weeks. Thus the minimisation of the number of weeks

implies the minimisation of the global number of crews required. Integer Linear

Programming (ILP) model for CRP is based on the graph-theoretical formulation

which is relaxed in a Lagrangean way and obtains the objective function. A

constructive heuristic then uses the information obtained from the solution of the

previous relaxed problem to constructs one roster at a time. The heuristic chooses in

turn the duties to be sequenced consecutively in the roster. When a roster has been

completed, all the duties it contains are removed from the problem. The process is

repeated on the remaining duties until all duties have been sequenced. The approach

has been applied on to the real-world railway CRP proposed by Ferrovie dello Stato

SpA within the FARO competition. The computational results from this railway

application involving up to 1000 duties shows that the proposed approach achieves

lower and upper bound values that are typically very close, within a short

computational time.

Sodhi and Norris (2004) presented a general modelling approach to crew

rostering at the London Underground. The approach decomposes the overall crew

rostering problem into stages, which are solved with a general mixed integer linear

programming (MILP) solver, graph-theoretic, manual approaches, and allowing

general solution techniques to be applied at each stage. The primary objective is to

maximise the weighted sum of regular weekends, of pairs of consecutive days off not

including weekends, and of long weekends. The secondary objective is to minimise

the violation of soft constraints for the specific duty assignment. Despite the ability of

this computer-assisted approach to solve crew rostering for the London Underground,

Sodhi and Norris (2004) have noted that the shortcoming of this approach is its

inability to handle constraints that cannot be captured at the node or arc level.

Chapter 2: Literature Review 22

2.3 NETWORK FLOW APPROACH

The network flow approach has been used in several studies on the CSP. An

attempt towards this approach was proposed by Vaidyanathan et al. (2007), who

described a network flow-based approach to solve the railroad CSP arising on North

American railroads. The CSP is formulated as an integer program on a space-time

network, enforcing the first-in-first-out requirement by including side constraints

where the objective is to minimise the total cost of crew wages, the cost of

deadheading, the cost of crew detentions, and the cost of train delays. The network is

created in such a way to accommodate all Federal Railway Administration (FRA)

regulations and trade union work rules. The computational results in this research show

that the perturbation method outperforms the other approaches in terms of solution

time and solution quality. Yan and Tu (2002) introduced a network model to solve an

airline cabin crew scheduling. The network simplex method is applied to solve the

problem. A flow decomposition algorithm is then applied to get the pairing from the

integer solutions. The network flow approach however, is difficulty to apply in highly

constrained practical-sized optimisation problems. Therefore, this approach has been

successful for small- to moderately-sized real-world problems.

2.4 METAHEURISTICS APPROACH

Metaheuristics have become a popular approach in tackling the complexity of

practical scheduling problems. Metaheuristics are typically high-level heuristic

strategies which guide the search to avoid being trapped in local optima. The main

limitation with many of conventional heuristic algorithms is their difficulty to escape

from locally optimal solutions. The search is usually conducted from a single point in

the solution space and continuously searches for better and improved solutions until

there is no possible improvement. In an attempt to deal with this problem, several

metaheuristics approaches have emerged such as Simulated Annealing (SA), Tabu

Search (TS), and Genetic Algorithms (GAs).

SA derives from physical science, notably the second law of thermodynamics.

The method is motivated by an analogy to the physical process of annealing, where

the temperature of a material is reduced to achieve its thermal equilibrium (Kirkpatrick

et al. 1983). This principle is applied in combinatorial optimisation problems to

Chapter 2: Literature Review 23

minimise the objective function value. The advantage of this technique is that it can

avoid local optima by allowing the acceptance of non-improving solutions

occasionally in the hope that a better solution may be found later on.

SA has been applied to the CSP by a number of researchers. Emden and

Proksch (1999) solved an airline CSP using a SA approach. The result indicates that

the SA produces good quality solutions, but requires longer processing times than

simpler heuristics. Lucic and Teodovoric (1999) also applied a SA approach to solve

a multi-objective CSP for airline pilots. In general, SA based solution approaches to

the CSPs have produced acceptable near-optimal solutions but have not been shown

to be as effective as other methods.

TS has also been used to solve the CSP. TS is a higher level heuristic introduced

by Glover (1977, 1986). TS is an iterative improvement procedure and it can be

combined with other search techniques to make the search more efficient. TS avoids

becoming trapped in local optima by exploiting memory and data structures that

prevent cycling and induces the exploration of new regions. One of the attempts

towards this direction was proposed by Cavique et al. (1999), who solved a CSP for

Lisbon Underground. A heuristic search is proposed to minimise the number of

necessary duties for a determined planning period. The methods based on the TS obtain

better results in terms of solution quality even though require longer computational

times.

Shen and Kwan (2001) used TS in transit CSP, but produced solutions that were

substandard to other methods. They, however, show that refining a TS procedure has

the potential to produce better solutions. Chew et al. (2001) presented a report on an

optimisation-based approach to develop a computerised train-operator scheduling

system that has been implemented at Singapore Mass Rapid Transit (SMRT). The

approach includes a combination of optimisation techniques, a bipartite matching

algorithm and a TS algorithm. The objective is to minimise the system wide crew-

related costs and to address concern with respect to the number of split duties. The

developed system improves and automates the current manual scheduling process at

SMRT and produces applicable schedules in comparison with the manual process.

Cabrera and Rubio (2009) conducted a research using the TS approach for solving a

CSP. The objective is to assign a subset of the duties to each crew in such a way to

minimise cost and no trip is left unassigned by considering a number of constraints.

Chapter 2: Literature Review 24

The problem is retrieved from a railway public company in Valparaiso, Chile called

Metro Regional Valparaiso (MERVAL), which served from Valparaiso to Limache.

The findings from this study show that the hybrid algorithm produces very good

solutions in adequate computational time. They have suggested hybridisation of other

different solution techniques to improve resource allocation in the transportation

industry.

Elizondo et al. (2010) proposed methods to address operation management

problems which emerge in underground passenger transport. The problem is to

generate duty and identify an optimal trip set that the conductors should complete in

one workday. The objective of the problem is to minimise the number of conductors

required and minimise total idle time between trips. The problem is modelled and

solved using a constructive hybrid approach. The obtained results are compared with

two alternative approaches, based on TS and a greedy method. The TS technique

provides better results in terms of idle time than both the hybrid and the greedy

methods. Although their proposed methods address the two objectives separately, they

have suggested solving the problem as a multi-objective optimisation.

As was explained earlier, many of the traditional heuristic algorithms use

iterative improvement techniques where the search is started at a single point in the

search space. During a single iteration, a new point is selected from the current point.

If the new point provides a better solution, then the new point becomes the current

point. It is clear that such a local search only exploits the best solution for possible

improvement. Random search such as SA, on the other hand, explores the search

space ignoring the exploitation of the promising regions of the space. Genetic

Algorithms (GAs) emerged as a powerful technique by performing these two

objectives, exploiting the best solutions and exploring the search space. As

Michalewicz (1996) has noted, GAs are a class of general purpose (domain

independent) search methods that strike a remarkable balance between exploration

and exploitation of the search space.

GAs have been successfully applied to optimisation problems for planning and

scheduling in the transportation contexts. GA-based approaches have been used in

several crew scheduling related problems and have produced good quality solutions,

but cannot guarantee optimal solutions. Research which was conducted by Lee and

Chen (2003) found that a GA approach provides a flexible structure for driver

Chapter 2: Literature Review 25

scheduling problems with multiple objectives and various constraints. This research

applies a mathematical programming approach and a GA approach for solving a

driver scheduling problem at Taiwan Railway administration (TRA). The problem

consists of generating feasible duties, creating a schedule of duties for a depot, and

circulating duties in the schedule into a roster for each driver. Some heuristics

methods are developed and used for generating pairing. A bi-objective SCP is then

used in the pairing optimisation phase with the primary objective and the secondary

objective are to minimise the total number of duties and to minimise the

compensation for the selected duties, respectively. A commercial software LINDO is

used to solve the linear integer programming. The outputs of the pairing optimisation

are passed into the rostering phase to generate individual rosters for a depot. The GA

uses a binary coding scheme for the SCP while for the rostering problem uses non-

binary coding scheme. The study indicates that the solution obtained by GA in

general gives better results for the TRA and provides a flexible structure for driver

scheduling problem with multiple objectives and various constraints.

Park and Ryu (2006) proposed a GA to solve the pairing optimisation for subway

CSP. The pairing optimisation is modelled by using a maximal covering problem

(MCP) and is solved by applying the developed GA. The GA employs greedy

heuristics in crossover and mutation operators to improve the efficiency of the search.

A new chromosome structure incorporates unexpressed genes as a way of preserving

diversity of population. While the genes in both expressed and unexpressed parts

evolve, only the genes in the expressed part are used when an individual is evaluated.

Experiments with large real-world data have shown that the GA outperforms other

level search algorithms such as SA and TS.

Metaheuristics have become a popular approach in tackling the complexity of

practical optimisation problems such as the CSP. Although metaheuristics cannot

guarantee optimality of their solutions, they have shown a very good performance in

solving real-world optimisation problems. Metaheuristics represent a general type of

solution method that illustrates the interaction between local improvement procedures

and higher level strategies to facilitate the algorithm for both escaping local optima

and exhaustively searching a feasible region. By applying metaheuristics, a good

feasible solution for a large number of input data can usually be obtained in a

reasonable amount of computational time.

Chapter 2: Literature Review 26

2.5 CONCLUSION

In this chapter, a survey of the CSP has been presented. The objective of this

chapter is to acquire an understanding of the previous researches that have been

conducted in this area. The literature review process has been conducted throughout

the research period to reflect and accommodate new publications. The review has

revealed that very few studies have been conducted on the practical crew scheduling

in the railway industry. The existing approaches in solving the CSP are classified

according to the exact mathematical models and algorithms, heuristics and

metaheuristics. As the CSP belongs to the class of NP-hard, the efforts have been

directed to the use of metaheuristic algorithms which are capable of producing good

feasible solutions within reasonable computational time.

Chapter 3: Railway Crew Scheduling Model 27

 Railway Crew Scheduling

Model

3.1 SCHEDULING PROBLEM

Scheduling is the process of allocating resources to activities over time. In a

typical scheduling problem, resources are scarce and constrained in various ways.

Most practical scheduling problems belong to a special class of NP-hard problems

for which no polynomial time algorithm has been found. The algorithms in this class

normally have exponential time behaviour, and hence there is no fast solution method

exists for the problems yet. This means that, in the case of large scheduling problems,

no optimal solutions can be found in a reasonable computational time. Therefore, we

have to be satisfied with a feasible schedule rather than optimal schedule for a given

problem.

Real-world optimisation problems are usually too complex to capture all

details. A model is usually a simplification that provides a sufficiently precise

representation of the main features such that the solutions obtained to the problem

under study still remain valid to an acceptable degree of approximation. Therefore,

developing a mathematical model usually involves making approximations and

adjustments, and sometimes ignoring or relaxing features which are difficult to

formulate.

Because of the complexity of the scheduling problems, several different

solution approaches have been offered such as through the application of

mathematical models and optimisation methods, simulation techniques, artificial

intelligence techniques, expert systems techniques, and metaheuristics techniques.

CSP involves real-life constraints which are difficult to handle, such as crew

breaks, elapsed time and the requirement to return the crews to their home depots at

the end of their duty. Furthermore, an optimisation model should be well designed

such that all relevant parameters related to the problem can be incorporated. One way

of dealing with the problem is to invent a specific model representation that is capable

of incorporating important features of the problem, and it can be solved using a wide

range of methods. This research develops a mathematical optimisation model for

Chapter 3: Railway Crew Scheduling Model 28

railway CSP. The objective of the model is to minimise the number of crew duties by

minimising total idle transition times. The optimisation model incorporates a

complex set of railway crew scheduling constraints encountered in real-life situation.

The integration of relief opportunities period (ROP) into the model, in particular,

offers flexibility in where and when crew can be relieved. This will enhance the

robustness of the schedule and provide a better representation of real railway crew

scheduling conditions. Although the optimisation model presented in this chapter,

was designed in the context of railway CSP, it is general and can be easily adapted to

different locations and modes of transportation. Furthermore, the proposed

mathematical model in this research can be extended to the integration of vehicle and

CSPs with ROP.

3.2 CREW SCHEDULING PROBLEM (CSP)

The generic CSP is the construction of a minimum cost work schedule for crew

members in such a way that all restrictions imposed by governmental regulations,

union enterprise agreements, and company specific rules are satisfied. The CSP

includes two sequential and interconnected sub problems, the crew pairing problem

and the crew rostering problem. The crew pairing problem, which is the focus of this

study, is the assignment of crew members to scheduled tasks (trips) that have to be

serviced subject to operational and contractual requirements. The assignment of

crews seeks to find a minimum cost sequences of a given set of trips. The sequence

of trips to be carried out by one crew is called a duty (pairing, roundtrip) and it is

usually last for one day (a working day of a crew). Then the subsequent problem, the

crew rostering problem, is the arrangement of the generated duties into sequence of

duties to be performed by an individual crew member over a defined period of time.

3.3 RAILWAY CREW SCHEDULING PROBLEM

Railway CSP involves a rail network where trains travel along specified train

lines from one station to a subsequent station according to the published train schedule.

There are a number of depots in the railway network to which each crew member is

positioned. Crew members are responsible for performing a given set of activities to

meet the train schedule. The railway crew scheduling under study consists of a set of

crew home depots (HDs), a set of relief points (RPs), a set of scheduled train trips with

Chapter 3: Railway Crew Scheduling Model 29

fixed starting and ending times at each station. The problem is to construct minimum

cost crew duties based on the train timetable while satisfying operational and

contractual requirements.

The crew in this case is the train crew which consists of a train driver and a

conductor, and they are considered as a team. A crew typically operates a train starting

from a HD, travelling from one station to the next, taking a break at a specified location

(relief point) within a specified time (relief time), and then operates another train back

and terminate at the same HD. The railway CSP in this context is to specify the

sequence of trips to be performed by the crew.

The passenger railway operator in this study was Queensland Rail (QR)

Australia. The railway operator offers regular train service on specified lines in the

network. A line is characterized by a departure station and an arrival station with a

number of intermediate stations. When the line is served by a single crew, the sequence

of trips can be treated as an individual trip. Examples of such lines are the Ferny Grove

(FYG) line and the Beenleigh (BNH) line. The FYG line mainly serves the train trip

from FNY to Park Road station. However, there are also scheduled trips from FNY to

other terminal stations such as Cleveland (CVN), Corinda (CQD), and Bowen Hills

(BHI). The same situation also occurs on the other lines in the QR network. The QR

network is shown in Figure 3.1.

Chapter 3: Railway Crew Scheduling Model 30

Figure 3.1 Map of QR Network.

 Source: www.queenslandrail.com.au

http://www.queenslandrail.com.au/

Chapter 3: Railway Crew Scheduling Model 31

The train crew scheduling in this study has the following inputs. A set of HDs

and a set of RPs, a set of scheduled trips with fixed starting and ending times, and

predetermined driving times between all pair of stations. A train crew duty (shift)

contains a meal break (MB) which starts and ends within a specific period as

determined in the union collective agreement. The MB begins after the completion of

the third hour and finishes before the completion of the sixth hour, relative to the start

of the duty (shift). For example, crews sign on at 08:00 and sign off at 16:00, then the

earliest MB will be at 11:00 to 11:30 and the latest MB will be at 13:29 to 13:59.

Figure 3.2 illustrates two possible alternatives of crew relief. The first condition is

when 0.5 h MB occurs at the earliest time and the second condition is when the MB

occurs at the latest time. A sequence of trips in a duty (shift) is shown in Figure 3.3.

As can be seen from this figure, a MB divides a duty into two partial duties with

different durations. The 1st part of a duty is the period from the start of a duty to the

start of the MB, whereas the 2nd part of a duty is the period from the end of the MB to

the end of the duty. Every single horizontal blue bar in Figure 3.3 represents a trip.

Transition time or turnaround time within a partial duty is the time incurred between

trips which may include the time required by the crew to move from one end to the

other end of the train at platform and drives the train away in the opposite direction.

Transition time in a duty (shift) is the time period between trips of different partial

duties (MB) which includes crew relieving related activities.

Chapter 3: Railway Crew Scheduling Model 32

 MB MB

 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

 time interval of

 relief opportunities

 earliest MB latest MB

 MB MB

 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

 Alternative 1 1st duty 2nd duty

 Alternative 2 1st duty 2nd duty

 A shift

Figure 3.2 Two possible combination of partial duties in the shift.

Figure 3.3 A sample of the sequence of trips in the shift.

 MB MB

 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

 time interval of

 relief opportunities

 tijk

 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00

 ζii’jk 𝜁ii’j(j+1)k

 𝛼jk δ (j+1)k

 tijk = driving time of a trip

 ζii’jk = transition time between trips in a duty

 𝜁ii’j(j+1)k = transition time between trips of different duties

Chapter 3: Railway Crew Scheduling Model 33

The railway network involves interconnected segments of train tracks. Each

segment of train journeys consists of a sequence of trips that must be serviced. Figure

3.4 illustrates an example of a train timetable. The route of trains can be traced by

straightening the traveling path of trains in the train timetable. Each trip in the

timetable must be serviced by a train. The railway CSP is to specify the sequence of

trips to be performed by the crew. A train journey begins and ends at a crew HD, and

can feasibly be serviced by a single crew.

Figure 3.4 An example of a train timetable.

A train service is the overall journey accomplished by a vehicle from the time it

begins at its first station until it arrives at its last station. A vehicle block specifies the

sequence of trips made by a train during a service work day. It contains pieces of

segments in which crew relief may be done at the both end of each segment. Each crew

belongs to one crew base (HD) and the crew has to start (sign on) and end (sign off)

his/her duty (daily work shift) at the same crew depot (HD). The spread time is the

time elapsed between the crew sign on and the crew sign off in a duty. The time interval

between the earliest break and the latest break corresponds to the transition period

between two consecutive pieces of duty, and is defined as a relief opportunities period

(ROP). The ROP is a period of time within which a train crew is allowed to be relieved.

Any RP can be chosen for crew relief within the two limits of the ROP. The set of

Time

Station 1

Depot A

Station 2

Station n-1

Station n /

Depot B

Distance /

Station no.

Chapter 3: Railway Crew Scheduling Model 34

crew HDs is a subset of the set of RPs. This transition period includes the time spent

for taking a meal and other crew relieving related activities such as handing over a

train to (from) another train crew. An example of vehicle blocks and a crew duty with

ROP is shown in Figure 3.5.

Figure 3.5 An example of vehicle blocks with ROP.

The path of a train is indicated by the blue lines and the purple lines, as shown

in the diagram of Figure 3.5. The blue lines show the movement of a train from the

Station 1 (Depot A) to the terminal at Station n, with transition times (short dwell

times) at each station. Crew arriving at stop n can be relieved at this point and take a

MB at an away depot (Depot B). The relieved crew may then continue with another

vehicle block passing through the same terminal station or RP. Alternatively, the crew

may return directly along the route in the opposite direction (the purple lines) and take

a MB at the HD (Depot A). When more trips are considered, the network becomes

denser and more paths need to be evaluated. A duty covers a set of consecutive trip

segments in a block. The 1st part of a duty (duty stretch) is the period from the start of

a duty to the start of the MB, whereas the 2nd part of a duty is the period from the end

Station 1
Depot A

Station 2

Station n-1

Station n /

Depot B

RO

P

ROP

ROP

Distance /

Station no.

Chapter 3: Railway Crew Scheduling Model 35

of the MB to the end of the duty. Transition time (idle interval) between two

consecutive trips in each partial duty is the time incurred between the departure time

of the next trip and the arrival time of the previous trip.

The railway transportation industry imposes a complex set of operational and

contractual requirements correspond to the work regulations for the crew. For safety

reasons, for example, there is a restriction on the length of continuous driving time. A

crew will be required to take a break when the total continuous driving time on the

same vehicle has reached a maximum limit. In the formation of duties, crew schedule

should satisfy several constraints corresponding to work load regulations. There are

predetermined maximum and minimum durations of a duty. A minimum of 0.5 h for a

MB is required in a duty (shift). A crew takes a break only at a RP and the changeover

of trains is at the same RP.

3.3.1 Terminology

As there is no uniform terminology for the CSP in the literature, the following

terms are used in this study to clearly define the problem.

 Trip is the movement of a train from one station to the next station at specified

times according to the train timetable. Each trip is characterised by a train, a

departure time, a departure station, an arrival time, and an arrival station.

 Trip segment (or segment for short), is part of a vehicle block contains a sequence

of trips in which crew relief can be performed at both ends of each segment.

 Crew is the train crew which consists of a train driver and a conductor and they are

considered as a team.

 Vehicle block is the sequence of trips assigned to the same vehicle during a service

workday. It contains pieces of segments in which crew relief may be performed at

both ends of each segment.

 Duty (shift) is the work to be carried out by a train crew in one day. It begins and

ends at the same crew depot. In a duty, there are two partial duties and a MB in

between. Partial duty is the sequence of trips serviced by a train crew on the same

vehicle without a long rest. The 1st part of a duty (duty stretch) is the period from

the start of a duty to the start of the MB, whereas the 2nd part of a duty is the period

from the end of the MB to the end of the duty.

Chapter 3: Railway Crew Scheduling Model 36

 Transition time (idle interval) is the time incurred between two consecutive trips

in the same partial duty. It is the difference between the departure time of the next

trip and the arrival time of the previous trip.

 Driving period is the total time spent by a train crew driving trips in the duty

including transition times (short dwell times) between consecutive trips.

 Home depot (HD) is the work location at which a train crew is positioned to begin

and end his duty.

 Relief opportunities period (ROP) is the time period within which a train crew has

a chance to be relieved at a specified location.

 Relief point (RP) is the location at which a train crew can be relieved.

 Working time is the total duration of train crew working from the start to the end

of the duty, performing both driving activities and non-driving activities.

 Changeover is the relieving of a train crew and taking over the responsibility for

the train by another crew.

3.3.2 Input Data

Train timetables generally show all train movements along a particular route.

Each entry of the timetable specifies element of the sequence of trips assigned to a

particular train with time and location of train stops. The timetable lists the route to

follow by trains through the rail network with the times and locations of scheduled

train services. The input data comes in the form of a two dimensional table where each

row represents one trip. A sample train schedule with 12 trips is given in Table 3.1.

The data are retrieved from the operational environment of lines in the railway

network. By considering this initial segment, we derived artificial data as problem

instances.

Chapter 3: Railway Crew Scheduling Model 37

Table 3.1 A sample train schedule with 12 trips.

Train ID

Departure

Station

(ds)

Departure

Time

(dt)

(hh:mm)

Arrival

Station

(as)

Arrival

Time

(at)

(hh:mm)

L001 A 05:00 B 05:24

L002 A 05:30 B 05:54

L003 A 06:00 B 06:24

L001 B 05:25 C 06:35

L002 B 05:55 C 07:03

L003 B 06:25 C 07:34

L201

C 04:28 B 05:41

L202 C 04:59 B 06:08

L203 C 05:27 B 06:37

L201 B 05:42 A 06:08

L202 B 06:08 A 06:38

L203 B 06:38 A 07:02

3.3.3 Operational and Contractual Requirements

The railway transportation industry imposes a complex set of operational and

contractual requirements correspond to the work regulations for the crew. The

regulations are defined in the enterprise agreement and in the company policies and

procedures. For a safety reason, for example, there is a restriction on the length of

continuous driving time. A crew will be required to take a break when the total

continuous driving time on the same vehicle has reached a maximum limit. Feasible

crew duties should satisfy several constraints corresponding to work load regulations.

The formation of a feasible crew schedule is restricted by a complex set of rules and

regulations. The rules and regulations may vary between railway operators. The

commonly applied rules for railway CSP considered in the proposed model are given

as follows:

 The minimum and maximum duration of working time;

 The maximum spread time (elapsed time). The spread time is the time elapsed

between sign-on and sign-off in the duty (shift);

 The maximum continuous driving time. A crew will be required to take a break

when the continuous driving time has reached a certain limit;

Chapter 3: Railway Crew Scheduling Model 38

 There must be a MB of at least 0.5 h between the third and the sixth hour relative

to the start of the duty (shift). A MB is required in between consecutive partial

duties;

 A crew has to start and end (sign-on and sign-off) his/her daily shift at the same

depot;

 The crews take a break only at a RP and the changeover of trains is at the same RP.

A crew schedule should also take into account extra time needed by the train

crew to perform other functions associated with crewing of a train. These include

preparing a train at the first start of a run, handing over (taking over) a train to (from)

another train crew, secure a train at the end of its run and the time spent by the crew

walking to (from) the signing-off (on) point from (to) the train.

3.4 DEVELOPMENT OF MATHEMATICAL MODEL

The scheduling problem is modelled as equations written in a set of algebraic

notations. Solving the problem would then require solving the equations that represent

the problem. Mathematical programming has three main components, namely a set of

decision variables, constraints over these variables and an objective function to be

optimised. The objective function represents the goal of the problem in terms of

decision variables. It is a function of the variables which is used to navigate and select

among possible solutions. Constraints put a limit on the outcome of finding a solution.

The decision variables are the unknown values or decisions that are to be optimised.

In this case, the basic assumption is that the problem is linear. In mathematical

terminology, the objective is a linear function and the constraints are linear equations

and inequalities. Such a problem is called a linear program and the process of

modelling and solving this problem is called linear programming. Mixed Integer

Programming (MIP) consists of constraints and an objective function where decision

variables may have either discrete or continuous domains. Thus, in MIP some of

decision variables required to have integer values.

Railway crew scheduling is considered as a highly constrained problem. The

problem of forming a minimum cost set of duties which cover all the trips in a

timetable is a difficult combinatorial optimization problem. A mathematical modelling

approach for handling the problem is presented in this section. It generates a number

Chapter 3: Railway Crew Scheduling Model 39

of duties and computes the time of each duty. The crew scheduling problem in this

context is to specify the sequences of trips to be performed by the crews. The goal is

to determine a schedule which includes the details of the sequence of trips to be

performed by a crew in one duty (shift). The shift is divided into two partial duties

with different durations.

The train crew scheduling requires scheduling all trips in a published train

timetable into a set of train crew duties such that the crews perform feasible sequence

of trips with minimum cost. Railway CSP has the following inputs. A set of crew HDs

and a set of RPs, a set of scheduled train trips with fixed starting and ending times, and

predetermined driving times between all pair of stations. Based on the descriptions

presented in Chapter 3, railway CSP is formulated mathematically as a mixed integer

programming (MIP) and this is presented in the following section.

3.5 RAILWAY CREW SCHEDULING MODEL

This section presents a mathematical model for railway crew scheduling. The

optimisation model integrates the two phases of pairing generation and pairing

optimisation by simultaneously sequencing trips into feasible duties and minimising

total elapsed time of any duties. The optimisation model incorporates commonly

encountered real-life railway crew scheduling constraints, particularly the inclusion of

the time interval of relief opportunities. Existing models usually only consider

relieving crew at the beginning of the interval of relief opportunities, which may be

impractical. Allowing the train crew to be relieved at any relief point within the interval

of relief opportunities offers flexibility. This will improve the robustness of the

schedule and provide a better representation of real-world conditions. Computational

results obtained from randomly generated instances indicate that the optimisation

model can produce feasible railway crew schedules within a reasonable computational

time.

The following notations are used through the description of the model.

Chapter 3: Railway Crew Scheduling Model 40

3.5.1 Notations

Indices

i, i'

j, j'

k, k'

ohd

thd

orp

trp

ots

train trip

duty

shift

originate at crew HD

terminate at crew HD

originate at RP

terminate at RP

originate and terminate at any station

Sets

I

Iohd

Ithd

Iorp

Itrp

Iots

J

Ji

K

Kj

set of all trips

set of trips that originate at crew HD (Iohd ⊆ I)

set of trips that terminate at crew HD (Ithd ⊆ I)

set of trips that originate at RP (Iorp ⊆ I)

set of trips that terminate at RP (Itrp ⊆ I)

set of trips that can be sequential in the same duty (Iots ⊆ I)

set of duties

set of duties which can contain trip i (Ji ⊆ J)

set of shifts

set of shifts for duty j (Kj ⊆ K)

Parameters

tijk

ζii’jk

𝜁ii’j(j+1)k

𝜁ii’k(k+1)

𝛼jk

𝛼'jk

𝛿'(j+1)k

δ(j+1)k

dti

driving time of trip i in duty j of shift k

transition time from trip i to trip i’ in the j th duty of shift k

transition time from trip i of the 1st duty to the trip i’ of the 2nd duty of shift k

transition time from trip i of shift k to trip i’ of the next shift

minimum duration of 1st part of a duty in shift k

maximum duration of 1st part of a duty in shift k

minimum duration of 2nd part of a duty in shift k

maximum duration of 2nd part of a duty in shift k

departure time of trip i

Chapter 3: Railway Crew Scheduling Model 41

ati

dsi

asi

Wtmax

Wtmin

Wtk

Stk

Stmax

arrival time of trip i

departure station of trip i

arrival station of trip i

normal working time per shift

minimum working time allowed per shift

actual driving time in shift k

spread time of shift k

maximum spread time allowed per shift

Variables

vijk

wijk

xii’jk

yijk

zii’j(j+1)k

zii’k(k+1)

U

𝜎ijk

𝜗ijk

∈ {0,1}

∈ {0,1}

∈ {0,1}

∈ {0,1}

∈ {0,1}

∈ {0,1}

∈ {0,1}

∈ ℝ

∈ ℝ

binary variable for assignment of trip i in duty j of shift k

binary variable for assignment of i as the first trip in duty j of shift k

binary variable denotes that the assignment of i is followed by i’ in

duty j of shift k

binary variable denotes that the assignment of i as the last trip in duty

j of shift k

binary transition variable denotes that the assignment of i at the end of

a partial duty j to be followed by i’ at the beginning of the subsequent

partial duty of shift k

binary transition variable denotes that the assignment of i at the end

of the duty (shift) to be followed by i’ at the beginning of the

subsequent duty (shift)

binary variable

starting time of trip i in duty j of shift k

completion time of trip i in duty j of shift k

3.5.2 Objective Function

The objective function is designed to minimise the total number of duties by

minimising idle transition times. The idle transition times includes the idle intervals

between trips and an idle transition during a MB. The function consists of driving

period and non-driving period.

Chapter 3: Railway Crew Scheduling Model 42

Min (∑ ∑ tijk vijk + ∑ ∑ 𝜁ii’jk xii’jk + ∑ 𝜁ii’j(j+1)k zii’j(j+1)k)
 j ∈ Ji i ∈ Ik j ∈Ji i, 𝑖′ ∈ Ik i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji,, k ∈ Kj

(1)

3.5.3 Constaints

Equation (2) is the trip assignment. It enforces every trip i to be allocated in exactly

one duty j of shift k.

∑ ∑ vijk = 1
k ∈ Kj j ∈ Ji

∀ i ∈ I (2)

This equation implies that no deadheading is allowed. A crew has to wait for the

next trip at a RP and the changeover of trains is at the same RP. When the assignment

of trip i is followed by trip i′ in the same duty, a sequence of the trips is enforced via

constraint (3). Trips i and trip i′ are consecutive only in the case that the binary variable

xii’jk = 1. Similarly, constraint (4) denotes that the assignment of trip i in duty j is

followed by trip i′ at the next duty j′. The transition variable zii’j(j+1)k is activated when

both vijk and vi’(j+1)k are equal to one. As a result, one transition from trip i to trip i′

occurs at the end of any partial duty if and only if trip i′ is assigned in the subsequent

partial duty.

xii’jk ≥ vijk + vi’jk − 1

zii’j(j+1)k ≥ vijk + vi’(j+1)k − 1

∀ i, i′ ∈ Ik , i ≠ i′, j ∈ J, k ∈ Kj

∀ i, i′ ∈ Ik , i ≠ i′, j ∈ J, k ∈ Kj

(3)

(4)

Constraint (5a) ensures that no overlap is allowed. The start time of trip i′ in any

duty require the completion of the previous trip. Constraint (5b) and constraint (5c) are

included to ensure a connectivity of the trip sequences.

Chapter 3: Railway Crew Scheduling Model 43

atijk + ζii’jk xii’jk ≤ dti’jk

asijk vijk
 = dsi’jk vijk

asijk vijk = dsi’ (j+1)k wijk

∀ i, i′ ∈ Ik , i ≠ i′, j ∈ J, k ∈ Kj

∀ i, i′ ∈ Ik , i ≠ i′, j ∈ J, k ∈ Kj

∀ i, i′ ∈ Ik , i ≠ i′, j ∈ J, k ∈ Kj

(5a)

(5b)

(5c)

Constraint (6a) and constraint (6b) denote the relation between the start and

completion times in a duty. The completion time of the last trip in a duty is greater

than or equal to the start time of the first trip plus the total driving time and the total

transition time in the duty.

 atijk ≥ dtijk + ∑ tijk vijk
 i ∈ Ik

 𝜗ijk ≥ 𝜎ijk + ∑ tijk vijk + ∑ ζii’jk xii’jk
 i ∈ Ik i, 𝑖′ ∈ Ik

∀ j ∈ J, k ∈ Kj

∀ j ∈ J, k ∈ Kj

(6a)

(6b)

Constraint (7a), along with constraint (7b), constraint (8a), and constraint (8b), indicate

that the total continuous driving time in the 1st part of a duty should be greater than or

equal to the minimum allowable duration of the 1st part of a duty in shift k (𝛼jk) and

the total continuous driving time of the 2nd part of a duty should be less than or equal

to the maximum duration of the 2nd part of a duty in shift k (δ(j+1)k). Otherwise, the total

continuous driving time of the 1st part of a duty should be less than or equal to the

maximum duration of the 1st part of a duty in shift k (𝛼'jk) and the total continuous

driving time of the 2nd part of a duty should be greater than or equal to the minimum

duration of the 2nd part of a duty in shift k (𝛿'(j+1)k). The set of constraints satisfy a

condition in which a train crew takes a MB at the earliest or latest times or in any time

between the two limits (Figure 3.6).

Chapter 3: Railway Crew Scheduling Model 44

∑ tijk vijk + ∑ 𝜁ii’jk xii’jk ≥ 𝛼jk U
i ∈ Ik i, 𝑖′ ∈ Ik

∑ tijk vijk + ∑ 𝜁ii’jk xii’jk ≤ 𝛼'jk (1 – U)
i ∈ Ik i, 𝑖′ ∈ Ik

∑ ti(j+1)k vi(j+1)k + ∑ 𝜁ii’(j+1)k xii’(j+1)k ≤ δ (j+1)k U
i ∈ Ik i, 𝑖′ ∈ Ik

∑ ti(j+1)k vi(j+1)k + ∑ 𝜁ii’(j+1)k xii’(j+1)k ≥ 𝛿'(j+1)k (1 – U)
i ∈ Ik i, 𝑖′ ∈ Ik

 ∀ j ∈ J, k ∈ Kj

∀ j ∈ J, k ∈ Kj

∀ j ∈ J, k ∈ Kj

∀ j ∈ J, k ∈ Kj

(7a)

(7b)

(8a)

(8b)

 αjk 𝜁ii’j(j+1)k δ (j+1)k time

 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

 𝛼'jk 𝜁ii’j(j+1)k δ'(j+1)k time

 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Figure 3.6 Two combinations of partial duties in the shift.

Equation (9a) calculates the total actual driving time in shift k (Wtk), which is

equal to the total working time of all partial duties in the shift. Constraint (9b) states

that the total actual driving time within the shift must not exceed the upper bound

(Wtmax) and the lower bound (Wtmin).

 earliest

MB

 𝜁ii’jk

𝜁ii’jk latest

MB

Chapter 3: Railway Crew Scheduling Model 45

∑ ∑ tijk vijk + ∑ ∑ 𝜁ii’jk xii’jk ≤ Wtk
j ∈ Ji i ∈ Ik j ∈ Ji i, 𝑖′ ∈ Ik

 Wtmin ≤ Wtk ≤ Wtmax

∀ j ∈ J, k ∈ Kj

(9a)

(9b)

Constraint (10a) restricts the spread time of a shift from exceeding the maximum

allowed total spread time. Spread time of a shift (Stk) is equal to the total working time

plus the transition time between each partial duty (MB). The relation between the last

trip i in partial duty j of shift k and the start of trip i + 1 in the next partial duty j + 1 of

shift k is given by equation (10b).

∑ ∑ tijk vijk + ∑ ∑ 𝜁ii’jk xii’jk + ∑ 𝜁ii’j(j+1)k zii’j(j+1)k ≤ Stmax
 j ∈ Ji i ∈ Ik j ∈Ji i, 𝑖′ ∈ Ik i, 𝑖′ ∈ Ik

∀ j ∈ J, k ∈ Kj

∑ 𝜁ii’jk xii’jk + ∑ tijk vijk + ∑ 𝜁ii’(j+1)k xii’(j+1)k = ∑ 𝜁i(i+1)(j+1)k xi(i+1)(j+1)k
 i ∈ Ik
+ ∑ ti(j+1)k vi(j+1)k + ∑ 𝜁i(i+1)jk xi(i+1)jk

 i ∈ Ik

 ∀ i, i’ ∈ Ik , i ≠ i’, j ∈ J, k ∈ Kj

(10a)

(10b)

Considering that each duty consists of at least one trip, only one trip can be the

first or the last one in each duty. Equation (11) expresses the requirement that the first

trip in the 1st part of a duty which is also the first trip of the corresponding duty (shift)

should originate from a HD. Equation (12) states that the last trip in a duty should

terminate at a HD or at a RP. Equation (13) ensures that each trip, except the first trip,

is assigned after another trip. Similarly, equation (14) ensures that each trip, except the

last trip, is assigned before another trip. Equation (15) expresses that for each trip

which terminated the 1st part of a duty, there is a transition time (MB) from this trip to

the first trip in the subsequent part of a duty. Similarly, equation (16) expresses that

for each trip which originated a duty, there is a transition time from the last trip of the

previous duty to the current duty. Equation (17) ensures that for each trip which

terminated a duty (shift), there is a transition time from this trip to the first trip of the

next duty (sign off to sign on). Similarly, equation (18) ensures that for each trip which

originated a duty (shift), there is a transition time from the last trip of the previous duty

Chapter 3: Railway Crew Scheduling Model 46

(shift) to the first trip of the current duty (shift). Constraints (19) and (20) are the

variable restrictions for 7 binary variables and 2 real variables, respectively.

∑ wijk = 1
 i ∈ Iohd

∑ yijk = 1
 i ∈ Ithd ∪ Itrp

∑ xii’jk = vi’jk – wijk
i ∈ Iots , i ≠ 𝑖′

∑ xii’jk = vijk – yijk
𝑖′ ∈ Iots , i′ ≠ 𝑖

∑ zii’j(j+1)k = wi’(j+1)k
i ∈ Ithd ∪ Itrp

∑ zii’j(j+1)k = yijk

𝑖′ ∈ Iohd ∪ Iorp

∑ zii’k(k+1) = wi’j(k+1)

i ∈ Ithd ∪ Itrp

∑ zii’k(k+1) = yijk

𝑖′ ∈ Iohd ∪ Iorp

∀ j ∈ J, k ∈ Kj

∀ j ∈ J, k ∈ Kj

∀ i’ ∈ Iots , j ∈ J, k ∈ Kj

∀ i ∈ Iots , j ∈ J, k ∈ Kj

∀ i’ ∈ Iohd ∪ Iorp , j ∈ J, k ∈ Kj

∀ i ∈ Ithd ∪ Itrp , j ∈ J, k ∈ Kj

∀ i’ ∈ Iohd , j ∈ J, k ∈ Kj

∀ i ∈ Ithd ∪ Itrp , j ∈ J, k ∈ Kj

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

vijk ∈ {0,1}, wijk ∈ {0,1},

xii’jk ∈ {0,1}, yijk ∈ {0,1},

zii’j(j+1)k ∈ {0,1},

zii’k(k+1) ∈ {0,1},

U ∈ {0,1}

(19)

𝜎ijk ∈ ℝ ,

𝜗ijk ∈ ℝ

(20)

Generally, these constraints can be divided into four groups. The first group

focuses on the scheduling and sequencing trips (Constraints 2 – 6); the second group

addresses the duty restrictions (Constraints 7 – 10); the third group determines the

assignment and sequencing of trips in a duty (Constraints 11 – 18), and the remaining

group restricts the value of variables (Constraints 19 – 20).

Chapter 3: Railway Crew Scheduling Model 47

3.6 MP SOLUTION TECHNIQUE

Real-life optimisation applications involve various complex constraints that are

difficult to find satisfactory solutions. An optimisation approach works by exploring

the search space to find the optimum solution according to an objective function while

satisfying given constraints. It determines a value of cost to minimise or of profit to

maximise. The exact solution approaches refer to the methods which can obtain

optimal solution and prove its optimality. Some well-known exact methods for solving

mathematical formulations are branch-and-bound, branch-and-cut, branch-and-price,

and dynamic programming. MIP solvers, such as Xpress-Optimization (FICO) and

CPLEX (ILOG, Inc.), employ branch-and-cut which is a combination of branch-and-

bound and cutting-plane techniques.

Branch-and-bound is a classic method for solving the IP. In branch-and-bound,

the problem is decomposed recursively into a disjunction of smaller sub-problems by

a tree search. This decomposition creates further branch nodes and stop decomposing

when the node is either pruned (reach feasibility or optimality) or a leaf node is reached

(have assigned value to all variables). Thus, these smaller subsets were evaluated until

best solution is found.

The first node of the branch-and-bound search tree can contains the relaxed

linear programming solution and has two designated bound, an upper bound (UB) and

a lower bound (LB). The optimal integer solution will be between these two bounds.

An optimal integer solution is reached when a feasible integer solution is achieved at

a node that has an upper bound greater than or equal to the upper bound at any other

ending node.

The branch and bound method can be used for mixed integer problems, except

only variables with integer restrictions are rounded down to achieve the initial lower

bound and only integer variables are branched on. When determining which variable

to branch from, the greatest fractional part is selected from among only those variables

that must be integer. The optimal solution is reached when a feasible solution is

generated at a node that has integer values for those variables requiring integers and

that has reached the maximum upper bound of all ending nodes (Taylor, 2009). MIPs

apply relaxation methods. Relaxation of a MIP is a strategy used such that (a) any

solution to the MIP corresponds to a feasible solution to the relaxed problem, and (b)

Chapter 3: Railway Crew Scheduling Model 48

each solution to the MIP has an objective function value greater than or equal to that

of the corresponding solution to the relaxed problem. MIP techniques examine a subset

of possible solutions and do not explicitly examine every possible combination of

discrete solutions and use optimisation theory to prove that no other solution can be

better than the best one found. This type of technique is known as implicit enumeration

(Smith and Taskın, 2007).

Optimal solutions can be obtained for CSP by solving the model using standard

optimisation programming languages such as Xpress-Optimizer (FICO) and

CPLEX Optimization Studio (IBM ILOG). Xpress-Optimization uses branch-and-

bound algorithm to solve MIP. This was used to obtain the solutions and includes

classes of cutting-planes which are generated during optimisation. Using the Xpress-

Optimization solver, the results indicate that it is difficult to solve a practical

optimisation problem using pure MIP method particularly for large-sized instances.

This is because the practical optimisation problem involves a large number of variables

and constraints. The standard branch and bound technique employed by the Xpress-

Optimization begins by solving the linear programming relaxation which is obtained

by removing some restrictions in the mixed integer program. The number of feasible

duties will increase with the number of trips included in the problem as well as the

increase of runtimes. The overall computational results of the mathematical model by

Xpress-Optimization are given in Appendix A of this thesis.

3.7 CONCLUSION

Railway CSP represents a computationally difficult problem because of the size

of the instances and the complex structure of operational constraints. In this chapter,

an alternative mathematical model for railway CSP has been presented. The

optimisation model integrates the two phases of pairing generation and pairing

optimisation by simultaneously sequencing trips into feasible duties and minimising

total elapsed time of any duty. Crew scheduling constraints in which the crews have

to return to their home depot at the end of the shift are included in the model. The

flexibility of this model comes in the inclusion of the time interval of relief

opportunities, allowing the crew to be relieved during the ROP. The MIP model

involves binary variables which determine whether a trip is assigned in a duty or not,

whether it is the first trip, followed by the next trip or it is the last trip. The number of

these variables will increase significantly with the number of trips included in the

Chapter 3: Railway Crew Scheduling Model 49

problem. Optimisation Programming Language (ILOG OPL Studio) software was

used to obtain the solutions. Modelling with ILOG OPL Studio was done by firstly

declaring of data and variables. Then was followed by defining the objective function

and constraints. The overall results suggest that improvement should be made in terms

of search strategy and the time consumed by the methods to obtain final results. From

a practical viewpoint, the proposed model and its solution technique can be integrated

with other search techniques to find better solutions.

Chapter 4: Constraint Programming 51

 Constraint Programming

This chapter describes Constraint Programming (CP) with the solution

techniques applied to solve the problem. CP is a structured technique with natural way

in expressing optimisation problems by means of variables and constraints through the

application of constraint propagation mechanism based on the tree search structure for

the solving process.

4.1 CONSTRAINT PROGRAMMING (CP)

CP converged from different areas of optimisation, computer science and

artificial intelligence (AI) (Hooker, 2002). It incorporates both a modelling and a

problem solving paradigm. CP is a structured computer programming technique that

provides a natural way of expressing a wide variety of algorithmic problems.

CP is an effective technique for solving large combinatorial optimisation

problems and has proven a success in various application areas. The strength of CP is

due to the clear separation between model and solver. The problem is stated

declaratively in terms of variables and constraints and modelling the relations of the

entities in the problem is engaged in. This model is then passed to a constraint solver,

which will return a solution to the problem.

Several operations research (OR) techniques have been applied to tackle the

crew planning and scheduling problems. The OR applications incorporate various

kinds of enumeration strategies that are usually embedded in complex computer

programs. Barták et al. (2010) noted that constraint satisfaction offers a very good

framework for integrating OR techniques in more general AI solving algorithms. The

primary technology for this integration is based on the concept of global constraints.

Global constraints accommodate efficient algorithms to solve well defined sub-

problems while they still can be combined with other constraints for modelling the

side features of the problem. Global constraints coupled with sophisticated search

techniques are the main strength behind the success of constraint-based scheduling.

Rodosek et al. (1999) have introduced a hybrid algorithm to reduce the solution

space by integrating constraint logic programming and mixed integer

Chapter 4: Constraint Programming 52

programming using both the local constraint propagation and the global constraint

propagation. Milano and Wallace (2010) presented an important survey on how CP

can be applied to exploit linear programming within various hybrid algorithms and can

enhance Lagrangian relaxation, Benders decomposition and column generation

techniques. Gualandi and Malucelli (2013) reviewed the applications of the CP-based

column generation framework to solve several complex real-life optimisation

problems.

Railway crew scheduling represents a very complex problem due to the presence

of conflicting constraints that have to be satisfied and the huge search space that has

to be explored. The straightforward approach is used to be applied to this problem is

generate and test approach. Thus a complete roundtrip is generated and then tested its

feasibility. CP in contrasts applies a different method of computation, which is the

constraint and generates one. When a solution is found, its objective value is stored.

A new constraint is subsequently added to the problem while imposing the value of

the objective function to be better than the best previously found.

A combinatorial optimisation problem in CP is modelled as a set of variables,

the objects the problem deals with, and a set of constraints representing the

relationships among the objects. A CP system implements these variables and

constraints and provides a solution procedure of assigning variables subject to all the

constraints. Thus the solution to CP is an assignment to each variable a value from its

domain such that all the problem constraints are satisfied. The objective is to find the

minimum solution with complete assignment of values to the variables.

Even though some work has been done on the CSP using a wide variety of

solution techniques, the problem is still hard to solve. CP is one of the techniques that

has drawn increased attention in recent years and has been successfully applied to the

scheduling problems (Lustig and Puget, 2001). Sellmann et al. (2002) applied CP

based column generation framework and CP based heuristic tree search. The objective

of their study is to assign lines of work to a set of crew members and minimise the cost

of that assignment. The researchers have shown how CP can be incorporated to

overcome typical deficiencies of OR approach. Silva (2001) combined CP and linear

programming (LP) for solving bus driver scheduling problem. This study found that

CP can handle complex real life constraints easily and constraint propagation can

improve the efficiency of generating duties.

Chapter 4: Constraint Programming 53

Despite the fact that CP is an emergent and promising approach for solving large

combinatorial optimisation problems, very little research has applied this method to

the CSP. This study presents a CP formulation and solution methodology to solve the

railway CSP. The CP formulation incorporates commonly encountered real-life

railway crew scheduling constraints. A computational experiment was carried out on

randomly generated problem instances which are based on the data from Queensland

Rail (QR), Australia.

The approach to solve the railway CSP follows several stages. Firstly, the train

segment is divided into trips for each depot. A duty (roundtrip, pairing) is defined as

a sequence of trips which can be assigned to a crew that starts and ends at the same

crew depot. The overall modelling approach can be seen in Figure 4.1. The

optimisation model sequences the trips into feasible duties and minimises the total

elapsed time of the duties (shifts). A number of feasible duties will be generated for

a depot. The best subset will then be selected from all the generated duties based on

the minimum cost of duties.

Chapter 4: Constraint Programming 54

Figure 4.1 Modelling approach.

4.1.1 Constraint Propagation and Search

The process of inference is called constraint propagation. Constraint propagation

is the main inference method in constraint programming systems. It is an efficient

inference mechanism using concurrently working propagators that accumulates

information in a constraint group. It infers that certain values cannot be part of certain

variable domains anymore if they violate some constraint. The entities that perform

constraint propagation are called propagators. A propagator removes values from

variable domains that cannot be part of any solution of its constraint. Constraint

distribution divides the problem into corresponding cases when constraint propagation

cannot proceed any further. By iterating propagation and distribution, propagation will

ultimately resolve a solution to the problem.

Chapter 4: Constraint Programming 55

Many algorithms for solving CP systematically search through the possible

assignments of values to variables. Such algorithms are guaranteed to find a solution,

if one exists, or to prove that the problem is insolvable. Therefore, the systematic

search algorithms are complete. The main disadvantage of these algorithms is that they

take a very long time to perform it. There are two main classes of systematic search

algorithms. The first one is the algorithms that search the space of complete

assignments, i.e., the assignments of all variables, till they find the complete

assignment that satisfies all the constraints, and the second one is the algorithms that

extend a partial consistent assignment to a complete assignment that satisfies all the

constraints.

4.1.2 Tree Structure

Trees are a type of nonlinear structure where the data are organised such that

items of information are related by branches. Trees can describe the relationship

among their elements or objects and represent them naturally. Relationships such as

one to one and one to many are among those that can always be found in real life,

and can be easily described by trees. The ability of trees to organise data and represent

them naturally is useful in solving a wide variety of algorithmic problems.

Horowitz and Sahni (1987) define a tree as a finite set of nodes in which there

is a specially designated node called the root, and the remaining nodes are partitioned

into n  0 disjoint sets T1,…..,Tn where T1,…..,Tn are called the subtrees of the root.

The node is the item of information contained in the tree. A sample tree is given in

Figure 4.2. This tree has 13 nodes, each item of data being a single letter for

simplicity.

Chapter 4: Constraint Programming 56

Figure 4.2 A sample tree with 13 nodes.

The number of subtrees of a node is called its degree. The degree of A is 3, of

C is 0, of D is 2, etc. Nodes that have degree zero are called terminal nodes or external

nodes, i.e. C, F, H, J, K, L, M. The other nodes are referred to as non-terminal nodes

or internal nodes. The degree of a tree is the maximum degree of a node in the tree.

The tree in Figure 4.2 has degree 3.

The relationship between a node and its successors is described as a parent –

child relationship. The predecessor of a node X is said to be the node X’s parent and

a successor of a node X is said to be the node X’s child. Thus, considering the tree in

Figure 4.2, the children of B are E, F, and G and the parent of B is A. Every node that

is not a terminal node has at least one child. The nodes of the same parent are said to

be siblings.

Each node in a tree is at a certain level in that tree. The root node is at level

one, and if a node is at level l, then its children are at level l + 1. Figure 4.3 shows

the levels of nodes in the tree. The height or depth of a tree is defined as the maximum

level associated with any of its nodes. Figure 4.3 contains 10 nodes and has a height

of 4.

A

B D C

F G E H I

L K J M

Chapter 4: Constraint Programming 57

Figure 4.3 A sample tree with 4 levels.

A binary tree is characterized by the fact that each node can have at most two

branches, each sub-tree is identified as being either the left or right sub-tree of its

parent, and a binary tree may be empty (Stubbs and Webre, 1993). Horowitz and

Sahni (1987) define a binary tree as a finite set of nodes which is either empty or

consists of a root and two disjoint binary trees called the left sub-tree and the right

sub-tree. Figure 4.4 shows two samples of binary trees with 9 nodes and a height of

4.

 (a) (b)

Figure 4.4 Binary trees.

(a). A binary tree with 9 nodes

(b). A complete binary tree with 9 nodes

A binary tree is drawn with the root at the top and with the left and right children

always positioned to the left and right of their parent, respectively. An external node

has no children and an internal node has at most two children. If every internal node

in a binary tree has nonempty left and right sub-trees, the tree is termed a complete

binary tree (Figure 4.4 (b)). A complete binary tree of depth d is a binary tree having

2d  1 nodes. For example, a complete binary tree of depth 4 as shown in Figure 4.5

A

B

D

C

F

G

E

H I J

A

B C

D E

G

F

H I

A

B C

F

D

G

E

H I

Chapter 4: Constraint Programming 58

has a number of 24 – 1 = 15 nodes, which is the maximum number of nodes this

binary tree can have.

Figure 4.5 A complete binary tree of depth 4.

In a complete binary tree, each node is either an internal node with two

nonempty left and right subtrees, or an external node having no children nodes. In

such a binary tree, the number of external nodes always exceeds the number of

internal nodes by one. This relationship can be termed as n1 = n0 + 1 where n1 is the

number of external nodes and n0 is the number of internal nodes (Horowitz and Sahni,

1987).

Figure 4.6 The sequence in which the node of the tree are visited for

 preorder (ABDHIECFGJK), inorder (HDIBEAFCJGK)

and postorder (HIDEBFJKGCA).

K M J O L N

A

B C

D E G F

H I

A

B C

D G F E

H

C
K I J

Chapter 4: Constraint Programming 59

Postorder traversal is commonly referred to as Polish expression and has been

widely used as representation of the slicing tree for many algorithmic problems

(Figure 4.6). A tree search starts at the root and explores nodes from this point,

searching for a goal node that satisfies certain conditions. For some problems, any

goal node is acceptable but for other problems, a minimum-depth goal node is

required or a goal node nearest to the root.

Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree

structure, or graph. It starts at the root and explores a path all the way to a branch

before backtracking and exploring another path. DFS is an uninformed search that

progresses by expanding the first child node of the search tree that appears and thus

going further down until a goal node is found, or until it reaches a node that has no

children. Then the search backtracks, returning to the most recent node it hasn't

finished exploring. DFS is mainly used to find any solution when cost is not an issue.

DFS follows the following rules:

1. Select an unvisited node x, visit it, and treat as the current node.

2. Find an unvisited neighbor of the current node, visit it, and make it the new current

node.

3. If the current node has no unvisited neighbors, backtrack to its parent, and make

that parent the new current node.

4. Repeat steps 3 and 4 until no more nodes can be visited.

5. If there are still unvisited nodes, repeat from step 1.

DFS is not good for tall trees when it is possible to over commit to a bad path

early. It may miss a complete solution because it focused on checking the first partial

path and did not test the others in the queue.

Breadth-first search (BFS) is one of the simplest algorithms for searching a

graph. It explores nodes nearest the root before exploring nodes further away. BFS is

an uninformed search method that aims to expand and examine all nodes or

combination of sequences by systematically searching through every solution. It

exhaustively searches the entire graph or sequence without considering the goal until

it finds it. BFS is mainly used to find a solution at minimum distance from the root of

a search tree.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Uninformed_search
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Backtracking
http://en.wikipedia.org/wiki/Uninformed_search

Chapter 4: Constraint Programming 60

BFS follows the following rules:

1. Select an unvisited node x, visit it, treat as the root in a BFS tree being formed.

This level is called the current level.

2. From each node z in the current level, in the order in which the level nodes were

visited, visit all the unvisited neighbors of z. The newly visited nodes from this

level form a new level that becomes the next current level.

3. Repeat step 2 until no more nodes can be visited.

4. If there are still unvisited nodes, repeat from Step 1.

BFS is not good for fat trees where the nodes have high branching factors. It may also

be a bad choice when several partial paths lead to the same node several levels down

(bottleneck). It is not always fast but it may never miss a complete solution.

Backtracking is the most common algorithm for performing systematic search.

It is a methodical way of trying out various sequences of decisions to find a feasible

solution. Backtracking algorithm is a recursive method of building up feasible

solutions to a combinatorial optimisation problem one step at a time (Kreher and

Stinson, 1999). Backtracking comprises of doing a DFS of the state space tree,

checking whether each node is promising and if the node is non-promising

backtracking to the parent node.

Backtracking is an algorithm design technique for solving problems in which the

number of choices increases at least exponentially with their initial size. This approach

makes it possible to solve many large instances of NP-hard problems in an acceptable

computational time.

4.2 CONSTRAINT PROGRAMMING MODEL

The CP formulation has the objective of minimising the completion time of the

crew duties that consists of continuous driving time, transition time between trips, and

transition times between trips of different duties. In this section, model subscripts, sets,

parameters and model variables are presented followed by problem constraints and

their explanations in detail.

Chapter 4: Constraint Programming 61

Indices

i, i′

j j′

k k′

Index for trip

Index for duty

Index for shift

Sets

I

J

Ji

K

Kj

Set of all trips

Set of all duties

Set of duties which can contain trip i (Ji ⊆ J)

Set of all shifts

Set of shifts for duty j (Kj ⊆ K)

Parameters

𝛼jk

𝛼'jk

𝛿'(j+1)k

δ(j+1)k

𝜁ii’ jk

𝜁ii’ j(j+1)k

dti

ati

dsi

asi

ti

Trmax

Tomax

Trmin

Tomin

Wdmax

Wtmax

Wtmin

Stk

Stmax

minimum duration of 1st part of a duty in the shift k

maximum duration of 1st part of a duty in shift k

minimum duration of 2nd part of a duty in shift k

maximum duration of 2nd part of a duty in shift k

transition time of trip i in the same partial duty j

transition time of trip i of different partial duties j

departure time of trip i

arrival time of trip i

departure station of trip i

arrival station of trip i

traveling time of trip i

maximum transition time in the same partial duty

maximum transition time between partial duties (ROP)

minimum transition time in the same partial duty

minimum transition time between partial duties (ROP)

maximum continuous driving time allowed per duty

normal working time per shift

minimum working time allowed per shift

spread time of shift k

maximum spread time allowed per shift

Chapter 4: Constraint Programming 62

Variables

 𝑥ijk

 𝑦ii′jk

 zii′j(j+1)k

 𝜎ijk

∈{0,1} binary variable for the assignment of trip i to duty j of shift k

∈{0,1} binary variable that denotes whether a transition time occurs

from trip i to trip i′ in duty j of shift k

∈{0,1} binary variable that denotes whether a transition time appears

between duties in shift k

∈ ℝ departure time of trip i in duty j of shift k

Objective function

The objective is to minimise the total working time of the crew (Cmax).

Min Cmax (1)

The maximum completion time should be greater than or equal to the arrival

time of all the last trips of all duties. Thus, completion of all traveling tasks is given

by expression (2).

Cmax ≥ 𝜎ijk + ∑ ∑ ti 𝑥ijk + ∑ ∑ 𝜁ii′jk 𝑦ii′jk + ∑ 𝜁ii′j(j+1)k zii′j(j+1)k
 j ∈ Ji i ∈ Ik j ∈ Ji i, 𝑖′ ∈ Ik i, 𝑖′ ∈ Ik

 ∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji,, k ∈ Kj

(2)

Both discrete variable and continuous variable are used in this model. There are

three discrete decision variables that are; the decision about whether to assign trip i in

duty j of shift k (𝑥ijk); the decision about whether a transition time occurs in the duty

(𝑦ii′jk); and the decision about whether a transition time between duties appears in the

shift (zii′j(j+1)k). The continuous variable is the departure time of trip i in duty j of shift

k (𝜎ijk).

The decision variable trip i (𝑥ijk) is declared as an activity. An activity in the

schedule is considered as a non-pre-emptive in which the activity cannot be

interrupted. Each trip must be serviced without interruption from its departure time to

its arrival time. The amount of time to be used by all the trips is unknown value in a

given time interval. This means that the time capacity required by all the trips in a duty

can vary over time, provided that the duty duration is not exceeded. In this crew

Chapter 4: Constraint Programming 63

scheduling problem, the complexity increase as the duty duration is not constant over

time but ranging between two predefined limits.

Various related constraints for scheduling and sequencing trips to complete a

duty are included in the model. When an activity is declared, the equation (3) is

automatically included in the system.

dti + ti = ati ∀ i ∈ I (3)

A chain of activities can be enforced by using the following precedence constraint.

ati + 𝜁ii′jk ≤ dti′

⟹ 𝜁ii′jk = dti′ – ati

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(4)

When trips are allocated on the same duty j, the sequence of these trips can be

enforced by using the following expression (5). This expression implies that when trip

i and trip i′ are allocated in duty j, transition time occurs either from trip i to trip i′ or

from trip i′ to trip i.

⋁ 𝑥ijk
 j ∈ Ji

⋀

⋁ 𝑥i′jk
 j ∈ Ji

⟹ 𝑦ii′jk ⋁ 𝑦i′ijk

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji , k ∈ Kj

(5)

 The duties can be regarded as unary resources in which two trips assigned in the

same duty cannot overlap in time. The set Ji represents the set of duties that can

contain trip i. The trip i can be either starts before trip i′ or starts after trip i′. All trips

that will be in the same duty are related by constraint (6) and constraint (7).

(𝜎ijk + ti 𝑥ijk + 𝜁ii′jk 𝑦ii′jk ≤ 𝜎i′jk)

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

 ⋁

(𝜎i′jk + ti′ 𝑥i′jk + 𝜁ii′jk 𝑦ii′jk ≤ 𝜎ijk)

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(6)

(7)

The start time of trip i′ in any duty requires the completion of the previous trip

i. Similarly, the start time of the 2nd part of a duty at every shift k requires the

completion of the 1st duty. This can be stated by the following expression (8) and

expression (9).

Chapter 4: Constraint Programming 64

(𝜎ijk + ∑ ti 𝑥ijk + ∑ 𝜁ii′jk 𝑦ii′jk + 𝜁ii′j(j+1)k zii′j(j+1)k ≤ 𝜎i′jk)
 i ∈ Ik i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

 ⋁

(𝜎i’jk + ∑ ti′ 𝑥i′jk + ∑ 𝜁ii′jk 𝑦ii′jk + 𝜁ii′j(j+1)k zii′j(j+1)k ≤ 𝜎ijk)
 𝑖′ ∈ Ik i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(8)

(9)

Constraint (10) is included to ensure connectivity of the trip sequence in a duty.

Whereas constraint (11) and constraint (12) ensure that both the transition time

between trips in the sequence of the same duty and the transition time between trips of

different duties do not exceed the maximum and minimum allowed transition times.

Constraint (13) ensures that the allowed maximum continuous driving time is not

violated in each duty.

(𝜎ijk + ti 𝑥ijk ≤ 𝜎i′jk) ⋀ (dsi = asi)

 ∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(∑ 𝜁ii′jk 𝑦ii′jk ≤ Trmax) ⋀ (∑ 𝜁ii′jk 𝑦ii′jk ≥ Trmin)
 i, 𝑖′ ∈ Ik i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(∑ 𝜁ii′j(j+1)k zii′j(j+1)k ≤ Tomax) ⋀ (∑ 𝜁ii′j(j+1)k zii′j(j+1)k ≥ Tomin)
 i, 𝑖′ ∈ Ik i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(∑ ti 𝑥ijk ≤ Wdmax) ⋀ (∑ ti 𝑥i(j+1)k ≤ Wdmax)
 i ∈ Ik i ∈ Ik

 ∀ i ∈ I, j ∈ Ji, k ∈ Kj

(10)

(11)

(12)

(13)

The set of constraints (14), (15), (16), and (17) indicates that the total continuous

driving time in the 1st part of a duty should be greater than or equal to the minimum

duration of the 1st part of a duty in shift k (𝛼jk) and the total continuous driving time of

the 2nd part of a duty should be less than or equal to the maximum duration of the 2nd

duty in shift k (𝛿(j+1)k). Otherwise, the total continuous driving time of the 1st part of a

duty should be less than or equal to the maximum duration of the 1st part of a duty in

shift k (𝛼'jk) and the total continuous driving time of the 2nd part of a duty should be

greater than or equal to the minimum duration of the 2nd duty in shift k (δ'(j+1)k) (see

Figure 3.6). This set of constraints enforces to satisfy a condition of either the crew

takes a MB at the earliest time or the crew takes a MB at the latest time. This set of

constraints also accommodates conditions in which the crew takes a MB between the

earliest break time and the latest break time in the shift.

Chapter 4: Constraint Programming 65

(∑ ti 𝑥ijk + ∑ 𝜁ii′jk 𝑦ii′jk ≥ 𝛼jk) ⋀
 i ∈ Ik i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(∑ ti 𝑥i(j+1)k + ∑ 𝜁ii′ (j+1)k 𝑦ii′ (j+1)k ≤ δ (j+1)k) ⋁
 i ∈ Ik i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(∑ ti 𝑥ijk + ∑ 𝜁ii′jk 𝑦ii′jk ≥ 𝛼'jk) ⋀
 i ∈ Ik i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(∑ ti 𝑥i(j+1)k + ∑ 𝜁ii′ (j+1)k 𝑦ii′ (j+1)k ≤ δ'(j+1)k)
 i ∈ Ik i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(14)

(15)

(16)

(17)

Constraint (18) and constraint (19) calculate the total actual driving time in shift

k (Wtk) which is equal to the total working time of all duties in the shift. The total

actual driving time within this shift must not exceed the upper bound (Wtmax) and lower

bound (Wtmin).

(∑ ∑ ti 𝑥ijk + ∑ ∑ 𝜁ii′jk 𝑦ii′jk ≤ Wtmax)
 j ∈ Ji i ∈ Ik j ∈ Ji i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

 ⋀

(∑ ∑ ti 𝑥ijk + ∑ ∑ 𝜁ii′jk 𝑦ii′jk ≥ Wtmin)
 j ∈ Ji i ∈ Ik j ∈ Ji i, 𝑖′ ∈ Ik

∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(18)

(19)

Constraint (20) restricts the spread time of a shift from exceeding the maximum

allowed total spread time. The spread time of a shift (Stk) is equal to the total working

time plus the transition time between duties (ROs). The third term in the left hand side

of this equation is the transition time between duties in a shift. This transition time is

the time required by the crew to take a MB during the period of ROs in the shift.

Constraint (21) and constraint (22) are the variable restrictions for 3 binary variables

and 1 real variable, respectively.

∑ ∑ ti 𝑥ijk + ∑ ∑ 𝜁ii′jk 𝑦ii′jk + ∑ 𝜁ii′j(j+1)k zii′j(j+1)k ≤ Stmax

j ∈ Ji i ∈ Ik j ∈Ji i, 𝑖′ ∈ Ik i, 𝑖′ ∈ Ik
 ∀ i, i′ ∈ I, i ≠ i′, j ∈ Ji, k ∈ Kj

(20)

𝑥ijk ∈ {0,1}, 𝑦ii′jk ∈{0,1}, zii′j(j+1)k ∈{0,1}

𝜎ijk ∈ ℝ

 (21)

(22)

Chapter 4: Constraint Programming 66

4.2.1 Solution Techniques

The CP problem is characterised by a set of decision variables and their domains,

and a set of constraints involving these variables. The set of variables is denoted by X

and each variable xi ∈ X, has a finite domain of possible values that the variable can

take. A set of constraints C restricts the values the variables can simultaneously

acquire. The problem definition is completed by a branching strategy which is also

known as enumeration or search strategy.

Searching for solutions is performed by means of a tree search algorithm.

Although the propagation engine is effective, the number of nodes may still be too

large and leads to a very long optimisation process and extremely large memory usage.

To avoid such tendency, the search may be limited in a number of ways. The first one

is by setting a maximum computational time. The search process will terminate as soon

as the computational time exceeds this limit. The second is by setting a maximum

number of nodes to explore. The search process will terminate when the number of

explored nodes exceeds this threshold. The third is by setting a maximum depth for

the search tree to explore. The branch-and-bound will only explore nodes of the search

tree up to this maximum depth. The forth is by setting the number of solutions. The

search process will terminate when this acceptable number of solution is reached. The

last is by setting a maximum number of backtracks. When exploring the search tree,

the algorithm may backtrack or it returns to the parent node of the current node to

explore a new branch. Thus the search process will terminate when the number of

backtracks is reached. Optimisation programming language such as ILOG OPL Studio

allows a number of instructions for the search procedure. Instructions such as

‘timeLimit’ limits the CPU time in seconds, ‘firstSolution(n)’ returns the first n

solutions only, and instruction ‘failLimit’ limit the number of failures. In this study,

we apply the ‘timeLimit’ instruction to terminate the search according to the given

time limit.

A search strategy defines the traversal of the search tree. The test problems were

solved with different search mechanisms of depth first search (DFS) and best first

search (BFS). The DFS is similar to the BFS from the algorithmic point of view. The

DFS starts at the root node and the search proceeds by moving downward to its first

descendant. This process backtracks to the parent node when a leaf is reached and then

continues to its next descendant, if it exists. The DFS has an advantage that it needs

Chapter 4: Constraint Programming 67

small memory, while the BFS can improve the algorithm’s convergence speed. We

applied the DFS because it exhaustively explores the search tree and handles memory

management better. However, if maximum depth is very large, the DFS may take very

long to find a solution or will not discover it at all.

Given a set of travelling tasks (trips) from a train timetable, the variables can be

declared which correspond to the sequence of trips covered by one duty. In addition to

this, the constraints that dictate the feasibility of the duty can be further stated such as

the time required between trips and maximum continuous driving time allowed. A

search procedure will then be carried out to generate potential trip sequences. The

optimised solution is a schedule which satisfies all constraints and minimises the

objective function or equivalently the highest possible crew utilisation.

4.2.2 Computational Results

The CP model was formulated using ILOG OPL Development Studio 6.3. This

commercial package can help with modelling and integrating CP components and

mathematical programming. The data contains information about the train

identification with its departure time, its departure station, its arrival time and its

arrival station. The input data are retrieved from the operational environment of one

line in the railway network. By considering this initial data, we derived several test

data as problem instances.

This railway crew scheduling can be regarded as a resource allocation problem,

where each activity has to be assigned to a resource. A natural way in modelling such

a problem would be to have one decision variable for each activity and then define the

set of activities assigned to each resource and ensure that the connectivity constraints

such as the minimum time required between trips are not violated.

The scheduler module of OPL Studio provides several ways of representing the

types of resource. A global constraint represents that a value equal one when activity

trip i has been assigned to the resource identified as duty j which is element of the set

of alternative resources J. Any given activity requires a predefined length of slot of

capacity j. Given a set of duties J with given time capacity, a set of trips with known

travelling time and transition times between trips, the scheduling problem then decide

which trips to assign to a duty in such a way that all related constraints are satisfied.

Alternatively, the decision variables can be modelled using arrays of interval variables.

Chapter 4: Constraint Programming 68

This variable represents the trips and captures the departure time, arrival time and

travelling time of each trip if it is present in the schedule. The length of this interval is

equal to its arrival time minus its departure time or equivalently the distance between

the start time of the earliest scheduled trip of the duty and the end time of the latest

scheduled trip of the duty.

In disjunctive scheduling, each resource can execute at most one activity at a

time. To prevent the trips within a duty which may overlap each other in time when

they are assigned to the same resource, we eliminated the value of resource that has

been assigned to those activities from the domains of all activities. To be categorised

as feasible, a duty has to satisfy many constraints. For example, the departure time of

the trip i plus duration of the driving time is less than or equal to the departure time of

the next trip i′. The arrival station of the previous trip i must be the same as the

departure station of the next trip i′. Every duty (shift) should start and end at the same

depot and the total working time should be less than or equal to the maximum working

time allowed. The feasible duties compose a schedule and for a schedule to

be acceptable it has to minimise total working time of the crew. By imposing

constraints for the actual driving time and the spread time allowed on the model, the

optimisation model eventually minimises the variation of spread times from the regular

crew working time. The total working time of the crew consists of driving period and

non-driving period. The non-driving periods or idle time of the crew corresponds to

the transition times in this model. Ultimately, a feasible schedule is any acceptable

schedule with the highest utilisation of crew to increase productivity.

The CP model was tested using generated random instances by assuming the

time interval between trips is 10 minutes (120 trips per line with 2 lines). Normal daily

working time was equal to 8 hours and maximum spread time allowed was set to be

12 hours. The minimum length and maximum length of working periods of the 1st duty

were set to be 3 hours and 5.5 hours, respectively. Whereas the minimum length and

maximum length of working periods of the 2nd duty were set to be 2 hours and 4.5

hours, respectively. The computational results obtained from all the generated problem

instances are summarised in Table 4.1.

Chapter 4: Constraint Programming 69

Table 4.1 Computational results of CP with randomly generated problem instances.

Search DFS

Instance

No.

of

Trips

Feasible

Duties

(FDs)

Avg.

Traveling

Time

(min)

Avg.

Transition

Time

(MB)

Driving

Time

(%)

DT-01 25 6 469 30 0.869

DT-02 45 11 480 30 0.888

DT-03 65 17 478 30 0.885

DT-04 85 24 487 30 0.902

DT-05 105 35 477 30 0.883

DT-06 125 41 479 30 0.887

DT-07 145 48 465 40 0.861

DT-08 165 52 483 35 0.894

DT-19 185 63 488 45 0.904

DT-10 205 69 485 35 0.898

DT-11 225 74 485 35 0.898

Search BFS

Instance

No.

of

Trips

Feasible

Duties

(FDs)

Avg.

Traveling

Time

(min)

Avg.

Transition

Time

(MB)

Driving

Time

(%)

DT-01 25 6 467 30 0.865

DT-02 45 11 479 30 0.888

DT-03 65 17 479 30 0.887

DT-04 85 24 488 30 0.898

DT-05 105 35 477 40 0.887

DT-06 125 42 477 35 0.887

DT-07 145 47 480 37 0.888

DT-08 165 50 488 35 0.904

DT-19 185 63 480 40 0.888

DT-10 205 70 485 40 0.898

DT-11 225 74 478 35 0.885

Chapter 4: Constraint Programming 70

The size of the problem increases considerably with the increase of the number

of trips included. Several different data sets were considered in this study with the

number of feasible duties (FDs) ranging from 6 to 74. The number of FDs will increase

with the number of trips included in the problem as indicated by the CP model. Driving

time of the crew is the ratio between the total working time and the total spread time

in the shift. This driving time was used to measure the performance of the obtained

schedules (productivity rate). By analysing the results, we noted that the productivity

rate of the crew increase slightly with the size of the instances with some fluctuations.

The crew driving time percentage for each data instance is shown in Figure 4.7.

Figure 4.7 Driving time of the crew based on the search methods.

The smallest problem size considered had 272 variables and 3034 constraints

and the largest problem size had 1118 variables and 12284 constraints. As can be seen

in Table 4.2, the DFS approach required slightly more computational time than the

BFS method. Computational results have shown that in most cases, there was no

significant improvement after one hour of running time. Therefore, a time limit of 60

minutes was imposed for each data set.

Chapter 4: Constraint Programming 71

 Table 4.2 Computational performances based on the search methods.

Search DFS BFS

Instance
CPU

time*
Variables Constraints

CPU

time*
Variables Constraints

DT-01 1.08 272 3034 1.05 299 3106

DT-02 3.25 488 5367 3.16 386 5354

DT-03 17.34 822 8736 15.12 500 8921

DT-04 73.05 978 10715 66.14 755 10722

DT-05 90.02 979 10799 90.02 823 11343

DT-06 119.12 996 11288 103.51 890 11616

DT-07 147.44 1022 12126 145.09 1107 12201

DT-08 188.17 1024 12132 180.04 1108 12239

DT-19 222.36 1031 12180 204.96 1108 12255

DT-10 255.38 1033 12186 239.58 1116 12282

DT-11 297.87 1035 12217 269.60 1118 12284

 * In seconds using Intel Core 2 Duo 1.96 GHz Processor with 3.46 GB of RAM.

The experimental results showed that the CP model produced optimal solutions

for most problem instances. The average relative deviation of all datasets from the

optimum is less than 5%. However, when more trips were included in the problem,

both the DFS and the BFS methods failed to achieve optimality.

The model sometimes failed to schedule a few trips but the overall results

indicate that the model can produce feasible schedules within a reasonable

computational time. The results obtained indicate that the CP approach is very

sensitive to the increase of the problem size. Also, by using commercial CP software

with a default search strategy sometimes lead to unpredictable results. It can be noted

that the embedded basic search strategies is not sufficient especially for solving

practical large-sized problems. The CP model has to be coupled with suitable user

defined search techniques which instantiate the variables to improve the performance

of the method. Figure 4.8 shows that the number of variables and constraints of the

problem have a positive correlation with the increase of the problem size.

Chapter 4: Constraint Programming 72

Figure 4.8 Variables and constrains of the search methods.

4.3 CONCLUSION

This chapter presents a CP-based model and its solution approach to solve

railway CSP. The objective of the model is to minimise the total working time by

minimising variation of spread times from the regular crew working time. The best

solution obtained by the DFS or the BFS methods is used as the base in determining

the relative deviation of solutions from the optimal. In a few cases, both the DFS and

the BFS failed to reach optimality when solving small-sized datasets, but the relative

deviation is very small and can still be considered as acceptable solutions. The CP

formulation, however, is more natural in representing the problem and requires much

fewer variables and constraints than MIP-based methodologies. This is due to the

global constraint that capable of representing complex relationships between variables

which in turn provides effective domain reduction. Using the CP technique, the model

provides acceptable results in all test datasets. The overall results indicate that the CP

model can produce feasible railway crew schedules within a reasonable computational

time.

Chapter 5: Metaheuristics 73

 Metaheuristics

The CSP falls into the category of combinatorial complex optimisation problem.

As the computation progresses, the number of potential solutions is sequentially

compounded leading to a large number of possibilities. Due to the combinatorial nature

of the CSP, heuristic algorithms are the most promising approach for solving the

problem. The main limitation with many of conventional heuristic algorithms is their

difficulty to escape from locally optimal solutions. The search is usually conducted

from a single point in the solution space and continuously searches for improved

solutions until there is no possible improvement. This local search method makes the

search easily trapped in local optima. In an attempt to deal with this problem, several

metaheuristics approaches have emerged for solutions to combinatorial complex

problems such as simulated annealing (SA), tabu search (TS), genetic algorithms

(GAs), ant colony optimisation (ACO), and particle swarm optimisation (PSO). These

approaches are not sensitive to initial solutions and allow the application of parallel

processing.

5.1 OPTIMISATION PROBLEM

Practical optimisation problems involve a high complexity and require extensive

computational times because of the number of potential solutions. The approximate

methods are generally used to resolve this class of problems. These methods are based

on an iterative exploration of the search space to find a good quality solution in

reasonable computational times. Figure 5.1 illustrates the global minimum and the

local minimum in the solution space. The approximate methods, among others are the

neighbourhood methods, such as Local Search, Simulated Annealing (SA), and Tabu

Search (TS).

Chapter 5: Metaheuristics 74

Figure 5.1 Global optimum of a minimisation criterion in the solution space.

5.1.1 Combinatorial Optimisation Problem

Combinatorial optimisation can be regarded as optimising a linear function

based on other linear functions over a finite set of possible solutions. Combinatorial

optimisation is the discipline of decision making in case of discrete alternatives and

can be regarded as optimising a linear function based on other linear functions over a

finite or infinite number of possible solutions (Aarts & Lenstra, 2003). A combinatorial

optimisation problem P = (s, f) can be defined by;

 a set of variables X = {x1,..., xn};}

 variable domains d1, ...,dn;

 constraints among variables;

 an objective function f to be maximised or minimised;

The set of all possible solutions is S = {s = {(x1,v1),.....,(xn,vn)} | vi ∈ di, s satisfies

all the constraints}. Each element of the set S can be seen as a candidate solution. S is

called a search space or solution space. The solution of a combinatorial optimisation

problem is the element of S, s* ∈ S, with optimum objective function value. Objective

function f is a function that measures the value of each solution in S. In the case of

minimising objective function value, f(s*) ≤ f(s), ∀s ∈ S. s* is called a globally optimal

solution of (S, f) and the set S* ⊆ S is called the set of globally optimal solutions.

The difficulty of solving combinatorial optimisation problems yet their great

practical importance, have led to a large number of proposed solution techniques. The

existing solution methods for solving combinatorial optimisation problems can be

classified as either exact or approximate algorithms. Exact algorithms can guarantee

Local minimum
Global minimum

Chapter 5: Metaheuristics 75

to find an optimal solution (if there is one exists) or prove that no feasible solution

exists. When optimal solutions cannot be computed efficiently in practice, it is usual

to find a good trade-off between optimality and efficiency.

5.1.2 NP-Complete Problems and Combinatorial Explosion

A decision problem can be expressed as a problem that requires a ‘yes’ or ‘no’

answer. The class P refers to the set of all decision problems for which polynomial

time algorithms exist. The class of P is the class of problem solvable in polynomial

time and it has at least one algorithm to solve it. A hard or intractable problem requires

solution time which is an exponential function of its problem size. The class NP

(nondeterministic polynomial-time) is a class of problems in which its solution can

only be guessed and evaluated in polynomial time with no known rule to make such

guess, hence non-deterministic. This class includes most combinatorial optimisation

problems and all problems that are in P, P ⊆ NP. Within the class NP there are the NP-

complete problems. The NP-complete problems are by definition the hardest problems

in the class NP. If one NP-complete problem can be proved to be solvable in

polynomial time, then each problem in NP can be solved in polynomial time, thus P =

NP would follow.

Computational complexity is the measurement of how much resource is required

to solve the problem. When an algorithm is designed to solve a particular problem, it

is important to know how much time and space an implementation will consume.

Mathematical methods can often be applied to predict how much time and space

required by an algorithm before it is implemented in the form of a computer program.

Having understood that will help save work in order to test its performance and to

decide what kind of solution technique is suitable. If the problem is hard, finding exact

optimal solution may be impractical and therefore have to resort to an approximate

solution obtained by heuristics.

Since most practical combinatorial optimisation problems are NP-hard, it cannot

guarantee to obtain an optimum solution. In spite of the numerous studies on this type

of problems, no efficient algorithm had been found yet for solving the problems.

Therefore, the use of heuristics and/or metaheuristics is very promising and is

completely justified in obtaining approximate solutions when solving such difficult

problems.

Chapter 5: Metaheuristics 76

5.2 CONSTRUCTIVE HEURISTICS

Constructive heuristics build a solution by iteratively add solution components

until a feasible solution has been found. Neighbourhood search methods are iterative

procedures in which a neighbourhood 𝒩(s) is defined for each feasible solution, and

the next solution is searched among the solutions in 𝒩(s). The neighbourhood of a

solution is obtained by moving each pair of consecutive or non-consecutive positions

of the sequence that represents the solution. Local search explore the search space by

moving from solutions to its neighbouring solutions in the hope improving the value

of the objective function. Local searches are based on the definition of a set 𝒩(s) of

solutions in the neighbourhood of any solution s.

5.2.1 Initial Solution by Constructive Heuristic (CH)

Local search explores the neighbourhood 𝒩(s) of a current solution iteratively

and finds a better solution sb ∈ 𝒩(s) according to some criteria. The initial solution is

constructed by means of a constructive heuristic from an ordered list of trips with their

attributes to form crew duties. We break down this phase into two sub-phases. The

first is the initialising phase that includes listing all vehicle blocks in ascending order

of start time, vb = {vb1, vb2,…, vbn}; and grouping them based on the length of run, lr =

{lr1, lr2,…, lrn}. Cutting vehicle blocks into trip segments is also performed in this

phase ts = {ts1, ts2,…, tsn}. Some vehicle blocks may have sufficient length to be divided

into two straight runs that are approximately equal to the length of regular working

hours (8 h) each. Other vehicle blocks may be divided into one straight run of 8 h with

a piece left over. The remaining of the vehicle blocks do not need to be divided as they

have sufficient length to form one straight run with no pieces left over. The second is

combining phase which is joining trip segments by progressively selecting uncovered

trip segments from a block to create feasible duties. The CH method is described in a

pseudo code form in Algorithm 5.1. It is desirable to construct feasible schedules that

will minimise idle transition times and maximise the length of the route per cycle time.

The cycle time is the time spent to drive a round trip plus idle intervals on a route.

Chapter 5: Metaheuristics 77

The pseudo code of the CH algorithm is as follows:

Algorithm 5.1: Generating initial solutions

1 procedure Constructive_Heuristics()

2 Input all relevant data: trip list, vehicle blocks, parameters, and constraints;

3 Output: initial solutions S0;

4 begin Initialisation ()

5 // first phase

6 i  l to I (I total number of trips) ∀ i ∈ vb;

7 vb  {vb1, vb2, vb3, …, vbn} in ascending starting time order, ∀ i ∈ vb;

8 lr  {lr1, lr2,…, lrn} ∀ i ∈ vb;

9 ts  {ts1, ts2,…, tsn} ∀ i ∈ vb;

10 // second phase

11 n  l to N (N number of trip segments);

12 list trip segments sequentially;

13 S0 = ∅ ;

14 n ≠ ∅ ;

15 while (n  tsn  1) do

16 allocate trip segments into time slots based on the starting time of the trip;

17 S0
  S0

 ∪ {i};

18 n  n \ {i};

19 determine possible trip segment combinations;

20 end while

21 S0  S0
 + 1;

22 return (S0);

23 end

Chapter 5: Metaheuristics 78

5.3 SIMULATED ANNEALING (SA)

SA is a variant of local (neighbourhood) search which is based on an analog of

cooling solid material. The material is heated past its melting point, then it cooled

back slowly until it crystallizes into a solid state (low-energy state). This process is

known as annealing. At high temperatures, the atoms in the material have high energies

and more freedom to arrange themselves. When the temperature is reduced, the atom

energies decrease. The structural properties of the cooled solid depend on the rate of

cooling. Metropolis et al. (1953) simulated the change in energy of the system as it

cools, until it converges to a steady frozen state.

This basic concept of SA derived from the analogy with the thermodynamic

annealing process and it is widely used for solving combinatorial optimisation

problems. At temperature T, the moves are accepted based on probability P and this

probability is compared with a randomly generated number between (0, 1). T

represents control parameter in the heuristic. SA algorithm generates a perturbation

and calculates the resulting energy change, ∆E = f (S'
max) – f (Sc

max) which represents a

change in objective function value. If energy has decreased then the system moves to

the new state, otherwise the new state is accepted with the probability. Higher energy

state solutions are accepted if the calculated probability is higher than the randomly

generated number.

This technique can be applied to minimization problems based on consecutive

update steps where the update step length is proportional to parameters which can play

the role of a temperature. Acceptance probability is dependent on the control

parameter, T and magnitude of increase in objective value, ∆E. When ∆E is small,

acceptance probability is high. When T is high, acceptance probability is high. As T

decreases, acceptance probability decreases. The process of moving from one state to

the next is repeated for a number of iterations at the current temperature, then the

temperature is decreased and the same process is repeated until the system freezes into

a steady state. In terms of search methods, SA is a stochastic local search method. It

always accepts a selected better local solution and it allows accepting a worse local

solution to avoid getting stuck at a local optimum, with a probability which is gradually

decreased as the algorithm proceeds.

Chapter 5: Metaheuristics 79

The following notations are used through the description of the SA and HCHSA

algorithms.

S : set of feasible solutions

N (s) : set of neighbourhood solutions

s´ : generated solution (sample solution from neighbourhood) s´ ∈ S

sc : current solution

sb : best solution found

f (S'
max) : function value of neighbourhood solution

f (Sc
max) : function value of current solution

f (Sb
max) : function value of best solution

T0 : initial temperature

Tc : current temperature

R : uniformly distributed random number between 0 and 1

α : cooling rate

imax : maximum iteration

SA can be described in the pseudo code as follows:

Algorithm 5.2: Simulated Annealing

1 procedure Simulated_Annealing()

2 Input: initial schedules;

3 Output: best solutions sb;

4 begin Simulated_Annealing()

5 define_neighbourhood_structure();

6 sc
  get_initial_solution (S) ;

7 sb  sc;

8 T  initial_temperature();

9 while (¬ stopping_criterion)

10 search_neighbourhood  true;

11 while (search_neighbourhood)

12 s´  sample_solution_from_neighbourhood(𝒩(s));

13 if (f (s´) > f (s)) then

14 Paccept  exp (f (s) – f (s´) / T) ;
15 else

16 Paccept  1;

17 end if

18 if (random() < Paccept) then

19 sc  s´ ;

20 search_neighbourhood  false;

21 else

22 search_neighbourhood  searching_current_neighbourhood();

23 end if

24 if (sc < sb) then

25 sb  sc;

26 end if

27 end while

Chapter 5: Metaheuristics 80

28 T  update_temperature(T);

29 end while
30 return sb;

31 end

5.3.1 Solution Improvement by Hybrid Constructive Heuristic Simulated

Annealing (HCHSA)

SA is motivated by an analogy to the physical process of annealing, where the

temperature of a material is reduced to achieve its thermal equilibrium (Kirkpatrick et

al. 1983). This principle is applied in combinatorial optimisation problems to optimise

the objective function value. The advantage of this technique is that it can avoid local

optima by occasionally allowing the acceptance of non-improving solutions in the

hope that a better solution may be found later on.

We utilize the SA metaheuristic to improve solution and to derive a near-optimal

solution. The design of SA algorithm to solve the railway crew scheduling generally

consists of four components, an objective function (analogue of energy) to be

optimised; the neighbourhood structure that defines how to efficiently generate

random solutions from neighbourhood; an acceptance criterion that is a criterion for

accepting or rejecting a new generated solution; and a cooling schedule.

Implementation details of the proposed HCHSA algorithm are given as follows:

a) Initial sequence. An initial schedule is obtained from the best schedule returned

by the CH algorithm. This schedule is assumed as the current solution. A set of

scheduled trips, ℐ = {i1, i2, i3, ….. , in}, that need to be serviced during a defined

period of time is identified by its departure station, departure time, arrival station,

arrival time, represented by vector dsi, dti, asi, ati, respectively. The algorithm

sorts an array ℐ = {i(0), … , i(n–1)} of n trips in increasing order of departure

time. Every iteration removes an element from the input data, inserting it into

the correct position and simultaneously moves the data in the already-sorted list,

until no input elements remain. Initialising can be considered as the process of

queuing all the trips in the right order to their assigned duties. The constraints

considered in this case are connectivity restrictions, traveling times and

transition times.

b) Neighbourhood structure. The neighbourhood structure defines a method of

generating alternative solution from a current solution. We generate the

Chapter 5: Metaheuristics 81

neighbourhood using swap and insert mechanisms. The neighbourhood structure

proposed in Elizondo et al. (2010) is adapted for our problem. Two different

duties sx and sy , with the number of trips v and w, respectively, are selected and

denoted as, sx = {ix1, ix2, … , ixm, ix,m+1, … , ixv} and sy = {iy1, iy2, … , iyn, iy,n+1,

… , iyw}. The swap operation is performed on the selected duties by exchanging

the position of trip segments (ts) between two blocks. The swap operation is only

performed on duties with trip segments originate and terminate at the same crew

depot. The insert operation is performed by moving one trip segment to another

duty. This operation is only applied to the trip segments that arrive and depart

from stations with a local connection.

c) Acceptance criterion. Given the initial configuration, a small perturbation is

performed by exchanging a piece of the trip between two duties and moving a

piece of the trip within one duty to another. The change in the objective function

value is then calculated. If it gives a better solution, the new solution is accepted.

Otherwise it still has a chance to be accepted with a particular condition that is

the value of the function f (ΔE) = 𝑒−Δ𝐸/𝑇 is greater than a randomly generated

value between 0 and 1. When the solution is accepted, the current neighbourhood

configuration is updated as the algorithm proceeds.

d) Cooling schedule. An annealing or a cooling schedule consists of (i) the initial

value of temperature parameter T0, (ii) the cooling factor (a method of gradually

decreasing the value of Tc), (iii) the number of iterations to be performed at each

Tc before it is decreased, and (iv) the stopping criterion to terminate the

algorithm.

The overall method of the proposed HCHSA algorithm is captured in the pseudo-code

form in Algorithm 5.1 and Algorithm 5.3.

Algorithm 5.3: Simulated Annealing

1 procedure Simulated_Annealing()

2 Input : initial solutions S0;

3 Output: best found solutions (duties);

4 begin Simulated_Annealing()

5 // initialisation step

6 select an initial solution and set it as the current solution;

7 sc
  s ∈ S;

8 calculate Sc
max;

9 sb  sc;

10 f (Sb
max)  f (Sc

max);

Chapter 5: Metaheuristics 82

11 select an initial temperature, T0;

12 Tc  T0;

13 select maximum iterations imax;

14 select temperature reduction function, α (cooling rate);

15 initialise step counter i  0;

16 define neighbourhood structure();

17 // iterative step

18 while (i < imax and Tc > T0)

19 search neighbourhood;

20 generate solution from neighbourhood, s ∈ 𝒩(s);

21 s´  s ∈ 𝒩(s);

22 evaluate sample solution from neighbourhood;

23 Δ𝐸 = f (S'
max) – f (Sc

max)
24 if Δ𝐸 < 0 then

25 sc  s´;

26 if f (Sc
max) < f (Sb

max) then

27 f (Sb
max)  f (Sc

max);

28 end if

29 else
30 generate random number ℛ ~ (0,1);

31 Paccept = 𝑒−Δ𝐸/𝑇

32 if ℛ < Paccept) then

33 sc  s´ ;

34 f (Sc
max)  f (S'

max) ;
35 end if

36 Tc  α Tc ;

37 i  i + 1;

38 end if
39 update temperature T;

40 Tc  Tc (i) ;
41 return (sb , f (Sb

max));

42 end while

43 end

5.4 TABU SEARCH (TS)

TS is a higher level heuristic originally introduced by Glover (1986). TS has

been successful in solving many combinatorial optimisation problems in various

practical settings. The fundamental idea of TS is the use of search history to guide the

search process while escaping local optima. It occasionally accepts non-improved

solutions to prevent returning to recently visited solutions and caught up in cycles. By

directing the search away from local optima, other region in the search space can be

explored. This is accomplished by maintaining a search history of recently visited

candidate solutions stored in a tabu list such that the algorithm prevents the search

reconsidering those candidate solutions for a certain number of iterations. The

recorded search history is expressed by a list of prohibitive moves. A corresponding

Chapter 5: Metaheuristics 83

move or transition from a current solution to another solution is acceptable if it is not

tabu or if a certain aspiration criterion is satisfied. When a move is accepted, then it

becomes tabu in the next iterations. This means that this move is forbidden unless an

aspiration level is fulfilled. The aspiration criterion is a measure for accepting tabu

moves and it may be applied to allow all moves that lead to a neighbour with a better

objective function value than the previously obtained solutions. Whenever a new

candidate solution is adopted, it goes in the tabu list and the selected neighbouring

solution replaces the current solution. The neighbourhood 𝒩(sc) is modified to 𝒩(ℋ,

sc) and the recorded search history ℋ is dynamically updated as the algorithm

proceeds. If the tabu list exceeds the tabu list length, the oldest candidate solution is

removed and it is no longer tabu to reconsider. After evaluating all neighbours, the one

with the best objective function value is selected from amongst those that satisfy the

aspiration level. When termination criteria are met, the algorithm is stopped. Otherwise

the tabu list is updated and the process continues.

The notations that are used through the description of the TS algorithm are given as

follows.

S

si

sc

sb

f (s)

𝒩(s)

𝒩t (s)

𝒩a(s)

TL

AC

: the set of feasible solutions

: the initial solution

: the current solution, sc ∈ S

: the best solution found

: the objective function of solution s

: the set of neighbourhood of s ∈ S

: neighbour solution that do not violate tabu condition

: neighbour solution that meet aspiration criteria

: tabu list

: aspiration criterion

Chapter 5: Metaheuristics 84

TS can be described in the pseudo code as follows:

Algorithm 5.4: Tabu Search

1 procedure Tabu_Search()

2 Input: related data;

3 Output: best found solutions;

4 begin Tabu_Search()

5 sc
  generate initial solution (s ∈ S);

6 sb  sc;

7 set AC = f (sb)

8 initialize_tabu list TL() ∅ ;
9 while (¬ stopping criterion)

10 determine neighbourhood of current solution sc;

11 𝒩t (s)  (𝒩(s)) select best non-tabu solution;
12 𝒩a(s)  (𝒩(s)) select solution that meet aspiration criteria;

13 sc  get best current solution (𝒩t (s) ⋃ 𝒩a(s)) ∖ TL();

14 if (sc < sb) then

15 sb  sc;

16 end if
17 update TL();

18 end while
19 return sb;

20 end

5.4.1 Proposed Hybrid Constructive Heuristic and Tabu Search (HCHTS)

A combinatorial optimisation problem with a minimisation objective is a

problem that requires an optimal solution s* ∈ S such that f (s*) ≤ f (s) ∀s ∈ S, where

S is the finite set of all possible solutions. The railway CSP in this study is described

as follows. There is a set of scheduled trips, {i1, i2, ... , in}, ∀ in ∈ I(n). A trip is identified

by the train, its departure station, its departure time, its arrival station, and its arrival

time, represented by a quintuple vector t, dsi, dti, asi, ati, respectively. There is a set of

vehicle blocks, {vb1, vb2, ... , vbn}, ∀ vbn ∈ V(b). There is a set of all trip segments, {ts1,

ts2, … , tsn}, ∀ tsn ∈ Ts(n) and a set of trip segment in line ℓ in the network, denoted by

Ts (l). A graph G = (V, A), where V = {v0 x,y, v1 x,y, v2 x,y, ... , vn x,y } ⊆ HDs ∪ RPs is the

vertex set. A = {(vi x,y, vj x,y): vi x,y, vj x,y ∈ V, i ≠ j } is the arc set, and dij represents the

travel distance in time for each (vi, vj). Note that the subscript x and y are used to refer

to the time and location of the node, respectively. We first apply aggregation procedure

to combine trips between two adjacent RPs into a trip segment. The aggregation

procedure is intended to reduce the problem size. The scheduled trips to be aggregated

should be based on the same vehicle block and train line. The aggregation procedure

is described in the pseudo code below.

Chapter 5: Metaheuristics 85

Algorithm 5.5: Aggregation Method

1 procedure Aggregation_Method()

2 Input: a set of nodes v x,y ∈ Vx,y ;

3 Output: a set of aggregated nodes v 'x,y ∈ V 'x,y ;

4 begin Aggregation_Method()

5 {vi' x,y, vj' x,y}  ∅;

6 dij  0;

7 𝜔  0 (max continuous driving time);

8 repeat

9 for {vi x,y, vj x,y} ∈ Vx,y do

10 sorts the nodes in increasing order of departure time;

11 if (vi x,y, vj x,y) ∈ HDs ∪ RPs and (vi x,y, vj x,y) ∈ V(b) then

12 if (vi x,y, vj x,y) ∈ Ts(n) and tij  𝜔 then

13 (i'x,y, j'x,y)  (ix,y, jx,y);

14 dij  dij;

15 𝜔  dij;

16 V x,y  Vx,y \ (ix,y, jx,y);

17 end if

18 end if

19 {vi' x,y, vj' x,y}  (i'x,y, j'x,y) ;

20 V 'x,y  {vi'x,y, vj'x,y};

21 end for

22 until Vx,y = ∅

23 return V 'x,y ;

24 end

Figure 5.2 shows a subset of the pattern of train movements from a real train

timetable. The horizontal red line is a point of reference for inbound and outbound

trains. Inbound services are trains heading towards this point, while outbound services

are the trains moving away from this point. The time flows from left to right along the

horizontal axis.

Chapter 5: Metaheuristics 86

Figure 5.2 A subset of the pattern of train movements on lines of the rail network.

The problem is in a symmetric form in which the forward and reverse directions

of crew movements are indistinguishable. If a crew travels from, point A (HD), for

example, it first goes along segment (Ax,y, a
+

1 x,y) on line ℓ1 and reach point X (Figure

5.3). This route is recorded in the tabu list, the traveling time of this move is also

recorded and the immediate predecessor i' and successor i'' are identified. When the

travel reaches point X, there are several possible routes that can be pursued for

continuation. The transition time from point X to each of the possible route is analysed

and checked whether it satisfies the connectivity constraints. Every time the travel

reaches a location which serves as a RP, the total traveling time is calculated to check

the possibility for crew relief and to ensure no violation of the allowed maximum

continuous traveling time. A crew may get on and off at a RP or at a terminal location

along the route. The reverse order of crew movement is not allowed unless the trip

sequence has reached a RP or the trip has no successor. Now, at point X, the travel can

continue outbound either along (X, b-
1 x,y) or (X x,y, a

-
1 x,y). Suppose the route (X, a-

1 x,y)

is selected, the tabu list now is TL = {(Ax,y, a
+

1 x,y) → (a+
1 x,y, X x,y) → (X x,y, a

-
1x,y) → (a-

1x,y, a
-
1(x,y)) }. A part of the flexible tabu list length is used as the ongoing tabu active

status.

5
:0

0
 A

M

5
:3

0
 A

M

6
:0

0
 A

M

6
:3

0
 A

M

7
:0

0
 A

M

7
:3

0
 A

M

8
:0

0
 A

M

8
:3

0
 A

M

9
:0

0
 A

M

D
is

ta
n

ce
 /
 S

ta
ti

o
n

Train Schedule

Station A /

HD

RP

X

RP

RP

RP

Station n /

AD

Segment

Chapter 5: Metaheuristics 87

Figure 5.3 Schematic illustration of crew movements in the rail network.

At every point, there are several possible paths to take for a crew to complete the

roundtrip. 1). Continue with the same train on the same line (orange line). 2). Continue

with a different train on the same line (purple dotted line). 3). Continue with a different

train on the same line in opposite direction (blue dotted line). 4). Continue with a

different train on a different line in the network (invisible in Figure 5.3). The sequence

of trip is progressively constructed in forward order. The goal is to construct minimal

cost roundtrips for the crews to cover every trip possible without violating the given

constraints. We use a crew roundtrip construction heuristic to generate an initial

solution sc
 as the starting point of the search. The produced solutions are then refined

by the TS-based algorithm. The overall procedure is outlined in the pseudo code below

in Algorithm 5.6.

 () Crew on the same direction train and drive on the same line
 () Crew change train and drive on the same line
 () Crew change train and drive on the opposite direction line

6
:0

0
 A

M

6
:1

5
 A

M

6
:3

0
 A

M

6
:4

5
 A

M

7
:0

0
 A

M

7
:1

5
 A

M

7
:3

0
 A

M

7
:4

5
 A

M

8
:0

0
 A

M

D
is

ta
n

ce
 /
 S

ta
ti

o
n

Train Schedule

Station B/
AD

b+
1 x,y

) RP

RP

a+
1 x,y

Station A/

 HD

a-
1 x,y

a-
1 x,y

X

b-
1 x,y

a+
2 x,y

b+
2 x,y

b-
2x,y

a-
2 x,y

)

RP

RP

Chapter 5: Metaheuristics 88

Algorithm 5.6: Tabu Search

1 procedure Tabu_Search()

2 Input: trip list, vehicle blocks, parameters, and constraints;

3 Output: best found solutions;

4 begin Tabu_Search()

5 sc
 ← generate initial solution (s ∈ S0);

6 sb ← sc;

7 set no. of iterations ← 0;

8 set the aspiration function AC = f (sb);

9 initialise_tabu list TL() ← ∅;

10 while (¬ stopping criterion)

11 candidate solution list 𝜓 ← ∅;

12 determine neighbourhood of current solution sc;

13 for sc ∈ 𝒩(s)

14 for each trip segment tsn ∈ Ts(n) select randomly one of the move m;

15 select best non-tabu move m ∈ ℳ such that m ∉ TL();

16 apply transition from s to s' → 𝒩(s) = {s´| = s ⨁ m, m ∈ ℳ};

17 ts ← tsn ∖{Ts(n)};

18 include attributes of recent move m into the tabu list TL();

19 𝜓 ← 𝜓 ⋃ sc;

20 end for

21 end for

22 evaluate the current solution sc from candidate solution list 𝜓;

23 sc ← get best current solution {𝒩nt (s) ⋃ 𝒩ac(s)} ∖ TL();

24 if f (sc) < f (sb) then

25 set sb ← sc;

26 end if
27 update TL();

28 end while
29 return sb;

30 end

The proposed TS based algorithm for solving railway CSP generally consists of

four main elements; a solution representation; the neighbourhood structure; an

aspiration criterion; and a stopping criterion. Implementation details of the proposed

algorithm are as follows:

a) Solution representation and evaluation. A feasible solution consists of a number

of trips, idle intervals between trips in the partial duty, and a transition period in

between two partial duties for a crew MB represented by 𝑡𝑗𝑘
𝑖 , 𝜁 𝑗𝑘

𝑖𝑖′ , and 𝜁 𝑗𝑗′𝑘
𝑖𝑖′

respectively, while satisfying the given constraints, i.e Eqs. (2) – (20).

b) Neighbourhood structure. A neighbourhood search method 𝒩(s) is defined to

allow iterative search for the next solution amongst the possible solutions in 𝒩(s).

A possible solution in neighbourhood 𝒩(s) can be selected by applying a move.

Chapter 5: Metaheuristics 89

Thus, a move m to solution s is a transition from a current solution to its

neighbouring solution, where m is the member of a set of moves ℳ. Given a

solution (𝑡𝑗𝑘
𝑖 , 𝜁 𝑗𝑘

𝑖𝑖′ , 𝜁 𝑗𝑗′𝑘
𝑖𝑖′), the neighbourhood is defined by a swap and insert

mechanism such that, 𝒩(s) = {s´| = s ⨁ m, m ∈ ℳ}. A swap-based neighbourhood

operation is performed on the selected partial duties by exchanging the position of

trip segments. A swap operation exchanges the values of 𝑡𝑗𝑘
𝑖 = 1 and 𝑡𝑗𝑘

𝑖′ = 0 to 𝑡𝑗𝑘
𝑖 =

0 and 𝑡𝑗𝑘
𝑖′ = 1, where i ≠ i´. If the move m was applied to the solution s, then it is

evaluated by Δ(s, m) = f (s ⨁ m) – f (s). The swap operation is only performed on

duties with trip segments originating and terminating at the same crew depot. The

insert operation is performed by moving one trip segment to another duty. This

operation is only applied to trip segments that arrive and depart from stations with

a local connection.

c) Aspiration criterion. The objective function f (s) is used as an aspiration level for

non-tabu solution. When the transition is within the tabu restriction and it is a non-

improving move, then the optimal solution is reselected as this phase move and the

move is recorded in the tabu list. If the move is outside of the tabu restriction or if

it belongs to the tabu restriction but satisfy the aspiration criterion, then this move

is recorded in the tabu list and the tabu status is adjusted accordingly. Thus a tabu

move may be accepted if it produces a solution with a better function value than

the best current function value. The best found solution f (sb) is then updated.

d) Stopping criterion. The stopping criterion is defined to terminate the TS. The

number of sequential iterations without improved objective function value is used

as a termination criterion. Figure 5.4 shows the flow chart of TS algorithm.

Chapter 5: Metaheuristics 90

Figure 5.4 Flow chart of TS-based algorithm.

Chapter 5: Metaheuristics 91

5.5 HYBRID CONSTRAINT PROGRAMMING AND SIMULATED

ANNEALING (HCPSA)

Hybridising CP and SA is based on the idea of combining the strength of CP

method and metaheuristics to derive better solutions for the problem under study. By

hybridising with exact techniques such as CP, the performance of the algorithm can be

improved by reducing computational time, improving the effectiveness of the search,

and limiting the search space, in such a way that it leads the search to the promising

region. The solution method consists of a two-phase algorithm. The first phase is the

construction of an initial solution by CP. The obtained initial solution is then improved

by SA metaheuristic. The overall procedure for generating initial solution by CP is

given in the pseudo code as below.

Algorithm 5.7: Initial solution construction by CP

1 procedure CP()

2 Input: trip list, vehicle blocks, parameters, and constraints;

3 Output: best initial solutions;

4 begin CP()

5 set sb ← sc;

6 while i ≤ number of trip do

7 select a trip segment ts ← tsn ∖{Ts(n)};

8 evaluate the selected variable;

9 if ts is feasible then

10 i ← i + 1;

11 else

12 select a trip segment ts ← tsn ∖{Ts(n)};

13 end if

14 if current function value f (sc) < best function value f (sb) then

15 set sb ← sc;

16 end if

17 end while
18 return sb;

19 end

Chapter 5: Metaheuristics 92

5.6 HYBRID TABU SEARCH AND SIMULATED ANNEALING (HTSSA)

The proposed hybrid constructive heuristic and TS algorithm seems to have

comparatively larger computational time. It can be noted that the initial feasible

solution generated for the TS algorithm affects the successful implementation of the

algorithm. The possibility of cycling is still remain as the tabu list uses deterministic

means. Elements stored in the tabu list depend on a tabu tenure which defines the tabu

list size and how long to use a memory. However, the aspiration criteria can deal with

this possibility and prevent the search from getting trapped into a local optima. This

feature allows the search to check condition of acceptance and to override the tabu

status on a candidate solution. It provides a means of backtracking of recent solutions,

leading to a different path towards an improved solution. To exploit and combine the

advantages of individual metaheuristic, a hybrid optimisation method which combine

TS and SA is proposed. More specifically, the initial feasible solution obtained from

the constructive heuristic is used as input for the HTSSA algorithm.

The following notations are used through the description of the HTSSA algorithm.

S : set of feasible solutions

N (s) : set of neighbourhood solutions

s´ : generated solution from neighbourhood s´ ∈ S

sc : current solution

sb : best solution found

f (s') : function value of neighbourhood solution

f (sc) : function value of current solution

f (sb) : function value of best solution

T0 : initial temperature

Tc : current temperature

R : uniformly distributed random number between 0 and 1

α : cooling rate

imax : maximum iteration

Chapter 5: Metaheuristics 93

Algorithm 5.8: Hybrid Tabu Search Simulated Annealing (HTSSA)

1 procedure HTSSA()

2 Input: initial solutions;

3 Output: best found solutions;

4 begin HTSSA()

5 sc
 ← get the initial solution (s ∈ S0);

6 sb ← sc;

7 f (sb) ← f (sc);

8 select an initial temperature, T0;

9 𝑇𝑐 ← T0;

10 select temperature reduction function, 𝛼 (cooling rate);

11 initialise step counter i ← 0;

12 set the aspiration function AC = f (sb);

13 initialise_tabu list TL() ← ∅;

14 while (¬ stopping criterion)

15 candidate solution list 𝜓 ← ∅;

16 determine neighbourhood of current solution sc;

17 for sc ∈ 𝒩(s)

18 for each trip segment tsn ∈ Ts(n) select randomly one of the move m;

19 select best non-tabu move m ∈ ℳ such that m ∉ TL();

20 apply transition from s to s' → 𝒩(s) = {s´| = s ⨁ m, m ∈ ℳ};

21 ts ← tsn ∖{Ts(n)};

22 include attributes of recent move m into the tabu list TL();

23 𝜓 ← 𝜓 ⋃ sc;

24 end

25 end

26 evaluate the current solution sc from candidate solution list 𝜓;

27 sc ← get best current solution {𝒩t (s) ⋃ 𝒩a(s)} ∖ TL();

28 if f (sc) < f (sb) then

29 set sb ← sc;

30 else

31 generate random number ℛ ~ (0,1);

32 Paccept = 𝑒−Δ𝐸/𝑇

33 if ℛ < Paccept) then

34 sc ← s´;

35 f (sc) ← f (s´);

36 end if

37 end if
38 update TL();

39 𝑇𝑐 ← 𝛼𝑇𝑐;
40 i ← i + 1;

41 update temperature T;

42 𝑇𝑐 ← 𝑇𝑐 (i);

43 end while

44 return (sb , f (sb));

45 end

Chapter 5: Metaheuristics 94

5.7 COMPUTATIONAL EXPERIMENTS

To evaluate the scheduling methods presented in Chapter 5 of this thesis,

benchmark instances were randomly generated for the problem with 24-h scheduling

horizons. A sample train schedule with 12 trips is given in Table 3.1 in Chapter 3. The

railway crew scheduling in this study is to create a feasible set of crew duties to cover

a given set of trips. A feasible crew duty (shift) includes one or two partial duties, a

period of MB, idle transition times, and the sign-on and sign-off activities. The

accumulated time represents the crew total working time.

5.7.1 Constructive Heuristic (CH)

The exact solution of the mathematical model was obtained using Xpress-

Optimizer (FICO) algorithms for mixed integer problems. 3 HDs and 5 RPs were

considered with the number of trips varied between 25 and 120 trips for instances

solved by Xpress-Optimizer and the HCHSA algorithm. Whereas the number of trips

varied between 258 and 732 trips for instances solved by the CH and HCHSA

algorithms. All trips in a day were divided into four different intervals, 05.00 – 08.59;

09.00 – 12.59; 13.00 – 16.59; and 17.00 – 22.59. Normal daily working time was fixed

to 8 h and maximum spread time allowed was 12 h. The minimum and maximum

lengths of working periods of the 1st part of a duty were 3 h and 5.5 h, respectively.

Whereas the minimum and maximum lengths of working periods of the 2nd part of a

duty were set to 2 h and 4.5 h, respectively. The length of the ROP was 2.5 h within

which a MB of minimum 0.5 h is required between the third and the sixth hours of an

8 h duty. There was a time allowance of about 10 min for signing-on or signing-off

when a crew starts or ends his duty at a HD. Table 5.1 presents computational results,

i.e. the number of feasible duties, the total objective value, driving time, excess cost,

and run time in seconds.

Chapter 5: Metaheuristics 95

Table 5.1 Computational results of the Constructive Heuristic (CH).

Instance

Trips

Duties

Objective

Value

Total

Elapsed

Time

Driving

Time

Excess

Cost

CPU

Time

Average

Working

Time

(min) (%) (%) (sec) (min)

 DH-01 258 112 54882 60376 90.90 10.01 012 490.02

DH-02 350 121 60257 66935 90.02 11.08 020 497.98

DH-03 425 139 68943 78522 87.80 13.89 028 495.79

DH-04 455 156 79095 91125 86.80 15.21 043 507.02

DH-05 470 153 85526 96218 88.89 12.5 057 555.36

DH-06 485 160 80480 89425 90.00 11.11 067 503.00

DH-07 550 157 84309 95807 88.00 13.64 089 537.00

DH-08 582 162 82135 94413 87.00 14.95 112 507.01

DH-19 607 169 82810 97538 84.90 17.79 124 490.00

DH-10 625 172 84795 97712 86.78 15.23 146 492.90

DH-11 660 176 87120 102294 85.17 17.42 341 495.00

DH-12 732 182 89874 105704 85.02 17.61 595 493.81

All small-sized instances were solved to optimality by Xpress-Optimizer. As can

be seen from Table 5.2, the computational time increases significantly as the size of

the instance become larger. The largest instance was solved by Xpress-Optimizer with

a reasonable computational time.

Table 5.2 Computational results of the Mathematical Programming (MP) and the Hybrid

Constructive Heuristic Simulated Annealing (HCHSA) algorithm.

Instances

No.

of

Trips

Feasible

Duties

(FDs)

Objective

value

(Ext)

Driving

Time

(%)

CPU

time

(sec)

(Ext)

Objective

value

(HCHSA)

CPU time

(sec)

(HCHSA)

RPD

(%)

DM-01 25

45

65

6

11

16

2944

5407

7851

0.95

0.93

0.93

0.42

0.88

1.09

2944

5407

7851

0.0001

0.0001

0.0002

0

0

0

DM-02 70

90

105

23

28

33

11288

13710

16205

0.94

0.91

0.92

1.73

3.50

9.24

11288

13710

16205

0.0004

0.0006

0.0019

0

0

0

DM-03 110

115

120

35

36

38

17166

17685

18601

0.87

0.82

0.80

121.51

2262.04

15927.33

17166

17685

18601

0.0033

0.0085

0.0127

0

0

0

Chapter 5: Metaheuristics 96

5.7.2 Simulated Annealing (SA) and Hybrid Constructive Heuristic Simulated

Annealing (HCHSA)

The HCHSA algorithm was able to solve all small-sized problems with

computational time less than one second. We used relative percentage deviation as a

performance measure to further evaluate the obtained solutions for the small-sized

problems. This was calculated by the following equation;

RPD (%) = {[S(Alg) – S(Ext)] / S(Ext)} × 100%

where S(Alg) is the objective value of the solution obtained by the HCHSA algorithm

and S(Ext) is the objective value of the optimal solution given by the Xpress Optimizer.

The proposed algorithms were implemented in Microsoft Visual C# and run on

an Intel Core 2 Duo 1.96 GHz Processor with 3.46 GB of RAM under Microsoft

Windows XP operating system. The computational results obtained from both the CH

and the HCHSA algorithms are summarised in Table 5.1 and Table 5.3, respectively.

The number of trips per duty varies because of the length of a trip also varies. On

average, the number of trips in each duty varies from 3 to 6 trips. The problem of

smaller size corresponds to a higher percentage of driving time with less computational

times. This is because smaller sized problems can be better optimised due to a more

exhaustive search. For larger problems, long idle transition times remain high as

indicated by a lower percentage of driving time. This is due to the fact that services at

different times of the day have different frequency. Early morning and late afternoon

hours have higher service frequency than that of the middle day. It seems that the more

the trips we include the higher probability of the delay.

The driving time is used to measure the performance of the obtained schedules

(productivity rate). Driving time of the crew is the ratio between the total working time

(Wt) and the total spread time or elapsed time (Et) in a duty. Excess cost (Ec) was

calculated as follows. Ec (%) = {(Et – Wt) / Wt} × 100%. Both the CH and the

HCHSA algorithms produced acceptable solutions, although the produced solutions

are not guaranteed to be an optimal solution. The CH algorithm was sometimes unable

to include some trip segments and left them out unscheduled. In all cases, the HCHSA

algorithm was able to produce better solutions than the CH in terms of the solution

quality and the runtime. As can be seen from Table 5.3, the HCHSA algorithm

significantly improves the solution produced by the CH. The HCHSA algorithm

increases the average driving time by 3.06% and decreases the average excess cost by

Chapter 5: Metaheuristics 97

3.35%. Furthermore, the number of leftovers in the HCHSA is smaller than that in the

CH. Overall, the HCHSA algorithm increases the total crew working time and reduces

the number of crew duties for all datasets. As the number of crew duties corresponds

to the number of crew needed, significant savings can be gained on the annual cost of

crew related expenses.

Table 5.3 Computational results of the Hybrid Constructive Heuristic and Simulated Annealing

(HCHSA) algorithm.

Instance

Trips

Duties

Objective

Value

Total

Elapsed

Time

Driving

Time

Excess

Cost

CPU

Time

Average

Working

Time

(min) (%) (%) (sec) (min)

 DH-01 258 105 51345 54045 95.00 5.26 007 489.00

DH-02 350 117 58146 62526 92.99 7.53 014 496.97

DH-03 425 133 65825 72338 91.00 9.89 018 494.92

DH-04 455 142 71722 79693 90.00 11.11 032 505.08

DH-05 470 145 80762 87805 91.98 8.72 048 556.98

DH-06 485 157 78657 85476 92.02 8.67 055 501.00

DH-07 550 155 83120 92352 90.00 11.11 064 536.26

DH-08 582 162 81840 92007 88.95 12.42 093 505.19

DH-19 607 167 81679 93884 87.00 14.94 116 489.10

DH-10 625 172 84965 96404 88.13 13.46 130 493.98

DH-11 660 174 86371 97999 88.13 13.46 336 496.39

DH-12 732 178 88255 100285 88.00 13.63 582 495.81

To measure the quality of solutions obtained by the algorithms, the upper and

lower bound values were calculated as follows. Q = (objective value – LB) / (UB –

LB) where 0 ≤ Q ≤ 1 (Burdett and Kozan, 2010). The equation describes approximately

the quality of the solution in the search space. If Q value is close to zero then the

obtained solution is near to the optimal solution. The Q values of solutions obtained

by both the CH and HCHSA algorithms can be seen in the chart of Figure 5.5. The Q

value shown in Figure 5.5 is enough to validate the quality of the proposed algorithms.

Chapter 5: Metaheuristics 98

Figure 5.5 Q values of the CH and HCHSA solutions.

 Figure 5.6 shows Q values of the SA solutions. The average Q values of all

instances is 0.063 which indicates that the SA algorithm can produce good quality

feasible solutions for all datasets.

Figure 5.6 Q values of the SA solutions.

0
.0
2 0
.0
4

0
.0
3

0
.0
6

0
.1
7

0
.0
5

0
.1
2

0
.0
6

0
.0
2

0
.0
3

0
.0
3

0
.0
3

0
.0
2 0
.0
4

0
.0
3

0
.0
5

0
.1
6

0
.0
4

0
.1
2

0
.0
5

0
.0
2 0
.0
3

0
.0
3

0
.0
3

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

1 2 3 4 5 6 7 8 9 10 11 12

Q
V

a
lu

e

Instance

Q values of the CH and HCHSA algorithm

CH alg.

HCHSA alg.

0
.0
1
6

0
.0
4
6

0
.0
5
5

0
.0
4
9

0
.0
9
0

0
.0
7
9

0
.0
8
8

0
.0
7
6

0
.0
3
4 0
.0
5
3

0
.0
5
5

0
.0
5
7

0.00

0.03

0.05

0.08

0.10

0.13

0.15

Q
V

a
lu

e

Instance

Q values of the SA algorithm

SA

Chapter 5: Metaheuristics 99

 With regard to the SA algorithm, the initial temperature T0 was set to be large to

allow the search exploring some areas of the solution space with low level quality

solutions hence, accepting a worse solution at the beginning of the search. A large

neighbourhood is more attractive because it tends to find much better solution in one

local search step than in the small neighbourhoods. However, a large neighbourhood

is associated with long search process to come up with a better neighbouring solution.

Large neighbourhood may also lead to a potential bottleneck for local search when

searching a better neighbouring solution. The temperature was updated in each

iteration by applying geometric cooling schedule where 𝑇𝑐= 𝛼𝑇𝑐. We applied a

cooling factor of 0.93, 0.95, and 0.97 as the temperature reduction should be controlled

by a constant cooling factor with the value approximately close to one (Kirkpatrick,

1983). Altering this parameter however, did not have a significant effect on the final

objective value after 500 iterations. Computational results of SA algorithm are given

in Table 5.4 below.

Table 5.4 Computational results of the Simulated Annealing (SA) algorithm.

Instance

Trips

Duties

Objective

Value

Total

Elapsed

Time

Driving

Time

Excess

Cost

CPU

Time

Average

Working

Time

(min) (%) (%) (sec) (min)

 DH-01 258 110 55172 59850 92.184 8.48 009 501.57

DH-02 350 119 61114 68355 89.407 11.85 020 513.56

DH-03 425 137 70717 79412 89.051 12.30 024 516.18

DH-04 455 155 77571 87633 88.517 12.97 039 500.45

DH-05 470 150 76987 86979 88.512 12.98 055 513.24

DH-06 485 152 78992 89273 88.484 13.01 062 519.68

DH-07 550 151 81167 91750 88.466 13.04 079 537.53

DH-08 582 165 82195 93585 87.830 13.86 105 498.15

DH-19 607 168 84531 96252 87.822 13.87 120 503.16

DH-10 625 171 84946 101361 83.805 19.32 141 496.76

DH-11 660 173 84355 101855 82.819 20.75 336 487.60

DH-12 732 180 86621 107197 80.805 23.75 585 481.23

Chapter 5: Metaheuristics 100

Figure 5.7 Objective values by varying cooling factor ().

Sensitivity analysis was performed by changing each parameter while keeping

the others fixed for multiple runs. Figure 5.7 shows the objective function values

obtained by varying cooling factor of the SA. As can be seen from this figure, there is

no significant effect of cooling factor on the improvement of the objective function

value. It does show however, that on average, better results can be obtained with

cooling factor () between 0.95 and 0.97.

5.7.3 Hybrid Constructive Heuristic and Tabu Search (HCHTS)

Constructive heuristics look for solutions in a reasonable computational time,

even though there is no guarantee of reaching optimality. The same applies to the

metaheuristics, by which a certain trade-off of local search and randomisation is

applied. A random search provides a method of escaping local optima by moving away

wandering other region in the solution space. In this way, metaheuristics become

suitable for searching the global optimum.

A computational experiment was conducted to solve randomly generated

benchmark instances with 24-h scheduling horizons. A feasible crew duty (shift)

represents an accumulated total working time for the crew consisting of one or two

partial duties, a period of MB, idle transition times, and the sign-on and sign-off

8.8E+04

8.8E+04

8.8E+04

8.8E+04

8.8E+04

8.9E+04

0.90 0.92 0.94 0.96 0.98 1.00

O
b

je
ct

iv
e

V
al

u
e

Cooling factor ()

Objective Value

Alpha

Chapter 5: Metaheuristics 101

activities. Normal daily working time was equivalent to 8 h and maximum spread time

allowed was set at 12 h. We used the same parameter settings with the one applied by

CH and SA algorithm. The minimum and maximum lengths of working periods for

the 1st part of a duty were set to 3 h and 5.5 h, respectively. The minimum and

maximums lengths for the 2nd part of a duty were set to 2 h and 4.5 h, respectively.

The length of the ROP is 2.5 h within which a minimum 0.5 h MB is required between

the third and the sixth hours of the crew working period. There is a time allowance of

about 10 min for sign-on or sign-off when a crew starts or ends his duty at a HD. The

proposed mathematical model was solved by Xpress-Optimizer (FICO) algorithms for

mixed integer problems to obtain exact solution and this solution was used as a

reference for the TS metaheuristic approach. We considered 3 HDs and 5 RPs. The

number of trips varied between 25 and 120 for instances solved by Xpress-Optimizer.

For larger datasets in which Xpress-Optimizer was unable to find optimal solutions,

the numbers of trips varied between 250 and 750 and were approximately solved by

the proposed TS-based algorithm. Although Xpress-Optimizer was capable of finding

optimal solutions for smaller problem instances, it was unable to solve considerably

larger test instances examined in this study. We used relative percentage deviation as

a performance measure to further evaluate the solutions for the small-sized problems.

The relative percentage deviation indicates that an average gap between the optimal

solutions obtained by Xpress Optimizer and the proposed algorithm for small-sized

problems up to 200 trips is less than 3.5%.

 The proposed algorithm was implemented in Microsoft Visual C# and

computational experiments were executed on an Intel Core 2 Duo running at 1.96 GHz

Processor with 3.46 GB of RAM. In this study, the multi depots CSP concerns

constructing a set of crew roundtrips such that each crew roundtrip starts and ends at

the same crew HD. Each trip is covered once and the total crew working time does not

exceed the maximum allowable limit. It is desirable to construct feasible schedules

that will minimise the time gap between trips (idle transition times) and maximise the

length of the route per cycle time. A crew cycle time is the time spent to drive a round

trip plus idle intervals while on a route. For this reason, frequent relieving should be

avoided and a crew needs to work on the same train for as long as possible. Figure 5.8,

Figure 5.9, and Figure 5.10 show a subset of train schedule on lines in the rail network.

Chapter 5: Metaheuristics 102

Figure 5.8 A subset of the train schedule on lines in the rail network.

Figure 5.9 A subset of the train schedule on lines in the rail network.

6:
00

:0
0

A
M

6:
30

:0
0

A
M

7:
00

:0
0

A
M

7:
30

:0
0

A
M

8:
00

:0
0

A
M

8:
30

:0
0

A
M

St
at

io
n

/D
is

ta
nc

e
Train Schedule_AL

Chapter 5: Metaheuristics 103

Figure 5.10 A subset of the train schedule on lines in the rail network.

Figure 5.11 shows an illustrative example of a train crew schedule. Each

distinctly coloured line in the figure represents a crew roundtrip. As seen in the figure,

the train crew TCr_001, for example, departs from a crew HD A at 05:00 and travels

for 3 hours and 18 minutes, takes a MB for 39 minutes, from 08:18 to 08:57 at HD A,

and terminates at 12:35 at the same crew HD A. The total length of the crew duty is 7

hours 35 minutes. The average duty period of all crew roundtrips is 8 hour 5 minutes.

The time gap between the arrival of the previous trip and the departure of the next trip

should not exceed the minimum transition time allowed.

Two partial duties are merged by connecting the selected RP locations of trip

segments where a train crew takes a MB. It may not always be possible to combine

two partial duties to form a crew duty with a time length of approximately equal to the

regular working hours of 8 h. Therefore, a balance is needed by considering the crew’s

working hour guarantee and overtime. If eight hour is set as the working hour

guarantee, then the crew will be paid for 8 h even if they work less than 8 h. While if

the crew work time exceeds 8 h, they will be paid extra.

Chapter 5: Metaheuristics 104

Figure 5.11 An example of generated crew roundtrips.

Each distinctly coloured line represents a crew roundtrip. As seen in the figure,

the train crew TCr_001 departs from a crew HD A at 05:00 and travels for 3 hours and

18 minutes, takes a MB for 39 minutes, from 08:18 to 08:57 at HD A, and terminates

at 12:35 at the same crew HD A. The total length of the crew duty is 7 hours 35

minutes.

TCr_002 departs from a crew HD A at 05:30 and travels for 3 hours and 29

minutes, takes a MB for 58 minutes, from 08:59 to 09:57 at HD A, and terminates at

13:48 at the same crew HD A. The total length of the crew duty is 8 hours 18 minutes.

TCr_003 departs from a crew HD A at 06:00 and travels for 4 hours and 25

minutes, takes a MB for 39 minutes, from 10:25 to 11:04 at away depot, and terminates

at 13:33 at the same crew HD A. The total length of the crew duty is 7 hours 33

minutes.

TCr_004 departs from a crew HD B at 04:28 and travels for 3 hours and 37

minutes, takes a MB for 54 minutes, from 08:05 to 08:59 at HD B, and terminates at

12:33 at the same crew HD B. The total length of the crew duty is 8 hours 5 minutes.

5:
00

 A
M

5:
30

 A
M

6:
00

 A
M

6:
30

 A
M

7:
00

 A
M

7:
30

 A
M

8:
00

 A
M

8:
30

 A
M

9:
00

 A
M

9:
30

 A
M

10
:0

0
A

M

10
:3

0
A

M

11
:0

0
A

M

11
:3

0
A

M

12
:0

0
P

M

12
:3

0
P

M

S
ta

ti
on

/
D

is
ta

n
ce

Train Crew Schedule

TCr_001 TCr_002 TCr_003 TCr_004

TCr_005 TCr_006 TCr_007

Chapter 5: Metaheuristics 105

TCr_005 departs from a crew HD B at 05:27 and travels for 3 hours and 32

minutes, takes a MB for 30 minutes, from 08:59 to 09:29 at HD B, and terminates at

13:43 at the same crew HD B. The total length of the crew duty is 8 hours 16 minutes.

TCr_006 departs from a crew HD B at 06:00 and travels for 5 hours and 33

minutes, takes a late MB for 39 minutes, from 11:33 to 12:12 at HD B, and terminates

at 13:42 at the same crew HD B. The total length of the crew duty is 7 hours 42

minutes.

TCr_007 departs from a crew HD B at 04:59 and travels for 3 hours and 51

minutes, takes a late MB for 37 minutes, from 08:50 to 09:27 at away depot (HD A),

and terminates at 14:03 at the same crew HD B. The total length of the crew duty is 9

hours 4 minutes. The average duty period of all crew roundtrips shown in Figure 5.12

is 8 hour 5 minutes.

Chapter 5: Metaheuristics 106

Figure 5.12 An example Gantt chart of the train crew schedule.

Table 5.5 shows the computational results, i.e. the number of crew roundtrips

(duties), objective function values, the driving times, excess cost, and the run times.

The performance of the obtained schedules (productivity rate) was measured by the

driving time percentage. The driving time of the crew is the ratio between the total

working time (Wt) and the total spread time or elapsed time (Et) in a duty. Excess cost

(Ec) was calculated as follows. Ec (%) = {(Et – Wt) / Wt} × 100%.

Chapter 5: Metaheuristics 107

Table 5.5 Computational results of the Hybrid Constructive Heuristic and Tabu Search (HCHTS)

algorithm.

Instance

Trips

Duties

Objective

Value

Total

Elapsed

Time

Driving

Time

Excess

Cost

CPU

Time

Average

Working

Time

(min) (%) (%) (sec) (min)

 DH-01 258 99 52256 55527 94.10 6.26 009 527.84

DH-02 350 115 62569 67861 92.20 8.46 019 544.08

DH-03 425 130 65697 73569 89.30 11.98 024 505.36

DH-04 455 140 67994 78244 86.90 15.07 038 485.67

DH-05 470 147 76185 85707 88.89 12.50 052 518.27

DH-06 485 155 80251 88191 91.00 9.89 061 517.75

DH-07 550 152 81667 91887 88.88 12.51 077 537.28

DH-08 582 165 82175 94802 86.68 15.37 108 498.03

DH-19 607 169 81804 94139 86.90 15.08 121 484.05

DH-10 625 171 85014 95521 89.00 12.36 142 497.16

DH-11 660 172 83032 97011 85.59 16.84 340 482.74

DH-12 732 175 86430 100711 85.82 16.52 590 493.89

Average crew working time for small-sized instances is 515.74 min, medium-

sized instances is 517.83 min, and large-sized instances is 489.46 min. It seems that

for small- to medium-sized instances, the average crew working time is slightly higher

than the average crew working time for large-sized problems (Figure 5.13). This is

because long idle transition times occur when more trips were included as a result of

congestions. This observation is also confirmed by a lower driving time percentage of

large-sized problems compared to the driving times percentage of small-sized to

medium-sized instances. Driving time percentage for small-sized instance, medium-

sized instance and large-sized instances are 90.63, 88.88, and 86.83, respectively.

Chapter 5: Metaheuristics 108

Figure 5.13 Average crew working time of all datasets.

The performance of HCHTS algorithm was evaluated by measuring the average

computational time and the best solution found. The overall solution of all datasets can

be obtained in less than 10 min of computational time. The algorithm is quite robust

as indicated by the small coefficient of variation from average. The length of tabu list

seems contributes an important effect in the search process. With the increasing

number of iterations, the solution is improved. The number of sequential iterations

without improved objective function value is used as the termination criterion. The

best found solution was compared with the upper and lower bound values to measure

the quality of solutions obtained by the algorithm. This was calculated as follows. Q =

(objective value – LB) / (UB – LB) where 0 ≤ Q ≤ 1 (Burdett and Kozan, 2010). The

Q value approximately indicates the quality of the solution in the search space. The

obtained solution is near to the optimal when the Q value is close to zero. The Q value

is used to validate the quality of solutions obtained by the proposed algorithm. The Q

values of solutions obtained by the proposed algorithm can be seen in the chart of

Figure 5.14. On average, the Q values of solutions by HCHTS algorithm is 0.068.

5
2
7
.8

4

5
4
4
.0

8

5
0
5
.3

6

5
0
8
.6

7

5
1
8
.2

7

5
1
7
.7

5 5
3
7
.2

8

4
9
8
.0

3

4
8
4
.0

5

4
9
7
.1

6

4
8
2
.7

4

4
9
3
.8

9

4.00E+02

4.50E+02

5.00E+02

5.50E+02

6.00E+02

A
v

er
a

g
e

cr
ew

w
o

rk
in

g
 t

im
e

(m
in

)

Instance

Average crew working time by HCHTS

Chapter 5: Metaheuristics 109

Figure 5.14 Q values of the HCHTS algorithm.

5.7.4 Hybrid Constraint Programming and Simulated Annealing (HCPSA)

Computational experiments were conducted based on the same generated

benchmark instances to make the performance of each approach are comparable.

Computational results of the hybrid CP and SA are presented in Table 5.6. Overall

results indicate that the proposed approach yields good acceptable solution. The

average Q values of solutions by HCPSA algorithm shown in Figure 5.15 is 0.067.

0
.0

0
6

0
.0

8
0

0
.1

0
0

0
.0

1
2

0
.1

3
3

0
.0

7
9

0
.1

1
9

0
.0

3
8

0
.0

5
8

0
.0

3
6 0

.0
5
0

0
.0

5
9

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18
Q

V
a

lu
e

Instance

Q value of HCHTS algoritm

TS

Chapter 5: Metaheuristics 110

Table 5.6 Computational results of the Hybrid Constraint Programming and Simulated Annealing

(HCPSA) algorithm.

Instance

Trips

Duties

Objective

Value

Total

Elapsed

Time

Driving

Time

Excess

Cost

CPU

Time

Average

Working

Time

(min) (%) (%) (sec) (min)

 DH-01 258 107 52275 55619 93.99 6.40 007 488.55

DH-02 350 114 62540 67146 93.14 7.37 016 548.60

DH-03 425 128 65478 73146 89.52 11.71 022 511.55

DH-04 455 138 67966 77826 87.33 14.51 037 492.51

DH-05 470 146 76177 85686 88.90 12.48 051 521.76

DH-06 485 154 80248 87683 91.52 9.27 060 521.09

DH-07 550 152 81667 91887 88.88 12.51 075 537.28

DH-08 582 165 82175 94802 86.68 15.37 108 498.03

DH-19 607 169 81804 94139 86.90 15.08 121 484.05

DH-10 625 171 85014 95521 89.00 12.36 142 497.16

DH-11 660 172 83032 97011 85.59 16.84 340 482.74

DH-12 732 175 86433 100711 85.82 16.52 590 493.89

Figure 5.15 Q values of the HCPSA solutions.

0
.0

4
5

0
.0

7
0

0
.0

7
5

0
.0

4
3

0
.0

6
9 0

.0
8

3

0
.1

0
0

0
.0

3
8 0
.0

4
8

0
.0

3
5

0
.0

3
6

0
.0

4
3

0.00

0.03

0.05

0.08

0.10

0.13

0.15

Q
V

a
lu

e

Instance

Q Value of the HCPSA algorithm

HCPSA

Chapter 5: Metaheuristics 111

5.7.5 Hybrid Tabu Search and Simulated Annealing (HTSSA)

The performance of HTSSA algorithm was evaluated by measuring the average

computational time and the best solution found. The performance of the HTSSA

algorithm was tested ten times on each randomly generated datasets. The parameters

examined for TS algorithm were the tabu list size and the number of iterations. The

obtained results indicate that smaller tabu list sizes more likely to get trapped and find

it difficult to escape from a certain point in the solution space. On the other hand, larger

tabu list sizes seem do not give a thorough search for obtaining improved

neighbourhood solution. The overall solution of all datasets can be obtained in less

than 10 min of computational time. The algorithm is quite robust as indicated by the

small coefficient of variation from average. The length of tabu list seems contributes

an important effect in the search process.

Table 5.7 Computational results of the Hybrid Tabu Search and Simulated Annealing (HTSSA)

algorithm.

Instance

Trips

Duties

Objective

Value

Total

Elapsed

Time

Driving

Time

Excess

Cost

CPU

Time

Average

Working

Time

(min) (%) (%) (sec) (min)

 DH-01 258 97 51703 54742 94.45 5.88 007 533.02

DH-02 350 113 61880 67103 92.22 8.44 013 547.61

DH-03 425 130 65337 73152 89.32 11.96 022 502.59

DH-04 455 138 67533 77486 87.15 14.74 034 489.37

DH-05 470 145 75208 84638 88.86 12.54 052 518.68

DH-06 485 155 80106 88044 90.98 9.91 060 516.81

DH-07 550 151 81450 91605 88.91 12.47 073 539.40

DH-08 582 165 82136 94761 86.68 15.37 110 497.79

DH-19 607 167 80832 93045 86.87 15.11 125 484.02

DH-10 625 168 83523 93792 89.05 12.29 141 497.16

DH-11 660 171 82549 96426 85.61 16.81 336 482.74

DH-12 732 173 85442 99524 85.85 16.48 587 493.88

Chapter 5: Metaheuristics 112

Figure 5.16 Q values of the HTSSA solutions.

An aggregation procedure has a significant effect in reducing the problem size

such that the proposed algorithm is able to handle large-sized railway CSP and solve

it within an acceptable computational time. The neighbourhood structure also

contributes to the effectiveness of the search process. Q values of the HTSSA solutions

indicate that the algorithm can obtain good quality solution for all datasets.

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Q
V

a
lu

e

Instance

Q value of the HTSSA algorithm

HTSSA alg.

Chapter 5: Metaheuristics 113

5.8 CONVERGENCE ANALYSIS OF THE PROPOSED HEURISTICS /

METAHEURISTICS

This section investigates the convergence of the heuristics and metaheuristics

applied in this study. A stopping criterion should be defined to terminate the algorithm.

The stopping criterion can be a maximum number of iterations, such as after 1000

iterations. The iteration limits can be determined in an experimental way and it usually

depends on the size and structure of the problem. Another termination criterion is a

maximum allowed execution time, such as after 5 minutes computational time. A good

trade-off between setting computational time early or late to stop should be applied,

because if the algorithm terminates too late, it wastes the computational time.

Conversely, if the algorithm terminates too early, the optimum solution may not be

reached yet. Additionally, the number of sequential iterations without improvement in

the objective function value can be used as a termination criterion. This criterion is

more frequently used and it was also used as a stopping criterion to solve the problem

under study. Standard deviation was also calculated to know how much variation exists

from the average. High standard deviation indicates that the data points are spread out

over a large range of values. Low standard deviation indicates that the data points tend

to be very close to the mean.

Figure 5.17 shows a line chart of the objective function values vs the number of

iterations of the local search heuristic and metaheuristics. This is a two dimensional

graph in which the number of iterations is plotted on the X-axis and the objection

function value is plotted on the Y-axis.

Chapter 5: Metaheuristics 114

Figure 5.17 Objective value improvement with the number of iterations.

As can be seen from this figure, in general, the algorithms improved the solutions

with the increasing number of iterations and they significantly improved the obtained

solutions within the first 200 iterations. The minimisation of the objective function

values then tends to be stagnant at about 500 iterations and thereafter the solutions

show no sign of advancement and algorithms indicate a tendency of convergence. The

number of sequential iterations without improved objective function value was used

as the termination criterion. To prove convergence of the proposed algorithm, standard

deviation was also calculated to shows the extent of variation from the average. It is

observed that the standard deviation tends to decrease as the number of iterations i 

, which means that the data points are getting closer to the mean as the number of

iterations increases. It can be noted that in general the hybrid TS and SA algorithm

(HTSSA) outperforms all other heuristics/metaheuristics shown in the figure. All

algorithms give a similar trend. Overall, the HTSSA gives the best result with average

crew working time is 8.477 h.

5.9 CONCLUSION

Heuristics and metaheuristics-based algorithms as well as hybrid

heuristics/metaheuristics to solve railway CSP have been presented in this chapter. The

objective of the algorithms is to find minimum time crew roundtrips by minimising

idle interval between trips and an idle transition between partial duties. Computational

Chapter 5: Metaheuristics 115

results indicated that the proposed algorithms are able to generate feasible near-

optimal solutions within an acceptable computational time, as indicated by the average

Q values of all methods which are fairly close to zero. An aggregation procedure

inserted in the proposed algorithms has a significant effect in reducing the problem

size such that the algorithms are able to handle large-sized railway CSP and solve it

within a reasonable computational time. The neighbourhood structure also contributes

to the effectiveness of the search process. The optimisation approaches incorporate a

complex set of railway crew scheduling constraints and can be easily adjusted to

include additional constraints. A specific constraint in which a crew can be relieved

during the interval of ROP gives more flexibility on crew schedule. In that way, the

proposed methods will enable crew members to flexibly choose the relief time and

location in their duties. The proposed algorithms produced good acceptable solutions

and can solve medium- to large-sized instances under study. The proposed

optimisation methods for solving railway CSP can be improved to develop a decision

support system to solve real-world railway CSP. Furthermore, the model and

algorithms proposed in this study can be extended to the integration of vehicle and

CSPs with ROP.

Chapter 6: Conclusions and Recommendations 117

 Conclusions and

Recommendations

This study has developed models and algorithms to solve the problem. The need

for studying railway CSP has been highlighted in chapter 1. The general research

methodology has also been explained in chapter 1. A survey on the existing modelling

and solution approaches for CSP has indicated that there is limited study on CSP,

particularly on the railway CSP. The study on CSP has relied mainly on the existing

models such as the SCP and SPP formulations and then solves the problem analytically

or approximately, as indicated in chapter 2. This suggests the need for improving the

existing models by integrating real-life crew scheduling constraints into a developed

model. The railway CSP models developed in this study include a specific crew

scheduling constraint in the models such that they enable the crew to be relieved during

the ROP. Integrating this specific constraint in the proposed models will enhance the

robustness of the schedule and provide a better representation of real railway crew

scheduling conditions. The detailed formulation of the MP-based model and the CP-

based model with its solution technique are presented in chapter 3 and chapter 4,

respectively. Chapter 5, presents metaheuristics techniques to solve railway CSP.

Constructive heuristics, hybrid SA- and TS-based algorithms were designed to

improve both the solutions and the computational performances. This chapter also

includes the computational results and analysis of the proposed algorithms.

Subsequently, the chapter 6 provides the conclusions and recommendations for further

study.

6.1 CONCLUSIONS

In this thesis, models and algorithms for railway CSP have been presented.

Railway CSP is the process of allocating train services to the crew duties based on the

published train timetable while satisfying operational and contractual requirements.

The problem is restricted by many constraints and it belongs to the class of NP-hard.

The objective of the models and algorithms is to minimise the number of crew duties

by minimising total idle transition times. The idle transition times includes idle

intervals between trips and an idle interval between partial duties. These unproductive

Chapter 6: Conclusions and Recommendations 118

parts of a crew duty (shift) contribute the most to the optimisation potential of the crew

scheduling. The mathematical model includes the interval of relief opportunities,

allowing a train crew to be relieved at any RP during the ROP. Small-sized to medium-

sized instances can be solved to optimality analytically by applying the developed

mathematical model. CP based approach to solve railway crew scheduling is able to

obtain best solutions through the DFS and BFS methods. In a few cases, both the DFS

and BFS failed to reach optimality. However, the relative deviation is very small and

thereby can still be considered as acceptable solutions. CP formulation is more natural

in representing the problem and requires much fewer variables and constraints than the

MIP-based methodologies. This is due to the global constraint that capable of

representing complex relationships between variables which in turn provides effective

domain reduction. Using CP technique, the model provides acceptable results in all

test datasets. However, the problem in its entirety is complex because of the presence

of conflicting constraints. The overall results indicate that the CP model can produce

feasible railway crew schedules of small- to medium-sized instances within a

reasonable computational time.

Railway CSP is mathematically intractable due to the number of possible trip

combinations and the complexity of the involved constraints. To handle the difficulty

due to the combinatorial explosion of the problem, hybrid constructive heuristics and

metaheuristics are proposed to solve the problem. The overall results indicate that the

proposed algorithms can produce near-optimal railway crew schedules of large-sized

datasets within an acceptable computational time. This study also shows the

effectiveness of the hybridization of local search constructive heuristics and

metaheuristics in solving a highly constrained combinatorial optimisation problem.

HCHTS algorithm has been presented in this thesis to solve multi depots railway

CSP. The objective of the algorithm is to find minimum time crew roundtrips by

minimising idle interval between trips and an idle transition between partial duties.

Small-sized instances are solved to optimality by applying the proposed mathematical

model. The obtained results are then compared against the solution produced by the

HCHTS algorithm which was composed of a three-phase heuristic. Computational

results indicated that the proposed algorithm is able to generate near-optimal feasible

solutions within an acceptable computational time, as indicated by the average Q

values which is fairly close to zero. An aggregation procedure has a significant effect

Chapter 6: Conclusions and Recommendations 119

in reducing the problem size such that the proposed algorithm is able to handle large-

sized railway CSP and solve it within an acceptable computational time. The

neighbourhood structure also contributes to the effectiveness of the search process.

With regard to the HCPSA and HTSSA algorithms, the results obtained indicate that

the proposed algorithms can obtain good acceptable solutions within a reasonable

computational time. Overall, the HTSSA algorithm gives the best objective function

value with less computational times.

The developed optimisation models and algorithms involve a complex set of

railway crew scheduling constraints and they can be easily adapted to include

additional constraints. The models and algorithms incorporate a specific constraint in

which a crew can be relieved during the interval of relief opportunities period. In that

way, the proposed models and algorithms will enable crews to flexibly choose the

relief time and location in their duties. Although the models and algorithms are

presented in the context of railway CSP, they are general and flexible enough to be

adapted to different locations and modes of transportation. In addition, the proposed

models can be solved using a wide range of techniques.

6.2 RECOMMENDATIONS FOR FURTHER RESEARCH

This study has raised a number of issues which might be interesting topics for

further work. These are summarised as follows.

 Investigation of railway crew scheduling models. In this research, two

alternative models based on MP and CP for railway crew scheduling have

been developed. It would be valuable for further investigation by analysing

and comparing their performance. Further research to solve these models

should focus on improving search techniques and integrating these models

with other solution methods to combine the strength of the techniques.

Although we have developed models for railway CSP, these models can be

applied to other modes of transportation. The proposed models deal with the

construction of duties (shifts) with one period of ROs (straight runs). These

models can also be easily extended to model a situation in which a duty may

contain more than two pieces of work (split runs). Furthermore, the models

can be applied to the integration of vehicle and crew scheduling problems

with ROP.

Chapter 6: Conclusions and Recommendations 120

The complexity of railway CSP might hinder in capturing all details,

thereby it might be interesting to develop a simulation model to analyse the

real operations and evaluate the effect of constraints on the performance of

the crew schedules. A simulation model can measure the impact of crew

utilisation under different scenarios, for example, by varying cost

parameters such as crew operating cost, deadhead cost, and train operating

cost.

 Investigation of metaheuristics. SA and TS-based algorithm have been

applied to solve railway CSP in this research. Local search heuristics for

generating initial solutions for the SA and TS are worthwhile for further

investigation. It might also be interesting to analyse the performance of the

SA and TS using different neighbourhood structures. Even though there

have been numerous studies conducted to determine the optimum

parameter setting of SA and TS applications, more experiments are needed

to identify suitable parameters of SA and TS to solve crew scheduling

related problems.

Other metaheuristics that are suitable for solving combinatorial

optimisation problems should be further applied on the crew scheduling

related problems. These metaheuristics include genetic algorithms, ant

colony optimisations, particle swarm optimisations, and bee algorithms.

There are many aspects of railway CSP that need to be incorporated in

future research such as train delay, deadheading, and crew balance at each

HD. Moreover, it would be interesting to consider the dynamic crew

scheduling (Huisman and Wagelmans, 2006), as this challenging problem

might provide better solutions than the static one. Although a large body of

research has been made in the area of generic CSP, there are still many

aspects of the CSP that need to be further studied and investigated. Models

and algorithms which are able to incorporate many aspects of the challenging

practical situations and advanced solution techniques are inevitable.

Because many interesting issues have not been investigated, the findings

obtained in this study should provide a reference for further work.

References 121

References

Aarts, E and Lenstra, J K. (2003). Local Search in Combinatorial Optimization, Princeton.

Abbink, E., Fischetti, M., Kroon, L.G., Timmer, G., & Vromans, M.J.C.M. (2004).

Reinventing crew scheduling at Netherlands Railways. Tech. rept. ERS-2004-046-LIS.

Erasmus Research Institute of Management, Erasmus University Rotterdam, the

Netherlands.

Abbink, E., Van't Wout, J., Huisman, D. (2007). Solving Large Scale Crew Scheduling

Problems by using Iterative Partitioning. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, External Workshops. ATMOS 2007 - 7th Workshop on Algorithmic

Methods and Models for Optimization of Railways.

Alfieri A, Kroon L, Velde S. (2007). Personnel scheduling in a complex logistic system: a

railway application case. Journal of Intelligent Manufacturing, 18(2), 223–232.

Arabeyre, J., J. Fearnley, F. C. Steiger, and W. Teather. (1969). The Airline Crew

Scheduling Problem: A Survey. Transportation Science, 3, 140–163.

Azadeh A, Farahani M H, Eivazy H, Nazari-Shirkouhi S, Asadipour G. (2013). A hybrid

meta-heuristic algorithm for optimization of crew scheduling. Applied Soft Computing,

13(1), 158–164.

Bangert, Patrick (2012). Optimization for Industrial Problems. Springer – Verlag, Berlin

Heidelberg.

Barnhart, C., L. Hatay, et al. (1995). Deadhead Selection for the Long-Haul Crew Pairing

Problem. Operations Research, 43(3): 491-499.

Barták, R., Salido, M., Rossi, F. (2010). Constraint satisfaction techniques in planning and

scheduling. Journal of Intelligent Manufacturing 21, 5–15.

Bartodziej P, Derigs U, Malcherek D, Vogel, U. (2009). Models and algorithms for solving

combined vehicle and crew scheduling problems with rest constraints: an application

to road feeder service planning in air cargo transportation. OR Spectrum, 31(2), 405–

429.

Beasley J. E. and B. Cao. (1998). A Dynamic Programming Based Algorithm for Crew

Scheduling. Computers and Operations Research, 25(7-8), 567–582.

Beasley, J. E. and B. Cao. (1996). A tree search algorithm for the crew scheduling problem.

European Journal of Operational Research 94(3) 517-526.

Beck J C, Feng T K, Watson J P. (2011). Combining Constraint Programming and Local

Search for Job-Shop Scheduling. INFORMS Journal on Computing, 23(1), 1–14.

Bengtsson L, Galia R, Gustafsson T, Hjorring C, Kohl N. (2007). Railway Crew

Pairing Optimization. Algorithmic Methods for Railway Optimization. Lecture Notes

in Computer Science (LNCS), 4359, 126–144. Springer.

Benhamou, Frédéric., Jussien, Narendra., O'Sullivan, Barry A. (2010). Trends in

Constraint Programming. Wiley-ISTE.

http://en.scientificcommons.org/erwin_abbink
http://en.scientificcommons.org/joel_van%27t_wout
http://en.scientificcommons.org/dennis_huisman
http://rd.springer.com/search?facet-author=%22Leo+Kroon%22
http://rd.springer.com/search?facet-author=%22Steef+van+de+Velde%22
http://www.qut.eblib.com.au.ezp01.library.qut.edu.au/patron/SearchResults.aspx?pu=34684
http://www.qut.eblib.com.au.ezp01.library.qut.edu.au/patron/SearchResults.aspx?pu=34684
http://link.springer.com/search?facet-author=%22Lennart+Bengtsson%22
http://link.springer.com/search?facet-author=%22Rastislav+Galia%22
http://link.springer.com/search?facet-author=%22Tomas+Gustafsson%22
http://link.springer.com/search?facet-author=%22Curt+Hjorring%22
http://link.springer.com/search?facet-author=%22Niklas+Kohl%22
http://link.springer.com/book/10.1007/978-3-540-74247-0
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

References 122

Bianco, L., M. Bielli, et al. (1992). A heuristic procedure for the crew rostering problem.

European Journal of Operational Research, 58(2): 272-283.

Bodin, L., B. Golden, A.A. Assad, and M. Ball. (1983). Routing and scheduling of vehicles

and crews: The state of the art. Computer and Operations Research, 10, 63-211.

Boschetti M A, Mingozzi A, Ricciardelli S. (2004). An exact algorithm for the simplified

multiple depot crew scheduling problem. Annals of Operations Research, 127(1-4),

177–201.

Burdett R L, and Kozan E. (2010). A disjunctive graph model and framework for

constructing new train schedules. European Journal of Operational Research, 200(1),

85–98.

Cabrera, G. and Rubio L. J. M. (2009). Hybrid Algorithm of Tabu Search and Integer

Programming for the Railway Crew Scheduling Problem. Second Asia-Pacific

Conference on Computational Intelligence and Industrial Applications.

Caprara A, Fischetti M, Toth P, Vigo D, and Guida P. (1997). Algorithms for Railway

Crew Management. Mathematical Programming, 79(1–3), 125–141.

Caprara, A., L. Kroon, et al. (2007). Chapter 3 Passenger Railway Optimization.

Handbooks in Operations Research and Management Science, Elsevier. Volume 14:

129-187.

Caprara, A., M. Fischetti, P. Guida, P. Toth, and D. Vigo. (1999). Solution of Large-Scale

Railway Crew Planning Problems: The Italian Experience. In N. Wilson (ed.),

Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical

Systems, Vol. 430, pp. 1–18. Berlin: Springer.

Caprara, A., M. Monaci, and P. Toth. (2001). A Global Method for Crew Planning in

Railway Applications. In S. Voss and J. Daduna (eds.), Computer-Aided Scheduling

of Public Transport, Lecture Notes in Economics and Mathematical Systems, 505, 17–

36. Springer.

Caprara, A., P. Toth, et al. (1998). Modeling and Solving the Crew Rostering Problem.

Operations Research, 46(6): 820-830.

Caserta, M and Voß, S. (2010). Metaheuristics: Intelligent Problem Solving.

Matheuristics, Annals of Information Systems, 10, 1-38.

Cavique L, Rego C, Themido I. (1999). Subgraph ejection chains and tabu search for the

crew scheduling problem. The Journal of the Operational Research Society, 50(6),

608–616.

Chew K L, Pang J, Liu Q Z, Ou J H, Teo C P. (2001). An optimization based approach to

the train operator scheduling problem at Singapore MRT. Annals of Operations

Research, 108(1-4), 111–122.

Chu SCK, Chan ECH. (1998). Crew scheduling of light rail transit in Hong Kong: From

modeling to implementation. Computers and Operations Research, 25(11), 887–894.

Chu SCK. (2007). Generating, scheduling and rostering of shift crew-duties: Applications

at the Hong Kong International Airport. European Journal of Operational Research,

177(3), 1764–1778.

Chu, H. D., E. Gelman, et al. (1997). Solving large scale crew scheduling problems.

European Journal of Operational Research, 97(2), 260-268.

http://eprints.qut.edu.au/10665/
http://eprints.qut.edu.au/10665/
http://apps.webofknowledge.com/CitedFullRecord.do?product=WOS&colName=WOS&SID=V1Ch@N7K7nD286@o19h&search_mode=CitedFullRecord&isickref=WOS:000075284000002
http://apps.webofknowledge.com/CitedFullRecord.do?product=WOS&colName=WOS&SID=V1Ch@N7K7nD286@o19h&search_mode=CitedFullRecord&isickref=WOS:000075284000002

References 123

Corry P, and Kozan E. (2008). Optimised loading patterns for intermodal trains. OR

Spectrum, 30(4), 721–750.

Claessens, M. T., N. M. van Dijk, et al. (1998). Cost optimal allocation of rail passenger

lines. European Journal of Operational Research, 110(3), 474-489.

Clement, R. and A. Wren. (1995). Greedy Genetic Algorithms, Optimizing Mutations and

Bus Driver Scheduling. Computer-Aided Transit Scheduling, Lecture Notes in

Economics and Mathematical Systems, 430, 213–235.

Crawford, B., C. Castro, et al. (2006). A Constructive Hybrid Algorithm for Crew Pairing

Optimization. Artificial Intelligence: Methodology, Systems, and Applications. J.

Euzenat and J. Domingue, Springer Berlin / Heidelberg. 4183, 45-55.

De Leone R, Festa P, Marchitto E. (2011). A Bus Driver Scheduling Problem: a new

mathematical model and a GRASP approximate solution. Journal of Heuristics,

17(4), 441–466.

Deng G F, Lin W T. (2011). Ant colony optimization-based algorithm for airline crew

scheduling problem. Expert Systems with Applications, 38(5), 5787–5793.

Desaulniers, G., J. Desrosiers, et al. (1997). Crew pairing at Air France. European Journal

of Operational Research, 97(2): 245-259.

Desrochers, M. and F. Soumis. (1989). A Column Generation Approach to the Urban

Transit Crew Scheduling Problem. Transportation Science, 23(1), 1–13.

Diana C. Flórez, Jose L. Walteros, Miguel A. Vargas, Andrés L. Medaglia, Nubia Velasco

(2009). A Mathematical Programming Approach to Airline Crew Pairing

Optimization. Centro para la Optimización y Probabilidad Aplicada (COPA).

Departamento de Ingeniería Industrial, Universidad de los Andes.

Dias T G, de Sousa J P, and Cunha J F. (2002). Genetic Algorithms for the Bus Driver

Scheduling Problem: A Case Study. Journal of the Operational Research Society,

53(3), 324–335.

Ehrgott, M and Gandibleux, X. (2008). Hybrid Metaheuristics for Multi-objective

Combinatorial Optimization. Hybrid Metaheuristics, Studies in Computational

Intelligence, 114, 221-259.

Elizondo R, Parada V, Pradenas L, and Artigues C. (2010). An evolutionary and

constructive approach to a crew scheduling problem in underground passenger

transport. Journal of Heuristics, 16(4), 575–591.

Elmi A, Solimanpur M, Topaloglu S, and Elmi A. (2011). A simulated annealing

algorithm for the job shop cell scheduling problem with intercellular moves and

reentrant parts. Computers and Industrial Engineering, 61(1), 171–178.

Emden-Weinert T, and Proksch M. (1999). Best practice simulated annealing for the airline

crew scheduling problem. Journal of Heuristics, 5(4), 419–436.

Ernst, A. T., H. Jiang, et al. (2004). Staff scheduling and rostering: A review of

applications, methods and models. European Journal of Operational Research,

153(1): 3–27.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B. and Sier, D. (2004). An annotated

bibliography of personnel scheduling and rostering. Annals of Operations Research,

127(1–4), 21–144.

http://link.springer.com/search?facet-author=%22Renato+De+Leone%22
http://link.springer.com/search?facet-author=%22Paola+Festa%22
http://link.springer.com/search?facet-author=%22Emilia+Marchitto%22
http://link.springer.com/journal/10732
http://link.springer.com/journal/10732/17/4/page/1

References 124

Ernst, A., H. Jiang, M. Krishnamoorthy, H. Nott and D. Sier (1999). An optimisation

approach to train crew rostering. Proc. 15th National ASOR Conference (Gold Coast,

Australia), 437–453.

Ernst, A., H. Jiang, M. Krishnamoorthy, H. Nott and D. Sier (2001). An Integrated

Optimization Model for Train Crew Management. Annals of Operations Research,

Volume 108, Numbers 1-4.

Fischetti M, Martello S, and Toth P. (1987). The Fixed Job Schedule Problem with Spread-

Time Constraints. Operations Research, 35(6), 849–858.

Fischetti M, Martello S, and Toth P. (1989). The Fixed Job Schedule Problem with

Working-Time Constraints. Operations Research, 37(3), 395–403.

Focacci F, Lodi A, Milano M. (2002). Mathematical Programming Techniques in

Constraint Programming: A Short Overview. Journal of Heuristics, 8(1), 7–17.

Freling R, Lentink R. M, and Wagelmans A.P.M. (2004). A Decision Support System for

Crew Planning in Passenger Transportation Using a Flexible Branch-and-Price

Algorithm. Annals of Operations Research, 127, 203–222.

Freling, R., R. Lentink, and M. Odijk. (2001). Scheduling Train Crews: A Case Study for

the Dutch Railways. In S. Voss and J. Daduna (eds.), Computer-Aided Scheduling of

Public Transport, Lecture Notes in Economics and Mathematical Systems, 505, 153–

166. Springer.

Fuzhang, W., W. Haixing, et al. (2006). Modeling and Solving for Railway Crew

Scheduling Problem. The Sixth World Congress on Intelligent Control and Automation

(WCICA).

Giachetti R E, Damodaran P, Mestry S, Prada C. (2013). Optimization-based decision

support system for crew scheduling in the cruise industry. Computers and Industrial

Engineering, 64(1), 500–510.

Glover F. (1977). Heuristic for integer programming using surrogate constraints.

Decision Sciences, 8(1), 156–166.

Glover F. (1986). Future paths for integer programming and links to artificial intelligence.

Computers and Operations Research, 13(5), 533–549.

Glover, F. and Greenberg, H.J. (1989). New approaches for heuristic search: a bilateral

linkage with artificial intelligence. European Journal of Operational Research, 39,

119-130.

Gomes, M., L. Cavique, et al. (2006). The crew timetabling problem: An extension of the

crew scheduling problem. Annals of Operations Research, 144(1): 111-132.

Gopalakrishnan, B. and E. Johnson. (2005). Airline Crew Scheduling: State-of-the-Art.

Annals of Operations Research, 140(1), 305-337.

Goumopoulos C, and Housos, E. (2004). Efficient trip generation with a rule modeling

system for crew scheduling problems. Journal of Systems and Software, 69(1–2), 43–

56.

Gualandi S, and Malucelli F. (2013). Constraint Programming-based Column Generation.

Annals of Operations Research, 204(1), 11–32.

Guillermo, C. G. and M. R. L. Jose (2009). Hybrid algorithm of Tabu Search and Integer

Programming for the railway crew scheduling problem. Asia-Pacific Conference on

Computational Intelligence and Industrial Applications (PACIIA).

http://www.springerlink.com.ezp01.library.qut.edu.au/content/?Author=A.T.+Ernst
http://www.springerlink.com.ezp01.library.qut.edu.au/content/?Author=H.+Jiang
http://www.springerlink.com.ezp01.library.qut.edu.au/content/?Author=M.+Krishnamoorthy
http://www.springerlink.com.ezp01.library.qut.edu.au/content/?Author=H.+Nott
http://www.springerlink.com.ezp01.library.qut.edu.au/content/?Author=D.+Sier
http://www.springerlink.com.ezp01.library.qut.edu.au/content/baba3vj00cqpcvdb/?p=7eda124839ed48d1881e7811592765bf&pi=23
http://www.springerlink.com.ezp01.library.qut.edu.au/content/baba3vj00cqpcvdb/?p=7eda124839ed48d1881e7811592765bf&pi=23
http://www.springerlink.com.ezp01.library.qut.edu.au/content/101740/?p=7eda124839ed48d1881e7811592765bf&pi=0

References 125

Gutjahr, W J. (2010). Convergence Analysis of Metaheuristics. Matheuristics, Annals of

Information Systems, 10, 159-187.

Hanafi, R. (2000). Design of a Genetic Algorithm to Solve Facility Layout Problem.

Master Thesis. Swinburne University of Technology. Melbourne, Australia.

Helena R L, Jose P P, and Portugal R. (2001). Multiobjective metaheuristics for the bus-

driver scheduling problem. Transportation Science, 35(3), 331–343.

Hoffman, K. and M. Padberg. (1993). Solving Airline Crew Scheduling Problems by

Branch-and-Cut. Management Science, 39(6), 657–682.

Hooker, J. N. (2002). Logic, Optimization, and Constraint Programming. INFORMS

Journal on Computing 14(4), 295–321.

Horowitz, E and Sahni, S. (1987). Fundamentals of Data Structures in Pascal, 2nd ed.,

Computer Science Press.

Huisman, D,. and Wagelmans, A. P.M. (2006). A solution approach for dynamic vehicle

and crew scheduling. European Journal of Operational Research, 172(2), 453–471.

Irina Dumitrescu and Thomas Stützle. (2010). Usage of Exact Algorithms to Enhance

Stochastic Local Search Algorithms. Matheuristics: Hybridizing Metaheuristics and

Mathematical Programming. Annals of Information Systems, 103-134. Springer.

Johnson, E. L., G. L. Nemhauser, et al. (2000). Progress in Linear Programming-Based

Algorithms for Integer Programming: An Exposition. INFORMS Journal On

Computing, 12(1): 2-23.

Kelbel J, and Hanzálek Z. (2011). Solving production scheduling with earliness/tardiness

penalties by constraint programming. Journal of Intelligent Manufacturing, 22(4),

553–562.

Kim H-J, and Hooker J N. (2002). Solving Fixed-Charge Network Flow Problems with a

Hybrid Optimization and Constraint Programming Approach. Annals of Operations

Research, 115(1-4), 95–124.

Kirkpatrick S, Gelatt C. D, and Vecchi M.P. (1983). Optimization by simulated annealing.

Science, 220(4598), 671–680.

Kornilakis, H. and P. Stamatopoulos (2002). Crew Pairing Optimization with Genetic

Algorithms. Methods and Applications of Artificial Intelligence. I. Vlahavas and C.

Spyropoulos, Springer Berlin / Heidelberg. 2308: 752-752.

Kozan E, and Casey B. (2007). Alternative algorithms for the optimization of a simulation

model of a multimodal container terminal. Journal of the Operational Research

Society, 58(9), 1203–1213.

Kreher, D L and Stinson D R. (1999). Combinatorial algorithms: generation, enumeration,

and search. Boca Raton, Fla., London: CRC Press.

Kroon L, and Fischetti M. (2001). Crew scheduling for Netherlands Railways Destination:

Customer. S. Voß, J. R. Daduna, eds. Computer-Aided Scheduling of Public

Transport. Lecture Notes in Economics and Mathematical Systems, 505, 181–

201, Springer, Berlin.

Kwan R. (2010). Case studies of successful train crew scheduling optimisation. Journal of

Scheduling, 14(5), 423–434.

http://www.springerlink.com/content/0075-8442/

References 126

Kwan, A., R. Kwan, and A. Wren. (1999). Driver Scheduling Using Genetic Algorithms

with Embedded Combinatorial Traits. Computer-Aided Scheduling of Public

Transport, Lecture Notes in Economics and Mathematical Systems, 421, 81-102.

Kwan, R. and A. Wren. (1996). Hybrid Genetic Algorithms for Bus Driver Scheduling.

Advanced Methods in Transportation Analysis, 609-619.

Laplagne I, Kwan RSK, Kwan ASK. (2009). Critical time windowed train driver relief

opportunities. Public Transport, 1(1), 73–85.

Laurent B, and Hao Jin-Kao. (2007). Simultaneous vehicle and driver scheduling: A case

study in a limousine rental company. Computers and Industrial Engineering, 53(3),

542–558.

Lee, C. and Chen, C. (2003). Scheduling of Train Driver for Taiwan Railway

Administration. Journal of the Eastern Asia Society for Transportation Studies, Vol.5.

Levine, D. (1996). Application of a Hybrid Genetic Algorithm to Airline Crew Scheduling.

Computers and Operations Research, 23(6), 547–558.

Lezaun M., G. Perez, et al. (2007). Rostering in a rail passenger carrier. Journal of

Scheduling 10(4-5), 245–254.

Lezaun, M., G. Perez, et al. (2010). Staff rostering for the station personnel of a railway

company. Journal of the Operational Research Society, 61(7): 1104–1111.

Li J. (2005). A Self-Adjusting Algorithm for Driver Scheduling. Journal of Heuristics,

11(4), 351–367.

Lučic P and Teodorovic D. (1999). Simulated annealing for the multi-objective aircrew

rostering problem, Transportation Research Part A, 33(1), 19–45.

Lustig and Puget. (2001). Program does not equal program. Interfaces 31, 29–53.

Marsten, R. and F. Shepardson. (1981). Exact Solution of Crew Scheduling Problems

Using the Set Partitioning Model: Recent Successful Applications. Networks, 11, 165–

177.

McAloon K, and Tretkoff C. (1997). Logic, modeling, and programming. Annals of

Operations Research, 71, 335–372.

Mellouli, T. (2001). A Network Flow Approach to Crew Scheduling Based on an Analogy

to a Vehicle Maintenance Routing Problem. Computer-Aided Scheduling of Public

Transport, Lecture Notes in Economics and Mathematical Systems, 505, 91–120.

Metropolis, Nicholas., Rosenbluth, Arianna W., Rosenbluth, Marshall N., Teller, Augusta

H., Teller, Edward. (1953). Equation of State Calculations by Fast Computing

Machines. The Journal of Chemical Physics, 21(6), 1087.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. 3rd

ed., Springer – Verlag.

Milano M, and Wallace M. (2010). Integrating Operations Research in Constraint

Programming. Annals of Operations Research, 175(1), 37–76.

Morgado E. M, and Martins J. P. (1992). Scheduling and managing crew in the Portuguese

railways. Expert Systems with Applications, 5(3–4), 301–321.

Morgado, E. M. and Martins, J. P. (1998). CREWS_NS - Scheduling train crews in the

Netherlands. AI Magazine, 19(1), 25-38.

http://link.springer.com.ezp01.library.qut.edu.au/search?facet-author=%22Ignacio+Laplagne%22
http://link.springer.com.ezp01.library.qut.edu.au/search?facet-author=%22Raymond+S.+K.+Kwan%22
http://link.springer.com.ezp01.library.qut.edu.au/search?facet-author=%22Ann+S.+K.+Kwan%22
http://link.springer.com.ezp01.library.qut.edu.au/journal/12469

References 127

Natalia J. R, David M. R, (2010). The train driver recovery problem - A set partitioning

based model and solution method. Computers & Operations Research, 37(5), 845-856.

Niemelä, I. (1999). Logic programs with stable model semantics as a constraint

programming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4),

241–273.

Nishi T, Muroi Y, and Inuiguchi M. (2011). Column generation with dual inequalities for

railway crew scheduling problems. Public Transport, 3(1), 25–42.

Panayiotis Alefragis, Peter Sanders, Tuomo Takkula and Dag Wedelin (2000). Parallel

Integer Optimization for Crew Scheduling. Annals of Operations Research, 99(1-4).

Park T and Ryu K R. (2006). Crew pairing optimization by a genetic algorithm with

unexpressed genes. Journal of Intelligent Manufacturing, 17(4), 375–383.

Pinedo, M L. (2005). Planning and Scheduling in Manufacturing Services. Springer.

Rodosek R, Wallace M G, Hajian M T. (1999). A new approach to integrating mixed

integer programming and constraint logic programming, Annals of Operations

Research, 86, 63–87.

Şahin G, and Yüceoğlu B. (2011). Tactical crew planning in railways. Transportation

Research Part E: Logistics and Transportation Review, 47(6), 1221–1243.

Salido, Miguel A., Garrido A., Barták, R. (2008). Introduction: Special issue on constraint

satisfaction techniques for planning and scheduling problems. Engineering

Applications of Artificial Intelligence, 21(5), 679–682.

Sarker, R. A., and Charles S. N. (2008). Optimization modelling: a practical introduction.

CRC Press, Taylor & Francis Group.

Sellmann, M., Zervoudakis, K., Fahle, T. (2002). Crew Assignment via Constraint

Programming: Integrating Column Generation and Heuristic Tree Search. Annals of

Operations Research, 115(1), 207–225.

Shen, Y. and R. Kwan. (2001). Tabu Search for Driver Scheduling. Computer-Aided

Scheduling of Public Transport, Lecture Notes in Economics and Mathematical

Systems, 505, 121–136.

Silva, A. D. (2001). Combining Constraint Programming and Linear Programming on an

Example of Bus Driver Scheduling. Annals of Operations Research, 108, 277–291

Smith J. C., and Taskın Z. C. (2007). A Tutorial Guide to Mixed-Integer Programming

Models and Solution Techniques. Department of Industrial and Systems Engineering.

University of Florida.

Smith, B. and A. Wren. (1988). A Bus Crew Scheduling System Using a Set Covering

Formulation. Transportation Research, Part A: General, 22A(2), 97–108.

Sodhi, M. S. and S. Norris (2004). A Flexible, Fast, and Optimal Modeling Approach

Applied to Crew Rostering at London Underground. Annals of Operations Research

127(1), 259-281.

Souai, N. and J. Teghem (2009). Genetic algorithm based approach for the integrated

airline crew-pairing and rostering problem. European Journal of Operational

Research, 199(3): 674-683.

Stubbs, D.F and Webre, N.W. (1993). Data Structures with Abstract Data types and Ada.

PWS Publishing Company.

http://www.springerlink.com.ezp01.library.qut.edu.au/content/?Author=Panayiotis+Alefragis
http://www.springerlink.com.ezp01.library.qut.edu.au/content/?Author=Peter+Sanders
http://www.springerlink.com.ezp01.library.qut.edu.au/content/?Author=Tuomo+Takkula
http://www.springerlink.com.ezp01.library.qut.edu.au/content/?Author=Dag+Wedelin
http://www.springerlink.com.ezp01.library.qut.edu.au/content/u1n84x471645628h/?p=7eda124839ed48d1881e7811592765bf&pi=28
http://www.springerlink.com.ezp01.library.qut.edu.au/content/u1n84x471645628h/?p=7eda124839ed48d1881e7811592765bf&pi=28
http://www.springerlink.com.ezp01.library.qut.edu.au/content/101740/?p=7eda124839ed48d1881e7811592765bf&pi=0
http://www.springerlink.com.ezp01.library.qut.edu.au/content/rwv7dt7jt4tp/?p=7eda124839ed48d1881e7811592765bf&pi=0
http://link.springer.com.ezp01.library.qut.edu.au/search?facet-author=%22Taejin+Park%22
http://link.springer.com.ezp01.library.qut.edu.au/search?facet-author=%22Kwang+Ryel+Ryu%22
http://link.springer.com.ezp01.library.qut.edu.au/journal/10845
http://link.springer.com.ezp01.library.qut.edu.au/journal/10845/17/4/page/1

References 128

Taylor, B. W. (2009). Integer Programming: The Branch and Bound

Method. Introduction to Management Science, 10th ed., Prentice Hall.

Tomii, N., Tashiro, Y., Tanabe, N., Hirai, C., and Muraki, K., (2005). Train Operation

Rescheduling Algorithm Based On Passenger Satisfaction. Quarterly Report of

Railway Technical Research Institute, 46(3), 167-172.

Trick M A. (2003). A Dynamic Programming Approach for Consistency and Propagation

for Knapsack Constraints. Annals of Operations Research, 118(1-4), 73–84.

Tykulsker, R., K. O’Neil, A. Ceder, and Y. Sheffi. (1985). A Commuter Railway Crew

Assignment/Work Rules Model. In J. Rousseau (ed.), Computer Scheduling of Public

Transport, 2, 233–246. Elsevier Science. University Press, New Jersey.

Vaidyanathan B, Jha K.C, Ahuja R.K. (2007). Multi-Commodity Network Flow Approach

to the Railroad Crew Scheduling Problem. IBM Journal of Research and Development

51, 325–344.

Van Hentenryck, P. (1999). The OPL Optimisation Programming Language. The MIT

Press.

Wren, A. and D. Wren. (1995). A Genetic Algorithm for Public Transport Driver

Scheduling. Computers and Operations Research, 22(1), 101–110.

Wren, A., S. Fores, et al. (2003). A Flexible System for Scheduling Drivers. Journal of

Scheduling, 6(5): 437-455.

Xhafa, F. And Abraham, A. (2008). Metaheuristics for Scheduling in Industrial and

Manufacturing Applications. Springer-Verlag.

Yan S, Tu Y. P. (2002). A network model for airline cabin crew scheduling. European

Journal of Operational Research, 140(3), 531–540

Yan, S. and J.-C. Chang (2002). Airline cockpit crew scheduling. European Journal of

Operational Research, 136(3): 501-511.

Zäpfel, G. and M. Bögl (2008). Multi-period vehicle routing and crew scheduling with

outsourcing options. International Journal of Production Economics, 113(2): 980-996.

Zäpfel, Günther (2010). Metaheuristic Search Concepts: A Tutorial with Applications to

Production and Logistics. New York: Springer.

Zeghal, F. M. and M. Minoux (2006). Modeling and solving a Crew Assignment Problem

in air transportation. European Journal of Operational Research, 175(1): 187-209.

Zhou Feng and Xu Ruihua. (2010). An optimal crew scheduling model for urban rail

transit. Computer Science and Information Technology (ICCSIT), 3rd IEEE

International Conference on, 6, 113–116.

http://libcat.library.qut.edu.au/search~S8?/aZ%7b232%7dapfel%2C+G%7b232%7dunther/azapfel+gunther/-3,-1,0,B/browse

Appendices 129

Appendices

APPENDIX A–1

Computational Results of Mathematical Programming (MP)

Figure A. 1 The number of variables and constraints of a small-sized instance solved by the

mathematical model.

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance.

Figure A. 2 Matrix (row view) of a solution by mathematical model.

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance.

Appendices 130

Figure A. 3 Output/input of the mathematical model.

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance.

Figure A. 4 Last n solutions found by the optimizer.

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance.

Appendices 131

Figure A. 5 The objective function model and the objective value.

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance.

Figure A. 6 The objective and iteration.

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance.

Appendices 132

Figure A. 7 The graph history of solution values.

Screen shot of the Xpress Optimizer (FICO) solution on a small-sized instance.

Figure A. 8 The MIP gap and objective.

Screen shot of the Xpress Optimizer (FICO) solution on small-sized instances.

Appendices 133

Figure A. 9 The MIP gap and objective.

Screen shot of the Xpress Optimizer (FICO) solution on small-sized instances.

Figure A. 10 The MIP gap and objective.

Screen shot of the Xpress Optimizer (FICO) solution on small-sized instances.

Appendices 134

APPENDIX B–1

CPLEX Constraint Programming (CP) Model

/***

 * OPL 6.3 Model

 * Author: n7269102

 * Creation Date: 06/09/2011 at 12:05:40 PM

 ***/

 using CP;

 /*********

 /* Data */

 /********/

 tuple Trip {

 key string tripID; // trip (train ID)

 string depSta; // departure station

 int depTime; // departure time

 string arrSta; // arrival station

 int arrTime; // arrival time

 int traTime; // travelingTime

 };

 {Trip} Trips = ...; // list of trips

 int nbCrews = ...;

 int nbmaxShifts = ...;

 int minInterShiftRest = ...;

 int maxIntraShiftWork = ...;

 int maxShiftDuration = ...;

 range Crews = 1 .. nbCrews;

 range Shifts = 1 .. nbmaxShifts;

 tuple Alternative {

 Trip trip;

 int crew;

 int shift;

 };

 {Alternative} Alternatives = {<t,c,s> | t in Trips, c in Crews, s

in Shifts};

 /**********************/

 /* Decision Variables */

 /**********************/

 dvar interval trip [t in Trips] optional in t.depTime .. t.arrTime

size t.traTime;

 dvar interval alt [a in Alternatives] optional;

 dvar interval shift [c in Crews][s in Shifts] optional in

0..maxShiftDuration;

Appendices 135

 /**********************/

 /* Objective Function */

 /**********************/

 // Minimize total number of duties (shifts)

 minimize sum (c in Crews, s in Shifts) presenceOf (shift[c][s]);

 subject to {

 forall (t in Trips)

 alternative (trip[t], all(a in Alternatives: a.trip==t)

alt[a]);

 /***************/

 /* Constraints */

 /***************/

 // station (***) sequence

 forall (t in Trips){

 forall (s in Trips: s.depSta==t.arrSta) {

 endBeforeStart (trip[t], trip[s]);

 presenceOf (trip[s]) => presenceOf (trip[t]);}}

 // time (***) sequence

 forall (t in Trips){

 forall (s in Trips: s.depTime >= t.arrTime) {

 endBeforeStart (trip[t], trip[s]);

 presenceOf (trip[s]) => presenceOf (trip[t]);}}

 // shift sequence for each crew

 forall (c in Crews, s in 1..nbmaxShifts-1)

 endBeforeStart (shift[c][s], shift[c][s+1],

minInterShiftRest);

 // shift optionality chain for each crew

 forall (c in Crews, s in 1..nbmaxShifts-1)

 presenceOf (shift[c][s+1]) => presenceOf (shift[c][s]);

 forall (c in Crews, s in Shifts){

 // shift spanning interval

 span (shift[c][s], all(a in Alternatives: a.crew==c &&

a.shift==s) alt[a]);

 // max intra shift work constraint

 sum (a in Alternatives: a.crew==c && a.shift==s) lengthOf

(alt[a]) <= maxIntraShiftWork;

 // crew unary capacity during shift

 noOverlap (all(a in Alternatives: a.crew==c && a.shift==s)

alt[a]);}

 }

Appendices 136

APPENDIX B–2

CPLEX Data Example

/***

 * OPL 6.3 Data

 * Author: n7269102

 * Creation Date: 06/09/2011 at 12:05:40 PM

 ***/

 nbCrews = 35;

 nbmaxShifts = 3;

 minInterShiftRest = 30;

 maxIntraShiftWork = 240;

 maxShiftDuration = 720;

 Trips = {

 < F06, FYG, 300, BNH, 395, 95 >,

 < F14, FYG, 330, BNH, 423, 93 >,

 < F18, FYG, 360, BNH, 454, 94 >,

 < F26, FYG, 390, BNH, 485, 95 >,

 < F28, FYG, 426, BNH, 515, 89 >,

 < F30, FYG, 446, BNH, 539, 93 >,

 < F32, FYG, 475, BNH, 570, 95 >,

 < F34, FYG, 510, BNH, 605, 95 >,

 < F29, BNH, 520, FYG, 620, 100 >,

 < F35, BNH, 650, FYG, 750, 100 >,

 < F37, BNH, 760, FYG, 860, 100 >,

 < F38, BNH, 865, FYG, 950, 85 >,

 < B06, FYG, 300, BHI, 324, 24 >,

 < B14, FYG, 330, BHI, 354, 24 >,

 < B18, FYG, 360, BHI, 384, 24 >,

 < B26, FYG, 390, BHI, 414, 24 >,

 < B28, FYG, 426, BHI, 446, 20 >,

 < B30, FYG, 446, BHI, 470, 24 >,

 < B32, FYG, 475, BHI, 499, 24 >,

 < B06a, BHI, 325, BNH, 395, 70 >,

 < B14a, BHI, 355, BNH, 423, 68 >,

 < B18a, BHI, 385, BNH, 454, 69 >,

 < B26a, BHI, 415, BNH, 485, 70 >,

 < B28a, BHI, 447, BNH, 515, 68 >,

 < B30a, BHI, 471, BNH, 539, 68 >,

 < B32a, BHI, 500, BNH, 570, 70 >,

 < E07, BNH, 268, BHI, 341, 73 >,

 < E11, BNH, 299, BHI, 368, 69 >,

 < E13, BNH, 327, BHI, 397, 70 >,

 < E19, BNH, 358, BHI, 428, 70 >,

 < E25, BNH, 389, BHI, 459, 70 >,

 < E29, BNH, 402, BHI, 472, 70 >,

 < E31, BNH, 419, BHI, 490, 71 >,

 < E35, BNH, 449, BHI, 514, 65 >,

 < E07a, BHI, 342, FYG, 368, 26 >,

 < E11a, BHI, 369, FYG, 398, 30 >,

 < E13a, BHI, 398, FYG, 422, 24 >,

 < E19a, BHI, 429, FYG, 454, 25 >,

 < E25a, BHI, 460, FYG, 485, 25 >,

 < E29a, BHI, 473, FYG, 498, 25 >,

 < E31a, BHI, 491, FYG, 518, 27 >,

 < E35a, BHI, 515, FYG, 539, 24 >,

 < E37a, BHI, 553, FYG, 578, 25 >,

 < E41a, BHI, 609, FYG, 635, 26 >,

 };

Appendices 137

APPENDIX C–1

Simulated Annealing Selected C# Code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.OleDb;
using System.Data;
using System.Data.Odbc;

namespace SchedulingProject
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(" ");

// initialise parameters
 int depTime = 0;
 int arrTime = 0;
 int travTime = 0;
 int dutyCap = 0;
 int MaxDutyCapAllowed = 540;
 int dutyMin = 180;
 int transTime = 5;

// SA variables for temperature and cooling rate

 int iteration = 0;
 int maxIteration = 1000000;
 double currentTemp = 10000.0;
 double alpha = 0.975;

 Console.WriteLine("\nInitial State:");
 Display(state);
 Console.WriteLine("Initial Energy: " + energy.ToString("F2"));
 Console.WriteLine("\nSimulated Annealing ");
 Console.WriteLine("Init Temp = " + currentTemp.ToString("F1")+
"\n");

// Provider=Microsoft.Jet.OLEDB.4.0;Data Source="C:\Documents and
Settings\n7269102\My Documents\TimeTable\SchedulingDB.mdb"
// define the connection string

 string strAccessConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:\\Documents and Settings\\n7269102\\My Documents\\
TimeTable\\SchedulingDB.mdb";

 OleDbConnection myAccessConn = new OleDbConnection(strAccessConn);
 myAccessConn.Open();
// open the connection
 Console.WriteLine("database connected");

// accessing Table
 string strAccessSelectTable2a = "SELECT * FROM Iots1 ";

Appendices 138

 OleDbCommand myAccessCommandTable2a = new
OleDbCommand(strAccessSelectTable2a, myAccessConn);

// execute the command, get the result in datareader

 OleDbDataReader myDataReaderTable2a =

myAccessCommandTable2a.ExecuteReader();
 string[,] table2adata = new string[50, 6];
 int row = 0;
 int coloumn = 0;
 while (myDataReaderTable2a.Read())
 {

 table2adata[row, coloumn] = myDataReaderTable2a.GetString(0);
table2adata[row, coloumn + 1] = myDataReaderTable2a.GetString(1);
table2adata[row, coloumn + 2] = myDataReaderTable2a[2].ToString();
table2adata[row, coloumn + 3] = myDataReaderTable2a.GetString(3);
 table2adata[row, coloumn + 4] =
myDataReaderTable2a[4].ToString();
 table2adata[row, coloumn + 5] =
myDataReaderTable2a[5].ToString();

 row = row + 1;
 coloumn = 0;
 }
 string strAccessSelectTable2b = "SELECT * FROM Iots2 ";
 OleDbCommand myAccessCommandTable2b = new

OleDbCommand(strAccessSelectTable2b, myAccessConn);
 OleDbDataReader myDataReaderTable2b =

// execute this command, get the result in datareader

myAccessCommandTable2b.ExecuteReader();
 string[,] table2bdata = new string[50, 6];
 int row2b = 0;
 int coloumn2b = 0;
 while (myDataReaderTable2b.Read())
 {
 table2bdata[row2b, coloumn2b] =
myDataReaderTable2b.GetString(0);
 table2bdata[row2b, coloumn2b + 1] =
myDataReaderTable2b.GetString(1);
 table2bdata[row2b, coloumn2b + 2] =
myDataReaderTable2b[2].ToString();
 table2bdata[row2b, coloumn2b + 3] =
myDataReaderTable2b.GetString(3);
 table2bdata[row2b, coloumn2b + 4] =
myDataReaderTable2b[4].ToString();
 table2bdata[row2b, coloumn2b + 5] =
myDataReaderTable2b[5].ToString();
 row2b = row2b + 1;
 coloumn2b = 0;
 }

 string strAccessSelectTable3= "SELECT * FROM Ithd ";
 OleDbCommand myAccessCommandTable3= new
OleDbCommand(strAccessSelectTable3 ,myAccessConn);
 OleDbDataReader myDataReaderTable3 =
myAccessCommandTable3.ExecuteReader();
 string[,] table3data = new string[50, 6];
 int row3 = 0;
 int coloumn3 = 0;

Appendices 139

 while (myDataReaderTable3.Read())
 {
 table3data[row3, coloumn3] = myDataReaderTable3.GetString(0);
 table3data[row3, coloumn3 + 1] =
myDataReaderTable3.GetString(1);
 table3data[row3, coloumn3 + 2] =
myDataReaderTable3[2].ToString();
 table3data[row3, coloumn3 + 3] =
myDataReaderTable3.GetString(3);
 table3data[row3, coloumn3 + 4] =
myDataReaderTable3[4].ToString();
 table3data[row3, coloumn3 + 5] =
myDataReaderTable3[5].ToString();

 row3 = row3 + 1;
 coloumn3 = 0;
 }

 string strAccessSelect = "SELECT * FROM Iohd order by dT asc";
 DataSet myDataSet = new DataSet();

 OleDbCommand myAccessCommand = new OleDbCommand(strAccessSelect,
myAccessConn);
 OleDbDataReader myDataReader = myAccessCommand.ExecuteReader();
 int rowtable2a = 0;
 int rowtable2b = 0;
 int rowtable3 = 0;

 while (myDataReader.Read())
 {
 while (dutyCapacity <= dutyMax)
 {
 string baseidValue = myDataReader["ID"].ToString();

 string baseDepartStationValue =
myDataReader["dS"].ToString();
 string baseArriveStationValue =
myDataReader["aS"].ToString();
 int baseDepartTimeValue =
int.Parse(myDataReader["dT"].ToString());

 int baseArriveTimeValue =
int.Parse(myDataReader["aT"].ToString());

 travTime = baseArriveTimeValue - baseDepartTimeValue;
 duty = travTime;
 dutyCap = duty + dutyCap;

 Console.Write("Base Value of Travelling Time" +
travellingTime); Console.Write("Base Value of Duty Capacity" + dutyCap);
 Console.WriteLine();

 while (!table2adata[rowtable2a,
1].Equals(baseArriveStationValue) && !((int.Parse(table2adata[rowtable2a, 2])
- baseArriveTimeValue) <= transitionTime))
 {
 rowtable2a = rowtable2a + 1;
 }

Appendices 140

 while (!table2bdata[rowtable2b,
1].Equals(table2adata[rowtable2a, 1]))
 {
 rowtable2b = rowtable2b + 1;
 }

 while (!table3data[rowtable3,
1].Equals(table2bdata[rowtable2b, 1]))
 {
 rowtable3 = rowtable3 + 1;
 }

 rowtable2a = rowtable2a + 1;
 rowtable2b = rowtable2b + 1;
 rowtable3 = rowtable3 + 1;
public Cap()
 {
 trips = new List<Trip>();
 }
 void AddTrip(Trip i)
 {
 if ((TotalTravTime + i.TravTime) < MaxDutyCapAllowed)
 trips.Add(i);
 }
 public void Calculate(List<Trip> trips)
 {
 foreach (Trip i in Sort(trips))
 {
 AddTrip(i);
 }
 }
 List<Trip> Sort(List<Trip> inputTrips)
 {
 List<Trip> choosenTrips = new List<Trip>();
 for (int i = 0; i < inputTrips.Count; i++)
 {
 int j = -1;
 if (i == 0)
 {
 choosenTrips.Add(inputTrips[i]);
 }
 if (i > 0)
 {
 if (!Recursive(inputTrips, choosenTrips, i,
choosenTrips.Count - 1, false, ref j))
 {
 choosenTrips.Add(inputTrips[i]);
 }
 }
 }
 return choosenTrips;
 }

 bool Recursive(List<Trip> capTrips, List<Trip> choosenTrips, int
i, int lastBound, bool dec, ref int indxToAdd)
 {
 if (!(lastBound < 0))
 {
 if (capTrips[i].ResultWV <
choosenTrips[lastBound].ResultWV)
 {
 indxToAdd = lastBound;

Appendices 141

 }
 return Recursive(capTrips, choosenTrips, i, lastBound - 1,
true, ref indxToAdd);
 }
 if (indxToAdd > -1)
 {
 choosenTrips.Insert(indxToAdd, capTrips[i]);
 return true;
 }
 return false;
 }
 #region IEnumerable<Trip> Members
 IEnumerator<Trip> IEnumerable<Trip>.GetEnumerator()
 {
 foreach (Trip i in trips)
 yield return i;
 }
 #endregion

 #region IEnumerable Members
 System.Collections.IEnumerator
System.Collections.IEnumerable.GetEnumerator()
 {
 return trips.GetEnumerator();
 }

 #endregion

 public int TotalTravTime
 {
 get
 {
 var sum = 0;
 foreach (Trip i in this)
 {
 sum += i.TravTime;
 }
 return sum;
 }
 }

 public class Trip
 {
 public string TripID { get; set; } public int TravTime { get;
set; } public int Value { get; set; } public int Result { get { return
TravTime-Value; } }

 public override string ToString()
 {
 return "TripID : " + TripID + " TravelingTime : " +
TravTime + " TransTime : " + Value;
 }
 }
 }

 class Program
 {

 static void Main(string[] args)
 {

 List<Cap.Trip> capTrips = new List<Cap.Trip>();

Appendices 142

 Cap b = new Cap();
 b.Calculate(capTrips);
 b.All(x => { Console.WriteLine(x); return true; });
 Console.WriteLine(b.Sum(x ===> x.TravTime));
 Console.ReadKey();
 }

 }

 random = new Random(0);
 int numCrews = 35;
 int numTrips = 500;
 double[][]Datasets = myDatasets(numCrews, numTrips);
 int[] state = RandomState(Datasets);
 double energy = Energy(state, Datasets);
 int[] bestState = state;
 double bestEnergy = energy;
 double adjacentEnergy;
 int[] adjacentState;

 while (iteration < maxIteration && currentTemp > 0.0001)
 {
 adjacentState = AdjacentState(state, Datasets);
 adjacentEnergy = Energy(adjacentState, Datasets);
 if (adjacentEnergy < bestEnergy)
 {
 bestState = adjacentState;
 bestEnergy = adjacentEnergy;
 Console.WriteLine("New best solution found:");
 Display(bestState);
 Console.WriteLine("Energy = " +
bestEnergy.ToString("F2") + "\n");
 }

 double p = random.NextDouble();
 if (AcceptanceProb(energy, adjacentEnergy, currentTemp)>p)
 {
 state = adjacentState;
 energy = adjacentEnergy;
 }
 currentTemp = currentTemp * alpha;
 ++iteration;
 }

 while (iteration < maxIteration && currentTemp > 0.0001)
 {

 Console.Write("Temperature reached ");
 Console.WriteLine("at iteration " + iteration);
 Console.WriteLine("Simulated Annealing complete");
 Console.WriteLine("\n------------------------- ");
 Console.WriteLine("\nBest found solution: ");
 Display(bestState);
 Console.WriteLine("Best energy = " + bestEnergy.ToString("F2")
+ "\n");
 Interpret(bestState, Datasets);
 Console.WriteLine("\nEnd Simulated Annealing \n");
 Console.WriteLine("\n------------------------- ");
 Console.ReadLine();

Appendices 143

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();

 Console.ReadLine();
 Console.ReadLine();
 }
 }

 static double[][] myDatasets(int numCrews, int numTrips)
 {
 double[][] result = new double[numTrips][];
 for (int c = 0; c < result.Length; ++c) result[c] = new
double[numTrips];

 }

 static int[] RandomState(double[][]Datasets)
 {
 int numCrews = Datasets.Length;
 int numTrips = Datasets[0].Length;
 int[] state = new int[numTrips];
 for (int t = 0; t < numTrips; ++t)
 {
 int c = random.Next(0, numCrews);
 while (Datasets[c][t] == 0.0)
 {
 ++c;
 if (c > numCrews - 1) c = 0;
 }
 state[t] = c;
 }
 return state;
 }
 static int[] AdjacentState(int[] currentState, double[][]Datasets)
 {

 int numCrews = Datasets.Length;
 int numTrips = Datasets[0].Length;
 int[] state = new int[numTrips];
 int trip = random.Next(0, numTrips);
 int crew = random.Next(0, numCrews);

 while (Datasets[crew][trip] == 0.0)
 {
 ++crew; if (crew > numCrews - 1) crew = 0;
 }
 currentState.CopyTo(state, 0);
 state[trip] = crew;
 return state;
 }

 static double Energy(int[] state, double[][] Datasets)
 {
 double result = 0.0;
 for (int t = 0; t < state.Length; ++t)
 {
 int crew = state[t];
 double time = Datasets[crew][t];

Appendices 144

 result += time;
 }

 int numCrews = Datasets.Length;
 int[] numJobs = new int[numCrews];
 for (int t = 0; t < state.Length; ++t)
 {
 int crew = state[t];
 ++numJobs[crew];
 if (numJobs[crew] > 1) result += 7.30;
 } return result;
 }

 static double AcceptanceProb(double energy, double adjacentEnergy,
 double currentTemp)
 {
 if (adjacentEnergy < energy)
 return 1.0;
 else
 return Math.Exp((energy - adjacentEnergy) / currentTemp);
 }

 static void Display(double[][] matrix)
 {
 for (int i = 0; i < mat.Length; ++i)
 {
 for (int j = 0; j < mat [i].Length; ++j)
 Console.Write(mat [i][j].ToString("F2") + " ");
 Console.WriteLine("");
 Console.WriteLine(" ----------------------------------- ");
 Console.WriteLine(" ----------------------------------- ");

 }
 }
 static void Display(int[] vector)
 {
 for (int i = 0; i < vector.Length; ++i)
 Console.Write(vector[i] + " ");
 Console.WriteLine("");
 }
 static void Interpret(int[] state, double[][] Datasets)
 {
 for (int t = 0; t < state.Length; ++t)
 {
 int c = state[t];
 Console.Write("Trip [" + t + "] assigned to crew ");
 Console.WriteLine(c + ", " + Datasets[c][t].ToString("F2"));
 Console.WriteLine(" ----------------------------------- ");
 Console.WriteLine(" ----------------------------------- ");

 }
 }
 }
}

Appendices 145

