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ABSTRACT 
 

Extensive excavation of mangrove soils for aquaqulture ponds without correct knowledge 

and technique leads to the disturbance of acid sulfate soils (ASS) due to exposure of iron 

sulfide to air. This condition has been recorded in many places, particularly in southeast Asia, 

where the disturbance of ASS generates numerous environmental problems, such as: poor 

soil and water quality, reduction of aquaculture production, death of vegetation and aquatic 

life, and more. 

ASS is a stress factor that is responsible for the failure of some mangrove restoration projects. 

However, there is evidence that natural revegetation of mangroves has occurred in some 

abandoned ponds. Available published papers on the geochemical factors that affect the 

success or failure of rehabilitation in ASS areas are very few, and this makes it difficult to 

achieve successful rehabilitation. Geochemical studies of mangrove rehabilitation in ASS 

environments are essential, since different areas may have different geochemical conditions. 

Additionally, the interactions among geochemical factors in ASS environments are complex 

and can affect the response of mangrove seedlings.  

The establishment of mangrove seedlings in ASS environments would deal with several 

potential problems, particularly acid conditions and high concentration of metals. This 

research focuses on the concentration of two major elements released in ASS environments 

aluminium (Al) and iron (Fe), and two mobile metals under ASS conditions nickel (Ni) and 

copper (Cu). 

The main objective of this study is to evaluate various geochemical factors involved in ASS 

environments, which in turn influence the response of mangrove seedlings to ASS. This study 

also seeks to determine the accumulation and translocation of metals within mangrove 

seedling tissues in relation to the concentration of metals in the soils of various environments, 

and their relationship to the mangrove seedlings‘ establishment and growth.  

To achieve these objectives, a laboratory study was conducted at the Aquaculture Laboratory 

at QUT. For comparison, a field study was conducted in abandoned aquaculture ponds 

situated in the Mare District, adjacent to the Gulf of Bone, South Sulawesi, Indonesia. The 

study species in the laboratorory trials was Rhizophora stylosa, and the species examined in 

the field study included mainly R. stylosa and R. mucronata. 
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The study used three replications in subsurface soils near roots, and in the surface layer for 

some variables. The variables examined include pH, pHfox, redox potential, Titratable Actual 

Acidity (TAA), Titratable Potential Acidity (TPA), Titratable Sulfidic Acidity (TSA), water-

soluble sulfate, HCl extractable sulfur (SHCl) or KCl extractable sulfur (SKCl), Peroxide Sulfur 

(SP), Peroxide oxidisable sulfur (SPOS), pyrite, organic content, grain size, total metal and 

metal fractionation. The density, establishment and the growth of Rhizophoraceae were also 

determined.  

Both the experimental and field study demonstrated that the general geochemical condition 

required by mangrove seedlings are: higher pH and pHfox, and a reducing environment. 

Compared to the existing acidity (TAA) and other associated properties that count for the 

existing acidity level, such as water-soluble sulfate, extractable sulfur, exchangeable Al and 

Fe, the amount of potential acid (TPA and TSA) and pyrite on surface soils strongly 

correlated with the acidity, density, establishment and growth of the seedlings in the field 

study area. Higher amounts of potential acidity, including pyrite in surface soils, provided 

higher opportunities to oxidise in oxidative environments, which then release water-soluble 

sulfate, extractable sulfur, and exchangeable Al into subsurface soils, decrease pH and pHfox, 

and affect the density, establishment and growth of mangrove seedlings in the field study 

area.  

The experimental study showed that the number of seedlings survived in non-ASS 

environment was higher compared to that in ASS environments. Lower sulfate and total 

extractable sulfur provided a good environment for mangrove seedlings to live under the non-

ASS experimental environments. However, measured sulfur species as a single factor did not 

directly affect the density, establishment and growth of the seedlings in the field area. Sulfide 

correlates negatively to the establishment and growth of the seedlings. The type of 

environments (non-ASS and ASS) did not significantly affect the values of either the 

seedlings‘ total fresh length or their root length in the experiment at work. Mangrove 

seedlings can still grow and survive in high acidity but with lower values of density, 

establishment, and relative growth rate.  

The concentration of metals in the environment influenced the concentration of metals in root 

tissues of Rhizophora stylosa seedlings. However, increasing concentration of metals (Fe, Al, 

Ni and Cu due to ASS disturbance in both experiment and field studies as well as addition of 

Ni and Cu in the experimental study did not increase BCF values.  The selective mechanisms 
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are clearly shown in this study, where the seedlings tended to accumulate metals to certain 

amount based on their function and limited adsorption of non-essential metals. In regards to 

high levels of metals, mangrove seedlings regulated, retained metals mainly in their roots and 

employed an exclusion strategy, distributed them to aerial parts with low mobility and 

excreted them through leaf tissues.  

The amount of potential acid (TPA and TSA) and pyrite in the surface soils strongly 

correlated with the acidity, density, establishment and growth of the seedlings. The presence 

of pyrite in surface soils allowed oxidation process to occur, which then enhanced the release 

of water-soluble sulfate, extractable sulfur, and exchangeable Al to subsurface soils, thus 

influencing the density and growth of mangrove seedlings. In contrast, the existing acidity 

(TAA) of both surface and subsurface soils, and associated existing acidity (water-soluble 

sulfate, extractable sulfur, exchangeable Al and Fe) in subsurface soils did not directly 

control the density, establishment and growth of the mangrove seedlings in the field study 

area. Exchangeable Al had a negative correlation with the establishment of the seedlings. 

The free inundation of seawater produced an improvement in the soil quality of the study 

area, including higher pH (field and oxidisable), and low organic content. Free tidal 

inundation also generated low existing acidity, potential acidity and pyrite percentage on 

surface soils and reducing environments, therefore reducing the opportunity for pyrite to 

oxidise. Accordingly, the amounts of water-soluble sulfate, extractable sulfur and 

exchangeable Fe and Al on subsurface soils were low. Low organic material in these sites 

caused a low amount of SP and SPOS. Furthermore, physical and geochemical factors, such as: 

pH, redox potential, grain size, sulfur species affected metal concentrations in both soils and 

roots. All these processes highlight the importance of tidal inundation in improving soil 

quality and providing a good environment, which results in higher density, establishment and 

relative growth of mangrove seedlings in mangrove restoration projects. Good water 

circulation also allows propagule supply, therefore enabling mangroves to establish naturally.  

This study provides a better understanding of the response of mangrove seedlings under 

conditions of various ASS, high metal concentrations, and non-ASS environments, as well as 

a recommended best strategy for achieving successful restoration in similar conditions.  
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GLOSSARY 
 

Acid Sulfate Soils  Soils or sediments that contain accumulated iron  

sulfides, mainly in the form of pyrite (FeS2), in the upper 

layers of soils  

Actual Acid Sulfate Soils s that contain high sulfuric acid generated from 

oxidation of pyritic layer through drainage or 

disturbance  

Adsorb Taking up and holding a gas, liquid, or dissolved 

element in a thin layer of molecules on the surface of a 

solid substance 

Apoplastic pathway The route followed by water moving through plant cell 

walls and intercellular spaces (the apoplast)    

Australian Height Datum Mean sea level that is based on official tide gauges 

around the coastline 

Bioaccumulation A process by which elements are taken up by a plant 

from exposure to a contaminated environment (soil, 

sediment, water)  

Bioavailable A form of an element ready to be taken up by a plant 

Bioconcentration Factor The bioaccumulation of an element/substance by a plant 

from all possible routes, measured by the ratio of steady 

state concentration of a toxic substance in a plant 

relative to its environment   

Cortex The cells located between the epidermis and the  

vascular cylinder of a root tissue 

Endodermis A thin layer of parenchyma of root, located outside the  

vascular cylinder. It regulates the flow of water 

Epidermis The outermost layer covering the root of a plant 

Iron-plaque Deposits of iron (ferric) compounds which coat the 

surface of a root as a result of ferrous oxidation activity 

in the plant root and associated microorganisms 

Jarosite Yellow or brown hydrous iron sulfate mineral 

(KFe3(SO4)2(OH)6) 

Leachate  Soluble constituent that is washed out from a mixture of  

 soil solids 

Lethal Concentration50 (LC50) A concentration of a compound that causes death in 50% 

or more of exposed seedlings 
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Parenchyma Thin-walled cells of a root located between the 

epidermis and pericycle in a root constituting the cortex, 

and tissue specialised for food storage  

Pneumatophora    Breathing roots that grow out vertically of the soil and  

maintain air routes during high tide  

Porewater    The water that exists within soil grains 

Potential Acid Sulfate Soils Soils that contain pyrite that have not been oxidised or 

exposed to air 

Propagule Partially germinated seeds that grow out from the seed 

coat and the fruit prior to detaching from the plant  

Pyrite Pale-bronze or brass-yellow, isometric mineral: FeS2; 

the major form of the sulfide minerals that spread 

widely 

Rehabilitation    A program to recover ecosystem functions in a  

degraded ecosystem or habitat 

Relative Growth Rate Rate of plant growth that is measured based on the 

increase in plant height in a certain period 

Remediation A clean-up program or method used to remove 

hazardous materials from an area 

Restoration A program to return a former mangrove forest area to its 

original community structure, including the species and 

natural functions 

Rhizosphere A narrow zone surrounding the plant root where the 

biology and chemistry of the area is influenced by the 

exudation of compounds from root and microbial 

activity nearby  

Salt gland Organs that consist of several cells designed to excrete 

salt. They are located near the epidermis and covered by 

cuticle  

Seedling    A very young plant grown from a propagule 

Stele     The central part of the root consisting of the xylem and  

phloem together with supporting tissues 

 

Translocation Factor A measurement of the ratio of shoot to root 

concentration to assess the mobility of an 

element/substance  
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Turgor     The rigidity or fullness of a cell due to high water  

content as a result of differing solute concentrations 

between a semipermeable membrane 
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CHAPTER 1: INTRODUCTION 
 

1. Background 

The mangrove ecosystem has numerous important functions, such as providing physical 

barriers against waves (Tomasick et al., 1997, Alongi, 2002), supplying energy and organic 

matter to adjacent systems (Tomasick et al., 1997, Kathiresan and Bingham, 2001, Alongi, 

2002), and providing habitats for many species of aquatic organisms (Tomasick et al., 1997, 

Alongi, 2002), as well as having economic value, such as fuelwood, construction, traditional 

medicine (Walters et al., 2008, Alongi, 2002). However, over-exploitation of this ecosystem 

for economic reasons have a severe negative impact on the environment. 

In many countries, including Indonesia, Thailand, Vietnam, the Philippines, and Ecuador, the 

replacement of mangroves by aquaculture ponds is a major reason for mangrove loss 

(Stevenson, 1997, Saenger, 2002). The massive excavation of mangrove soils leads to the 

disturbance and air exposure of acid sulfate soils (ASS), which are soils or sediments that 

contain accumulated pyrite (FeS2) (Fitzpatrick et al., 1998, Fitzpatrick, 2003, Fanning et al., 

2010, Johnston et al., 2010a). Pyritic layer commonly occurs and stable particularly in low 

coastal areas, including in mangrove ecosystem, where iron, sulfate, and organic material are 

abundant (Fitzpatrick, 2003).  Using these components, iron monosulfide (FeS) is generated 

and transformed into iron sulfide through a series of reactions that involve microorganisms 

(Berner, 1970, Benning et al., 2000, Burton et al., 2006, Kraal et al., 2013). 

Disturbance of ASS generates sulfuric acid  (Powell and Ahern, 2000, Fitzpatrick, 2003, 

Fanning et al., 2010), releases a huge amount of iron and aluminium, and elevates other metal 

levels (Fitzpatrick et al., 1998, Cook et al., 2000, Macdonald et al., 2004). This process 

removes dissolved oxygen from the water (Cook et al., 2000). Under low pH (< 4) and anoxic 

condition, ferric iron becomes an effective oxidant agent in oxidizing pyrite and the presence 

of Thiobacillus ferooxidant increases pyrite oxidation rate (Schippers and Jørgensen, 2002, 

Cook et al., 2004). 

In addition, excessive concentration of iron in water resulting from acid sulfate soils can 

enhance blooms of toxic cyanobacteria such as Lyngbya majuscula (Muller, 2006). Acidity 

also damages infrastructure such as roads, concrete and steel pipes, drains, etc. that are 

constructed in ASS areas (Ahern and McElnea, 2000, Hicks et al., 2002). Drainage of peaty 
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acid sulfate soils can also  produce a significant amount of greenhouse gases, such as carbon 

dioxide (CO2) and nitrous oxide (N2O) (Hicks et al., 2002). When acidic waters that contain 

high levels of soluble metals and deoxygenated waters flow into water systems, it may cause 

fish disease and reduction of fish and aquaculture production, as well as the death of 

vegetation and aquatic life (Dent, 1986, McDonald, 2007). 

Disused aquaculture ponds resulting from ASS disturbance are reported in many places, 

particularly in southeast Asia, such as Indonesia, Vietnam and Cambodia (Stevenson, 1997). 

In Indonesia, around 70% of aquaculture ponds were affected by ASS from a total of 450,000 

ha of aquaculture ponds (DJPB, 2011). These numbers illustrate the extent of the 

environmental issues faced by many countries.  

Several physical and chemical methods have been identified and implemented to remediate 

and manage ASS impacts in these coastal environments. These include chemical 

neutralisation, forced oxidation and leaching, and seawater flushing (Sammut et al., 1999). 

However, since ASS remediation is time consuming and costly (Stevenson, 1997), these 

strategies are problematic, especially for developing countries. For instance, up to 90 tonnes 

of lime is required to neutralise one hectare of severe ASS (Tan, 1983).  

The restoration of coastal environments affected by ASS disturbance is a significant 

challenge, made even more important by the negative impact that such disturbance has on the 

natural mangrove ecosystem. When the benefit of restoring degraded aquaculture ponds to 

natural function is greater than the benefit of the remediation to regain their production, 

restoration of mangrove sites should be considered (Sammut et al., 1999, Stevenson, 1997), 

and perhaps become a priority program. 

Direct planting of mangrove seedlings has been carried out in numerous mangrove 

rehabilitation sites in a cost effective strategy. The success of direct planting in this 

rehabilitation method has been claimed in some areas; nonetheless, other such projects have 

had failures (Stevenson, 1997, Lewis et al., 2006). The factors behind the success or failure of 

mangrove rehabilitation using the direct planting method has been scrutinised intensively 

(Lewis and Marshall, 1997, Field, 1998, Lewis, 2005, Lewis et al., 2006). Many experts 

suggest that ASS is one stress factor that results in the failure of some mangrove restoration 
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projects. Therefore, suitable remediation techniques to remove stress factors such as acid and 

toxic leachates need to be addressed before attempting mangrove restoration (Stevenson, 

1997, Wolanski, 2006).  

However, there is also some evidence that natural revegetation of mangrove has occurred in 

some abandoned ponds (e.g. in Haad Sao Kai, Ranong Province, Thailand, and in Tiwoho, 

North Sulawesi, Indonesia). In these ponds, free seawater inundates and circulates round the 

ponds through the broken dikes, and in some case, drainage work has improved the 

hydrology of these sites and restored mangrove growth, which highlights the role of suitable 

hydrology in mangrove restoration (Stevenson, 1997, Djamaluddin, 2006, Lewis et al., 2006). 

Tidal buffer allows acid neutralization in acid sulfate soils area due to the presence of 

bicarbonate (HCO3-) and carbonate (CO3
2-

) in seawater (Indraratna et al., 2002). 

Despite  intensive investigation into the role of hydrology in mangrove restoration (McKee, 

1993, McKee, 1995a, McKee, 1995b, Field, 1998, Lewis, 2005), there has been very little 

research conducted to understand the geochemical factors that affect the success or failure of 

rehabilitation in ASS areas; this has contributed to difficulties in achieving successful 

rehabilitation. This knowledge gap includes the tolerance of mangrove seedlings to acid 

sulfate soil conditions, geochemical conditions, including neutralizing capacity of the soils,  

and the effects of seawater tidal inundation on the geochemistry of soil that affect the survival 

and growth of mangrove seedlings. Hence, a detailed understanding of the tolerance of 

juvenile mangroves to ASS conditions is critical to effective and successful rehabilitation of a 

mangrove ecosystem.  

Mangroves provide a biogeochemical buffer for several pollutants, including heavy metals, as 

mangroves can retain metals (Saenger et al., 1990, Jones et al., 2000, MacFarlane and 

Burchett, 2000, MacFarlane et al., 2003, Silva et al., 2006, Zhang et al., 2007a). The 

responses of mangrove seedlings to metals have been widely investigated. Mangrove 

seedlings show tolerance to high concentrations of exposed metals, but a negative effect on 

growth was observed in the seedlings when they are exposed to certain metals. For instance, 

the growth of Avicennia marina (Forsk.) Vierh. seedlings was affected significantly when 

there was a high concentration of Zn (MacFarlane and Burchett, 2002). Exposure of 

Rhizophora mangle L. to high concentrations of Cd, Pb or Hg did not affect the growth of the 
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seedlings, while a high concentration of Hg did. Some visual changes were also noted in 

cases of high metal exposure (Walsh et al., 1979). 

In acid sulfate soil environments, the main potential problems for mangrove seedlings are 

high acidity and high concentrations of mobile Al and Fe, since they are released in 

significant amounts compared with other heavy metal (Lockhart, 1996, Cook et al., 2000, 

Preda and Cox, 2002). In various ASS-contaminated sites, the concentration of other metals 

such as Ni, Cu, Zn, Cd, Pb, and Cr were high when compared to background levels 

determined from pre-industrial settings using drill holes and shallow cores (Preda and Cox, 

2002). The levels of these metals are usually low in most coastal systems (e.g. Pumicestone 

Passage, Queensland) (Preda and Cox, 2002) and such low concentrations of metals may not 

affect mangrove seedlings. However, under certain conditions such as prolonged drought 

(Clark et al., 1997), ASS can release high concentration of these metals. A pulse of this type 

may be highly detrimental to the health of mangrove seedlings.  

Previous research in disturbed ASS area shows that the concentrations of Al and Fe in parts 

of mature mangroves are high relative to other metals (Preda and Cox, 2002, Silva et al., 

2006). Mature mangroves may be categorised as Al and Fe accumulator plants. However, no 

research has confirmed whether mangrove seedlings, when grown in unpolluted soils and 

replanted in an ASS conditions where there were acidic conditions and high concentration of 

metals, behave the same as existing mature mangroves. This evaluation is important, since 

the adaptation capability of seedlings has not been established yet.  

Broad information about adaptation of other terrestrial plants to ASS environments is 

available and can be used as a basis for research. For instance, Eucalyptus camaldulensis has 

been widely replanted for afforestation in Vietnam, including on ASS in the Mekong River 

delta (Nguyen et al., 2005). The selection of this species was based on its fast growing 

characteristic without considering the condition of sites; this gap led to failure on a large 

scale (Jong et al., 2006). Therefore, a detailed understanding of factors including the 

tolerance of local plants to ASS conditions is critical in order to achieve successful and 

effective rehabilitation.  
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The tolerance of some terrestrial plant species to acid conditions, or to high concentrations of 

Al or Fe, has been examined (Kidd and Proctor, 2000). However, these studies carried out 

research in Al or Fe solutions and only provide evaluation on the visual impact on seedlings, 

and do not consider the geochemical aspects. Geochemistry studies in ASS conditions are 

very important, since the interaction among the factors in such environments is complex and 

can influence the tolerance of mangrove seedlings.  

1. The aims, hypothesis, and scope of the study 

Based on the argument of some experts and the available evidence on mangrove restoration 

in disturbed ASS environments, the following question arises: ―Is remediation of abandoned 

ponds in disturbed ASS environments necessary to promote the development of healthy 

restored mangrove ecosystems?‖.  

The establishment of mangrove seedlings under ASS environments would deal with several 

potential problems, particularly acidic conditions and high concentration of metals. 

Therefore, some other detailed questions that arise are: ―Which geochemical conditions are 

required for mangrove seedlings to establish and grow?‖; and ―what is the tolerance of 

mangrove seedlings to acid conditions and high levels of metals?‖.  

From these research questions, the hypothesis that this study tests is: ―mangrove seedlings 

can survive replantation under ASS conditions, including elevated metal concentrations, but 

with some disruptions to growth responses.‖ 

This hypothesis is primarily based on results from previous research which indicates that 

mangrove seedlings are able to grow in very high concentration of metals, although with 

negative effects on the rate of growth (Walsh et al., 1979, MacFarlane and Burchett, 2002). It 

is hypothesised that similar effects may occur in ASS conditions. Mangrove seedlings may 

respond negatively to even higher metal concentrations in ASS due to the acidic conditions. It 

is also important to evaluate the response of mangrove seedlings to severe acid sulfate soil 

conditions with high concentration of metals. 

To test the hypothesis, a laboratory experiment was carried out. The laboratory study was 

accomplished by propagating Rhizophora stylosa (Vierh) propagules from a ‗clean‘ site for 

seven months and subjecting them to a range of conditions. Rhizophoraceae has a broad 
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distribution around the world (Duke, 2006), and includes one of the mangroves most tolerant 

to unhealthy environments (Vanucci, 2002). Rhizophoraceae is a salt-excluding species (i.e. 

species that exclude salt at the roots) (Lawton et al., 1981, Hogarth, 2007). 

A detailed understanding of the mechanisms by which mangrove seedlings retain metals 

requires the evaluation of various geochemical factors (pH, redox potential, organic content, 

grain sizes). Further examination of various acidity variables as well as metal forms was 

conducted in the field study to determine the factors that influence the tolerance of mangrove 

seedlings in natural ASS conditions. 

To achieve a better understanding of the natural response of mangrove seedlings to various 

geochemical factors, a field study was also carried out in abandoned ponds that are affected 

by ASS in Mare, District of Bone, Province of South Sulawesi, Indonesia.  

The results from the experimental and field study were compared to achieve the following 

objectives: 

Objective #1: to determine the accumulation and translocation of metals within mangrove 

seedlings with respect to the concentration of metals in the soils of various environments. The 

relationship between metal concentrations and establishment and growth of mangrove 

seedlings is also to be determined. 

This research focuses on the concentration of two major elements released in ASS 

environments: Al and Fe (Dent, 1986, Cook et al., 2000, Fitzpatrick et al., 1998). Two metals 

which are mobile under ASS conditions, Ni and Cu (Preda and Cox, 2001, Nordmyr et al., 

2008), are also examined in this research. The different functions of the elements investigated 

(i.e. Fe and Cu are essential elements, and Al and Cu are non-essential elements) enables 

comparison of their accumulation pattern in the mangrove parts.  

Objective # 2: to evaluate various geochemical factors involved in ASS environments, to 

determine the response of mangrove seedlings to ASS. 

Assessment of the mechanisms by which mangrove seedlings retain metals requires the 

evaluation of various physical and geochemical factors (pH, redox potential, organic content 

and grain sizes). Some sulfur species were also evaluated to understand the process involved 
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in acidic environments (Ahern et al., 2004). The effects of tidal inundation on the 

geochemical properties were also examined. 

Together, these determinations answer the main aim of this research, which is to investigate 

the effect of geochemical conditions on the response (survival and growth) of 

Rhizophoraceae seedlings, and to examine the interactions of geochemical factors involved in 

ASS condition.  

The research provides a better understanding of the geochemistry of ASS disturbance and the 

ability of mangrove seedlings to cope with those conditions. Together, these results provide 

suitable recommendations to environmental managers involved in mangrove ecosystem 

restoration affected by ASS disturbance. The uniqueness of this study is that it combined 

biological measurements with various geochemical and ASS approaches, therefore it is 

suitable for ASS environments.  

It is critical to examine the problem through a geochemistry study of mangrove rehabilitation 

in ASS environments, since different areas may have different geochemical/mineralogical 

conditions. In addition, the interactions among geochemical factors in ASS environments are 

complex, and can affect the response of mangrove seedlings. The results from this 

biogeochemical study can assist in determining the geochemical conditions mangrove 

seedlings can tolerate, and whether remediation that promotes the development of healthy 

restored mangrove ecosystems is required.  

 

2. Structure of the thesis 

To cover the objectives of the research, this thesis comprises nine chapters. The contents of 

each chapter is summarised below. 

Chapter 1 briefly introduces the background of the issues, the current research and the gap 

in knowledge that indicates the need for this research. This chapter then outlines the research 

questions and hypothesis, as well as the aim, objectives and scope of the research. 

Chapter 2 presents the fundamental theory related to ASS to provide a basic understanding 

of the study area, and identifies the major potential problems in establishing mangrove 
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growth in such conditions. This chapter also reviews the gaps in knowledge in publications 

on the responses of mangrove seedlings in ASS environments, and the geochemical factors 

that influence the establishment of seedlings in such conditions.  

Chapter 3 describes in detail the nursery design, propagation, experimental design, and the 

type of analysis applied in both the experimental and field study. It also describes the field 

study sites. 

Chapter 4 examines how different environments (ASS and non-ASS) affect the survival of 

R. stylosa seedlings. Assessment of the growth of the seedlings (i.e. total length and root 

length) within different environments was carried out. The chapter also presents an 

evaluation of the interaction of various geochemical key factors (pH, redox potential, sulfide, 

sulfate, total sulfur, organic content and grain size) in the assessed environments, as well as 

the relationship of the geochemical factors that influence the survival of mangrove seedling 

in those experimental environments. 

Chapter 5 discusses the survival response of R. stylosa seedlings to ASS environments. 

Bioconcentration factors and translocation factors of metals within the parts of the mangrove 

seedlings (stem, leaf, and root tissues) are analysed. Furthermore, the relationship between 

metal concentrations in both root tissue and soil under different environments is examined. 

The geochemical factors that influence the distribution and accumulation of metals within 

root tissue and soil are also discussed. 

Chapter 6 examines the general geochemical conditions in which mangrove seedlings are 

established naturally, and/or are replanted in abandoned aquaculture ponds. This chapter also 

evaluates the interactions between the measured physical and geochemical variables of 

subsurface soils near root areas. The impact of tidal inundation on the improvement of soil 

quality is discussed. 

Chapter 7 evaluates the role of acidity on seedling establishment and development by 

examining some acidity properties, including total existing acidity and total potential acidity 

in soils. Acid leachate is identified from the surface soils, thus determining their correlations 

and interactions with pH and sulfur species on subsurface soil layers, and their relationships 

to the establishment and growth of seedlings. This chapter also evaluates the effect of tidal 
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inundation on some acidity properties of surface and subsurface layers to gain a better 

understanding of acidity roles in the establishment and growth rate of mangrove seedlings.  

Chapter 8 provides a general discussion on the geochemical conditions required by 

seedlings to be established and grow, based on the results from the various non-ASS and ASS 

environments studied in the experimental and field research. Through this comparison, a 

better understanding, particularly of the response of mangrove seedlings to acid conditions, as 

well as to high concentrations of metals, can be achieved. The study also contributes to 

knowledge of the role of tidal inundation in the improvement of soil quality that influenced 

the mangrove seedlings‘ establishment and growth. The significance of the study is 

discussed, and strategies are recommended to assist environmental management to achieve 

effective and successful mangrove restoration in similar conditions. 

The other outcomes of this research are an oral presentation and publication in the conference 

proceedings for the Asian Conference on Sustainability, Energy, and Environment in Osaka, 

Japan (3 – 6 May, 2012). The material of the paper is mainly drawn from the study results of 

Chapter 6. The abstract for the conference proceeding is presented in Appendix F, pp. 197. 
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CHAPTER 2: LITERATURE REVIEW 
 

The geochemical factors behind the success or failure of mangrove rehabilitation in ASS 

environments are poorly understood. This chapter reviews the potential problems and the 

gaps in knowledge about the responses of mangrove seedlings in ASS environments, as well 

as the geochemical factors that influence the establishment of mangrove seedlings under such 

conditions. To provide a better understanding on this topic, an overview of the background of 

the study areas is presented.  

 

1. The pyrite formation processes 

Pyrite (FeS2) is formed through transformation from iron monosulfide (FeS) in a series of 

reactions that involves microorganisms. In reducing environment of marine surface 

sediments, FeS is abundant as result of precipitation of high level of dissolved ferrous iron 

and H2S produced by sulfate reduction bacteria. This iron monosulfide is immediately 

transformed to the stable FeS2 as FeS reacts with dissolved H2S in strictly anoxic 

environment, or polysulfides (Sn
2-

) in suboxic environment (Berner, 1970, Benning et al., 

2000, Burton et al., 2006, Kraal et al., 2013).  

Several factors can inhibit the formation of stable FeS2. Availability of organic matter and 

reactive iron are primary factors in pyrite formation.  Inadequate organic matter required by 

bacteria limits sulfate reduction processes and pyrite formation (Berner, 1970, Lin et al., 

2000, Jasińska et al., 2012). However, high level of organic compounds in soil forms Fe
2+

 

complex and minimises pyrite formation (Morse and Wang, 1997, Morse, 1999, Kraal et al., 

2013). Although the presence of high sulfide concentration generated by microorganism due 

to decomposition of high organic matter, the level of pyrite will not reach high concentration 

without the presence of high level and reactivity of iron (Berner, 1970, Jasińska et al., 2012). 

In the area of carbonate muds, the combination of high organic matter and sulfide and poor 

iron minerals forms low content of pyrite (Berner, 1970).    

Diffusion of sulfate into soil from overlaying water causes a production of sulfide, thus its 

availability became a limiting factor of pyrite formation (Berner, 1970). Rapid formation of 

FeS that occurs in Fe rich environment reduces H2S production, which lowers pyrite 

formation (Berner, 1970, Burton et al., 2006, Kraal et al., 2013). Slow reaction between FeS 
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and H2S under severe anoxic conditions also minimizes pyrite formation (Benning et al., 

2000, Kraal et al., 2013). Low conversion of polysulfide pathway and conversion of H2S to 

HS
-
 at high pH also limit pyrite formation (Morse and Wang, 1997, Morse, 1999, Burton et 

al., 2006, Kraal et al., 2013). 

 

2. Basic concepts and the occurrence of acid sulfate soils 

Acid sulfate soils (ASS) are saline soils or sediments that contain accumulated iron sulfides  

(Fitzpatrick et al., 1998, Fitzpatrick, 2003, Fanning et al., 2010, Johnston et al., 2010a), 

mostly in the form of pyrite (Powell and Ahern, 2000), in the upper layers of soils under 

waterlogged or highly reducing environments such as sulfidic conditions (Fitzpatrick et al., 

1998). 

There are two basic types of acid sulfate soils: potential acid sulfate soils (PASS) and actual 

acid sulfate soils (AASS). Soils that contain pyrite that has not been oxidised are categorised 

as Potential Acid Sulfate Soils (PASS) (Fitzpatrick et al., 1998). The iron sulfide layer is 

stable and maintained by permanent groundwater under anaerobic reducing conditions 

(Powell and Ahern, 2000). The pH of the PASS soils or sediments is usually near neutral 

(approximately 7.00) (Fitzpatrick et al., 1998), or may be weakly acid to weakly alkaline 

(Powell and Ahern, 2000).  

When soils containing pyrite are exposed to the air through drainage or disturbance, sulfuric 

acid is formed. The production of sulfuric acid leads to a decrease in pH, usually to less than 

4 (Powell and Ahern, 2000, Fitzpatrick, 2003). Such soils or sediments are known as actual 

acid sulfate soils (AASS) (Fitzpatrick et al., 1998). The AASS materials are recognised by 

the present of yellow or debris-coloured jarosite [KFe3(SO4)2(OH)6] (Fitzpatrick et al., 1998, 

Fitzpatrick, 2003), often in combination with dark reddish marks (Fitzpatrick et al., 1998). 

The availability of dissolved sulfate, iron and organic matter and the presence of anaerobic 

conditions (Fitzpatrick, 2003) are several conditions that favour ASS development. A stable 

(Powell and Ahern, 2000) and low coastal environment (Australian Height Datum < 5 m), 

such as barrier estuaries and coastal lakes enhance the accumulation, and stimulate the 

development of ASS (Fitzpatrick, 2003).  
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The oxidation of pyrite under acid sulfate soil conditions has several stages, which involve 

both chemical and microbiological processes, and are influenced by the pH, as shown below   

(Dent, 1986). The initial stage is the slow oxidation of pyrite that produces ferrous iron, and 

elemental sulfur or sulfate (Dent, 1986, White and Melville, 1993): 

 FeS2 + ½ O2 + 2H
+
    Fe

2+
 + 2S + H2O ………………………..………… (1) 

The next stage is oxidation of elemental sulfur, which generates sulfate and acid (sulfuric 

acid). This process also reacts very slowly, however catalysation of autothropic bacteria may 

enhance the process in neutral pH conditions: 

 S + 
3
/2O2 + H2O   SO4

2-
 + 2H

+
 ………………………...…………….. (2) 

Besides iron sulfides, oxidation of iron monosulfide can also generate acidification. However, 

this infrequently occurs, because only very small amounts of FeS exist: 

 2FeS + 
9
/2O2 + (n+2)H2O   Fe2O3.nH2O + 2SO4

2-
 + 4H

+
 ………………. (3) 

Overall, pyrite oxidation generates precipitation of ferric hydroxide and sulfuric acid, which 

is represented by the following equation (Dent, 1986) : 

 FeS2(s) + 
15

/4O2(g,aq) + 
7
/2 H2O   Fe(OH)3(s) + 2SO4

2-
(aq) + 4H

+
(aq) ……………(4) 

Pyrite oxidation can also produce ferrous iron. The ferrous iron generated can be further 

oxised to ferric iron (White et al., 1993, Cook et al., 2004): 

     FeS2 +  
7
/2O2(aq) + H2O     Fe

2+
(aq) + 2SO4

2-
(aq) + 2H

+
(aq) ……………….(5) 

    Fe
2+(

aq) +  H
+

(aq) + 
1
/4O2(g,aq)      Fe

3+
(aq) + 

1
/2H2O …………………………….(6) 

Under anoxic and low pH (< 4), Fe
3+

 becomes soluble and reacts as an oxidant agent in pyrite 

oxidation (Schippers and Jørgensen, 2002, Cook et al., 2004, Carey and Taillefert, 2005).  

Under such condition, Thiobacillus ferrooxidans can boost the rate of pyrite oxidation (Cook 

et al., 2004): 

 FeS2 + 14Fe
3+

(aq) + 8H2O  15 Fe
2+

(aq) + 16H
+

(aq) ………………………...(7) 

The sulfuric acid that is produced under pyrite oxidation releases soluble and colloidal iron 

(Hicks et al., 2002), attacks the insoluble aluminium in clay and releases soluble Al
3+ 

in huge 

amounts (Fitzpatrick et al., 1998, Macdonald et al., 2007), and elevates other trace metals 
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(Cook et al., 2000, Sundstörm, 2002). The processes described show that the primary 

potential risks to mangrove seedlings‘ life in ASS environments are iron, sulfur, aluminium 

and acid. 

Complex environments in ASS areas lead to the formation of different states of sulfur 

(Armstrong and Armstrong, 2005, Johnston et al., 2009b, Johnston et al., 2010b). The form of 

sulfur depends on various factors; for instance, in a very reducing environment caused by 

tidal inundation, the reduction of sulfate occurs. In this condition, sulfate-reducing bacteria 

(SRB), for instance Desulfovibrio desulfuricans, oxidise organic matter and yield readily 

soluble hydrogen sulfide (H2S) (Armstrong and Armstrong, 2005).  

The overall reaction of sulfur reduction is: 

2H
+
 + SO4

2-
 + CH2O  H2S + 2CO2 + 2H2O 

The sulfide equilibriums are: 

H2S  HS
-
 + H

+
  S

2-
 + 2H

+ 

 (Armstrong and Armstrong, 2005). 

Neutral, or near neutral pH and alkaline mediums (pH between 5.5 and 9) promote the 

reduction of sulfate to sulfide (Starkey, 1946, Postgate, 1959, Willow and Cohen, 2003, 

Labrenz and Banfield, 2004). However, microbial sulfate reduction can occur in acid 

environments (pH <5), with some possible negative impacts on the reduction process, or on 

the bacteria (Willow and Cohen, 2003, Church et al., 2007, Koschorreck, 2008). 

The initiation of sulfate reduction requires reducing environments (Postgate, 1959, Zagury et 

al., 2006), therefore low or negligible sulfide concentration are observed at high oxidative-

acidic environments (Connell and Patrick, 1968, Willow and Cohen, 2003) due to low 

adaptive capability of SRB to such environments (Dolla et al., 2006). Loss of sulfide 

(particularly H2S) is due to several reasons, including the escape of gas from the soil. The 

loss of sulfide may also be due to precipitation with iron or other metals  (Connell and 

Patrick, 1968, Quicksall, 2009, Johnston et al., 2009b, Johnston et al., 2010b),   or it may be 

oxidised back to sulfate by sulfate-oxidising bacteria (SOB) (e.g. Thiobacillus denitrificans), 

that are able to use nitrate as an oxidant under anoxic conditions (Lyimo and Mushi, 2005). 
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3. Major potential problems faced by mangrove seedlings in acid sulfate soil 
areas 

In ASS environments, mangrove seedlings are exposed to several stresses, which include 

high concentration of metals and sulfur species. Most of ASS research have focused on the 

effects of major elements Fe and Al on plants, while little is known regarding on the effects 

of trace metals Cu and Ni in ASS conditions. Therefore, references from non-ASS study are 

included in this literature review to provide general information on the effects that mangrove 

seedlings may encounter under ASS conditions. In ASS environments, other geochemical 

factors, such as pH, redox potential, organic content, grain size, and the type of mineralogy 

interact with each other and may negatively influence the establishment of the seedlings. 

2.1. Metals 

Iron and aluminium are the main metals that are released in ASS environments in large 

amounts (Dent, 1986, Fitzpatrick et al., 1998, Cook et al., 2000, Macdonald et al., 2007) 

Elevated concentrations of other metals also occur in ASS environments, including nickel 

(Ni) and copper (Cu). Nickel has high mobility under ASS conditions (Preda and Cox, 2001, 

Nordmyr et al., 2008). In ASS-contaminated sites in the Logan estuary, southeast 

Queensland, Ni had concentrations exceed ANZECC standard compared to other heavy 

metals (Lockhart, 1996).  

Iron is an essential element for plants, particularly as an electron carrier for photosynthesis 

(Wilkins and Wilkins, 1997, Bertrand et al., 2002). Nevertheless, in certain concentrations, in 

lowland areas, iron toxicity occurs and causes lower photosynthetic rate (Audebert and 

Sahrawat, 2000). Visual symptoms of iron toxicity in rice is bronze color of leaves 

(Sahrawat, 2004, Becker and Asch, 2005), growth inhibition (Dent, 1986, Audebert and 

Sahrawat, 2000) and significant reduction of yield (Audebert and Sahrawat, 2000, Sahrawat, 

2004, Becker and Asch, 2005, Fageria et al., 2008). Yield reduction is an indirect effect of 

iron toxicity caused by inhibition of the uptake of other essential nutrients by plants (Fageria 

et al., 2008). 

The increase of uptake and toxicity of Fe is strongly influenced by several plant and 

environmental factors, such as plant genotypes, low soil pH, high level of soluble iron 
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released from parent material, reducing environment, microbial activities, increase in ionic 

concentration, low soil fertility, soil organic content and interaction with other nutrient 

(Fageria et al., 2008)   

Copper is an essential element for plants, particularly as an electron carrier (Wilkins and 

Wilkins, 1997, Bertrand et al., 2002), and for structure and catalysis purposes (Bertrand et al., 

2002). In certain concentrations, Cu can replace chlorophyll Mg of plants and cause 

disruption to the process of photosynthesis (Bertrand et al., 2002, Mishra and Dubey, 2005) 

and cell death (Bertrand et al., 2002). Visible toxicity of A. marina is observed at a soil 

concentration of less than 400 g Cu/g (MacFarlane and Burchett, 2001). 

Aluminium is a non-essential metal (Mishra and Dubey, 2005) and is a major risk in plant 

growth (Dent, 1986), including in acid soil environments (Samac and Tesfaye, 2003, Kochian 

et al., 2004). The most common reported effects of high concentrations of Al on plants are 

production of a shallow root system and inhibition of cell division (Kidd and Proctor, 2000, 

Samac and Tesfaye, 2003, Kochian et al., 2004), which influence their water and nutrient 

uptake (Samac and Tesfaye, 2003, Kochian et al., 2004). 

Nickel has no essential role in plant metabolism (Bertrand et al., 2002, Kabata-Pendias and 

Pendias, 2001) and is known to have a potential negative impact on photosynthesis at high 

concentrations (Bertrand et al., 2002, Mishra and Dubey, 2005). Nickel significantly delays 

germination and inhibits dry matter production (Nedhi et al., 1990). Limited growth of plants 

(Nedhi et al., 1990, Kabata-Pendias and Pendias, 2001) and injuries due to excessive 

concentration of Ni have been widely observed (Kabata-Pendias and Pendias, 2001). Strong 

inhibition of nutrient absorption, root development, and metabolism are also evident in plants 

under Ni stress (Kabata-Pendias and Pendias, 2001). 

2.2.1.1. Mangrove responses to metal exposure 

Mangrove seedlings from different species show different levels of tolerance to high 

concentration of metals under laboratory conditions. The survival and growth of R. mangle 

seedlings was not affected by exposure to the metals Cd, Pb, and Hg at concentrations of 

more than 100 g/g soils (Walsh et al., 1979, MacFarlane and Burchett, 2001). However, 

seedlings showed various symptoms, and 65% of seedlings died at extremely high levels of 
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500 g Hg/g soils (Walsh et al., 1979). This study did not evaluate further the factors that 

affect survival in these conditions, and suggested that the tolerance of R. mangle seedlings to 

high concentrations of these metal exposures is due to the development of non-toxic sulfides 

in the root, detoxification in seedling tissues, and the exclusion mechanism, or a combination 

of these factors (Walsh et al., 1979).  

Avicennia marina seedlings also tolerate high metal concentrations, including Cu. Several 

negative impacts such as visual toxicity started to occur when the concentration of Cu was 

400g /g (MacFarlane and Burchett, 2001). It was found that LC50—a concentration of a 

compound that causes death in 50% in exposed seedlings—was 566g Cu /g soil. Total 

inhibition of emergence occurred at an extremely high Cu concentration of 800g Cu /g soil 

(MacFarlane and Burchett, 2002).  

Based on the various potential problems described above that affect mangrove seedlings, it is 

critical to examine the response of seedlings to high concentration of metals in ASS 

environments.  

 

2.2.1.2. Factors affecting the distribution and accumulation of metals in mangrove 
parts 
 

In response to metal exposure, plants commonly either exclude or accumulate metals. These 

types of strategy affect the distribution and accumulation of metals. In the exclusion 

mechanism, the uptake and/or translocation of metals from root to shoot is restricted (Baker, 

1981, Kochian et al., 2004) to prevent excessive metal uptake into plant parts (Levitt, 1980). 

Metal exclusion is the most common mechanism in metal tolerant species (Baker, 1981). In 

the accumulation mechanism, metals are accumulated in some part of the plant body 

(Verkleij and Schat, 1990, Kochian et al., 2004) and detoxified in the shoots (Baker, 1981). 

Metal accumulation can occur in some plant species that grow mainly on soils that contain a 

high concentration of metals (Baker, 1981, MacFarlane et al., 2003, MacFarlane et al., 2007). 

Most studies of mangroves reveal that there is a common pattern in the way that the plants 

exclude metals, with higher metal concentration in the roots and lower concentration in the 
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aerial parts (leaves and stems). This type of distribution is affected by factors such as the ion 

exclusion mechanism and excretion of metals from the leaves.  

These mechanisms are similar to the physiological adaptation to high levels of salt, where 

mangroves excrete and exclude salt through their leaves or roots. Based on their response to 

salts, mangroves are categorised into two types: salt-excreting species that excrete salt from 

the leaves, and salt-excluding species that exclude salt at the roots (Lawton et al., 1981). 

Rhizophora stylosa and Ceriops australis are categorised as salt-excreting species (Bell and 

Duke, 2005). The ion exclusion mechanism in the root is considered to be involved in the low 

accumulation of Zn and negligible Pb in the aerial parts of R. mucronata seedlings (Thomas 

and Eong, 1984). Avicennia marina excretes the excess metals through salt glands on the 

leaves (MacFarlane and Burchett, 2000). Preliminary research on herbicides suggested that 

mangroves take up herbicides in a similar manner to salt through their exclusion and 

excretion mechanism (Bell and Duke, 2005). 

The different patterns of metal distribution and accumulation in mangrove seedlings may also 

explain their responses to essential and non-essential metals. Essential metals such as Cu and 

Zn are distributed to all seedling parts, while non-essential metals like Pb are not distributed 

evenly to other parts by the R. mucronata seedlings (Thomas and Eong, 1984). A similar 

pattern of uptake of Pb is also observed in R. mangle (Walsh et al., 1979).  

However, certain metals (e.g. Cd, Fe, Cu, Co, Mo, Pb, Sn, Ti, Ag, Cr, Zr, V, and Ga) are 

generally accumulated more in roots than in shoots (Siedlecka, 1995). Several elements (e.g. 

Ni) are uniformly distributed between roots and shoots (Siedlecka, 1995). 

The distribution and accumulation of metals in the tissues of mangrove are also controlled by 

the mobility of metal (MacFarlane, 2002) in the plant. The mobility of an element is often 

identified by the translocation factor. The translocation factor (TF) is measured as the ratio of 

shoot to root concentration (Regvar and Vogel-Mikus, 2008). 

The bioconcentration factor (BCF) is used to describe the bioaccumulation of a substance, or 

the uptake from the adjacent component, for instance, through speciation from water in 

aquatic systems (Jørgensen et al., 1998). The BCF values provide the steady state 
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concentration of a toxic substance in an organism in all possible routes relative to its 

environment (Jørgensen et al., 1998). 

In general, the concentration of metals in the roots and leaves of mangrove seedlings 

increases as the concentration of metal in the soil increases. At low concentrations of Cu in 

soils under laboratory conditions, limited Cu was taken up and accumulated in the leaves 

(MacFarlane and Burchett, 2001). This was confirmed in field conditions (MacFarlane and 

Burchett, 2002).  

The concentration of metals in mangrove parts is several times higher than the concentration 

in soils. For instance, the concentration of Cu in roots is 2.3 to 10 times compared to its 

concentration in soils. The concentration of Cu in leaves is 0.1 to 0.9 times compared to its 

concentration in soils (MacFarlane and Burchett, 2002). Cu concentration in leaves were 

found to be higher as salinity increases and soil pH decreases (MacFarlane, 2002). 

2.2. Sulfur 

Sulfur is one of the important macronutrients for plant development and for uptake by the 

plant in the form of sulfate (Buchner, 2008). Excess sulfur can decrease yield, which is 

accompanied by increased uptake of Cu, Mn and Fe by plant. This in turn causes severe and 

harmful changes to the metabolism of the plant cell (Rennenberg, 1984). Damage to roots by 

dissolved sulfide (H2S) or any other factor destroys the oxidising capability of roots, and in 

consequence exaggerates Fe toxicity (Kabata-Pendias and Pendias, 2001). 

2.2.2.1. Mangroves’ responses to high levels of sulfide 

High concentrations of sulfide, which is accompanied by the change of redox potential, may 

influence the ability of mangrove seedlings to survive. Although a field study in Mtoni and 

Mbeni, Dar es Salaam, Tanzania, revealed that Avicennia marina and Rhizophora mucronata 

occur in coastal areas that have high concentrations of sulfide (0.0025-0.96 mM in Mtoni and 

1.5–24.5 mM in Mbeni), a glasshouse experiment demonstrated that the seedlings of A. 

marina and R. mucronata did not grow in reducing soil (-27 to -198 mV) that contains a high 

concentration of sulfide of 0.5–6 mM (Lyimo and Mushi, 2005). 

Complete inhibition of photosynthesis occured in some mangrove species (Aegiceras 

corniculatum (L.) Blanco, Avicennia marina (Forsk.) Vierh., Bruguiera gymnorrhiza (L.) 
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Lamk., and Rhizophora stylosa Griff.) in the presence of sulfide (Youssef and Saenger, 

1998). 

 

4.  The assessment of plants’ tolerance to acid sulfate soil conditions 

Although it is well known that mangrove seedlings tolerate high concentrations of many 

metals, the tolerance of R. stylosa seedlings to ASS conditions, and the ability of those 

seedling species to distribute and accumulate metals under ASS conditions, are poorly 

understood. Previous research has shown that the levels of Fe in parts of mature mangroves 

are relatively high compared with other metals. However, there has been little research to 

observe the concentrations of Al in mangrove parts. 

The concentration of Fe in root tissues of Kandelia candel in the Mai Po area, Hong Kong, 

which is protected under the Ramsar Convention, is 4225.8 µg/g, and the concentration of Zn 

is 122.9 µg/g (Ong Che, 1999). The concentration of Fe in the roots and leaves of R. mangle 

in a polluted area of Rio de Janeiro, Brazil is 1011 and 37.2 µg/g respectively, compared to 

4856 µg/g of soil concentration. Here, the concentration of Cu in roots and leaves is 5.1 and 

0.1 µg/g, compared to 2.8 µg/g concentration in soil (Silva et al., 1990). In a mangrove area 

that is dominated by R. mangle in Surui, Guanabara Bay, Rio de Janeiro, Brazil the 

concentration of Al in soils is 9021 µg/g (Farias et al., 2007). There has been little research 

into Al in mangrove parts. 

In ASS contaminated areas in the Pumicestone region of southeast Queensland, Australia, Fe 

concentrations in the pneumatophores of mature A. marina are found in relatively high 

amounts of up to 4687 mg/kg compared to other metals such as Zn, which occurs in 

concentrations up to 72 mg/kg (Preda and Cox, 2002). However, there is little information 

about the tolerance of mangrove seedlings to high concentrations of metals in acid sulfate soil 

environments.  

Understanding of the tolerance of mangrove seedlings to high levels of sulfur species in acid 

sulfate soil environments is also poor. Most of the research on sulfur has been conducted to 

assess the impact of sulfide on mangroves (Youssef and Saenger, 1998, Lyimo and Mushi, 

2005). Poor understanding of the effect of geochemical conditions on mangrove seedlings 
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under ASS environments leads to a high failure rate in mangrove restoration projects in such 

environments (Stevenson, 1997, Lewis et al., 2006). 

 

5. Interaction of geochemical factors in acid sulfate soil environments 

The interaction of geochemical factors in ASS environments is complex and can affect the 

initial geochemical conditions. The formation of sulfuric acid in ASS environment enhances 

the mobility of some metals, especially Ni, Cu, Zn, Cr, Co, which results in elevated 

concentrations of those metals (Preda and Cox, 2001). Acidic conditions do not influence less 

mobile elements, such as Mo and Pb (Preda and Cox, 2001).  

The concentration and distribution of metals in ASS environments are influenced by 

geochemical factors. In the ASS affected study area in the Pimpama catchments, Southeast 

Queensland (Preda and Cox, 2001), complexes with iron, manganese and organic 

compounds, and the grain size of soil were geochemical factors that controlled the 

distribution of released metals. Fine-grained soils, such as clay minerals have a high specific 

surface area and a strong adsorptive capability (Salomons and Forstner, 1984). Therefore, 

higher concentrations of metal were found in fine-grained soils than in sandy soils in 

mangrove areas (Tam and Wong, 2000). In addition to those variables, redox potential (Eh) 

influences accumulation of metals and their mobilisation in mangrove soils (Harbison, 1986). 

Several metal ions are adsorbed and co-precipitated with hydrous oxides of Fe, Mn and Al in 

either sediments or soils. For example; Fe oxides co-precipitates V, Mn, Ni, Cu, Zn, Mo; and 

Mn oxides co-precipitate Fe, Co, Ni, Zn, Pb (Alloway and Ayres, 1997). Similar results were 

found in an ASS-affected study area in the Pimpama catchments, Queensland. Most metals 

associate with Fe oxides and clays, while Co and Ni associate mostly with Mn oxides. Zn is 

between these two oxides, since it has affinity for both Fe and Mn oxides (Preda and Cox, 

2001). 

An experiment using a draining and leaching technique showed that strong acidic conditions 

slightly alter the texture of the soil to more clay, but there is no significant change in the 

mineral composition of the soil (Golez, 1995). But field studies show that acidic conditions 

can enhance the weathering of the parent rocks of pyrite, and liberate major and minor metals 
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from the structures as well as trace metals from mineral phases that have adsorbed them 

(Preda and Cox, 2001). In acid conditions, several changes are stimulated in certain minerals, 

including decomposition of pyrite to jarosite as result of oxidation (Preda and Cox, 2004). 

The presence of high organic matter or peat (McElnea et al., 2004), redox, and inundation 

conditions (Burton et al., 2008, Johnston et al., 2009b) are some factors responsible for the 

high variation in ASS areas and lead to a complex environment. Such complex environments 

create a unique form of iron mineral (Burton et al., 2008, Johnston et al., 2009b) and cause 

the formation of different states of sulfur matter (Armstrong and Armstrong, 2005, Johnston 

et al., 2009b, Johnston et al., 2010b). Thus, the geochemical conditions formed will affect the 

seedlings‘ establishment and growth, as discussed in previous sub-sections. 

 

6. The neutralising capacity of soil 

The ability of an environment to naturally recover from acid condition is mainly influenced 

by the neutralising capacity of the soil, which is governed by various factors. Complexation 

of major cations by organic matter (Indraratna et al., 2002, Hazelton and Murphy, 2007, 

Nelson and Su, 2010, Löfgren et al., 2011), oxides, and hydroxides (Nelson and Su, 2010, 

Löfgren et al., 2011) raises the neutralising capacity of soil. 

High cation exchange capacity also influences the neutralizing capacity of soil (Hazelton and 

Murphy, 2007, Nelson and Su, 2010, Glover et al., 2011, Löfgren et al., 2011). Clayey soil 

has lower exchange capacity compared to sandy soil, therefore it is acidified more slowly 

(Hazelton and Murphy, 2007).  

Dissolution of minerals, including clay minerals, significantly influences the neutralizing 

capacity of soil  (Nelson and Su, 2010, Glover et al., 2011) at long period (Nelson and Su, 

2010). High soil buffering capacity also occurs in the presence of high carbonates content, 

which decreases acidification (Indraratna et al., 2002, Nelson and Su, 2010, Glover et al., 

2011). Carbonate/bicarbonate consisted in seawater tidal acts as buffering agent in acid 

sulfate area. Besides neutralizing acid, tidal action also reduces pyrite oxidation as it 

increases drain water (Indraratna et al., 2002). 
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7. Summary of literature review 

The main potential problem that mangrove seedlings may encounter in ASS environments is 

a high concentration of metals, particularly Fe and Al, which are the major acid elements 

released in ASS environments (Dent, 1986, Fitzpatrick et al., 1998, Cook et al., 2000). 

Elevation of Ni and Cu, which are mobile in acid conditions, may also become a problem in 

such environments. These metals are known to be toxic to plants in very high concentration.  

The effects of sulfur species is another potential problem for mangrove seedlings in ASS 

environments, as they are known to be very toxic to plants (Rennenberg, 1984, Kabata-

Pendias and Pendias, 2001). Other geochemical factors, such as pH, redox potential, organic 

content, grain size, and pyrite interact with each other and may affect the establishment of 

mangrove seedlings in ASS environments. 

Mangrove seedlings from various species have shown their tolerance to a high concentration 

of metals (MacFarlane and Burchett, 2001). Of two common responses that occur in plants 

(exclusion/avoiding, and accumulating), exclusion of metals appears to be a common pattern 

in mangrove seedlings, with higher metal concentration in roots and lower in aerial parts 

(leaves and stems). This type of distribution is affected by several factors, such as the ion 

exclusion mechanism (Thomas and Eong, 1984) and excretion of metals in leaves 

(MacFarlane and Burchett, 2000).  

The distribution and accumulation of metals in the tissues of mangroves are also controlled 

by the mobility of metal and the concentration of metal in the soil (MacFarlane, 2002). The 

concentration of metals in roots and leaves of mangrove seedlings increases several times as 

the concentration of metal in the soil increases (MacFarlane and Burchett, 2002).  

The tolerance of R. stylosa seedlings for acid sulfate soil (ASS) conditions, and the ability of 

that species to distribute and accumulate metals under ASS conditions, are poorly understood. 

Previous ASS studies only provide evaluation of the visual impact on seedlings and do not 

consider the geochemical aspects. Geochemical study of ASS conditions is very important, 

since the interaction among the factors in such environments is complex and can influence 

the tolerance of mangrove seedlings. Geochemical factors also influence the neutralising 
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capacity of soil, which together with seawater tidal buffer, are essential aspects on natural 

recovery of the area that affected by acid sulfate soils. 
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CHAPTER 3: METHODS 
 

 

This chapter describes the general methods used in this study. The research methods are 

organised under the headings of Experimental Study, Field Study and Analysis.  

1. Experimental study 

1.1. Nursery setting 

The experimental study was conducted in the indoor nursery at the Aquaculture Laboratory, 

Q Block, Queensland University of Technology, Brisbane, Australia. Artificial seawater was 

used for propagation and treatments (Ye et al., 2005) by dissolving commercial sea salts to 17 

‰. This level is considered suitable for mangrove developments that are grown in a nursery 

environment (Clarke and Johns, 2002).  

A flow-through system was applied in this research (Figure 3.1). To imitate tidal works, 

artificial seawater from a large reservoir was pumped up through pipes once a day to fill each 

of the larger containers that contained a propagule/seedlings pot. To imitate daylight, the 

lights were set for a 12:12 photoperiod (Walsh et al., 1979) using 36-watt growth lights. 

Pots without holes at the bottom were used for propagation (Figure 3.2). The size of each pot 

was 140 mm in diameter and 115 mm high. Eight holes (each with a diameter of 5 mm) were 

made around the upper rim of the pot to minimise disturbance of the soils from the water 

flow. The pot was then placed into a larger container (200 mm x 190 mm). The larger 

container had two holes, each of 5 mm diameter. The upper hole acted to maintain the level 

of water used to submerge the propagule pot. The lower hole worked to discharge the water 

after about seven hours. After the process, the water was drained via a discharge pipe located 

at the bottom of the larger container.  

1.2. Propagule and soil collection  

Mangrove propagules and soils were collected in Myora Springs, Stradbroke Island, south-

east Queensland. The selection of the site was based on the consideration that Stradbroke 

Island has an environment that is better in terms of water quality, metal levels and non-Acid 

sulfate soil compared to western parts of Moreton Bay. The soils collected were for 

propagation, control and metal treatment mediums.
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Figure 3.1. The flow through water system applied in the mangrove nursery and experiment. One high tide a day was applied to each pot. Water outlet 1 

was designed to maintain water level and water outlet 2 was to discharge water  
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  Water container (size: 200 x 190 mm)            Plant pot (size: 140 x 115 mm)   

  

 

Figure 3.2. Prototype of propagation pots used in the mangrove nursery. The smaller medium pot was placed into a larger container pot designed to 

maintain water level then discharge it to imitate tidal conditions. Ø represents the diameter 
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The soils for the ASS treatments were collected from the mangrove area around Brighton Park at 

the mouth of North Pine River, Bramble Bay, southeast Queensland. This location is categorised 

as Potential Acid Sulfate Soil (PASS), where ASS occurs within five metres of the upper layer 

and has a proportion of oxidisable sulfur above the recommended ‗action level‘ in at least one 

soil layer (Ahern and McElnea, 2000).  

The upper soils were collected and mixed in a large tank before being distributed to the pots to 

minimise the variability of soil characteristics.  

The collection of the dropped propagules was carried out under Self-Assessable Code MP05. 

The collection of soils in Brighton was carried out under a marine parks permit 

QS2009/MAN24. The maps of collection sites for the laboratory study are presented in 

Appendix G.1, pp. 199.  

1.3. Propagation (Germination) 

Propagules that had similar weight and length were chosen for propagation (MacFarlane and 

Burchett, 2002). The basal part of Rhizophora stylosa propagule was submerged in 25% 

seawater for two days to stimulate root development before planting (Clough, 1984). The 

propagation of R. stylosa was conducted in a flow-through system for seven months (Figure 3.2). 

Fertiliser (i.e. Fish Emulsion), with a nutrient composition of N 9%: P 2%: K 6%, was added into 

the seawater in each pot at the beginning of the propagation and at the beginning of treatments.  

1.4. Pollutant treatments & growth measurements 

Seven-month-old seedlings were replanted in larger pots and used for control, metal and ASS 

treatments, with three replications of each treatment. The experimental medium pot had a 

diameter about 20 mm larger than the propagation pot. Pollutant treatments (heavy metal and 

ASS exposures) were conducted for up to eleven weeks, or depending on the mortality of the 

seedlings.  
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1.4.1. Acid sulfate soils treatment methods 

In this experimental study, the soils from Brighton were acidified using sulfuric acid to a pH 

around 3.5. Three levels of ASS treatments were carried out. Acid Sulfate Soils with a low level 

of metal formed the ASS control. The other two treatments each had different metals added, 

based on recommended soil quality guidelines of ANZECC standard, i.e. above trigger level and 

above high level (ANZECC and ARMCANZ., 2000) (Table 3.1).  

 

Table 3.1. Experimental design with three replications applied in the research 

Soil type 

Metals 

None Cu70* Cu280** Ni25* Ni55** 

Clean 

(Myora)  

     

ASS 

(Brighton)  

     

 Notes: * concentration above trigger level of recommended soil quality guidelines of ANZECC  

                and ARMCANZ. 

 ** concentration above high level of recommended soil quality guidelines of    

      ANZECC and ARMCANZ.  

 

1.4.2. Heavy metal treatment methods 

This treatment mainly followed the procedure described by (MacFarlane and Burchett, 2001, 

MacFarlane and Burchett, 2002):  

Two concentrations of Ni and Cu in the form of metal salt solution (NiCl2, CuCl2.2H2O) were 

added to each pot in each treatment (Table 3.1). The selection of chloride metals was based on 

the consideration that this form can be tolerated by mangroves, therefore can reduce the effect of 

toxicants from the Cl (Burchett et al., 1984).  
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1.4.3. Growth measurements 

Several measurements were carried out in order to assess the response of mangrove seedlings 

under metals and ASS contamination. The measurements include recording of apparent health 

conditions, survival of seedlings, and measurement of height of whole seedlings, as well as 

average root length. Average root length was determined by recording the image of the root and 

analysing it using the software ImageJ.  

Relative growth rates were determined using the following calculation: 

   RGR = (ln m2 – m1) / (t2 – t1) 

 Where: m2 and m1 = plant height at the end and beginning of the experimental period 

     t2 – t1 = the time gap (Poorter and Garnier, 2007). 

 

2. Field study 

2.1. Study site description 

The field study was carried out from July to December 2011 (rainy season) in six different 

environments in abandoned pond areas in Mare (04
o
51‘S, 120

o
18‘E), district of Bone, province 

of South Sulawesi Selatan, Indonesia (Figure 3.3 and Figure 3.4). The ponds with + 70 ha were 

previously a mangrove forest and were cleared for extensive shrimp ponds in 1993. The ponds 

had successful production in the first years, but failed and have been abandoned since then. 

Although lime and fertiliser were applied in huge amounts, failed or poor rates of production had 

been experienced by local the community. Such conditions are a typical pattern in abandoned 

ponds in different places; therefore this is a suitable location for studying the research problem. 

 

The sites used are described below: 

Site 1 is located at the bank of a blocked small creek that has no mangroves. In this location, two 

out of six Rhizophora mucronata seedlings that were replanted at the beginning of the study 

survived over a three-month period.  
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Site 2 is a reservoir pond that can be visually categorised as AASS, by the oily red scum and 

yellowish jarosite accumulated on top of soils. No Rhizoporaceae seedlings were found in this 

site. There was one mangrove fern (Acrostichum sp) seedling. This species is often found in a 

cleared or disturbed area.  

Site 3 is a drainage area with yellowish jarosite on the surface soils. Mangrove fern (Acrostichum 

sp) seedlings occur (Figure 3.5). 

 
Figure 3.3. Location of field study in Mare, Distric of Bone, Province of South Sulawesi, Indonesia 
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Figure 3.4. Aerial photograph of the field study location in Mare, Distric of Bone, Province of South Sulawesi, Indonesia (Microsoft, 2012) 
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a. Site 1          b. Site 2 

  

c. Site 2        d.Site  

              

Figure 3.5. Location of Study Sites 1-3 in Mare, South Sulawesi, Indonesia 
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e. Site 4.                     f. Site 5. 

                 

g. Site 6.                     h. Site 7. 

                   

Figure 3.6. Location of Study Sites 4-7 in Mare, South Sulawesi, Indonesia 
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Site 4 was at the bank of a creek, it had both naturally occurring R. stylosa and R. mucronata, 

and replanted R. mucronata seedlings. At a different area within the same creek, Site 5 was 

located. In this area, about five species of natural growth mature mangroves existed. The species 

were R. stylosa, R. mucronata, Avicennia marina, and Sonneratia sp. Naturally and replanted R. 

mucronata seedlings also existed. Site 6 was an abandoned pond that had free seawater 

circulation from broken dikes. Natural R. stylosa and R. mucronata seedlings had grown in this 

site. 

Site 7 was a control site, which is located at the beach outside an abandoned area. In this site, 

natural and replanted R. stylosa and R. mucronata seedlings had grown (Figure 3.6).  

Over the sites, there were more naturally occurring R. stylosa seedlings than there were R. 

mucronata seedlings. The number of replanted R. mucronata seedlings was greater than of the 

naturally occurring ones. Therefore, naturally occurring pre-existing R. stylosa seedlings were 

used as research samples in the study, except in Site 1, where replanted R. mucronata seedlings 

were used as research samples. 

2.2. Sample collection 

Six replicate samples of porewater were collected using peeping bottles built from a 250 ml 

bottle connected to a PVC pipe at the bottom. This pipe served to hold the bottle firmly upright 

inside the soil. The upper side of the bottle had holes around it and was covered with a soft net to 

minimise the amount of the soil getting inside (Figure. 3.7). The bottles were put inside the holes 

in the soil and buried at low tide, and kept there overnight to ensure the bottles were filled with 

porewater. After removal, the porewater was transferred into sample bottles and preserved with 

zinc acetate for sulfide analysis.  

Six replicates of 15 cm soil cores were collected around mangrove seedlings at each site. A 

seedling was defined as being no more than one metre high, and without branches.  
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Figure 3.7. Peeping bottle designed to collect porewater sulfide. The upper side of the bottle had holes 

around it, covered with a soft net, and was connected to a PVC pipe. 

 

The density and survival rates of plants were estimated by counting, marking and measuring all 

individuals in six 1m x 1m plots randomly placed at each site. Plots were revisited at the end of 

the trial, and the same plants were examined. The plant height measured was the above ground 

height. The relative growth rate (RGR) of the seedlings was determined for the three-month 

period using Poorter and Garnier‘s (2007) calculation, as described in the experimental method 

section. The roots of mangroves were rinsed with deionised water for total metal analysis. 

2.3. Analysis 

Mangrove seedlings and soils from both experimental and field studies were analysed for several 

parameters. 

2.3.1. Analysis of metals 

The analysis involved measurement of metals in water, soils and mangrove tissues. 
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2.3.1.1. Water analysis  

Analysis of total metals in water were carried out once a week or fortnightly in the first month of 

the experiment to identify any significant metals released into the discharge water due to the 

application of the flow-through water system. The water samples were not filtered (Preda and 

Cox, 2001). Since the samples were analysed shortly after collection, no preservation was 

performed. The metal analyses in water were determined using ICP-OES.  

2.3.1.2. Soil and mangrove analysis  

The total metal analysis procedure was similar to the method used by previous researchers 

(Khrisnamurty et al., 1976, MacFarlane and Burchett, 2001, Defew et al., 2005, Silva et al., 

2006). The soils were oven dried at 85
o 

C for 48 hours to prevent oxidation (Ahern et al., 2004). 

Mangrove tissues (stem, leaf and root) were oven dried at 60
o
C for 24 hours (Defew et al., 2005, 

MacFarlane and Burchett, 2001). The results from the experiment show that root tissues 

accumulated metals in significant amounts compared to other tissues under the examined soil 

concentrations. The bioconcentration factors (BCF) of each metal in leaf and stem tissues are 

less than one, which is smaller compared to the BCF of greater than one in the root tissues. See 

Appendix A1, pp. 151–153). Therefore, only root tissues were analysed in the field study.  

Soils and mangrove tissues were digested with concentrated nitric acid and hydrogen peroxide. 

The digestates were filtered and added to a 50 ml flask for soil and roots, and 25 ml for 

mangrove propagules and leaves (Khrisnamurty et al., 1976). Total metals analysis of samples of 

the experimental study was performed using ICP-OES. The analysis of total Al and Fe of 

samples of the field study was also conducted using ICP-OES, while the analysis of total Ni and 

Cu of the samples of field study was conducted using AAS.   

The bioconcentration factor of metals was determined using the ratio of the concentration of a 

toxic substance (i.e. metal) in the root tissue of mangrove seedlings relative to its environment 

(i.e. total metal in sub-soils) (Jørgensen et al., 1998).  

The metal fractionation analysis followed the protocols for the Commission of the European 

Community Bureau of Reference (BCR) (Davidson et al., 1994). The procedure consists of three 

steps of sequential extraction to determine metal fractionation. The first step is an acetic acid 
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extraction to determine exchangeable, water and acid soluble forms. The second step uses 

hydroxylamine hydrochloride to determine reducible forms (iron and manganese oxide bounds). 

The third step is hydrogen peroxide oxidation coupled with ammonium acetate extraction to 

determine the oxidisable form (organic matter/sulfide bound) (Davidson et al., 1994). The metal 

concentrations from sequential extraction were determined by AAS Hitachi Z-2000.  

2.3.2. Analysis of grain size and pyrite 

The soil analysis of the samples from the experimental and field studies involves the 

measurement of grain size percentage and colour of soils near roots (10-15 cm depth). 

Determination of grain size was conducted using classical wet sieve analysis by employing a 

stainless steel 63 μm sieving net (Percival and Lindsay, 1997), involving percentages of silt, clay 

and very fine sand (< 63 μm) and sand (> 63 μm). 

The percentage of pyrite on the surfce and sub-layer soils was measured through Titratable 

Sulfidic Acidity (TSA) analysis (Konsten and Sarwani, 1990). The estimation of pyrite was 

based on the calculation: 

Pyrite = (TSA: 22,4 ) x 0,1 

Determination of pyrite in the study area enabled assessment of the role of pyrite on geochemical 

conditions that affect mangrove seedlings‘ establishment and growth. 

2.3.3. Sulfur analysis  

Total sulfur, water-soluble sulfate and sulfide were analysed to evaluate the nature of the 

geochemical condition and their interaction with other geochemical parameters. Through this 

evaluation, a better understanding of the geochemical aspects that are involved in the 

establishment of mangrove seedlings in ASS environments can be obtained.  

Water-soluble sulfate levels in both the experiment and the field study were extracted using 

deionised water (Page and Steinbock, 2009) and determined using the Turbidimetry method 

(APHA, 1999). The determination of sulfide in porewater was conducted using the blue 

methylene method, and determined by spectrophotometer (APHA, 1999). 
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Total sulfur soil from the experiment were analysed in the form of HCl-extractable sulfur (Tot 

SHCl). The advantage of this method of analysing ASS samples is that it recovers most forms of 

sulfate, including soluble and exchangeable sulfate, sulfate from gypsum and other insoluble 

sulfate compounds, such as jarosite, natrojarosite, as well as sulfur from organic matter (Ahern et 

al., 2004). The measurement of the total sulfur in samples from the experiment used the 

Turbidimetry method (APHA, 1999).  

The Peroxide Oxidisable Combined Acidity and Sulfur (POCAS) method was used to analyse 

samples from the field study, since the samples contain high organic contents. This method 

allows tracking of existing, potential, and net amounts of acidity and sulfur in soils. The samples 

were sent to the Soil Laboratory, Research Institute of Coastal and Aquaculture, Maros, 

Indonesia.  

The POCAS method involves several steps, which consist of determining levels of KCl 

extractable Sulfur (SKCl), titratable actual acidity (TAA), peroxide sulfur (SP), titratable peroxide 

acidity (TPA), peroxide oxidisable sulfur (SPOS), and titratable sulfidic acidity (TSA) (White and 

Melville, 1993). SKCl determines the adsorbed and soluble sulfate (Ahern et al., 2004). The SP 

determines the sulfate contained in soils through oxidising the soils to generate maximum acidity 

from reduced sulfidic material (Ahern et al., 2004). The SPOS estimates the net potential acid risk 

of the soil from the unoxidised sulfur compounds by determining the difference between SPOS 

and SKCl (Ahern et al., 2004). The TSA value was determined by calculating the difference 

between the value of TPA and the TAA (White and Melville, 1993). 

2.3.5. Organic content 

To enable assessment of the role of organic matter in geochemical conditions as well as its 

relationship to heavy metal concentration in soil and in the mangrove seedlings, an estimate of 

organic content in soil samples was conducted. The concentration of organic content were 

determined using the Loss on Ignition (LOI) method, following the method described by (Heiri 

et al., 2001). Sample soils were oven dried for 24 hours at 105
o 
C before heating them at 550

o 
C.  
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2.3.6. The chemical-physical measurements 

These measurements are of pH and redox potential (Eh) using a water quality meter. These 

measurements will assist in determining the effect of measured parameters on the solubility, 

mobilisation and precipitation/deposition of metals. 

The detailed procedures of the analysis used in the study are presented in Appendix E, pp. 181 - 

195. 

2.4. Statistical analysis 

This research applied several statistical analyses, using Excel and SPSS 17 to assess the 

distribution of different metals, geochemical parameters and their correlations. Normality tests 

and transformation were employed for non-normal variables. The transformation types depended 

on the type of skewness. The Kruskal Wallis analysis was used to examine whether the variables 

did not fulfill the normality. 

Chi-square analysis was used to examine the association between the two main types of 

environments and the survival of the mangrove seedlings. ANOVA was used to compare the 

differences in value from different parameters under four different treatments. A post-hoc 

pairwise comparison of sample means with Tukey‘s significant difference test was used when 

the ANOVA results showed a significant difference (p < 0.05). The General Linear Model 

(ANCOVA) was used to examine whether survival days affect the final root length of the R. 

stylosa seedlings. Linear regression was used to determine the relationships between metal 

concentrations in the root tissues or in the soils and both the RGR and the final root length of the 

seedlings.  

Principle Component Analysis (PCA) was employed to identify geochemical trends. 

Standardised regression was used to examine the relationship between Al and Ni concentrations 

in the root tissues and the soils and the RGR and final root length of the seedlings, and between 

the density, establishment, growth and other geochemical variables. The Pearson correlation was 

employed to identify the correlation and interaction within the geochemical variables (Chapters 

4, 6, 7), and to test the relationship between metal concentrations in soils and mangrove tissues 

(Chapters 5). 
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CHAPTER 4: THE EFFECTS OF ACID SULFATE SOIL CONDITIONS ON THE 

ESTABLISHMENT AND GROWTH OF RHIZOPHORA STYLOSA SEEDLINGS, 

AND GEOCHEMICAL FACTORS INVOLVED: AN EXPERIMENTAL STUDY 
 

1. Introduction 

The establishment of mangrove seedlings in an area is controlled by many factors, including the 

availability of suitable environmental conditions. Mangrove restorations that do not consider the 

ecological requirements or assess stress factors often result in major failures or financial loss. 

This problem has been reported in West Bengal, India, and the Philippines (Lewis, 2005). In 

North Sulawesi, Indonesia mangrove restoration has been conducted unsuccessfully five times in 

eight years in the same abandoned fish ponds because prior ecological assessments have not been 

made  (Lewis et al., 2006).  

Highly degraded conditions in acid sulfate soil (ASS) environments affect the survivability and 

growth of mangrove seedlings. Potential problems that should be taken into account before 

replanting seedlings in such environments are high levels of released metals, sulfate and acid. 

Seedling mangroves have been reported to tolerate high concentration of trace metals, such as: 

Cd, Cu, Hg, Pb (Walsh et al., 1979, MacFarlane and Burchett, 2001).  However, little is known 

regarding the effects of Fe, Al, and Ni on mangrove seedlings, particularly under acidic 

environments. 

Iron and aluminium are the elements that are released in huge amount during iron sulfide 

oxidation in ASS disturbed environments (Dent, 1986, Fitzpatrick et al., 1998, Cook et al., 2000, 

Macdonald et al., 2007). Although Fe acts as an essential nutrient for plants, in exceeding 

amount under low pH it has been reported to cause ―bronzing‖ of rice leaves as a toxic effect 

(Sahrawat, 2004, Becker and Asch, 2005), negatively affect plants growth (Dent, 1986, Audebert 

and Sahrawat, 2000), and decrease yield (Audebert and Sahrawat, 2000, Sahrawat, 2004, Becker 

and Asch, 2005, Fageria et al., 2008). High Al concentration is widely known to inhibit root 

elongation of some terrestrial plant seedlings grown under acidic conditions (Marschner, 1991, 

Barceló and Poschenrieder, 2002, Bertrand et al., 2002, Kochian et al., 2004). 
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Copper and nickel are a few of trace metals whose concentrations elevate during pyrite oxidation 

(Lockhart, 1996). Under very high Cu soil concentration, toxic symptoms and total inhibition of 

emergence appear in Avicennia marina seedlings (MacFarlane and Burchett, 2001, MacFarlane 

and Burchett, 2002).  Excessive concentration of Ni in soil reduces growth of plants (Nedhi et 

al., 1990, Kabata-Pendias and Pendias, 2001) and injuries (Kabata-Pendias and Pendias, 2001). 

High Ni concentration environment also diminishes root development (Kabata-Pendias and 

Pendias, 2001).  

Sulfate is rarely reported to have a severe impact on plants because it is a nutrient sulfur form 

required by plants (Rennenberg, 1984). In disturbed ASS areas, increased level of sulfate or 

sulfide can occur due to its dynamic environments (Armstrong and Armstrong, 2005, Johnston et 

al., 2009b, Johnston et al., 2010b). Although increased level of sulfide has only a small impact 

on their aboveground biomass, such condition raises the ratio of root and aboveground biomass 

of seedlings of Rhizophora mangle (McKee, 1993). In high concentration, sulfide can damage 

mangrove seedlings, causing stomatal closure, decreased gas exchange, inhibit growth, and low 

survival (Youssef and Saenger, 1998, Kathiresan and Bingham, 2001). The growth of mangrove 

seedlings is also influenced by acidity (Kathiresan and Thangam, 1990).  

Understanding the geochemical characteristics formed in an environment is important for 

determining which type of environment will provide suitable conditions for seedlings to live and 

vice versa. To achieve this objective, this chapter firstly examines the effects of experimental 

environments on the establishment of the Rhizophora stylosa seedlings and their relative growth 

rates, root length and other visual health conditions. Then, this chapter identifies the geochemical 

characteristics formed in non-ASS and ASS environments, and determines the relationship 

between geochemical factors and the growth variables. To achieve a better understanding in the 

geochemical processes occurred in the experiment that influence the establishment of the 

seedlings, interactions within these variables are also examined. This knowledge is critical to 

achieving a successful rehabilitation program. 
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2. Methods 

2.1. Collection, propagation and treatment 

Mature R. stylosa propagules and soils for growth medium as well as non-ASS treatment were 

collected from Myora Springs, North Stradbroke Island, while the soils for ASS treatment were 

collected from Brighton, southeast Queensland, Australia. The propagules were grown allowing 

seven months to establish themselves under standard laboratory conditions before being 

transferred into each of the larger experimental conditions. The soils for the medium of control 

and metal treatments were added with Ni in the form of NiCl2 in concentrations of 25 and 55 

g/g, and Cu was added in the form of CuCl2 at concentrations of 70 and 280 g/g. The duration 

of the treatment was up to 80 days. 

2.2. Measurement 

Before propagation, several geochemical analysis of mediums were conducted to ensure the 

suitability of the soil for propagation. The measurement included pH, redox potential, organic 

content, total concentration of Fe, Al, Ni and Cu. During seven weeks of the treatment period, 

the pH of the mediums were measured to determine the influence of the artificial seawater 

supplied. 

After experiment period, the geochemical analysis of the experimental soils surrounding the 

roots (+ 10 cm depth) measured sulfide, pH, redox potential, organic content, grain size, water-

soluble sulfate, SHCl, total metal, and porewater sulfide.  

The measurement of pH and redox potential (Eh) was performed using a water quality meter. 

The organic content was determined using LOI method (Heiri et al., 2001). The grain size was 

determined by wet sieving analysis (Percival and Lindsay, 1997), through which the percentages 

of silt, clay and very fine sand (< 63 μm) and sand (> 63 μm) were attained. The water soluble 

sulfate was established by extracting water from soil samples using deionized water. The 

samples were shaken for 30 minutes, centrifuged and filtered using 0.45 m membrane (Page 

and Steinbock, 2009). The HCl-extractable sulfur (Tot SHCl) were established by extracting soil 

with 4M HCl (1 : 40) (Ahern et al., 2004). Both extracted samples for water soluble sulfate and 

Tot SHCl were further analysed for sulfate using the Turbidimetry method (APHA, 1999).  The 
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porewater sulfide was analysed using the blue methylene method, and determined by 

spectrophotometer (APHA, 1999). 

Growth measurements included apparent health conditions, survival of seedlings, and 

measurement of the total height of seedlings, and their average root length. The average root 

length was determined by recording the image of the root and analysing it using the software 

ImageJ. Relative growth rates were determined using the following calculation: 

   RGR = (ln m2 – m1) / (t2 – t1) 

 Where: m2 and m1 = plant height at the end and beginning of the experimental period 

     t2 – t1 = the time gap (Poorter and Garnier, 2007). 

2.3. Statistical analysis 

Data are presented as mean +/- standard deviation. Chi-square analysis was used to examine test 

the association between the two main types of environments and the survival of the mangrove 

seedlings.  The General Linear Model (ANCOVA) was used to examine the difference in either 

the relative growth rate (RGR) or root length of the R. stylosa seedlings within the different 

environments.  The ANCOVA was also used to examine whether survival days affect the RGR 

and the final root length of the R. stylosa seedlings. Linear regression was used to determine the 

relationship between Al and Ni concentrations in the soils and the RGR and final root length of 

the seedlings.  

Principal Component Analysis (PCA) was used to identify the characteristics of geochemical 

conditions of the experimental environments. To examine the correlation between geochemical 

factors and survival days, two-tail Pearson correlation analysis was employed. 

 

3. Results 

3.1. Propagation and experimental mediums 

The average pH of soils that were used for propagation was 7.29 + 0.16STD. This value is in the 

normal range for mangrove areas (Ramanathan et al., 1999). The average redox potential 

measured was -53 + 4, which is in the range of other Eh values of mangrove soils (+100 to -250 

mV) (Saenger, 2002). The range of LOI was between 2.48 + 0.57 %, above the organic matter 

content in mangrove soils used as control in other research (1.98%) (Tam and Wong, 2000), but 
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was far below the value in the Ho Chung mangrove swamp that is close to the discharge sewer 

point in HKSAR, China, where it was 34 ± 10% (Yu et al., 2005). 

The average concentrations of total Fe and Al in the soils at the beginning of propagation were 

943 + 108g/g and 1095.8 + 105.4 g/g, respectively. No limit value is prescribed in the 

ANZECC standard, however these concentrations are below those found in other clean 

mangrove sites or in ASS-contaminated areas. The concentration of Fe found in the soils in a 

clean mangrove site in Brazil was 2464 ppm per dry weight (Harris and Santos, 2000), while the 

concentration of Fe found in an ASS-contaminated site in Logan River estuary, Australia was up 

to 50,000 mg/kg (Lockhart, 1996). The Al concentration in the soils in an ASS-contaminated site 

in the Pumiceston region, Australia was up to 14,694 mg/kg (Preda and Cox, 2002).  

The concentrations of total Ni and Cu in propagation soils were 4.30 + 0.9 g/g and 1.4 + 0.4 

g/g, respectively. These concentrations are also far below the trigger value of the ANZECC and 

ARMCANZ standard (2000), which are 21 for Ni and 65 ppm Cu. See Table 4.1 for the detailed 

measurement of metal concentrations in propagation soils. 

Table 4.1. The concentration of metals in propagation soils (n = 5). Data are presented as mean +/- 

standard deviation. 

Sample 
 Concentration (µg/g) 

Al Fe Ni Cu 
1 1202 983 4.50 1.5 
2 1159.5 1083 2.00 2 
3 855.5 733 5.50 0.5 
4 1072.5 883 4.50 1.5 
5 1189.5 1033 5.00 1.5 

Average 1095.8 + 105.4 943 + 108 4.30 + 0.9 1.4 + 0.4 
     

 

During the experimental period, the pH of the mediums had changed according to the pH of the 

artificial seawater supplied. The soil pH of non-ASS environment mediums decreased slightly up 

to 0.6 point, while the pH of ASS environment mediums increased nearly one point (Figure 4.1).  
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Figure 4.1. The pH of soils during seven weeks of the experiment period in non-ASS and ASS environments 
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3.2. Seedlings survival and growth rates 

There was very strong evidence to conclude that the establishment of mangrove seedlings 

depended on the type of experimental environment. Figure 4.2 shows that the proportion of 

seedlings that survived in the non-ASS environments was higher (80%) than those in the ASS 

environments (27%) (x
2
 = 6.6, df = 1, p = 0.010). See Appendix A.1, Table A.1.2, pp. 146 for the 

detail data. However, root treatment during measurement before seedlings replanting may also 

affect seedlings condition and reduce their ability to establish. 

 

Figure 4.2. The number of R. stylosa seedlings survived in non-ASS and ASS environments (n=30) 

 

Loss of turgor was the primary visual effect on the dying seedlings in both non-ASS and ASS 

environments. Loss of leaves from both surviving and dying seedlings was also commonly 

recorded in all environments. The time taken for the new leaves to unfurl was delayed for the 

surviving seedlings in the ASS environments.  

In general there was a pattern which showed that the averages of total fresh length and the 

relative growth rate (RGR) of the seedlings were lower in ASS environments (Table 4.2). 

However, ANCOVA results show that there was no statistical difference in either the RGR or 
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root length difference of the R. stylosa seedlings within the environments. There was also no 

effect of survival days on either the RGR or length root difference (Table 4.3). 

 

Figure 4.3. The average concentrations of metals in subsurface experimental soils (n=30). Environments: 

1. Control; 2. Ni 25µg/g; 3. Ni 55µg/g; 4. Cu 70 µg/g; 5. Cu 280 µg/g; 6. ASS; 7. ASS+Ni 25µg/g; 8. 

ASS+Ni 55 µg/g; 9. ASS+Cu 70 µg/g; 10. ASS+Cu 280 µg/g. Values are mean + SE 

 

The ranges of average concentrations of Fe, Al, Ni, and Cu in the ASS subsurface soils were 

11429.68–17545.27 µg/g, 6161.67–7336.40 µg/g, 9.17–47 µg/g, and 5.83-248.33µg/g, 

respectively (Figure 4.3). The concentration of the metals in subsurface soils can be seen in the 

Appendix A1. Table A.1.1, pp. 145. 

Fe subsurface soils 

Al subsurface soils 

Ni subsurface soils 

Cu subsurface soils 
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Table 4.2. Total height and root length of Rhizophora stylosa seedlings before and after treatments, and relative growth rate (n = 30). Data are 

presented as mean +/- standard deviation. 

Environment Total height (cm) RGR Length (cm) 

   Before After Difference (cm / d) Before After Difference 

Control 46.7 + 2.5 48.7 + 1.5 2.0 + 1.7 0.0005 + 0.0004 8.2 + 4.2 8.4 + 4.1 0.3 + 0.2 

Ni 25 µg/g 54.0 + 7.0 55.1 + 5.4 1.1 + 1.7 0.0003 + 0.0004 10.5 + 2.0 10.9 + 1.9 0.4 + 0.2 

Ni 55 µg/g 47.5 + 5.7 48.8 + 6.7 1.3 + 1.1 0.0003 + 0.0002 8.2 + 0.3 8.7 + 0.9 0.5 + 0.6 

Cu 70 µg/g 50.4 + 9.2 51.0 + 8.8 0.6 + 0.7 0.0002 + 0.0002 9.1 + 3.2 9.6 + 3.4 0.5+ 0.2 

Cu 280 µg/g 48.0 + 3.1 48.8 + 3.3 0.8 + 1.0 0.0002 + 0.0003 10.9 + 0.6 11.0 + 0.6 0.1 + 0.0 

ASS 46.8 + 5.7 47.1 + 5.2 0.3 + 0.6 0.0001 + 0.0002 8.2 + 0.3 8.3 + 0.5 0.1 + 0.5 

ASS + Ni 25 µg/g 47.5 + 5.9 48.5 + 5.8 1.0 + 1.7 0.0003 + 0.0004 9.2 + 1.8 9.2 + 1.4 0.0 + 0.4 

ASS + Ni 55 µg/g 48.8 + 1.0 49.0 + 1.0 0.2 + 0.3 0.0001 + 0.0001 9.1 + 0.7 9.1 + 0.7 0.1 + 0.0 

ASS + Cu 70 µg/g 46.0 + 3.6 46.2 + 3.4 0.2 + 0.3 0.0002 + 0.0002 10.4 + 2.0 10.5 + 1.9 0.2 + 0.2 

ASS + Cu 280 µg/g 45.8 + 2.5 46.2 + 2.5 0.3 + 0.6 0.0001 + 0.0001 8.5 + 0.8 8.6 + 0.9 0.1 + 0.1 

 

Table 4.3. ANCOVA results for relative growth rate, environments, and survival days (n = 30).  

Variables df F p 

Relative growth rate: 

Environment 

Survival days 

Environment*Survival days 

 

Root length addition: 

Environment 

Survival days 

Environment*Survival days 

 

6 

1 

6 

 

 

6 

1 

6 

 

0.071 

4.204 

0.137 

 

 

0.071 

4.204 

0.137 

 

0.998 

0.061 

0.989 

 

 

0.968 

0.235 

0.908 

df: degrees of freedom, F: value to test of null hypothesis, p : significance values, * : interaction between the variables 
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Regression analysis (Table 4.4) shows that RGR did not correlate with metal concentration in 

subsurface soils (p > 0.05). There was no relationship between the values of metal concentration 

in subsurface soils on root length difference of the seedlings (p > 0.05), except on the Fe 

concentration in subsurface soils (r = -0.358, r
2
 = 0.128, n = 30, p = 0.052). There was an 

indication of the negative influence of Al in subsurface soils on the addition of root length, 

although it was not strong (r = -318, r
2
 = 0.101, n = 30, r = 0.052).  

Table 4.4. Result of regression analysis between relative growth rate, root length difference, and metal 

concentrations in subsurface soils (n = 30). Bold values indicate that the variables have p value that is 

closer to 0.05 

Variable: p r 

RGR:     

Fe subsurface soil concentration 0.081 -0.324 

Al subsurface soil concentration 0.136 -0.279 

Ni subsurface soil concentration 0.915 0.020 

Cu subsurface soil concentration 0.161 -0.263 

    

Root length addition:   

Fe subsurface soil concentration 0.052 -0.358 

Al subsurface soil concentration 0.087 -0.318 

Ni subsurface soil concentration 0.929 0.017 

Cu subsurface soil concentration 0.073 -0.332 

p : significance values, r : correlation values  

Principal Component Analysis shows that there were three groups with certain geochemical 

aspects involved (Figure 4.4). The non-ASS environment cluster (Group A) was characterised by 

higher pH, lower Eh, lower sulfur species, and higher sand content. This group had a higher 

number of survival days. Another sub-group of non-ASS environment (Group B) had higher 

organic content and sulfide concentrations. Acid sulfate soils environments (Group C) are 

characterised by higher Eh, sulfate and sulfur concentrations, higher silt/clay percentages, and 

lower pH. Acid sulfate soil environments had a lower survival time.  

This characterisation was supported by Pearson correlation analysis, which shows that the 

number of survival days increases with higher pH, lower redox potential, higher sand percentage, 

lower sulfate and SHCl, and higher sulfide concentrations (Table 4.6). However, the correlation 
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analysis does not support the sub-group in ASS (Group B) and shows that there was no 

correlation between organic contents and other variables, including sulfide.  

 

 

 
 

 

 

 

Figure 4.4. Principal Component Analysis of the geochemical factors affecting the establishment of  R. 

stylosa seedlings. Environments: 1. Control; 2. Ni 25µg/g; 3. Ni 55µg/g; 4. Cu 70 µg/g; 5. Cu 280 µg/g; 6. 

ASS; 7. ASS+Ni 25µg/g; 8. ASS+Ni 55 µg/g; 9. ASS+Cu 70 µg/g; 10. ASS+Cu 280 µg/g. Notes: the boxes 

represent the type of environments. The concentration of metals in subsurface soils are written by the 

element name followed by ―sed conc‖ 

 

B 

C 
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Table 4.5. Geochemical data on the experimental environments (n=30). Data are presented as mean +/- standard deviation. 

Environment pH Eh Sand Silt/clay Organic Sulfide Water-soluble sulfate SHCl 

      (%) (%) (%) (mg/l) (mg/l) (%) 

Control 6.62 + 0.23 -250 + 55 91.30 + 2.10 6.90 + 2.10 3.30 + 0.13 1.24 + 0.90 0.86 + 1.01 0.14 + 0.02 

Ni 25 µg/g 6.65 + 0.06 -288 + 7 90.50 + 1.42 9.47 + 1.42 4.47 + 0.54 0.50 + 0.14 0.48 + 0.25 0.24 + 0.09 

Ni 55 µg/g 6.64 + 0.05 -285 + 12 94.33 + 1.08 5.67 + 1.08 3.50 + 0.14 0.30 + 0.03 0.29 + 0.21 0.16 + 0.03 

Cu 70 µg/g 6.74 + 0.05 -280 + 22 91.17 + 2.45 8.83 + 2.45 3.25 + 0.07 2.74 + 0.19 0.63 + 0.04 0.14 + 0.02 

Cu 280 µg/g 6.42 + 0.19 -213 + 51 90.80 + 0.96 9.20 + 0.96 4.93 + 1.62 8.60 + 7.51 0.29 + 0.10 0.15 + 0.01 

ASS 5.54 + 0.79 -37 + 119 66.63 + 5.39 33.37 + 5.39 3.27 + 0.28 0.16 + 0.01 5.70 + 3.66 0.35 + 0.03 

ASS + Ni 25 µg/g 5.54 + 0.55 -18 + 89 71.87 + 3.27 28.13 + 3.27 4.09 + 1.31 0.09 + 0.04 9.41 + 4.59 0.21 + 0.07 

ASS + Ni 55 µg/g 5.36 + 0.44 -33 + 110 67.60 + 0.96 32.40 + 0.96 3.12 + 0.41 0.08 + 0.04 11.42 + 2.09 0.34 + 0.03 

ASS + Cu 70 µg/g 4.78 + 0.42 178 + 25 70.03 + 1.77 29.97 + 1.77 3.30 + 0.37 0.06 + 0.05 7.45 + 1.33 0.40 + 0.03 

ASS + Cu 280 µg/g 5.31 + 0.42 143 + 136 72.63 + 0.67 27.37 + 0.67 5.06 + 1.31 0.09 + 0.05 9.75 + 2.10 0.33 + 0.03 

                  

         

 
Table 4.6. Correlation between survival days and geochemical factors (n=30) 

  Survival days pH Eh Sand Silt Organic Sulfide Sulfate SHCl 

Survival days 1 .695** -.664** .464** -.464** 0.097 .448** -.602** -.410* 

pH  1 -.956** .859** -.859** 0.083 .755** -.901** -.796** 

Eh   1 -.822** .822** -0.016 -.729** .875** .780** 

Sand    1 -1.000** 0.095 .722** -.915** -.792** 

Silt     1 -0.095 -.722** .915** .792** 

Organic      1 0.261 -0.116 -0.152 

Sulfide       1 -.802** -.684** 

Sulfate        1 .734** 

SHCl                 1 
** Correlation is significant at the 0.01 level (1-tailed).    * Correlation is significant at the 0.05 level (1-tailed). 
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4. Discussion  

The type of the environment, ASS versus non-ASS, significantly affected the establishment 

of R. stylosa seedlings in experimental conditions. Higher pH, lower Eh, lower sulfate 

concentrations and HCl extractable sulfur contents in non-ASS environments provided a 

good environment for mangrove seedlings to live. Similar pH and redox conditions have 

frequently been recorded in other mangrove research, underlining the significant impact that 

geochemical variables have on the establishment of mangroves. Other research has concluded 

that mangroves usually occur in neutral or near neutral pH environments (Kusmana, 1990, 

Ramanathan et al., 1999, Kitaya et al., 2002, Bosire et al., 2003) and reducing environments 

(McKee, 1993, Matthijs et al., 1999, Gleason et al., 2003).  

In contrast, ASS environments that had opposite geochemical conditions to non-ASS 

environments that inhibited mangrove seedlings from establishing. The addition of sulfuric 

acid into the experimental medium that formed an ASS environment created high 

concentrations of water-soluble sulfate, and increased the percentages of SHCl in the soils. In 

such acid conditions, exposure of soils to air increased the redox potential (Oxmann et al., 

2010), and released high levels of metals and sulfate through oxidation of iron sulfide (Dent, 

1986, Fitzpatrick et al., 1998, Cook et al., 2000, Macdonald et al., 2007), which in turn 

negatively affected the establishment of mangrove seedlings under the ASS mediums. This 

process was supported by the results of the Pearson correlation (Table 4.6). This correlation 

analysis shows that there were high associations between low survival days and high acidity 

(low pH), greater redox potential and high of both water-soluble sulfate and HCl-extractable 

sulfur. The Pearson analysis also confirms that low survival days was not caused by high 

water-soluble sulfate and extractable sulfur but high acidity of the ASS environment. This 

argument is represented by strong correlation amongst low pH, high water soluble sulfate and 

HCl extractable sulfur.  

The concentrations of sulfide in all environments were categorised as low compared to the 

values around R. mangle stand areas in Hummingbird Cay, Exuma, Bahamas, which varied 

between 0–133 mg/l (Nickerson and Thibodeau, 1985), and to the sulfide values (2 mM, or 

64 mg/l) where mangrove seedlings encountered stress symptoms, damaged root cell 

membrane, causing stomatal closure and decreased photosynthetic gas exchange (Youssef 

and Saenger, 1998). Strong correlations amongst sulfide, sulfate, pH, Eh and survival days in 
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the Pearson correlation analysis explain that under acidic conditions the oxidative ASS 

environments were dominated by high concentrations of sulfate compared to sulfide, in 

which the acid condition led to low survival days. 

Strong correlations between grain size (sand, and silt/clay plus very fine sand) and 

establishment of seedlings (survival days) were due to the influence of the experimental 

mediums rather than to natural geochemical factors. Non-ASS mediums contained sandy 

soils from Myora, while ASS medium contained higher silt/clay and very fine sand from 

Brighton. 

Despite its effect on the seedlings‘ establishment, the type of environment did not 

significantly affect either the RGR or the final values of root length of the seedlings. The 

number of survival days did not affect either the RGR or final root length of the seedlings in 

various environments. 

High metal concentrations in soils in the experimental environments did not affect either the 

RGR or increase in root length, with the exception of the effect of Fe on decreased root 

length. One reason for the decrease in root length may be that the effect of the total 

concentration of Fe in soils on root length was greater than the Al and Ni concentration, due 

to the excessive concentration of Fe compared to the concentrations of Al and Ni in the ASS 

subsurface soils.  

The presence of Fe subsurface soil concentration enhances Al accumulation in the seedlings. 

The accumulation of Al in tobacco (Nicotiana tabacum L.), leading to lethal conditions, only 

occurred when ferrous existed in the same nutrient medium. The existence of ferrous 

enhances the production of peroxidation lipids and causes a loss of membrane integrity. The 

disintegration of membranes causes Al to bind to oxygen donors on the surface of plasma 

membranes and poisons the plant (Ono et al., 1995, Chang et al., 1999). Similar conditions 

inhibit the growth, and cause leaf necrosis of Phragmatis australis (Nguyen et al., 2005). In 

this experimental study of mangrove growth there was an indication of the influence of Al on 

the decrease in root length, although it was not strong (see Table 4.4); this supports the role 

of Fe soil concentration in the Al effect. 

Another factor that can explain the decrease in root length is the effects of acid associated 

with the presence of high Fe concentration in mid soils. The acid may come from the leachate 
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of Fe minerals (e.g. jarosite) due to watering (artificial tidal), or from the addition of acid 

(sulfuric acid) during the acidification process that releases Fe from the soils‘ minerals. This 

is supported by high levels of sulfur species and Fe in the soils of ASS environments (see 

Table 4.5 and Appendix A.1, Table A.1.1. pp. 145).  

The amount and the period of exposure, as well as exclusion mechanisms, might be 

responsible for the absence of adverse impacts on the final total height and root length caused 

by the experimental conditions. High Al concentrations (up to 29 mg/l) in acid mineral soils 

at Sheriffmuir, Scotland (pH 4.3 + 0.11) did not have a severe effect on the root development 

of Birch seedlings (Betuala pendula Roth). In contrast, exposure to low Al concentrations (2–

5 mg/l) caused inhibition of root elongation in that type of soil (Kidd and Proctor, 2000). In 

this study, exposure of mangrove seedlings to high metal concentrations did not have a 

significant effect on seedlings. This suggests that mangroves are able to adapt high 

concentrations of Al. 

Low or no toxic effects on root development has been found in some Al-resistant varieties of 

maize (Zea mays L.) after long exposure to Al concentration (Gunsé et al., 2000, Kidd et al., 

2001, Barceló and Poschenrieder, 2002). These plants showed inhibition of root elongation 

immediately after they were exposed in 50 µM Al, but the root development recovered after 

few hours and gained comparable conditions to the control plants after 24 hours (Gunsé et al., 

2000, Kidd et al., 2001, Barceló and Poschenrieder, 2002). Such recovery  from root growth 

inhibition is interpreted as a shock response (Parker, 1995) and is revealed in both Al-

resistant and sensitive varieties of wheat (Barceló and Poschenrieder, 2002). Similar 

processes might also have affected the seedlings in the current study, where they faced loss of 

leaves earlier in the treatment, but then most of the seedlings in non-ASS environments 

recovered. 

Exclusion of metals from roots is responsible for the lack of effect on either final length or 

root length of the seedlings. This argument is supported by the evidences that the examined 

metals were accumulated in root tissues with limited distribution to aerial parts, particularly 

non-essential metal Al. The discussion regarding on the concentration of metals in mangrove 

seedlings tissues is discussed in the Chapter 5. Exclusion of Al from root tip or apex is one 

type of plant tolerance mechanism (Delhaize and Ryan, 1995, Delhaize et al., 1993, Barceló 
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and Poschenrieder, 2002, Kochian et al., 2004) and is also responsible for root development, 

as it prevents the accumulation of Al in the plant (Barceló and Poschenrieder, 2002).  

 

5. Conclusions 

The type of the environment significantly affected the establishment of R. stylosa seedlings in 

experimental conditions, where the number of seedlings survived in non-ASS environments 

is greater than in ASS environments. Higher pH, lower Eh, lower sulfate and HCl extractable 

sulfur in non-ASS environments provided a good environment for mangrove seedlings to live 

in. In contrast, ASS environments that have opposite geochemical conditions inhibit 

mangrove seedlings from becoming established.  

The type of environment did not affect either the values of seedlings‘ total fresh length or 

their root length. However, excessive concentrations of Fe compared to Al and Ni in 

subsurface soils negatively affected the increase in root length of the seedlings. The presence 

of Fe soil concentration enhances Al accumulation on the seedlings, which is shown by 

indications of the influence of Al on the decrease in root length growth, although it was not 

strong. 
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CHAPTER 5: THE BIOACCUMULATION AND TRANSLOCATION OF 

METALS IN RHIZOPHORA STYLOSA (GRIFF.) SEEDLING PARTS IN ACID 

SULFATE SOILS AND METAL ENVIRONMENTS:  

A LABORATORY EXPERIMENT 
 

1. Introduction 

The rehabilitation of mangroves in an Acid Sulfate Soil (ASS) environment potentially poses 

numerous problems, including high concentration of heavy metals. In this environment, 

aluminium and iron are released in significant amounts compared with other heavy metals 

(Lockhart, 1996, Cook et al., 2000, Preda and Cox, 2002, Macdonald et al., 2004). Other 

mobile metals such as nickel and copper are frequently found in elevated concentrations 

above the baseline in soil. Nickel concentrations, for instance, exceed the ANZECC standard 

compared to other trace metals observed in ASS-contaminated sites in the Logan estuary 

(Lockhart, 1996).  

Laboratory-based studies (Walsh et al., 1979, Thomas and Eong, 1984, MacFarlane and 

Burchett, 2002) as well as field studies (Saenger et al., 1990, Jones et al., 2000, MacFarlane 

and Burchett, 2000, MacFarlane et al., 2003, Zhang et al., 2007b) revealed that various 

species of mangrove seedlings show tolerance to high concentrations of metal exposure. 

Through the Bioconcentration Factor (BCF) analysis, seedlings appeared to accumulate 

higher levels of metals in root tissues compared to those in soils, and uptake a limited amount 

of metals in aerial parts, i.e. stem and leaf tissues (Walsh et al., 1979, Thomas and Eong, 

1984, Silva et al., 1990, Zheng, 1997, MacFarlane and Burchett, 2002, Alongi et al., 2003, 

Zhou et al., 2011). The BCF is a measurement of the ratio of a toxic substance in an organism 

relative to its environment (Jørgensen et al., 1998). The bioconcentration of various metals in 

different species of mangrove seedlings have been extensively assessed (see Table 5.1 and 

Table 5.2); however, the response of mangrove seedlings to acid sulfate soil conditions, 

particularly to Fe, Al, and Ni is poorly understood.  

Higher concentrations of Fe and Al were found in the pneumatophora of mature Avicennia 

marina in the ASS area in the Pumicestone region, Queensland, Australia (Preda and Cox, 

2002). However, nursery-grown mangrove seedlings that are transplanted into an ASS 

environment may behave differently from mature naturally grown mangroves that are well 
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established before the onset of ASS conditions. Therefore, a detailed understanding of the 

tolerance of mangrove seedlings to ASS conditions is important to achieve effective and 

successful rehabilitation.  

The mobility of metal also controls the distribution and accumulation of metals in mangrove 

tissues (MacFarlane, 2002). To assess the mobility of a metal, a translocation factor is usually 

measured. The Translocation Factor (TF) is determined by measuring the ratio between shoot 

(i.e.leaf) and root concentration (MacFarlane et al., 2007, Regvar and Vogel-Mikus, 2008).  

Zinc, the most mobile of all metals tested (Cu and Pb), accumulates to the highest 

concentration in leaf tissue of the mature A. marina, while other elements are accumulated to 

a limited degree (MacFarlane, 2002). Non-accumulation of Pb occurs in all parts of R. 

mucronata and very limited accumulation of Pb occurs in the parts of A. alba seedlings, with 

the exception of the roots for both species (Thomas and Eong, 1984). This indicates the low 

mobility of Pb. The TF of several metals can be seen in Table 5.1 and Table 5.2.  

This study examines the response of Rhizophora sytlosa seedlings to exposure to high 

concentrations of Fe, Al, Ni, and Cu, and is based on a laboratory study that mimics ASS 

conditions and environments with high metal concentration. Under these environments, the 

bioconcentration and translocation factors of those metals in stem, leaf, and root tissues were 

determined. The correlations between the concentration of metals in the root and subsurface 

soils were examined. Additionally, the geochemical factors that influence the concentration 

of metals in root tissues and subsurface soils as well as the geochemical process involved 

were evaluated. 

 

2. Methods 

2.1. Propagule and soil collection and treatment 

Mangrove propagules and soils were collected in Myora Springs, Stradbroke Island, south-

east Queensland based on the consideration that the site has a better environment in terms of 

water quality, metal levels and non-acid sulfate soils. The soils collected were for 

propagation, control and metal treatment mediums. 
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Table 5.1. The concentration of essential and non-essential metals in soils and Rhizophoraceae tissues, based on published works. 

Species Location Soils 

(µg/g) 

Stem conc 

(µg/g) 

Stem BCF Leaf conc 

(µg/g) 

Leaf BCF Root conc 

(µg/g) 

Root BCF TF 

 

Essential          

Fe:          

R. apiculata Tamil Nadu, India
1
 29,100   103.8 0.004    

R. mangle Rio de Janeiro, Brazil
6
 4856   37.2 0.008 1011 0.21 0.04 

R. mucronata Tamil Nadu, India
1
 29,101   140.2 0.005    

          

Mn:          

R. apiculata Tamil Nadu, India
1
 385        

R. mangle Rio de Janeiro, Brazil
6
 52   101 1.94 15.3 0.29 6.60 

R. mucronata Tamil Nadu, India
1
 385   391 1.02    

R. stylosa Yingluo Bay, China
9
 46.6   48 1.03 10 0.21 4.8 

          

Zn:          

R. mucronata Laboratory based
7
 10 ND ND 16.1 1.61 321.5 32.15 0.05 

 Laboratory based
7
 250 42.4 0.17 56.7 0.23 792.3 3.17 0.07 

 Tamil Nadu, India
1
 50   40.3 0.81    

R. apiculata Tamil Nadu, India
1
 50   16.8 0.34    

R. mangle Rio de Janeiro, Brazil
6
 18   7.2 0.4 19.9 1.11 0.36 

R. stylosa Western Australia
2
 29   6.6 0.23 15 0.53 0.43 

 North Australia
4
 53   26 0.48    

 Yingluo Bay, China
9
 47   5.9 0.13 6.2 0.13 0.95 

 Hainan Island, China
3
    5.7 0.2    
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Table 5.2. The concentration of essential and non-essential metals in soils and Rhizophoraceae tissues, based on published works (cont.) 

Species Location Soils 

(µg/g) 

Stem conc 

(µg/g) 

Stem BCF Leaf conc 

(µg/g) 

Leaf BCF Root conc 

(µg/g) 

Root BCF TF 

 

Cu:          

R. apiculata Tamil Nadu, India
1
 24   10.25 0.43    

R. mangle Rio de Janeiro, Brazil
6
 2.8   0.1 0.04 5.1 1.82 0.02 

R. mucronata Tamil Nadu, India
1
 24   19.9 0.83    

 E. India
5
 2.8   1.8 0.64    

R. stylosa Western Australia
2
 14   3.7 0.27 6.5 0.47 0.57 

 North Australia
4
 39   16 0.42    

 Yingluo Bay, China
9
 19   0.6 0.03 1.1 0.06 0.55 

 Hainan Island, China
3
    2.4 0.18    

Non essential:          

Ni:          

R. stylosa Yingluo Bay, China
9
 14.6   0.75 0.05 0.8 0.05 0.94 

          

Pb:          

R. mangle Laboratory based
8
 250 ND ND ND ND 758.1 3.03 ND 

 Rio de Janeiro, Brazil
6
 9.9   0.01 0 0.2 0.02 0.07 

R. mucronata Laboratory based
7
 50 ND ND 0.9 0.02 9.6 0.19 0.09 

 Laboratory based
7
 250 5.1 0.02 1 0.004 209.9 0.84 0.005 

 Tamil Nadu, India
1
 8

4
   12.61 1.58    

R. apiculata Tamil Nadu, India
1
 8

4
   12.23 1.53    

R. stylosa North Australia
4
 16   2.2 0.14    

 Yingluo Bay, China
9
 10   0.8 0.08 0.9 0.09 0.83 

 Hainan Island, China
3
    20 0.7    

          

Cd:          

R. mangle Laboratory based
8
 500 27.6 0.06 20.9 0.04 517.7 1.04 0.04 

R. stylosa Yingluo Bay, China
9
 0.077   0.15 1.95 0.25 3.25 0.6 

                    

1. (Agoramoorthy et al., 2008), 2. (Alongi et al., 2003), 3. (Lian et al., 1999), 4. (Saenger et al., 1990), 5. (Sarangi et al., 2002);
6
 (Silva et al., 

1990), 7. (Thomas and Eong, 1984), 8. (Walsh et al., 1979), 9. (Zheng, 1997). 
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Soils for ASS treatments were collected from the mangrove area around Brighton Park, Bramble 

Bay, southeast Queensland. This location is categorised as Potential Acid Sulfate Soil (PASS), 

where ASS occurs within five metres of the upper layer and has a proportion of oxidisable sulfur 

above the recommended ‗action level‘ in at least one soil layer (Ahern and McElnea, 2000). 

Seven-month-old seedlings that were harvested from a nursery were replanted into each of the 

larger experimental mediums. Nickel in the form of NiCl2 (by as much as 25 and 55 g/g) and 

Cu in the form of CuCl2 (by as much as 70 and 280 g/g) were applied to soils used for the 

mediums of control, metal treatments and ASS plus metal treatments. The concentrations were 

based on the trigger level and above high level of the recommended soil quality guidelines of 

ANZECC  standard  (ANZECC and ARMCANZ., 2000). Three replications  were applied in this 

experiment.   

 

2.2. Measurement  

Weekly analysis of water discharged during the first month was conducted to examine the total 

metals leachate from the experimental mediums. No preservation used since water samples were 

measured shortly after collection. Water samples were not filtered (Preda and Cox, 2001). Soil 

samples were oven dried at 85 
o
C for 48 hours (Ahern et al., 2004) and ground with ceramics 

mortar and pestle. Mangrove tissues were oven dried at 60
o
C for 24 hours (Defew et al., 2005, 

MacFarlane and Burchett, 2001). One g soil samples and plant tissues (leaf, stem and root) were 

digested with concentrated HNO3 and H2O2 (Khrisnamurty et al., 1976). Total metal of water, 

soils, and mangrove tissues samples were determined using ICP-OES. 

The subsurface soils were tested for pH and redox potential) using a water quality meter. Organic 

content was determined using LOI method (Heiri et al., 2001). Water soluble sulfate was 

determined by extracting water from soil samples with deionized water. The samples were 

shaked for 30 minutes, centrifuged and filtered using 0.45 m membrane (Page and Steinbock, 

2009). HCl-extractable sulfur (Tot SHCl) were determined by extracting soil with 4M HCl (1 : 40) 

(Ahern et al., 2004). Both extracted samples were further analysed for sulfate using the 

Turbidimetry method (APHA, 1999).  Porewater sulfide was analysed using the blue methylene 
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method, and determined using spectrophotometer (APHA, 1999). All measurements used three 

replications. 

2.3. Statistical analysis 

The General Linear Model (ANCOVA) was used to examine whether survival days affect the 

values of bioconcentration of metals in mangrove tissues in different environments. ANOVA 

was used to determine the differences between the values of Bioconcentration Factors (BCF) of 

metals in each part of the mangrove seedlings (root, leaf, and stem) within the environments. If 

there was a significant difference within the environments, a post hoc pairwise analysis was 

applied to compare sample means between the environments.  

One-tailed correlation analysis using the Pearson correlation was employed to test the 

relationship between metal concentrations in soils and roots. A Two-tailed Pearson correlation 

analysis was used to examine the correlation between metal concentration in the subsurface soils 

and the geochemical factors. 

 

3. Results 

3.1. Experimental conditions  

Weekly analysis of discharged water during the first month showed that very little, or 

undetectable amounts, of metals were washed out in ASS treatments, except for Fe. As a 

comparison, the concentration of artificial seawater used to supply the propagation is shown in 

Table 5.3.  

Table 5.3. The average concentration of metals in discharged water (n = 18). Data are presented as mean 

+/- standard deviation. 

Environment Concentration (mg/l) 

  Al Fe Ni Cu 

ASS 0.006 + 0.009 0.170 + 0.020 ND ND 

ASS + Ni 25 µg/g 0.006 + 0.009 0.240 + 0.020 0.010 + 0.010 ND 

ASS + Ni 55 µg/g 0.004 + 0.005 0.210 + 0.010 0.040 + 0.010 ND 

ASS + Cu 70 µg/g 0.002 + 0.04 0.310 + 0.010 ND 0.090 + 0.017 

ASS + Cu 280 µg/g 0.002 + 0.04 0.298 + 0.190 ND 0.040 + 0.010 

Artificial seawater ND ND 0.008 + 0.013 0.038 + 0.015  

     

ND = not detected 
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Artificial ASS generated elevated levels of metals, particularly Fe and Al, which were released 

through the acidification process in the soils. The Fe and Al concentrations in the artificial ASS 

soils increased around 22% and 37%, respectively, from the initial concentrations of Brighton 

soils that used in ASS mediums. The concentrations of Fe and Al in ASS soils were around 10 

times higher than in the Control soils that used soils from Myora (Table 5.4).  

 

 

a.                  b. 

                      
 

Figure 5.1. Soil colour at the beginning of the experiment. a). Typical non-ASS soils. b). Yellow jarosite 

existed at the surface of all artificial ASS soils. 

 

The acidification process elevated Ni and Cu about 17% and 29%, respectively from the initial 

un-acidified Brighton soils. The acidified soils contained Ni and Cu, which were 35% and 77% 

higher than in the Control soils (Table 5.4).  

Table 5.4. Comparison of metal concentrations obtained from Myora, Brighton, and acidified Brighton 

soils (n = 9). Data are presented as mean +/- standard deviation. 

Soil Concentration (µg/g) 

  Fe Al Ni Cu 

Myora 1227.54 + 180.37 982.75 + 10.96 7.75 + 0.35 1.75 + 0.35 

Brighton 13963.55 + 698.18  3681.5 + 217 10.00 + 2.47 5.50 + 0.24 

ASS 17905.6 + 2251.53 5850 + 120.2 12.00 + 3.89 7.75 + 0.35 
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During the experiment, the pH value of the ASS mediums increased close to neutral as a result of 

regular seawater supply. This is similar to natural conditions, where the pH of soils is influenced 

by the pH of water during high tide. 

 
3.2. Bioconcentration and translocation factors of metals in seedling parts 

ANCOVA results showed that the values of bioconcentration factors of metals in mangrove 

seedling parts were not affected by the survival days (p > 0.05; Appendix B, pp. 156-163). The 

bioconcentration factors of metals in mangrove parts are presented in Figure 5.2-5.5. See 

Appendix A.2, pp. 151–153 for their detail concentrations. The translocation factors of metals in 

examined environments are presented in Figure 5.6 and Appendix A.3, pp. 154).  

It becomes an important issue if the BCF or TF value is higher than 1, for this suggests that the 

seedlings accumulate more than the soils do. In this study, the BCF values were often less than 1 

even in a very high concentration of metals. This was because beyond a certain high 

concentration of metals, the level accumulated remained stable. 

3.3.1. Iron 

In general, the BCF values of all non-ASS environments were strongly different from all ASS 

environments (Figure 5.2). A similar conclusion was generated by ANOVA that showed that the 

BCF values of Fe concentration in stem, leaf and root tissues were significantly different within 

the examined environments (p < 0.05). ANOVA analysis showed more detailed results for stem, 

leaf and root tissues (Appendix C, pp. 165).  

There were three groups of BCF values of Fe in leaf tissues within the environments. The first 

group was for all environments, except Ni 25 g/g and Cu 280 g/g; the second group was 

consisted of ASS+Ni 55 g/g and all non-ASS environments, except Ni 25g/g. The third group 

was for all non-ASS environments. The BCF of Fe in root tissues was consisted of four groups, 

where two groups were dominated by ASS environments, while other two groups were consisted 

of non ASS (Figure 5.2). The first group was consisted of all non-ASS environments, except Cu 

70 g/g that were in a group of ASS. The second group was consisted of non ASS environment, 

except Ni 25 g/g and Cu 70 g/g. The third group was consisted of all ASS environments with 

addition of two non-ASS environments (ASS Cu 70 µg/g and Cu 280 µg/g). The fourth group  
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Figure 5.2. The error bars of bioconcentration factors of Fe in stem, leaf, and root tissues under different 

environments. Environments:1. Control; 2. Ni 25µg/g; 3. Ni 55µg/g; 4. Cu 70 µg/g; 5. Cu 280 µg/g; 6. 

ASS; 7. ASS+25 µg/g; 8. ASS+Ni 55 µg/g; 9. ASS+Cu 70 µg/g; 10. ASS+Cu 280 µg/g. Mean levels 

were compared using ANOVA, with all F values having 9, 20 df.  

 

The bioconcentration factors of Fe in stem tissues 

The bioconcentration factors of Fe in leaf tissues 

Environment 

Environment 

Environment 

The bioconcentration factors of Fe in root tissues 
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was consisted of all ASS (except ASS with addition of Cu 280 g/g), with addition of two non-

ASS environments (Cu 280 g/g, ASS, and ASS plus Ni 25 µg/g).  

The BCF values in stem and leaf were less than 1, while in root the values were higher than 1 in 

non-ASS, and less than 1 in ASS environments. 

3.3.2. Aluminium 

Although Figure 5.3 shows a wide range for Al BCFs in both stem and leaf tissues, ANOVA 

results show that the BCFs of Al found in stem and leaf tissue within all environments were very 

low (< 1) and similar (p > 0.05). The BCF values of Al in root tissues were significantly different 

within the environments (p < 0.05; Appendix C.5, pp. 171). In general, there were two groups of 

the BCFs of Al in root tissues within the examined environments.  The first group was consisted 

of, all environments, except Cu 280 µg/g.  The second group was consisted of non-ASS, except 

Cu 70 µg/g (Appendix C.6, pp. 172).  

3.3.3. Nickel 

The ANOVA results show that bioconcentration factors of Ni in stem, leaf and root tissues 

within environments were similar (p > 0.05; Appendix C.7, pp. 173), although Figure 5.4 shows 

ranges of concentration of Ni in the Control site in both stem and leaf tissues. The BCF values of 

Ni in stem and leaf were generally less than 1, while the BCF values in root tissues were 

generally higher than 1.  

3.3.4. Copper 

ANOVA results show that there was a significant difference in BCFs of Cu found in stem and 

leaf tissues within the environments (p < 0.05; Appendix C.8, pp. 174). In those tissues, Control 

had significantly different BCF values to other environments (Figure 5.5). The BCF values of Cu 

in stem and leaf tissues were less than 1, except in the Control environment. 
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Figure 5.3. The error bars of bioconcentration factors of Al in stem, leaf, and root tissues under different 

environments. Environments:1. Control; 2. Ni 25µg/g; 3. Ni 55µg/g; 4. Cu 70 µg/g; 5. Cu 280 µg/g; 6. 

ASS; 7. ASS+25 µg/g; 8. ASS+Ni 55 µg/g; 9. ASS+Cu 70 µg/g; 10. ASS+Cu 280 µg/g. Mean levels 

were compared using ANOVA, with all F values having 9, 20 df. 

The bioconcentration factors of Al in root tissues 

The bioconcentration factors of Al in leaf tissues 

The bioconcentration factors of Al in stem tissues 

Environment 

Environment 

Environment 



Chapter 5 

 

67 

 

            
     

 

 
 
Figure 5.4. The error bars of bioconcentration factors of Ni in stem, leaf, and root tissues under different 

environments. Environments:1. Control; 2. Ni 25µg/g; 3. Ni 55µg/g; 6. ASS; 7. ASS+25 µg/g; 8. ASS+Ni 

55 µg/g. Mean levels were compared using ANOVA, with all F values having 5, 12 df. 

The bioconcentration factors of Ni in root tissues 

Environment 
 

Environment 

The biocencentration factors of Ni in leaf tissues 

The bioconcentration factors of Ni in stem tissues 

Environment 
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Figure 5.5. The error bars of bioconcentration factors of Cu in stem, leaf, and root tissues under different 

environments. Environments:1. Control; 4. Cu 70 µg/g; 5. Cu 280 µg/g; 6. ASS; 9. ASS+Cu 70 µg/g; 10. 

ASS+Cu 280 µg/g. Mean levels were compared using ANOVA, with all F values having 9, 20 df. 

BCF of Cu in root tissues 

BCF of Cu in leaf tissues 

Environment 
 

BCF of Cu in stem tissues 

Environment 
 

Environment 
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ANOVA results also show that the BCF values of Cu in root tissues were different in the 

different environments (p < 0.05; Appendix C.8, pp. 174). There were two groups: The first 

group consisted of all environments, except ASS+Cu 280 g/g, and the other group consisted of 

all environments, except Cu 70 g/g (Figure 5.5). The BCF values of Cu in root tissue were 

higher than 1. 

 
Table 5.5. Summary of average bioconcentration factors of metals in mangrove tissues within the 

examined environments 

  Bioconcentration Factor 

Metal Non-ASS Environments ASS Environments Value 

  Control Metal Addition ASS Metal Addition Comparison*  

Stem:       

Fe < 1 < 1 < 1 < 1 ASS lower 

Al < 1 - < 1 - Similar - ASS higher 

Ni > 1 < 1 < 1 < 1 Similar 

Cu      > 1 < 1 < 1 < 1 Similar 

        

Leaf:       

Fe < 1 < 1 < 1 < 1 ASS lower 

Al < 1 < 1 < 1 < 1 Similar - ASS higher 

 Ni      > 1 < 1 < 1 < 1 Similar 

Cu > 1 < 1 < 1 < 1 Similar 

        

Root:       

Fe > 1 > 1 > 1 < 1 ASS lower 

Al < 1 - < 1 < 1 ASS lower 

Ni > 1 > 1 > 1 > 1  Similar - ASS lower 

Cu > 1 > 1 > 1 > 1 Similar - ASS higher 

      

 Value comparison represents the comparison between non-ASS and ASS mediums 

 

 

The translocation factors of Fe, Al, Ni and Cu in all environments low (< 1) (Figure 5.6, Figure 

5.7, and Appendix A.3, pp. 154). 
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Figure 5.6. The error bars of translocation factors of Fe and Al under different environments. 

Environments:1. Control; 2. Ni 25µg/g; 3. Ni 55µg/g; 4. Cu 70 µg/g; 5. Cu 280 µg/g; 6. ASS; 7. ASS+25 

µg/g; 8. ASS+Ni 55 µg/g; 9. ASS+Cu 70 µg/g; 10. ASS+Cu 280 µg/g. 
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Figure 5.7. The error bars of translocation factors of Ni and Cu under different environments. 

Environments:1. Control; 2. Ni 25µg/g; 3. Ni 55µg/g; 4. Cu 70 µg/g; 5. Cu 280 µg/g; 6. ASS; 7. ASS+25 

µg/g; 8. ASS+Ni 55 µg/g; 9. ASS+Cu 70 µg/g; 10. ASS+Cu 280 µg/g. 
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3.3. Factors influencing metal concentrations in roots and soils  

The concentrations of Fe in roots correlated positively with the concentration of Fe and Al in the 

soils (p < 0.05). There was an indication of the influence of Al soils on the concentration of Al in 

root tissues, although the correlation was not strong. Concentrations of Al in the root did not 

correlate with the soil concentration (p < 0.05). Both Ni and Cu concentrations in the root had 

strong correlations with their concentrations in the soils (p < 0.01) (Table 5.6). 

Table 5.6. Pearson matrix correlation between metal concentrations in root tissues and subsurface 

soils (n = 30) 

Roots 
Subsurface soils 

Fe Al Ni Cu 

Fe .533** .450* 0.207 -0.323 

Al 0.077 0.128 -0.159 0.194 

Ni -0.137 -0.193 .861** -.711** 

Cu 0.121 0.302 -.452* .875** 
**. Correlation is significant at the 0.01 level (1-tailed). 

*. Correlation is significant at the 0.05 level (1-tailed). 

 

Table 5.7. Pearson matrix correlation between metal concentrations in root tissues and subsurface soils, 

and geochemical factors (n = 30) 

Metal concentrations pH Eh LOI Sulfide Sulfate SHCl 

Fe 
Roots -0.217 0.148 -0.16 -0.297 .320* 0.247 

subsurface soils -.807** .767** -0.211 -.391* .891** .790** 

Al  
Roots -0.153 0.087 0.29 .345* 0.047 -0.174 

subsurface soils -.840** .852** -0.059 -.396* .924** .743** 

Ni  
Roots 0.208 -.334* -0.056 -0.271 -0.156 -0.078 

subsurface soils 0.036 -0.144 -0.094 -.361* 0.098 0.088 

Cu  
Roots -.364* .488** .375* .352* 0.220 0.173 

subsurface soils -.365* .463* 0.268 0.345 0.309 0.214 
**. Correlation is significant at the 0.01 level (1-tailed).  *. Correlation is significant at the 0.05 level (1-tailed). 

The pH, Eh, and sulfur species strongly influenced the concentration of major cations (Fe and 

Al) in soils in the experimental environments (p < 0.01, p < 0.05). Similar relationships between 

the concentrations of Fe and Al in root tissues occurred, although they were not strong.  

The pH and Eh also strongly influenced the concentration of Cu in both root tissues and 

subsurface soils (p < 0.05, p < 0.001). The concentrations of Cu in root tissues were strongly 

influenced by the organic content and sulfide (p < 0.05). There was also an indication of the 
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effects of these variables on the Cu subsurface concentrations. Influences of water-soluble 

sulfate and extractable sulfur on the concentrations of Cu in subsurface soils and root tissues 

were also indicated, but the relationships were not strong. The concentrations of Ni in root 

tissues were significantly influenced only by redox potential, although there was an indication of 

the influence of pH, and sulfide on the concentration of Ni in root tissues. Sulfide also negatively 

influenced the concentration of Ni in subsurface soils (Table 5.7). 

 

4. Discussion 

4.1. Bioconcentration factors and translocation factors of metals in seedling parts 

The results highlight the finding that the mangrove seedlings accumulated Fe, Al, Ni, and Cu 

mainly in roots, but these elements were distributed to a limited extent in stem and leaf tissues in 

response to high concentrations of metals, particularly in ASS conditions. Besides accumulation 

of metals in roots, large amount of metals bound to the cell wall during metal transportation was 

responsible for the higher concentration of metal in roots compared to shoots (Greger, 2004). 

Washing seedling roots using deionized water only (without using chemicals) might leave 

strongly bound mineral fraction, which counts to higher amount of total metal in roots. 

The ratio of metal levels in roots compared soils were high  (BCF were about 1 or greater than 1) 

in both non-ASS and ASS mediums, with the exception of the BCF values of Fe in addition of 

Ni 55 µg/g and addition of Cu  70 µg/g and 280 µg/g. The BCF values of metals in stem and leaf 

tissues in all environments were less than 1. Exception occurred in Control mediums where the 

BCFs values of Ni and Cu in stem and leaf tissues were greater than 1. The BCF values of Al in 

all parts seedlings in all different environments were less than 1.  

In general, increasing concentrations of Fe and Al in ASS environments due to acidification 

processes did not cause a significant increase of bioconcentration factor values in all examined 

seedling tissues. Lower BCF values of Fe apparently occurred in all tissues in ASS mediums 

compared to non-ASS. The BCF of Al in root tissues was also significantly lesser in ASS 

conditions than non-ASS mediums. Similarly, the addition of either Ni or Cu in both non-ASS 

and ASS environments did not significantly raise the bioconcentration values in the tissues.  
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As mentioned above, the BCF values of major elements Fe and Al in roots were lower (< 1) in 

ASS mediums when high concentrations of either Ni and Cu was added, suggesting that 

seedlings excluded Fe from roots in response to the environments with excessive metal 

concentrations.  The experiment results were in agreement with other studies on high metal 

concentration environments (Kathiresan and Bingham, 2001, MacFarlane et al., 2007, Bayen, 

2012, Wang et al., 2012). The development of iron-plaques on the surface of the roots, caused by 

the leakage of oxygen, plays an important role in mangrove tolerance in high metal environments 

through exclusion of metal from the root (Machado et al., 2005).   

Besides exclusion of metals from roots, metal regulation and excretion through leaves were 

mechanisms that occurred in to response high metal concentrations in the experimental mediums. 

Seedlings accumulated metals in stems and leave in steady amounts and increased in certain 

concentration in ASS mediums where metal concentrations were increased, but its ratio to soil 

concentrations were less than 1, suggesting the occurrence of tolerance mechanisms. The 

mechanisms were also observed in control medium, where Ni and Cu naturally existed in small 

amounts. In this medium, seedlings appeared to take up and accumulate Ni and Cu in leaf 

tissues, which is higher than soils concentrations.  When these metals were added into both non-

ASS and ASS mediums in high amounts, the seedlings retained these metals in roots (BCF > 1) 

and distributed them in limited amount to stem and leaf tissues (BCF < 1). In this experiment, 

this mechanism was strongly represented by seedlings in the uptake of essential element, Fe. 

Seedlings distributed Fe to stems and leaves in similar patterns to those accumulated in roots 

under different mediums. Metal regulation and excretion through leaves by mangroves were also 

reported by other researchers (MacFarlane and Burchett, 2000, MacFarlane et al., 2007, Bayen, 

2012). 

The preference of seedlings to take up essential elements and avoid non-essential metal was 

clearly shown by limited amount of the uptake of non-essential, Al, in both non-ASS and ASS 

environments. The seedlings strongly excluded Al from the roots, in contrast to high 

concentrations of Al in soils - including when Al levels in soils significantly increased as a fact 

of its nature as one of major elements released in acid environments. This was shown by the low 

BCF values of Al (< 1) in all seedling parts and in all environments with decreasing values in 

ASS environments. Nickel is also a non-essential element to plants, but its concentrations in soils 
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after Ni additions in either non-ASS or ASS environments were not as high as Al concentrations. 

Therefore, the BCF values of Ni in roots were greater (> 1) in all different environments. Low 

BCF values of metals in the stems and leaves and high BCF values of metals in roots have been 

reported in other studies (Walsh et al., 1979, Thomas and Eong, 1984, Silva et al., 1990, Zheng, 

1997, MacFarlane, 2002, MacFarlane et al., 2003, MacFarlane et al., 2007).  

Iron,aluminium, nickel and copper were transported to leaves with low mobility in all different 

environments (TF < 1). Iron was distributed to leaves in non-ASS mediums slightly mobile 

compared to those in ASS mediums. In contrast, translocations of Ni were slightly more mobile 

in ASS than those in non-ASS environments. The mobility of Cu in control medium was slightly 

higher than in other mediums. The mobility of Al in different mediums was similar, except for 

the slightly higher in TF value in ASS medium with Ni addition. However, the differences in the 

values were insignificant. Low values of TF support the BCF results that R. stylosa seedlings 

strongly excluded metals and transported them in limited amounts to prevent excessive metal 

uptake into the seedlings part, which can cause toxicities. Low TF values of metals found in this 

study are similar to those previously conducted in both field and laboratory-based studies (Walsh 

et al., 1979, Thomas and Eong, 1984, Silva et al., 1990, Zheng, 1997, Alongi et al., 2003, 

MacFarlane et al., 2007).   

 

4.2. Factors influencing metal concentrations in roots and soils 

As commonly observed in other studies (Walsh et al., 1979, Thomas and Eong, 1984, 

MacFarlane and Burchett, 2002, MacFarlane et al., 2003, MacFarlane et al., 2007), the 

concentrations of examined metals in roots increased as the metal concentrations in the 

environments increased. However, the relationships of Al in these compartments were not strong 

(Table 5.6). Negative correlations between the concentrations of Ni and Cu in the mediums as 

shown in Table 5.5 were also due to the addition of these metals into the different mediums and 

were not driven by geochemical factors, i.e. artificial acidification. 

The Pearson correlation analysis (Table 5.7) shows that the concentrations of metals in roots and 

soils were influenced by similar geochemical conditions, although correlation between 

geochemical condition and metal concentrations in roots was not as strong as that in soils. Weak 
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or opposite correlations shown in the correlation analysis indicated that ion exclusion and 

selective phenomenon occurred in the experiment environments. This analysis confirms that the 

uptake of metals by seedlings was restricted to a certain level, at which the concentration then 

leveled off due to the response of high concentration of metals in soils as explained in subsection 

4.1. Weak and opposite correlations between geochemical factors and Al concentrations in roots 

compared to its correlation to Al levels in soils shown in Pearson matrix correlation (Table 5. 6) 

also support the argument that mangrove seedlings took the non-essential metals, Al, and Ni to 

limited levels and excluded from roots. Adsorption of metal complexes with organic matter and 

sulfide on roots also influenced the correlations. 

Strong positive correlations between metal concentrations (particularly the major metals, Fe and 

Al) in soils and both water-soluble sulfate and HCl extractable sulfur levels, and negative 

correlation between metal concentration and sulfide concentrations, shown in Table 5.6, 

describes the experiment conditions, ASS and non-ASS mediums. ASS mediums contained a 

significant amount of sulfuric acid led to a highly acidic environment. In this low pH and higher 

redox potential condition, rapid oxidation of soil minerals resulted in high concentrations of Fe 

and Al in the environments (Dent, 1986, Fitzpatrick et al., 1998) as well as elevation of trace 

metals (Fitzpatrick et al., 1998, Cook et al., 2000, Macdonald et al., 2004). 

Non-ASS environment had the contrast environments. The increase of metal concentrations in 

soils increased the opportunity for these metals to be adsorbed onto seedling roots, or for uptake 

by the seedlings. However, the seedlings took metals only to a certain limited concentrations in 

order to prevent toxicity in such excessive metal environments, which explains the contrasting 

relationships between the influence of geochemical conditions and the concentration of metals in 

soils and roots. 

The presence of Cu-sulfide precipitation around the root areas is supported by the results of 

Pearson correlation analysis which show that the concentrations of Cu in the root tissues were 

correlated to the sulfide concentration and organic content in the soils. In non-ASS environments 

that had reducing environments (low Eh), precipitation of metal sulfide tends to occur due to 

reduction of sulfate to sulfide (Xiong and Lu, 1993, Antoniadis et al., 2006, Prasad et al., 2006) 

by microorganisms through organic decomposition (Berner, 1970) Complexation of Cu with 
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organic matter tends to occur under reducing condition (MacFarlane et al., 2003). This condition 

leads to the adsorption of Cu sulfide on the root area (Walsh et al., 1979, Silva et al., 1990, Clark 

et al., 1997, Saenger et al., 1990, Lacerda, 1998). This argument was also supported by the PCA 

results presented in the previous chapter (Figure 4.4), where seedlings in non-ASS mediums with 

addition of Cu 280 µg/g were characterised by high Cu concentration in soil, sulfide level and 

organic content (Group B). High level sulfide in this medium also encouraged Al sulfide 

complex to formed and be adsorbed onto the roots, which was confirmed in the Pearson 

correlation analysis (Table 5.7) with strong relationship, and indicated in the Table A.1.4 in the 

Appendix A, which shows that the highest concentrations of Al in roots existed in non-ASS 

medium with addition of Cu 280 µg/g.  

 

5. Conclusions 

The concentrations of metals in the soils influenced metal concentrations in the root tissues of R. 

stylosa seedlings. However, in excessive metal concentrations, particularly under ASS 

environments, R. stylosa seedlings retained metals at the root, and limited the uptake of metals to 

aerial parts to prevent toxicities. This type of response was indicated by the low bioconcentration 

factor of metals in stem and leaf tissues and high BCF values in root tissues. Low 

bioconcentration factor values in the stem and leaf tissues were supported by the fact that the 

translocation factor values of metals were low, which indicates a low mobility as a strategy to 

avoid excessive uptake of metals into seedling bodies.  

High concentrations of metals, particularly major elements Fe and Al, in soils were associated 

with low pH, oxidative environments, high sulfate and extractable sulfur that were established in 

ASS mediums. The concentrations of metals in roots and soils were influenced by similar 

geochemical conditions, but their correlations in roots were not as strong as those in soils. Weak 

or opposite correlations shown in the correlation analysis suggested that exclusion strategies and 

selective strategy are in response to excessive metal concentrations and to avoid non-essential 

elements occurred in the experiment environments. Adsorption of metal complexes with organic 

matter and sulfide on roots also influenced the metal correlations with geochemical factors. 
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CHAPTER 6: THE GEOCHEMICAL CHARACTERISTICS OF ACID SULFATE 

SOILS AND THEIR EFFECTS ON THE ESTABLISHMENT AND GROWTH OF 

MANGROVE SEEDLINGS IN ABANDONED PONDS  
 

 

1. Introduction 

The restoration of mangrove ecosystems in abandoned ponds that are unsuitable for aquaculture 

is important to regain mangroves‘ function. One issue that has been identified as responsible for 

the failure of some mangrove restoration projects is ASS (Lewis et al., 2006, Wolanski, 2006). 

Additionally, there is some evidence that mangrove seedlings have been affected by ASS in 

some abandoned ponds (e.g. in Tiwoho, North Sulawesi, Indonesia). Here, natural revegetation 

has occurred in abandoned ponds that have had their dikes breached, highlighting the role of 

suitable hydrology in mangrove restoration (Djamaluddin, 2006, Lewis et al., 2006, Kamali and 

Hashim, 2011). 

Suitable physical conditions are necessary for seedlings to become established (Duke et al., 

1998), including depth, frequency, and duration of flooding (McKee, 1993, McKee, 1995a, 

McKee, 1995b, Field, 1998, Lewis, 2005, Kamali and Hashim, 2011). Hydrology has become 

the focus of attention for mangrove restoration projects ―as it controls the quantity, quality and 

timing of water entering the site‖ (Field, 1998), and plays a significant role in self-repair (natural 

recovery), or secondary succession (Lewis, 2005, Kamali and Hashim, 2011). 

Despite widespread knowledge of the role of hydrology in mangrove restoration, there is little 

research into the geochemistry in ASS areas that may be affected by hydrological factors. Tidal 

inundation influences many factors, such as redox potential and pH of the soils (McKee, 1995b) 

and this condition is made even more complex by the oxidation of pyrite, which involves a 

number of redox reactions and microbial activities (Nordstrom, 1982, Evangelou, 1995, Cook et 

al., 2004, Ward et al., 2004b). Therefore, knowledge about the geochemistry in ASS areas is 

important because it influences the establishment of mangrove seedlings.  

While the laboratory study identified some geochemical characteristics that mangrove seedlings 

require in various controlled environments (discussed in Chapter 4), this study seeks to answer 
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the question: In which geochemical conditions can mangrove seedlings establish naturally, 

and/or be replanted in abandoned aquaculture ponds?. To obtain a better understanding of the 

geochemical processes that affect the geochemical conditions and seedling responses in those 

areas, this study examines the interactions within the geochemical variables. 

Understanding the nature of natural revegetation is important, since it has many advantages, such 

as: providing the most appropriate species to occupy (Macintosh and Ashton, 2002), a low cost 

establishment in terms of nursery, labour and machinery; less soil disruption; and strong 

establishment of seedlings (Lewis et al., 2006).  

 

 

1. Study sites and methods 

2.1. Study sites and measurement 

The field study was conducted in the rainy season from July to December 2011 in six 

environments in an abandoned pond complex, and in one control area in Mare (04
o
51‘S, 

120
o
18‘E), district of Bone, province of South Sulawesi Selatan, Indonesia. Three seedlings were 

replanted in Site 1, located at the bank of a creek that was disturbed by ASS, and had no pre-

existing seedlings. A seedling was defined as being no more than one metre high, and without 

branches. Sites 2 and 3 were uninundated or poorly inundated sites that were strongly disturbed 

by ASS. To have sites that can act as ‗AASS control sites‘ and to allow comparison of a variety 

of geochemical conditions and mangroves density in other sites, no replantation was performed 

in these ‗unvegetated‘ sites. Sites 4, 5, 6, and 7 had pre-existing mangrove seedlings (see Table 

6.1). The density, establishment, and growth, which involved the height addition and relative 

growth rate of Rhizophoraceae seedlings, were determined from the replanted seedlings in Site 1 

and pre-existing naturally occurring seedlings in other sites.  

The density and survival rates of plants were estimated by counting, marking and measuring all 

individuals in six 1m x 1m plots randomly placed at each site. Plots were revisited at the end of 

the three-month period trial, and the same plants were examined. The plant height measured was 

the above ground height. The relative growth rate (RGR) of the seedlings was determined based 

on the height (Poorter and Garnier, 2007). 
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Table 6.1. Brief description of the field study sites 

Site Location Mangrove species present Description 

1  Abandoned ponds 

 At the bank of a 

 blocked small creek 

 

Replanted R. mucronata seedlings  Water circulation  

mainly from creek  

 

2  Abandoned ponds One seedling of mangrove fern 

(Acrostichum sp) 

 

 No tidal effect 

 Jarosite at the surface 

3  Abandoned ponds 

 Drain 

Some seedlings of mangrove ferns 

(Acrostichum sp) 

 

 Limited tidal effect 

 Jarosite at the surface 

4  Abandoned ponds 

 Near bank of another 

creek 

 Across site 2 of AASS 

 Mature (adult) and naturally 

occuring R. stylosa seedlings 

 Mature (adult), a few naturally 

occuring, and pre-existing replanted 

seedlings of R. mucronata 

 

Free circulation of creek and 

seawater tidal water 

5  Abandoned ponds 

 Near bank of the same 

creek as at Site 4 

 Mature (adult) R. stylosa, R. 

mucronata, A. marina, Sonneratia sp 

 Naturally occurring R. stylosa 

seedlings, and a few R. mucronata 

seedlings. 

 Pre-existing replanted seedlings of 

R. mucronata 

 

Free circulation of creek and 

seawater tidal 

6  Abandoned ponds 

 

 Mature (adult) R. stylosa and R. 

mucronata 

 Naturally occurring R. stylosa 

 seedlings and a few R. mucronata 

 seedlings 

 

Free seawater tidal effect 

through broken dykes 

7  At a beach outside 

abandoned ponds 

 Mature (adult) R. stylosa and R. 

mucronata 

 Naturally occurring R. stylosa 

seedlings and pre-existing replanted 

R. mucronata seedlings 

 

Free seawater tidal effect 

 

The study used three replications of porewater and 15 cm soil cores that were collected around 

mangrove seedlings at each site. The measurement including porewater sulfide, pH, pHfox, redox 

potential, organic content, water-soluble sulfate, SKCl, SPOS, grain size, and the colour of the soil 

from the soil core at + 15 cm depth. Porewater sulfide was analysed using the blue methylene 
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method, and determined using spectrophotometer (APHA, 1999).  pH, pHfox and redox potential 

of soils were determined using water quality meter. Determination of pHfox was similar to that of 

pH, but in the case of pHfox the soils were added with H2O2 to oxidise sulfides (commonly in 

pyrite form). Organic content was determined using LOI method (Heiri et al., 2001). The 

analysis of grain size of the soil was done using wet sieve analysis. 

Water soluble sulfate was determined by extracting water from soil samples with deionized 

water. The samples were shaken for 30 minutes, centrifuged and filtered using 0.45 m 

membrane (Page and Steinbock, 2009). The SP determines the sulfate contained in soils through 

oxidising the soils to generate maximum acidity from reduced sulfidic material (Ahern et al., 

2004). The SPOS estimates the net potential acid risk of the soil from the unoxidised sulfur 

compounds by determining the difference between SPOS and SKCl (White and Melville, 1993, 

Ahern et al., 2004). The analysis of SKCl, SP, SPOS followed Peroxide Oxidisable Combined 

Acidity and Sulfur (POCAS) method described by White and Melville (1993).   

Determination of the pyrite percentages of surface and subsurface (three replications) were 

measured through Titratable Sulfidic Acidity (TSA) analysis  (Konsten and Sarwani, 1990). The 

estimation of pyrite was based on the calculation: 

Pyrite = (TSA: 22,4 ) x 0,1 

 

2.2. Statistical analysis 

This research applied several statistical analyses, using Excel and SPSS 21 to assess the 

variability of geochemical interactions and their correlations. A normality test was performed, 

and data transformation was employed for non-normal variables. The transformation types 

depended on the type of skewness. Kruskal Wallis analysis was used to examine the difference 

between density and growth values in the study area.  

Principal Component Analysis (PCA) was employed to identify biogeochemical trends. 

Standardised regression was used to examine the relationship between the density, growth and 

other physical and geochemical variables. Pearson correlation was employed to identify the 

correlation and interaction between the physical and geochemical variables.  
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3. Results 

3.1. Biological measurement 

Table 6.2 shows that the highest seedling densities are in the Control site, as well as in Sites 6 

and 5, followed by Site 4 of abandoned ponds. The already existing seedlings in these sites 

survived during the three month examination period, therefore the density values remained stable 

(100% establishment), except for those in Site 1. A replantation of three R. mucronata seedlings 

in 3 m
2 

of Site 1 ended in a low survival rate, where only one seedling survived for the period 

(33.33%).  

The height of seedlings in the Control site increased about 3.50 cm in average, while the seedling 

height in Site 4, 5 and 6 increased about 2.00-2.33 cm during the examination period. The height 

of seedlings in Site 1 increased around 1.00 cm. The average RGR values of seedlings in Sites 4, 

5 and 6 were similar (0.0008-0.0009 cm/day) and close to that was the average value in Control 

site (0.0010 cm/day), which were higher compared to the RGR value in Site 1 (0.0001 cm/day).  

 

3.2. Geochemical conditions 

Table 6.3 shows that the average pH and pHfox ranges in the abandoned ponds complex were 

lower (5.47-7.04, and 3.41 and 6.33, respectively) than those in the Control site (7.37 and 6.14, 

respectively). The average pHfox values in the study sites were relatively high because of the 

rainy season and/or tidal effects. In survey time at the end of the dry season, the pHfox values in 

Site 2 (reservoir), sites at the banks of creeks (1, 4, and 5), and at Site 6 (abandoned ponds) were 

2.20, 4 - 6.60, and 4, respectively.  

The average redox potential values observed in the ponds complex were between -32 and 201, 

where Sites 1, 2, and 3 varied widely. The environments in Sites 1, 2, 3, 4, and 5 mostly had 

oxidised conditions, while Site 6 and the Control site environments were reduced. The average 

organic content in the abandoned ponds area was high (17.94–23.78%), except in Site 6, which 

had lower organic content (10.54%). This value was close to the average organic content in the 

Control site (12.47%).  
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Table 6.2. The density, establishment, and growth of mangrove seedlings in the study area (n=21). Data are presented as mean +/- standard 

deviation. 

Site Density (n/m
2
) Establishment ( %) Height (cm) RGR 

   Before After  Before After Before After Addition (cm/day)  

1 1.00  + 0.00 0.33 + 0.58 100.00 + 0.00 33.33 + 57.74 88.67 + 7.23 89.67 + 6.66 1.00 + 1.73 0.0001 + 0.0002 

2 NA NA NA NA NA NA NA NA 

3 NA NA NA NA NA NA NA NA 

4 1.67 + 0.58 1.67 + 0.58 100.00 + 0.00 100.00 + 0.00 33.00 + 7.00 35.33 + 6.35 2.33 + 1.15 0.0008 + 0.0005 

5 3.67 + 4.62 3.67 + 4.62 100.00 + 0.00 100.00 + 0.00 26.00 + 1.00 28.00 + 1.73 2.00 + 1.00 0.0008 + 0.0004 

6 4.33 + 5.77 4.33 + 5.77 100.00 + 0.00 100.00 + 0.00 24.67 + 4.16 26.67 + 4.16 2.00 + 0.00 0.0009 + 0.0002 

7 9.00 + 3.61 9.00 + 3.61 100.00 + 0.00 100.00 + 0.00 37.17 + 2.84 40.67 + 2.08 3.50 + 1.50 0.0010 + 0.0005 

         

 

 

Table 6.3. Subsurface layer soil properties and porewater sulfide of the study area (n = 21). Data are presented as mean +/- standard deviation. 

          Water-soluble       

Site pH pHfox Eh LOI sulfate SKCl SPOS Sulfide 

      (mV) (%) (%) (%) (%) (mg/L) 

1 5.83 + 0.48 3.54 + 0.78 71 + 177 23.78 + 2.78 1.93 + 2.19 0.82 + 0.72 2.38 + 0.18 0.23 + 0.08 

2 5.78 + 0.18 4.65 + 0.16  -32 + 85 22.08 + 5.51 1.60 + 0.20 0.44 + 0.02 2.58 + 0.24 0.59 + 0.06 

3 5.47 + 0.03 3.95 + 0.16 131 + 87 17.94 + 3.14 0.73 + 0.31 0.36 + 0.03 0.82 + 0.51 0.17 + 0.07 

4 5.57 + 0.13 3.41 + 0.46 201 + 14 22.16 + 4.09 2.47 + 0.81 0.77 + 0.34 2.14 + 0.45 0.22 + 0.03 

5 6.34 + 0.45 5.36 + 0.83 28 + 34 21.88 + 6.46 1.67 + 0.23 0.49 + 0.07 2.07 + 0.15 0.21 + 0.02 

6 7.04 + 0.22 6.33 + 0.04 4 + 12 10.54 + 0.72 0.80 + 0.53 0.32 + 0.01 0.93 + 0.34 0.18 + 0.01 

7 7.37 + 0.09 6.14 + 0.24  -129 + 46 12.47 + 10.07 1.07 + 0.23 0.29 + 0.05 1.53 + 0.19 0.19 + 0.02 
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The average values of water-soluble sulfate, KCl extractable sulfur, and peroxide oxidisable 

sulfur in the ponds complex were higher (0.80-2.47%, 0.32-0.82%, 0.82-2.58%, respectively) 

compared to the values in the Control site (1.07%, 0.29%, and 1.53%, respectively). Short ranges 

of average sulfide values found in the complex were between 0.17–0.59 mg/l, and higher values 

were observed in Site 2. The average sulfide value in the Control site was 0.19 mg/l. 

The subsurface soils in the study area consisted of silt, clay and very fine sand texture (60.80–

94.47%) with grey to dark soil colours. Orange or yellow combined with the main grey soil 

colours in the sub layers of Sites 4 and 6, while orange color in dark soils with peat or organic 

matter existed in Sites 1, 2, and 3 in the abandoned ponds complex (Table 6.4).  

In general, the soil environments in the abandoned ponds complex were degraded due to ASS, 

except Site 6. Site 6, that was largely affected by tidal inundation due to its location, had similar 

subsurface soil properties to those in the Control site, and was significantly different compared to 

other sites located in the abandoned ponds complex.  

 
Table 6.4. Average grain size and soil colour (n = 21). Data are presented as mean +/- standard deviation. 

Site Silt, clay, very fine sand Sand Description 

  (%) (%)   

1 60.80 + 16.81 39.20 + 16.81 dark grey, orange + organic 

2 80.57 + 5.36 19.43 + 5.36 black, orange + organic 

3 75.20 + 7.36 24.80 + 7.36 dark grey, orange + organic 

4 73.90 + 9.13 26.10 + 9.13 yellowish grey  + fine root 

5 81.77 + 6.93 18.23 + 6.93 grey, orange + organic 

6 94.37 + 0.40 5.63 + 0.40 yellowish grey + fine root 

7 92.47 + 2.76 7.53 + 2.76 light grey  

    

 

However, the average percentage of pyrite in subsurface soils of Site 6 (3.26%) was different 

compared to the Control site (1.04%) (Table 6.5), and was closer to those in other sites in the 

abandoned ponds complex (1.52–5.35%). The average pyrite percentages in surface soils in site 

6 were relatively lower (1.04%) and were between the range of the Control site value (0.61%) 
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and other abandoned pond areas (1.32–3.11%). The characteristics of the sites are described in 

section 3.4. Principal Component Analysis (PCA).  

 

Table 6.5. Percentage of pyrite in soils (n = 21). Data are presented as mean +/- standard deviation. 

Site 

Pyrite (%) 

 

Top Sub layer 

1 2.53 + 2.85 2.55 + 0.41 

2 2.01 + 1.33 3.49 + 0.53 

3 3.11 + 1.61 1.52 + 0.43 

4 1.80 + 0.51 4.25 + 2.50 

5 1.32 + 0.42 5.34 + 2.00 

6 1.04 + 0.10 3.26 + 2.87 

7 0.61 + 0.58 1.04 + 0.20 

   

Noted: The Titratable Actual Acidity, Titratable Potential Acidity, and Titratable Sulfidic 

Acidity values are presented in Chapter 7. 

 

3.3. Geochemical correlation and interactions 

The Kruskal Wallis test shows that the density, establishment and growth values amongst sites 

are significantly different (p < 0.05). There are two groups of density, establishment, and growth 

in the study area. The first group is Site 1, 2 and 3. The second group is Sites 4, 5, 6 and 7. The 

characteristics of the groups are presented in the next section. 

The physical and geochemical variables in subsurface soils were strongly correlated with each 

other (Table 6.6). The pH strongly correlated to pHfox. Both pH and pHfox strongly correlated to 

redox potential, organic content, water-soluble sulfate, KCl extractable sulfur, peroxide sulfur, 

and silt/clay values. The pHfox also strongly correlated to peroxide oxidisable sulfur.  

Water-soluble sulfate, extractable sulfur and peroxide sulfur strongly correlate with each other. 

The variables also correlate to organic content and redox potential, except for peroxide 

oxidisable sulfur, which does not correlate to redox potential. Sulfide correlates only to peroxide 

oxidisable sulfur. The amount of silt/clay strongly correlates to all measured variables, except for 

peroxide oxidisable sulfur and sulfide. 
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Table 6.6. Pearson correlation analysis of the geochemical variables (n=21) 

 

  

pH pHfox Eh LOI 

Water-

soluble 

SO4 SKCl SP SPOS Sulfide SiltClay 

           

pH 1 .788
**

 -.730
**

 -.609
**

 -.488
**

 -.576
**

 -.434
**

 -.276 -.148 .659
**

 

pHfox  1 -.731
**

 -.613
**

 -.505
**

 -.597
**

 -.464
**

 -.305
*
 -.084 .625

**
 

Eh   1 .565
**

 .626
**

 .645
**

 .394
**

 .190 -.037 -.574
**

 

LOI    1 .548
**

 .608
**

 .626
**

 .517
**

 .133 -.564
**

 

Water-soluble SO4     1 .763
**

 .622
**

 .427
**

 .181 -.464
**

 

SKCl      1 .742
**

 .447
**

 .026 -.559
**

 

SP       1 .931
**

 .297 -.432
**

 

SPOS        1 .387
*
 -.278 

Sulfide         1 .073 

Silt/Clay          1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed 
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The density, establishment, and growth of mangrove seedlings are positively correlated with both 

field and oxidisable pH (p < 0.05). The density of seedlings have a negative correlation with their 

Eh (p < 0.01) (Table 6.7).  

The sulfur species, i.e. water-soluble sulfate, SKCl and SPOS do not affect the density, 

establishment, or growth of the seedlings (p > 0.05). However, sulfide negatively correlates to 

establishment and growth (p < 0.05). The growth correlates to silt, clay and very fine sand soil 

textures (p=0.051, r=0.431). 

 

Table 6.7. The relationships between density, growth and geochemical factors (p < 0.05, n = 21) 

Variable p r 

Density 

pH 

pHfox 

Eh 

 

 

0.003 

0.003 

0.034 

 

 

0.709 

0.609 

-0.463 

 

Establishment 

pH 

pHfox 

Sulfide 

 

Growth 

pH 

pHfox 

Sulfide  

Silt/clay 

 

 

0.011 

0.057 

0.015 

 

 

0.003 

0.033 

0.052 

0.051 

 

 

0.541 

0.422 

-0.525 

 

 

0.618 

0.466 

-0.429 

0.431 

 

p : significance values, r : correlation values, * : interaction between the variables 

 

3.4. Principal Component Analysis 

The Principal Component Analysis (PCA), shown in Figure 6.1, illustrates that different sites 

form different groups with particular properties. Comparison of the PCA and Kruskal Wallis test 

results shows similarities between the sites, which are categorised into two main groups (see 

Section 3.3). The first group comprises Site 1 that do not have any Rhizophoraceae seedlings, 

Site 2 and 3 that has low density, establishment, and growth. The second group comprises Sites 

4, 5, 6 and 7, that have higher density, establishment, and growth.  
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Groups 1 is marked by relatively higher sulfides and a wide range of redox potential, but are 

mainly oxidative, with relatively higher organic content and SPOS, and lower pH and pHfox. Site 3 

in group 1 had lower water soluble sulfate. In group 2, Site 4 is characterised by oxidative 

environments with relatively high organic content, water-soluble sulfate, SKCl, and SPOS, and 

lower pH and pHfox. Site 5 has high organic content and a slightly oxidative environment. Sites 6 

and 7 have higher pH, pHfox, silt/clay percentages, reductive to low oxidative environments, and 

lower water-soluble sulfate, SKCl, SPOS, and sulfide. 

 

 

 

Figure 6.1. The geochemical conditions in the study area, shown by the Principal Component Analysis. 

The boxes represent the sites 
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4. Discussion 

The higher values of density, establishment, and growth of mangrove seedlings in the study area 

are associated with freely drained areas with a higher pH (field and oxidisable). Higher density 

and growth also correlate to lower redox potential. Higher establishment and growth are 

associated with lower sulfide levels. Seedling growth appears to be higher in soils with greater 

content of silt/clay and very fine sand textures. 

In general, there are two groups of density, establishment, and growth in the study area. The first 

group consists of Site 1 with no Rhizophoraceae occurrence, and Site 2 and 3 with very low 

density, establishment, and growth values. The second group comprises Sites 4, 5, 6 and 7 with 

high density, establishment, and growth values. The first group is characterised by a dry and 

water logged sites (Site 2), and a site showing a small effect of inundation (Site 1 and 3). The 

second group is distinguished by their site location and influenced by the water regime. 

Tidal seawater inundations at the Site 6 (due to broken dikes) and 7 (Control site) generated 

lower values of redox potential state. The degree of reducing environment was higher as the tidal 

inundation effect was higher. The presence of organic matter (Chu et al., 2006) and slow 

diffusion of oxygen into the water-saturated soil limited oxidation and created reducing condition 

in the soils  (Chu et al., 2006, Baldwin and Fraser, 2009, Reid and Butcher, 2011). In this 

condition, sulfate reduction occurred through oxidation of organic matter (Armstrong and 

Armstrong, 2005, Johnston et al., 2009b, Johnston et al., 2010b) by sulfate-reducing bacteria 

(SRB) such as Desulfovibrio desulfuricans (Armstrong and Armstrong, 2005). The sulfate 

reduction into sulfides consumed H
+
 thus increasing pH (Lin et al., 2003). At the same time, iron 

reduction occurred (van Breemen, 1993, Konsten et al., 1994, Johnston et al., 2009b). Increasing 

tidal indundation increased pH, due to neutralization of acidic soil by bicarbonate alkalinity of 

seawater (Indraratna et al., 2002, Johnston et al., 2009b, Wong et al., 2010, Burton et al., 2011). 

Low acid environments in the second group of sites enabled mangrove seedlings to establish 

better, which was marked by the higher values of density, establishment, and growth of the 

Rhizoporaceae seedings, particularly in Site 7 (Control) and Site 6.  

In contrast, low pH can lead to H
+
 toxicity and effected mangrove seedlings density, 

establishment and growth in group 1. Aluminium toxicity on plants, which is associated with 
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acid conditions have been widely reported (Kidd and Proctor, 2000, Samac and Tesfaye, 2003, 

Kochian et al., 2004, Ma and Ryan, 2010). The toxicity of H
+
 depends on plant species, because 

certain plant species are more sensitive to H
+
 than to Al, while the reverse is true for other plant 

species (Marschner, 1991). 

The field study demonstrates that inundation of abandoned ponds, as occurred in Site 6, 

improves the soil quality of the environment (Chowdhury, 2001), which in turn provides better 

conditions for mangrove seedlings to establish. Good water circulation encourages good 

establishment and growth (McKee, 1993, McKee, 1995a, McKee, 1995b, Field, 1998, Lewis, 

2005, Kamali and Hashim, 2011, Friess, 2014), as well as high diversity (Azariah et al., 1992) of 

mangrove species. This result confirms the importance of proper hydrology for the success of 

mangrove restoration, as emphasised in earlier sections.  

High sulfide levels, which generally appear in reducing environments, did not occur in Sites 6 

and 7. Seawater inundation from the Gulf of Bone at Sites 6 and 7 contained high levels of 

oxygen that allowed sulfide oxidation to sulfate. Reformations of sulfide minerals, including 

pyrite, occur in reducing or in previously oxic-acidic environments (Connell and Patrick, 1968, 

Johnston et al., 2009b, Johnston et al., 2010b).  

Seawater inundation in the abandoned ponds at Site 6 affected the jarosite stability due to the 

reducing environment (Chu et al., 2006). Seawater circulation also resulted in thinning or 

disappearance of the peat layer (Anda et al., 2009). Site 6 top surface soils were free from 

jarosite and the organic content in this site was also low (Table 6.2). An acid sulfate soil 

glasshouse experiment in Malaysia demonstrated that although palm oil (Elaieis guineensis) 

seedlings showed a moderate tolerance to acidity, the optimal seedling performance of these 

seedlings occurred in non-jarosite, freely draining soils (Auxtero and Shamshuddin, 1991). 

In addition to good inundation that provided a suitable environment for mangroves to establish 

and grow, the availability of propagules from mature mangroves near the sites was an advantage. 

The sites in the third group, with high values of density and growth, were all situated in 

environments that had or were close to mature mangrove stands, which supplied propagules at 

the sites. 
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Wide range of redox potential values in group 1 suggests dynamic environments of mix long-

term oxidative pedogenesis and short-term seasonal fluctuations that result in dynamic and rapid 

mineralogical transformation (Johnston et al., 2011). Oxidative conditions occurred in 

abandoned pond areas at Site 1, and particularly in the dry oxidative environment at Sites 2 and 

3. In these sites, pyrite tended to oxidise and produce acid and sulfate as a major form of sulfur 

(Dent, 1986, Ward et al., 2004a, Ward et al., 2004b), which in turn decreased pH (Dent, 1986, 

Chu et al., 2006). High concentration of organic matter in these areas allowed sulfate to be 

adsorbed to organic matter, as indicated by high percentages of total oxidisable sulfur that 

strongly correlated to organic content values (Table 6.6). Besides adsorption to organic matter, 

adsorption of sulfates onto hydrated Fe and A1 oxide may also have occurred in these sites, due 

to high levels of Al and Fe in the study area (Alves and Lavorenti, 2004). 

Under oxidative environment, jarosite (KFe3(SO4)2(OH)6) was formed as a result of partial 

oxidation of the pyrite (van Breemen, 1973, Chu et al., 2006). In rainy season or waterlogged 

condition, dissolution of jarosite occured and contributed to higher sulfate levels in these sites 

(Chu et al., 2006). During the rainy season, the redox potential shifted to more reductive 

environments, which encouraged the reduction of sulfate to sulfide. High organic content and  

high concentrations of iron existed in these sites stimulated pyrite formation precipitation (Reddy 

and DeLaune, 2008, Alongi, 2009), which is confirmed by higher pyrite percentages (Table 6.5). 

The lack of seedlings established at Sites 2 and 3 could be due to the unavailability of a 

propagule source nearby. Poor inundation inhibits a route for propagules to enter the sites, and 

results in poor soil quality. The water flood in Site 2 was mainly from rain water. Stagnant water 

causes mangroves to grow poorly, or kills seedlings (Gopal and Krishnamurthy, 1993, Wolanski, 

2006). In Sites 2 and 3 only mangrove ferns (Acrostichum sp) have occurred. 

Site 1, which is located near Sites 2 and 3, is furthest from the gulf and does not have a mature 

mangrove stand nearby. Therefore Site 1 required re-plantation. During the three month 

evaluation period, one out of three R. mucronata seedlings replanted in this site were alive, 

indicating that the seedlings cannot easily establish in the area. Site 1, as in Sites 2 and 3, was 

recognised with high acidity properties, which had a negative effect on the density, survival and 

growth of replanted seedlings.  
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Site 4 has similar geochemical conditions to Site 1, but it has better values of measured 

biological indicators. A lower percentage of pyrite on surface soils, and more free water 

circulating from both seawater and river, distinguish the geochemical conditions and the process 

in Site 4, and thus affected the establishment and growth of the seedlings (see Table 3.2). The 

discussion of the factors that lead to high values of acidity in the subsurface soils of Site 4 is 

presented in Chapter 7. 

Overall, better establishment, greater density and growth of mangrove seedlings in higher pH 

conditions in the field study are in agreement with the findings of the experimental study. As 

discussed in Chapter 4, the experiment found that higher pH, lower redox potential, lower 

sulfate, lower sulfide and HCl extractable sulfur in non-ASS environments provided a better 

environment for mangrove seedlings. This was compared to ASS environments with the opposite 

geochemical conditions, which inhibited mangrove seedlings from establishing. In the field 

study, the sulfur species did not affect either the number of surviving seedlings or their growth. 

Sulfide concentration showed a negative correlation with seedling establishment and growth in 

the field study (Table 6.6). However, these relationships can be disregarded, as the measured 

sulfide levels in the study area were low (Table 6.3) compared to the research conducted in 

Mtoni and Mbeni in coastal areas of Dar es Salaam, Tanzania (0.0025-0.96 mM, or 0.08–3.72 

mg/l and 1.5–24.5 mM, or 48–784 mg/l, respectively). 

Besides pyrite precipitation, tidal action and active mixing of surface and subsurface soils by 

burrowing fauna activity (bioturbation) also plays an important role in reducing sulfide levels, by 

changing the states of elements through introducing oxygen to sub layer and removing toxic 

sulfide (Kristensen, 2007, Alongi, 2009). Burrowing fauna such as small crabs were often found 

in the study sites where mature mangroves occurred.  

The physical and geochemical variables in the study area were strongly correlated (Table 6.5). 

Strong correlations between the values of organic content and all other physical and geochemical 

variables, except sulfide suggest that high organic content is an important factor in the formation 

of geochemical conditions in the study area. Organic matter provides energy for microorganism 

activity. Since dissolved oxygen is rapidly consumed by microorganisms after inundation, 

anaerobes and facultative anaerobes rapidly develop and decompose organic matter (Genon et 
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al., 1994). Under anaerobic conditions, the microorganisms used sulfate amongst other alternate 

electron acceptors, such as nitrate, and oxidised forms of Mn and Fe (Bohn et al., 1985, Genon et 

al., 1994). This decomposition activity leads to low redox potential (Wheeler et al., 1999, Chu et 

al., 2006), an increase in acidity and the concentration of iron and sulfate following water 

inundation (Chu et al., 2006).  

High organic content also corresponds to the total oxidisable sulfur in the study area (Table 6.5). 

This is in agreement with (Sokolova and Alekseeva, 2008), who reported that sulfates in the soil 

can be rapidly adsorbed or transformed to sulfur-containing organic components. A high amount 

of oxidisable sulfur (0.99–2.10%) compared to the amount of total sulfur extracted by KCl (0.27-

0.79%) and water-soluble sulfate (0.03-0.11%) indicates that a high amount of potential sulfur in 

the study area is retained in organic matter. The highest sulfur content is typical for peat soils and 

peats (Sokolova and Alekseeva, 2008). Given that sulfur in the study area is retained 

predominantly in organic matter, it would potentially damage to the environment.  

 

5. Conclusions 

The higher values of density, establishment, and growth of mangrove seedlings in the field study 

are characteristic of areas with free inundation of seawater that have higher pH (field and 

oxidisable). As the field study shows, greater density also correlates to reduced environments. In 

the study sites, the growth of mangrove seedlings was also associated with greater portion of 

silt/clay and very fine sand substrate textures.  

Good inundation created a suitable environment for mangroves to establish and grow, as well as 

access for propagule supply. Inundation of abandoned ponds, as occurred at Site 6, improved soil 

quality in the environment, which in turn provided a better environment for mangrove seedlings 

to establish. This study result supports the argument for the importance of correct hydrology, 

including tidal inundation, for mangrove restoration to be successful. 

High organic content plays an important role in geochemical conditions, and correlates to 

measured variables in this study area, which in turn affected the geochemical process and the 
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establishment and growth of the seedlings. Availability of propagules from mature mangroves 

near the sites supported the establishment of mangrove seedlings.  
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 CHAPTER 7: THE INFLUENCE OF POTENTIAL ACIDITY AND PYRITE IN 

SURFACE SOILS ON ACIDITY CONDITIONS, ESTABLISHMENT AND 

GROWTH OF RHIZOPHORACEAE SEEDLINGS  
 

1. Introduction 

Previous chapters showed that density and growth of Rhizophoraceae seedlings are higher as pH 

is higher, which demonstrates that acidity inhibits seedling establishment and growth. An 

increase in H
+
 concentration in an environment is an important restraint on plant growth, due to 

H
+
 toxicity (Marschner, 1991). 

In highly acidic soils, exchangeable and soluble Al species as well as Fe compounds may act as 

substantial elements of the existing acidity (McElnea et al., 2002). With a pH below 5, Al 

becomes soluble and causes severe root elongation, which in turn results in poor plant growth in 

acid environments, due to reduced capability for water and nutrient uptake (Sumner and Noble, 

2003). The effects of Al on plants is usually significantly more severe than H
+
 (Menzies, 2003), 

but this depends on plant species, for some are more sensitive to H
+
 than to Al, while the reverse 

response appears in other plant species (Marschner, 1991).  

The oxidation of pyrite in the environment is much more complex than described in theory, 

where the amount of acidity generated after complete oxidation of pyrite (FeS2) follows a ratio 1 

: 4 (McElnea et al., 2002): 

 FeS2 + 15/4 O2 + 7/2 H2O  Fe(OH)3 + 2SO4
2-

 + 4H
+ 

The amount of net acidity released from soils may vary significantly from that expected from 

oxidisable sulfur analysis, and from the relationship shown in the above equation (McElnea et 

al., 2002). Different structures of soils between surface and subsurface layers in ASS affected 

abandoned ponds can also influence the amount of acidity produced. In turn, these aspects will 

affect the geochemical processes. Therefore, it is essential to understand the nature of acidity, 

including those soil layers in an ASS study area, because it may influence the establishment and 

growth of seedlings. For instance, acid conditions in sub layer soils may affect growth
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through nutrient and water uptake (Menzies, 2003). Additionally, soil type and structure as well 

as the oxidation process affect plants (Marschner, 1991). 
 

This study evaluated the acidity process and its influence on the establishment and development 

of seedlings. This objective was achieved by examining some acidity properties in the surface 

and subsurface soils near the roots, their correlations and interactions amongst the variables, and 

their relationships to the density, establishment and growth of mangrove seedlings. This chapter 

also evaluates the effect of tidal inundation on the measured acidity properties in the surface and 

sub layers.  

This study applied specific geochemical approach used in ASS areas that allowing tracking of 

existing, potential, and net amounts of acidity and sulfur in soils (White and Melville, 1993), 

therefore contributes a more specific understanding on the acidity roles on establishment, density 

and growth of mangrove seedlings. The study derived from results discussed in the previous 

chapter discussed the effect of pH and other variables on density, establishment and relative 

growth rates in the study area, as well as the role of tidal inundation in creating a better soil 

quality and its effect on those measured biology variables.  

 

2. Study sites and methods 

2.1. Study sites, replanting, and measurement 

The field study was conducted from July to December 2011 (rainy season) in six abandoned 

ponds in Mare (04
o
51‘S, 120

o
18‘E), district of Bone, province of South Sulawesi Selatan, 

Indonesia. A control site (Site 7) was located outside the abandoned pond area. Three seedlings 

were replanted in Site 1 that had no pre-existing seedlings. This site was located at the bank of a 

creek that was disturbed by ASS. Sites 2 and 3 were uninundated or poorly inundated sites that 

were strongly disturbed by ASS. No replantation was performed in these ‗unvegetated‘ site to 

have sites that can act as ‗AASS control sites. Sites 4, 5, 6, and 7 had pre-existing mangrove 

seedlings (see Table 6.1).  

The density, establishment, and growth (height addition and relative growth rate) of 

Rhizophoraceae seedlings were examined from the replanted seedlings in Site 1 and pre-existing 
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naturally occurring seedlings in other sites at the early and end of the three-month period study. 

The densities of seedlings were determined by measuring all individuals in six 1m x 1m plots 

randomly placed at each site. The plant height measured was the above ground height. The 

relative growth rate (RGR) of the seedlings was determined based on the height (Poorter and 

Garnier, 2007). 

Three replicates of 15 cm soil cores and porewater were collected around mangrove seedlings at 

each site. Subsurface soils near root layer (10-15cm) were analyzed for pH, peroxide oxidisable 

pH (pHfox), redox potential (Eh) using quality meter. Examination of Titratable Peroxide Acidity 

(TPA), Titratable Actual Acidity (TAA), Titratable Sulfidic Acidity (TSA), SKCl, SP, SPOS were 

measured using The Peroxide Oxidisable Combined Acidity and Sulfur (POCAS) method 

described by White and Melville (1993). SKCl determines the adsorbed and soluble sulfate (Ahern 

et al., 2004). The SP provides the level of sulfate contained in soils through oxidising the soils to 

generate maximum acidity from reduced sulfidic material (Ahern et al., 2004). The SPOS 

estimates the net potential acid risk of the soil from the unoxidised sulfur compounds by 

determining the difference between SPOS and SKCl (White and Melville, 1993, Ahern et al., 2004). 

Pyrite percentage of surface and subsurface soils (three replications) were measured through 

Titratable Sulfidic Acidity (TSA) analysis (Konsten and Sarwani, 1990). 

The water-soluble sulfate levels were determined using the turbidimetry method and measured 

by a spectrophotometer. The concentration of organic content was determined using the Loss on 

Ignition (LOI) method (Heiri et al., 2001). The analysis of grain size of the soil was determined 

using wet sieve analysis. 

Exchangeable and organic Fe and Al were measured followed the protocols for the Commission 

of the European Community Bureau of Reference (BCR) (Davidson et al., 1994). The procedure 

consists of three steps of sequential extraction to determine metal fractionation. The first step is 

an acetic acid extraction to determine exchangeable, water and acid soluble forms. The second 

step uses hydroxylamine hydrochloride to determine reducible forms (iron and manganese oxide 

bounds). The third step is hydrogen peroxide oxidation coupled with ammonium acetate 

extraction to determine the oxidisable form (organic matter/sulfide bound) (Davidson et al., 

1994). Results from step one and three were used in this Chapter. 
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2.2. Statistical analysis 

Several statistical analyses were applied, using Excel and SPSS 17 to assess the variability of 

geochemical interactions and their correlations. Three replications of variables were used for 

statistical analysis. A normality test and transformation were applied for non-normal variables. 

The types of transformations depended on the type of skewness. Pearson correlation was 

employed to identify the correlation and interaction between the physical and geochemical 

variables. Principle Component Analysis (PCA) was also carried out to examine the geochemical 

characteristics of the sites in the study area. 

 

3. Results 

3.1. Biological measurement 

As discussed in Chapter 6, the replantation of six R. mucronata seedlings in Site 1 ended in a low 

survival rate, where only one out of 3 seedlings survived in the period, with poor development. 

On the other hand, 100% of the existing seedlings in other sites survived. This led to stable 

values of density (Figure 7.1).  

 

 

 
Figure 7.1. The density (number of seedlings/m

2
), establishment (number of seedlings), and height 

addition (cm) of mangrove seedlings in the study area (n=21). Values are mean + SE 

The density, establishment and height of mangrove seedlings in the study area 
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Figure 7.2. Acidity properties on surface and subsurface soils in the field study area (n = 21). Values are 

mean + SE   

 pHfox Surface soils 

 pHfox Subsurface soils 

 

 pH Surface soils 

 pH Subsurface soils 

 

The pH values on the surface and subsurface soils 

The pHfox values on the surface and subsurface soils 
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Figure 7.3. Redox potential (mV) and pyrite (%) (n = 21) in surface and subsurface soils. Values are mean 

+ SE 

 Pyrite Surface soils 

 Pyrite Subsurface 

  soils 

 

 Eh Surface soils 

 Eh Subsurface soils 

 

The redox potential values on the surface and subsurface soils 

The pyrite percentages on the surface and subsurface soils 
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3.2. Physical properties  

Figure 7.2 shows that the average pH values between surface and subsurface soils in all sites in 

abandoned ponds were similar. The pH in surface soils in abandoned ponds ranged between 5.33 

and 6.82, while the pH in subsurface soils ranged 5.47–7.04. Site 6 had higher values than other 

abandoned pond sites, and was closer to the Control site (Site 7), which had neutral pH in surface 

and subsurface soils (7.38 and 7.37, respectively). The oxidisable pH values between surface and 

subsurface soils in abandoned ponds were only slightly different. They ranged between 3.53–

6.27 and 3.41–6.33 in surface and subsurface soils, respectively. Site 6 also had higher pHfox 

compared to other sites in abandoned ponds, but was closer to pHfox values of the Control site.  

The pHfox values of Control site in surface and subsurface soils were 6.45 and 6.14, respectively.  

In general, the surface soil environments in the abandoned pond sites were oxidative, with a wide 

range of values.  For example, Site 1 and 2 had Eh ranges of 35–162 mV and -86–386 mV, 

respectively.  Site 6 had lower positive Eh values (28-103 mV), which was a bit higher than that 

of Control site (-22-72 mV) (Figure 7.2). 

Similarly, subsurface soil environments were generally oxidative. Subsurface soil Eh of Site 2 

also had a wide range of values (-32+85 mV), indicating more complex geochemical processes. 

Site 6 had low positive average Eh values (4+12 mV), indicating positive effects of inundation 

on the formation of reducing conditions.  The control site had reducing environments (-129+46 

mV). 

High average organic contents (10.54-23.78%) were observed in subsurface soils of abandoned 

pond sites, where Site 6 had the lowest organic content compared to Control site (12.47%) 

(Table 7.1). 

 

3.3. Acidity properties and pyrite percentages  

Figure 7.4 shows that the values of titratable actual acidity (TAA) in surface and subsurface soils 

in the study area were very low compared with those of potential acidity (TPA) and therefore 

sulfidic acidity (TSA). The average existing acidity values in surface soils in the study area had a 

narrow range, from undetected values in most of the study sites to very low values (5 mol H
+
/t 

and 6.67 mol H
+
/t) in inundated/waterlogged sites (Site 2 and 3, respectively). Low TAA values 



    Chapter 7 

 

102 

 

(6.33 mol H
+
/t) were also observed in surface soils in Site 4, located at the edge of a creek. The 

average values of TAA, TPA and TSA in subsurface soils were higher than those in surface soils. 

 
 
Figure 7.4. Titrable acidity proportions in surface and subsurface soils (n = 21). The data are presented in 

mol H
+
/t. Values are mean + SE. Top: Surface soils, Sub: Subsurface soils 

 

High average values of TPA (232.17–704 mol H
+
/t) in surface soils indicate that potential acidity 

forms a high proportion of the acidity in the system. Site 6 had the lowest average TPA values in 

the abandoned pond sites, nearly twice that in the Control site (135.83 mol H
+
/t). Compared with 

average TPA values in surface soils, the average values in subsurface soils were higher (572.33–

1198 mol H
+
/t), except in Site 3, where the average TPA values in subsurface soils were nearly 

half those on surface soils. In general, the TSA values, generated from the difference between 

TPA and TAA, were close to TPA values, given that the TAA values were undetected or very 

low (Figure 7.4).  

Similarly, the pyrite percentage pattern followed the values of TPA and TSA, since pyrite values 

were obtained from TSA values, where subsurface soils of Site 4 contained more sulfidic acidity 

The titratable acidity values in surface and subsurface soils 
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in pyrite (Figure 7.4). The presence of pyrite in soil layers in the study area acted as retained 

acidity, particularly in the oxidative environments of the abandoned pond sites. The average 

percentages of pyrite in surface and subsurface soils of the study area are presented in Figure 7.3.  

Table 7.1. shows that the average percentage of water soluble sulfate and extractable sulfur in 

subsurface soils of abandoned pond sites were in a range of 0.73-2.47 % and 0.32 – 0.82 %, 

respectively. Site 4 and 1 had high percentages of these examined sulfur species. Site 6 had low 

percentages of both water soluble sulfate and extractable sulfur, which were close to the average 

values found in Control site (1.07 and 0.29 %, respectively). 

 
Table 7.1. The percentages of organic content, water soluble sulfate and extractable sulfur (%) in 

subsurface soils (n = 21). Data are presented as mean +/- standard deviation. 

Site 
Percentages (%) 

Organic content Water-soluble SO4 SKCl 

1 23.78 + 2.78 1.93 + 2.19 0.82 + 0.72 

2 22.08 + 5.51 1.60 + 0.20 0.44 + 0.02 

3 17.94 + 3.14 0.73 + 0.31 0.36 + 0.03 

4 22.16 + 4.09 2.47 + 0.81 0.77 + 0.34 

5 21.88 + 6.46 1.67 + 0.23 0.49 + 0.07 

6 10.54 + 0.72 0.80 + 0.53 0.32 + 0.01 

7 12.47 + 10.07 1.07 + 0.23 0.29 + 0.05 

    

  

 

 
Table 7.2. The concentration of exchangeable and organic Al and Fe in subsurface soils (n = 21). Data are 

presented as mean +/- standard deviation. 

Site 

Al (µg/g) Fe (µg/g) 

Exchangeable Organic Exchangeable Organic 

1 231.93 + 88.62 1590.867 + 114.57 691.29 + 599.33 2377.20 + 460.47 

2 498.27 + 100.95 2556.61 + 495.17 727.01 + 209.01 2582.15 + 96.32 

3 353.13 + 101.20 3013.54 + 457.16 443.25 + 508.11 2379.02 + 288.78 

4 408.89 + 161.55 3459.17 + 402.22 587.92 + 571.19 2453.94 + 233.41 

5 132.42 + 22.99 1645.74 + 123.21 312.04 + 120.63 2661.07 + 38.09 

6 155.03 + 13.83  638.79 + 162.25 341.55 + 97.15 1730.90 + 31.22 

7 258.46 + 35.46 877.29 + 57.07 132.48 + 35.92 2385.37 + 14.79 
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Table 7.3. Pearson correlation analysis of the existing acidity properties and biological measurements (p < 0.05, n = 21) 

  TAA 

Top 

TAA 

Sub 

pH 

Top 

pH 

Sub 

SO4 

Wtr-sol 

Sub 

SKCl 

Sub 

Exch Al 

Sub 

Exch Fe 

Sub Density Establishment Growth 

TAA Top 1 .341 -.437
*
 -.530

*
 .135 .011 .181 -.156 -.335 -.325 -.288 

TAA Sub  1 -.281 -.368 .286 .468
*
 .349 -.189 -.069 .196 .274 

pH Top   1 .911
**

 -.293 -.361 -.493
*
 .343 .776

**
 .581

**
 .627

**
 

pH Sub    1 -.400 -.477
*
 -.499

*
 .290 .709

**
 .541

*
 .618

**
 

SO4 Wtr-sol Sub     1 .758
**

 .222 .096 -.072 .014 -.077 

SKCl Sub      1 .297 .131 -.233 -.090 -.065 

Exch Al Sub       1 .283 -.307 -.495
*
 -.376 

Exch Fe Sub        1 .342 -.122 -.012 

Density         1 .662
**

 .661
**

 

Establishment          1 .830
**

 

Growth           1 

Note: Top: surface soils, Sub: subsurface soils, SO4 Wtr-sol: water-soluble sulfate, Exch: exchangeable 
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3.4. Correlations and interactions amongst acidity properties 

Pearson correlation analysis (Table 7.3 and Table 7.4) show that the pH and pHfox of both surface 

and sub layer soils had strong correlations to the density, establishment and growth of mangrove 

seedlings (p < 0.01). The TAA values on the surface soils correlated to the values of pH on 

surface and subsurface layer soils (p < 0.05, r = -0.437, r = -0.530, respectively). However, TAA 

values of subsurface soils did not significantly influence the pH values on subsurface layer soils 

(p > 0.05).  

The TAA values for the surface soils had no association with the examined sulfur species, nor 

with exchangeable Al and Fe on the subsurface soils near the roots (p > 0.05). The values of 

TAA in surface and subsurface soils had no direct relationship to either density or growth of the 

seedlings. 

The values of pHfox in surface soils strongly correlated with the density and establishment (p < 

0.01, r = 0.590, r = 0.556, respectively), and growth (p < 0.05, r = 0.540) of seedlings (Table 

7.4). The pHfox values in sub layer soils correlated with the density (p < 0.01, r = 0.609), and 

growth (p < 0.05, r = 0.466). The pHfox values in surface and sub layer soils negatively correlated 

to the TPA values in surface soils (p < 0.01, r =   -0.659, r = -0.579, respectively. The values 

were not shown in the Table). In sequence, the pHfox in surface and subsurface soils also 

negatively correlated to the TSA and pyrite values in surface soils (p < 0.01, r = -0.655, r = -

0.575, respectively) because the values were obtained from the difference between TPA and 

TAA. See Table 7.5. 

Table 7.5 shows that the TPA values of the surface soils correlated with water-soluble sulfate 

and KCl extractable sulfur in subsurface soil (p < 0.05, r = 0.506, r = 0.505, respectively). The 

TSA values of surface soils correlated to water-soluble sulfate and KCl extractable sulfur in 

subsurface soil layers (p < 0.05, r = 0.505, r = 0.505, respectively. The values were not shown in 

the Table). 
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Table 7.4. Pearson correlation analysis of the titratable potential and sulfidic acidity and other 

geochemical variables (p < 0.05, n = 21) 

Variable p r 

Density: 

pHfox Surface soil 

pHfox Subsurface soils 

Eh Subsurface soils 

TPA Suface soils 

Pyrite Surface soils 

Al organic Subsurface soils 

 

Establishment: 

pHfox Surface soils 

pHfox Subsurface soils 

TPA Surface soils 

TSA Surface soils 

Pyrite Surface soils 

Al Exchangeable Subsurface soils 

 

Growth: 

pHfox Surface soils 

pHfox Subsurface soils 

TPA Surface soils 

TSA Surface soils 

Pyrite Surface soils 

 

0.005 

0.003 

0.034 

0.006 

0.007 

0.035 

 

 

0.009 

0.057 

0.033 

0.035 

0.035 

0.022 

 

 

0.012 

0.033 

0.025 

0.026 

0.026 

 

0.590 

0.609 

-0.463 

-0.578 

-0.572 

-0.461 

 

 

0.556 

0.442 

-0.467 

-0.462 

-0.462 

-0.495 

 

 

0.540 

0.466 

-0.489 

-0.485 

-0.485 
 

The values of TPA and TSA on surface soils strongly correlated to the establishment (p < 0.01, r 

= -0.467, r = -0.462, respectively), the density (p < 0.01, r = -0.578, r = -0.574, respectively) and 

growth (p < 0.05, r = -0.489, r = -0.485, respectively). The average TPA values of pyrite are 

related to the density of the seedlings (p = 0.006, r = -0.578). Since the values of pyrite are 

determined through the TSA values (shown by the positive relationship between TPA and TSA 

and pyrite values), which in turn relates to TPA values, these variables correlated strongly and 

had similarity in their interactions with other acidity properties. Organic matter correlated to 

potential (SP, SPOS) and exchangeable sulfur (SKCl), as well as organic Al in subsurface soils (p < 

0.05, r = 0.596, r = 0.495, r = 0.557, r = 0.456).  
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Table 7.5. Correlations and interactions amongst properties in study area (p < 0.055, n = 21) 

Variables P R 

Pyrite, TSA, TPA Surface: 

pHfox Surface 

pHfox Sub 

Eh Surface 

SKCl Sub 

Water-soluble sulfate Sub 

Al organic Sub 

Al exchangeable Sub 

 

Pyrite, TSA, TPA Sub: 

Eh Sub 

Fe exchangeable Sub 

 

Al organic Sub: 

Eh surface 

Eh sub 

Al exchangeable Sub 

 

LOI Sub: 

SP Sub 

SPOS Sub 

SKCl Sub 

Al organic Sub 

 

SP: 

SPOS Sub 

Water-soluble sulfate Sub 

SKCl 

 

Water-soluble sulfate Sub: 

Eh Sub 

SKCl Sub 

 

 

 

0.001 

0.006 

0.000 

0.019 

0.019 

0.054 

0.055 

 

 

0.000 

0.041 

 

 

0.002 

0.004 

0.003 

 

 

0.004 

0.023 

0.009 

0.038 

 

 

0.000 

0.001 

0.001 

 

 

0.012 

0.000 

 

-0.655 

-0.575 

0.748 

0.506 

0.505 

0.426 

0.424 

 

 

0.748 

-0.449 

 

 

0.632 

0.597 

0.609 

 

 

0.596 

0.495 

0.557 

0.456 

 

 

0.935 

0.668 

0.670 

 

 

0.536 

0.758 

Notes: Pyrite, TPA and TSA have similar values (+ 0.04), therefore they were represented by the 

TPA value. 

 

Table 7.5 shows that the redox condition correlated with many variables, such as: pyrite, water 

soluble sulfate and extractable sulfur as well organic Al in subsurface soils. These correlations  
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Table 7.6. Comparison of acidity and related variables in several acid sulfate soil locations in Indonesia 

Location pH pHfox pHKCl pHox 
TAA TPA  

 (mol H
+
/ton) (mol H

+
/ton) 

Mamuju, West Sulawesi
1
  3.96-7.45 0.01–5.95 2.93–7.4 0.73–1.04 0-106 7–2.36 

Pontianak, West Kalimantan
1
    4.34–7.30 0.78–6.85       

Tarakan, East Kalimantan
2
             

initial 6.58–6.74 1.28-1.70   0–33 1337 

after reclamation 5.66–6.28 0.26–1.22     0–22 349–995 

Notes: 1. (Paena et al., 2010), 2. (Mansur et al., 2008).  

 

 

 

Table 7.7. Comparison of acidity and related variables in several acid sulfat soils locations in Indonesia (cont.) 

Location SKCl SP SPOS  Pyrite Fe  Al 

   (%)  (%)  (%)  (%) (µg/g)  (µg/g) 

Mamuju, West Sulawesi
1
  35.14 0.42-22.07 1.94–18.08 0.03–10.50 26.50–4902 0–953.50 

Pontianak, West 

Kalimantan
1
          

    

Tarakan, East Kalimantan
2
             

Initial  0-3.70 0–2.66 0–5.97    

after reclamation   2.37–4.13 1.82–3.30 1.56–4.42     

Notes: : 1. (Paena et al., 2010), 2. (Mansur et al., 2008). 
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and interactions indicate their important roles in geochemical processes, which will be discussed 

in the next section. 

The correlation between TPA and TSA, and between TSA and SPOS were not strong or 

significant (p > 0.05, r = 0.386, r = 0.335, respectively), indicating the existence of neutralising 

elements, such as carbonates in some sites (i.e. Site 3 and 5) (McElnea et al., 2002).  

The comparison of acidity and related variables in several acid sulfate soil locations in Indonesia 

is presented in Table 7.6 and 7.7. 

 

4. Discussion 

In comparison to the other ASS areas in Indonesia, the values of pH, pHfox, titratable acidities, 

sulfur variables and pyrite in the ASS-affected sites in the study area (Sites 1-5) are in similar 

ranges. Existing acidity (TAA) in surface soils influenced the pH of surface and subsurface soils, 

where the pH of soils decreased as the existing acidity increased. However, existing acidity did 

not directly influence the establishment, density and growth of seedlings. In most study sites, 

TAA values were low or undetectable, and therefore did not control the establishment, density 

and growth of the seedlings.  

Relatively low or zero values of TAA in surface soils were possibly caused by rainfall and tidal 

inundation, for substantial rainfall will release existing acidity from the soils, and thus inhibit 

further pyrite oxidation (McElnea et al., 2002). Zero TAA was also found in several ASS 

locations in Indonesia, i.e. Mamuju, Pontianak, and Tarakan (Mansur et al., 2008, Paena et al., 

2010). Rainfall and tidal inundation caused low sulfate concentrations in surface soils, resulting 

in insignificant correlation between extractable sulfate and TAA in surface soils compared to that 

in subsurface layer. Although the correlations between SKCl and either TAA or pH on subsurface 

soils were strong, as a single variable, SKCl did not correlate directly with either the 

establishment, density or growth of the seedlings in the study area.  

The amount of potential acidity and pyrite in surface soils compared to existing acidity appeared 

to play an important role in seedling density, establishment and growth. The availability of 
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pyrite, particularly in surface soils in the abandoned pond sites, affected the pH of surface soils, 

where greater pyrite amounts created a greater possibility for pyrite to oxidise under oxidative 

environments.  

The oxidation of pyrite under oxidative environments caused leaching of water-soluble sulfate, 

extractable sulfur, and exchangeable Al to the subsurface soils, and resulted in a decrease of pH 

in subsurface soils. This in turn affected the density, establishment and growth of the mangrove 

seedlings, as indicated by the strong positive correlation of pyrite and redox potential in surface 

soils, as well as water-soluble sulfate and extractable sulfur in subsurface soils, substantial 

correlation with exchangeable Al, and strong negative correlation of pyrite percentages in 

surface soils with pH (Table 7.4 and 7.5). A high concentration of water-soluble sulfate was also 

revealed in an experimental study on sulfide oxidation using ASS material from McLeod Creek, 

New South Wales, Australia (Ward et al., 2004b). The pyrite oxidation process that produces a 

high concentration of extractable Al has been reported elsewhere, including in Malaysia 

(Auxtero and Shamshuddin, 1991, Fitzpatrick et al., 1998, Cook et al., 2000).  

Appreciable concentrations of exchangeable Al in subsurface soils that had high organic matter 

resulted in a high amount of Al-organic matter complex (Alves and Lavorenti, 2004), and this 

was shown by a strong positive relationship between organic matter and organic bound Al. This 

complex benefited the environment, as it is less toxic, with its lower activity (Wong and Swift, 

2003). However, the presence of high organic matter in the study area did not lead to an increase 

of pH, as many other experimental studies have revealed, but did lead to a further decrease in 

pH, as found in some other studies (Wong and Swift, 2003). The decrease of pH soils may have 

been due to decomposition of less stable organic matter that lead to mineralisation and 

nitrification of organic compounds (Wong and Swift, 2003), or from the pyrite oxidation process 

that took place. 

Besides being bound to Al, organic matter also played an important role as an acid retaining 

agent, indicated by strong positive correlations between organic matter and SP, SPOS, and SKCl. 

High concentrations of sulfate (measured as extractables sulfur) due to pyrite oxidisation were 

then bound with organic matter that was high in these areas, and resulted in high SP and SPOS. 

This fact is consistent with many studies reporting that the amount of sulfates adsorbed by soils 
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is influenced by the presence of organic matter (Sokolova and Alekseeva, 2008, Alves and 

Lavorenti, 2004).  

Strong positive correlation between pyrite percentages and redox potential, and negative 

correlation between pyrite and exchangeable Fe in subsurface soils, suggesting the role of pyrite 

oxidation that occurred under oxidative environments on the level of exchangeable Fe. The 

association of exchangeable Fe with pyrite in subsurface soils was stronger compared to its 

relationship with Fe organic complex that did not show any significant correlation. This 

phenomenon contradicts the argument that the presence of high organic matter inhibits pyrite 

oxidation by adsorption of Fe
3+

 onto organic matter (Morse and Wang, 1997, Morse, 1999, Ward 

et al., 2004a, Kraal et al., 2013). 

High redox potential in Site 4 encouraged pyrite oxidation to occur and resulted in higher TAA 

in surface and subsurface soils compared to other sites. High TPA, TSA and pyrite in Site 4 also 

led to high water-soluble sulfate and exchangeable sulfur generated from pyrite oxidation under 

oxidative environment, and hence a lowering of pH and pHfox. Similar conditions also occurred 

in other sites, including Site 1, although the existing acidity in Site 1 was undetectable or low. 

However, mangrove seedlings did establish themselves in these high acid conditions, although 

with lower levels of density, establishment and growth rates compared to the Control site. This 

finding indicates their tolerance to acid conditions. 

The higher values of TPA, TSA, pyrite, and TAA in subsurface soils of Site 4 and 5, located at 

the edges of a creek, compared to other sites were possibly caused by several factors. Removal of 

dredged soils that contained oxidised pyrite soils from nearby, including Site 2, to the area of 

Site 4 and 5 during the pond preparation may have been responsible for increasing values of 

associated acidity properties in subsurface soils. Furthermore, the activity of burrowing 

organisms such as small crabs in Site 4 and 5 introduced oxygen to the subsurface soils, as well 

as changing the state of elements in this layer (Ferreira et al., 2007, Kristensen, 2007, Alongi, 

2009). This process allowed pyrite to oxidise in subsurface soils, and increasing actual acidity 

and values of associated properties. Tidal action facilitated the leach of the elements produced by 

pyrite oxidation in surface soil to the subsurface soil layer, which further increased the values of 

actual acid and associated properties in that layer. 
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Inhibition of growth cannot be identified as the effect of Al alone, since the association between 

these two variables was not significant. However, exchangeable Al showed its negative influence 

on the establishment percentage in the study area, which indicates that Al concentration in the 

soils affects the early stages of survival. Once the seedlings survived, they would tolerate the Al 

concentration, which would not significantly affect the growth rate.  

Tidal inundation greatly affected acidity conditions in site 6, as shown by the high pH, pHfox, and 

low existing acidity of both surface and subsurface soils. Tidal action can also wash up organic 

matter in the site, which caused limited formation of pyrite due to inadequate organic matter that 

is required by microorganisms to reduce sulfate to sulfide (Berner, 1970, Lin et al., 2000, 

Jasińska et al., 2012). Low pyrite percentage and potential acidity (TPA and TSA) of surface 

soils, supported by reducing or low oxidative environments in Site 6, minimised the opportunity 

for pyrite to oxidise. As a result, the amounts of water-soluble sulfate and extractable sulfur were 

low. Furthermore, low organic material in this site restricted sulfur from binding with the organic 

matter, and therefore the amounts of SP and SPOS, which act as retaining agents, were low. The 

possibility of a further release of sulfur that bonds to organic matter is lower.  

Tidal inundation also resulted in relatively lower levels of exchangeable Fe and Al in the study 

area. This result is similar to the effect of seawater tidal introduction inundation in East Trinity, 

northern Australia, where there is lower acidity, pH rise, and decrease of exchangeable Al to 

about 50–400 µg/g (Johnston et al., 2009a, Johnston et al., 2010a). Such soil conditions provide a 

better environment for mangrove seedlings to establish naturally, or with replantation efforts, and 

produce long-term healthier environments. The site was also recognised by its high silt/clay 

percentages that support the establishment of seedlings. 

Overall, this study supports the findings discussed in Chapter 6, where the density, establishment 

and growth were higher in the areas that had higher pH and reducing environments. Higher pHfox 

in surface and subsurface soils also shows its important roles in achieving higher establishment, 

density, and growth. Lower pyrite percentages and acidity properties in surface and subsurface 

soils, as well as lower levels of metals and sulfur species in subsurface soils, supported greater 

values of density, establishment and growth of seedlings. In contrast, lower establishment, 

density and growth occurred in the areas that had the opposite geochemical conditions. But 
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density, establishment and growth still had relatively high values in a mix of such geochemical 

conditions, underlining the importance of tidal inundation in supporting seedlings to tolerate acid 

conditions.  

 

5. Conclusions 

The existing acidity (TAA) of both surface and subsurface soils did not directly control the 

density, establishment and growth of the mangrove seedlings in the field study area. Neither did 

associated existing acidity, such as levels of water-soluble sulfate, extractable sulfur, 

exchangeable Al and Fe in subsurface soils near roots, correlate to the density, establishment, 

and growth of seedlings. In contrast, the amount of potential acid (TPA and TSA) and pyrite in 

the surface soils was strongly associated with the acidity, density, establishment and growth of 

the seedlings. Exchangeable Al showed a negative correlation with seedling establishment.  

The presence of pyrite in surface soils provided a greater opportunity for the oxidation process, 

which then enhanced the release of water-soluble sulfate, extractable sulfur, and exchangeable Al 

to subsurface soils, in turn affecting the density and growth of mangrove seedlings. However, 

mangrove seedlings can still grow and survive in high acidity, as in Site 4 and 1, but with a lower 

density, establishment, and relative growth rate. 

Tidal inundation greatly improved soil quality, particularly in Site 6. Low existing acidity, 

potential acidity and pyrite percentages in surface soils, reducing or low oxidative environments 

minimise the opportunity for pyrite to oxidise. As a result, the amounts of water- soluble sulfate, 

extractable sulfur and exchangeable Fe and Al in subsurface soils were low. Low organic 

material in this site resulted in a low amount of SP and SPOS. Therefore, the site has a low long-

term risk of releasing acid. This condition in turn has provided a better environment for 

mangrove seedlings to establish and grow. 
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CHAPTER 8: GENERAL DISCUSSION 
 

 

The combined experimental and field studies evaluate the response of mangrove seedlings to 

acid sulfate soil environments, and assess the potential to restore mangroves in such an 

environment. The results agree with the findings of some researchers: that ASS is one of the 

stress factors that responsible for the unsuccessful of mangrove restoration, although mangrove 

seedlings showed their ability to tolerate high metal levels and acidity to some degree. 

In the study, mangrove seedlings employed exclusion mechanisms in response to high 

concentrations of metals. However, negative effects were observed on the density, establishment, 

and growth of the surviving mangrove seedlings. The seedlings showed similar responses to acid 

soil conditions. To achieve better survival and development, this study identified that mangrove 

seedlings require geochemical conditions of higher pH, a reducing environment, and lower 

potential acidity. Free tidal inundation proved to be a great natural support for improving soil 

quality, which in turn increased the density, establishment, and growth of naturally occurring and 

replanted mangrove seedlings in the study area.  

This study provides an insight on the researchers‘ argument who state that a series of 

remediation programs is required to remove harmful substances before conducting mangrove 

restoration in an ASS environment. This study is essential because it used geochemical approach, 

therefore mangrove restoration works effectively. 

To provide a better insight into the effect of geochemical conditions on the survival and growth 

of the mangrove seedlings, major outcomes from the study, based on the research questions: 

―Which geochemical conditions are required for mangrove seedlings to establish and grow?‖, 

and ―What is the tolerance of mangrove seedlings to acid conditions and high level of metals?‖ 

are discussed below. 
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1. Major outcomes of the study 

1.1. General geochemical conditions required for mangrove seedling establishment 

The establishment of mangrove seedlings in this study depended on the type of environment, 

where the numbers of seedlings survived in non-ASS environments were greater that in ASS 

environments. Mangrove restoration has better results for density, establishment and growth in 

areas that have a higher pH and pHfox, reducing environment, and lower potential acidity. Both 

the laboratory and field studies demonstrated that the establishment of mangrove seedlings is 

associated significantly with higher pH (including pHfox in the field study). A reducing 

environment led to a denser seedlings in the field study area.  

Lower sulfate and total sulfur provided a good living environment for mangrove seedlings in the 

non-ASS experimental environments. In contrast, the ASS environments in this study that had 

opposite geochemical conditions to those in non-ASS environments inhibited mangrove 

seedlings from establishing. The environment type (non-ASS and ASS) did not significantly 

affect the value of seedlings‘ total fresh length or root length. 

However, in the field study the measured sulfur species (water-soluble sulfate and extractable 

sulfur) as a single factor did not significantly affect the density, establishment and growth of the 

seedlings directly. There was however a negative correlation between sulfide and the 

establishment and growth of seedlings.  

1.2. Response of mangrove seedling to acid environments 

 Mangrove seedlings can grow and survive in high acid environments, but with lower values of 

density, establishment, and relative growth rates. One might expect that the density, 

establishment, and growth of seedlings were primarily influenced by the amount of existing 

acidity on the environment. However, this study showed that the amount of potential acid (TPA 

and TSA) and pyrite in surface soils played a key role in the density, establishment, and growth 

of seedlings. The existing acidity (TAA) on both surface and subsurface soils, as a single 

variable, did not significantly influence the density, establishment and growth of the mangrove 

seedlings in the field study area. Other associated existing acidity levels in subsurface soils, such 

as water-soluble sulfate, exchangeable sulfur, and exchangeable Fe did also not affect those three 
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biological variables. The exception was a higher level of exchangeable Al in subsurface soils 

which had a negative effect on seedling establishment. The rainy season and tidal effects reduced 

some levels of these variables, and might also affect this relationship, and as such should also be 

taken into consideration (McElnea et al., 2002). Therefore, the expectation is that in a dry season 

or an area with low tidal impact, the existing acidity might have a negative effect on the density, 

establishment and growth of the mangrove seedlings.  

As in the findings of many studies (Auxtero and Shamshuddin, 1991, Fitzpatrick et al., 1998, 

Cook et al., 2000, Ward et al., 2004b), the presence of pyrite in surface soils provided a greater 

opportunity for the oxidation process, which then enhanced the release of water-soluble sulfate, 

extractable sulfur, and exchangeable Al into subsurface soils in the study area. This process 

resulted in high acidity of subsurface soils that negatively affected the density, establishment and 

growth of mangrove seedlings.  

1.3. Response of mangrove seedlings to high levels of metal in the environment and 

the involved geochemical behaviour 

In response to very high concentrations of metals under non-ASS experimental mediums, R. 

stylosa seedlings showed a response similar to those observed in other research (Walsh et al., 

1979, Thomas and Eong, 1984, Silva et al., 1990, Zheng, 1997, MacFarlane and Burchett, 2002, 

Alongi et al., 2003, Zhou et al., 2011). As the concentration of metals in the experiment mediums 

increased, the amount of metals accumulated or adsorbed in roots increased and limitedly 

distributed the metals to certain amounts to aerial parts. This condition was confirmed by the 

high BCF metal values in root tissues and low BCF values in stem and leaf tissues, as well as 

low translocation factor values of metals. Similar condition demonstrated more obviously in ASS 

experimental mediums, particularly Fe.  

The experiment study results also demonstrate another example metal regulation by seedlings 

under environment with high metal levels, where seedlings tended to accumulate metals based on 

their function for growth and development. Seedlings roots adsorbed essential metals (Fe and 

Cu), while non-essential metals were adsorbed to a very limited extent (Al and Ni) in both non-

ASS and ASS experimental mediums. Since the concentration of Ni existed in the experimental 
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mediums were far lower amount compared to Al, it‘s BCF values in roots were greater than BCF 

values of Al.  

These facts suggest that the exclusion of excessive metals through the roots is a main mechanism 

employed by seedlings to cope with high concentrations of metals. Similar exclusion 

mechanisms occurred to those reported elsewhere (Kathiresan and Bingham, 2001, MacFarlane 

et al., 2007, Bayen, 2012, Wang et al., 2012). Furthermore, high acidity may cause H
+
 to 

compete with metal in the root growth area (Marschner, 1995), therefore reducing metal uptake.  

Consideration of the geochemical conditions, such as pH, pHfox, Eh, organic matter, grain size, 

and concentrations of sulfur species in the mangrove restoration area are very important, because 

these variables interact with and affect metal concentrations in soils and roots, as shown in this 

study. In turn, metal concentrations in soils and roots affect the density, establishment and 

growth of mangrove seedlings. Metal adsorption in the roots was generally controlled by the 

total concentration of soils in the study area, which was similar to those reported in many studies 

(MacFarlane et al., 2003, Lyubenova and Schroder, 2010, Yadav et al., 2010).  

1.4. The role of tidal inundation and the involved geochemisty behaviour 

Using a geochemistry approach, this study supports other research findings on the importance of 

hydrology in mangrove restoration in acid sulfate soil environments (Djamaluddin, 2006, Lewis 

et al., 2006, Kamali and Hashim, 2011). In abandoned ponds affected by acid sulfate soils, free 

inundation of seawater caused an improvement of soils quality in the environment, such as 

higher pH (field and oxidisable), non-jarosite top soils, and low redox potential. Seawater 

inundation provides bicarbonates that is capable to neutralise acidic soils, which results in 

increase of pH and pHfox (Indraratna et al., 2002, Johnston et al., 2009b, Wong et al., 2010, 

Burton et al., 2011).  Similar condition was found in the experiment results, where the pH and 

pHfox of subsurface soils increased under reducing environment. In addition, the Brighton soils 

that used as mediums of ASS environments majorly contained sand that rich of bicarbonates and 

carbonates that have high neutralizing capacity. 

Free tidal inundation also created low existing acidity, potential acidity and pyrite percentages on 

surface soils and reducing environments, thereby reducing the chance for pyrite oxidation. Low 
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pyrite oxidation resulted in low levels of water-soluble sulfate, extractable sulfur and 

exchangeable Fe and Al in subsurface soils. Low organic content in these sites led to low amount 

of SP and SPOS, which in turn provided a suitable environment for mangrove seedlings to 

establish and grow with higher density. 

Improvement of geochemical conditions due to inundation has also been reported in other 

locations (Chowdhury, 2001, Johnston et al., 2010a). This tidal inundation provided positive 

advantages, as indicated by properties such as TPA and pyrite values in Site 6 of the abandoned 

ponds. Relatively low or zero values of TAA in surface soils were also caused by rainfall, where 

substantial rainfall released existing acidity from the soils, inhibiting further pyrite oxidation 

(McElnea et al., 2002). Zero TAA values were also found in several ASS locations in Indonesia, 

in particular Mamuju, Pontianak, and Tarakan (Mansur et al., 2008, Paena et al., 2010). 

Tidal inundation also caused a relatively lower level of exchangeable Fe and Al in the study area. 

Similar results were also reported in East Trinity, northern Australia, demonstrating an 

improvement of geochemical conditions due to seawater tidal inundation. Here, lower acidity 

was generated, pH rose, and there was a decrease of exchangeable Al (Johnston et al., 2010a). 

Free seawater inundation in the abandoned pond sites affected the jarosite stability, due to the 

reduced environment (Chu et al., 2006), and resulted in a decreased, or even led to the 

disappearance of organic matter, including the peat layer (Anda et al., 2009), and the amount of 

potential sulfur content. The decrease of the amount of organic content and associated variables 

caused by tidal inundation suggests a low potential risk to contribute acid in the future. Such 

improvement of soils conditions in turn provided a better environment to establish and grow 

(McKee, 1993, McKee, 1995a, McKee, 1995b, Field, 1998, Lewis, 2005, Kamali and Hashim, 

2011, Friess, 2014). 

The free inundation of the ponds in the study area not only supported natural seedling 

establishment but also provided access for supply. The availability of propagules from mature 

mangrove stands near the sites is one key requirement for mangrove seedlings to establish 

naturally around the area.  
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In contrast, sites with low inundation effects produced oxidative conditions. Under aerobic 

conditions pyrite tends to oxidise and produce high concentrations of sulfuric acid, which in turn 

decreases pH (Dent, 1986, Chu et al., 2006), and affects the density, establishment, and growth 

of mangrove seedlings. In certain sites, jarosite formation occurred at the surface of the soil as a 

result of partial oxidation of the pyrite (van Breemen, 1973, Chu et al., 2006). 

The absence of mangrove seedlings in certain sites was due to poor inundation and resulted in 

poor soil quality. Such stagnant water is responsible for poor development of mangrove 

seedlings (Gopal and Krishnamurthy, 1993, Wolanski, 2006) and inhibited a route for propagules 

to enter the sites. Therefore, replanting is required for this type of environment. However, 

replanting of mangrove seedlings in such an environment, even at the creek banks, resulted in 

low survivability and poor seedling growth. 

The advantages presented by tidal inundation provide an alternative solution to a liming-assisted 

restoration project. Despite cost-associated problems faced by developing countries, liming 

application, particularly for mangrove rehabilitation in damaged zone requires a proper plan, and 

although liming is widely known to increase soil pH, published research presents contrary 

results. In three treatments using drainage liming techniques in coastal acid sulfate soil areas in 

Finland, there was no significant decrease of the discharge of metals and acids during a three 

year study (Åström et al., 2007). Areas discharging metal and acid can be a problem for 

seedlings in the restoration area as a result of the higher uptake of bioavailable metal by the 

seedlings, which in turn increases the possibility of metal toxicity to the plant. However, proper 

techniques and maintenance of the drainage system may be effective in the long term (Åström et 

al., 2007). 

Other research shows that the effectiveness of liming as a method for decreasing bioavailable 

metals depends on the type of the metals. For instance, liming does not work effectively on the 

reduction of bioavailable forms of Cu (do Nascimento et al., 2007), possibly due to Cu‘s low 

affinity to soil exchange capacity (Atanassova and Okazaki, 1997). Therefore, Cu strongly binds 

to organic matter (do Nascimento et al., 2007). However, liming results in a decrease of 

bioavailable forms of Zn in soils, due to its conversion to the iron oxide form (do Nascimento et 

al., 2007). Liming also increases organic Zn (do Nascimento et al., 2007), and through this 
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process the bioavailable form releases slowly (He et al., 1995). Therefore, the availability of 

organic matter, redox potential and other variables associated with organic decomposition should 

be examined before liming to prevent any negative impact that might result from the complex 

geochemical interactions. Thus, the hydrological rehabilitation improves soil quality without, or 

co-assisted with liming. 

 

2.  The implications of the study 

While contributions to improved mangrove restoration have been largely conducted in terms of 

biology and hydrology aspects, this study contributes knowledge to the geochemistry response of 

mangrove seedlings under ASS environments. This study is therefore important in assessing the 

feasibility of mangrove restoration in disturbed ASS environments, and associated metal polluted 

environments. Despite small sample sizes employed, the knowledge generated from both the 

small-scale experimental study and the field study provides a better understanding of basic and 

natural responses of mangrove seedlings to the existing geochemical conditions.  

The selection of the study field area in Mare, a disturbed complex of ASS abandoned ponds that 

was previously a mangrove ecosystem, represents the research problem well. This area provides 

a variety of dynamic geochemical conditions with different mangrove density, which allowed an 

evaluation of different processes and interactions within the environment A combination of 

biological measurements with various geochemical and ASS analytical methods provides a 

strong methodology to apply to other ASS environments.  

This research can be applied outside the study area with either similar dominant species, or other 

species with similar physiological mechanisms. Such possibilities are based on previous research 

that demonstrated that salt-excreting species (e.g. A. marina) tolerate high concentrations of 

metals. This species excretes excess metals through salt glands on the leaves (MacFarlane and 

Burchett, 2000). Other research on herbicides revealed a similar condition, where the examined 

salt-excreting species (i.e. A. marina and Aegiceras corniculatum) was more vulnerable to 

herbicides compared to the salt-excluding species (i.e. R. stylosa and Ceriops australis) (Bell and 

Duke, 2005). This research suggested that mangroves take up herbicides in a similar manner to 

salt, indicating therefore that the mechanism could also work in a metal environment.  
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3. Recommendations for the best strategy  

The strategy recommended to achieve effective mangrove restoration in ASS environments, 

particularly in abandoned ponds, is as follows: 

Measurement of the fresh soil pH, pHfox and low redox potential (Eh) are required as the first 

steps in identifying the general situation of a targeted area. Both pH and pHfox measure the 

indications of ASS presence through the level of acidity of the soils; the difference is the addition 

of hydrogen peroxide into the soils for pHfox measurement that indicates the amount of sulfide 

contained in the examined soils (Watling et al., 2004). Measurement of redox potential of soil 

provides an indication of reducing power that describes the anaerobic or anoxic condition (Lewis 

and Brown, 2014). The higher the redox potential value (+), the greater the level of oxidative 

environment, which indicating the greater chance of pyrite to oxidize and affect the environment. 

Due to variety, complexity and dynamic geochemical conditions in a disturbed ASS 

environment, there is no exact single method to use in order to manage ASS. The Peroxide 

Oxidisable Combined Acidity and Sulfur (POCAS) method and its improved method, 

Suspension POCAS (SPOCAS) suite are common suites that are used in analysing ASS (Ahern 

et al., 2004). By conducting this suite or method, determination of the potential acidification of 

ASS through acid and sulfur trails can be obtained (Ahern et al., 2004).  

As mentioned in previous chapters, POCAS and SPOCAS methods involve several steps, which 

consist of determining levels of KCl extractable Sulfur (SKCl), peroxide sulfur (SP), and peroxide 

oxidisable sulfur (SPOS).  SKCl measures the adsorbed and soluble sulphate; SP measures the 

sulfate presence in soils through oxidising the soils to generate maximum acidity from reduced 

sulfidic material; and SPOS estimates the net potential acid risk of the soil from the unoxidised 

sulfur compounds by calculating the difference between SPOS and SKCl. These suites also measure 

titratable actual acidity (TAA), titratable peroxide acidity (TPA), and titratable sulfidic acidity 

(TSA). The TSA value is determined by calculating the difference between the value of TPA and 

the TAA (White and Melville, 1993, Ahern et al., 2004). The percentage of pyrite can be 

estimated through TSA values using certain formulation (Konsten and Sarwani, 1990). Analysis 

of other general geochemical conditions, such as organic matter and grain size, are also required, 
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as all mentioned variables directly or indirectly influence on geochemistry, density, 

establishment and growth of mangrove seedlings.  

Select an area with high pH, low redox, low in both existing and potential acidity, and the areas 

with has free tidal inundation as a priority area for mangrove rehabilitation. For instance, choose 

the furthest seaward free tidal inundation area, or along a creek/river that has good access for 

tides.  

Establishment in the seaward area may provide the advantages of better geochemical conditions, 

because pyrite becomes stable under the mangroves, therefore reducing the export of acidity and 

metals to adjacent areas. The existence of mature mangroves in the seaward area provides access 

for propagules to settle in more landward location. Further restoration to more landward sites 

with good access inundation may be conducted after mangrove colonisation, or at least once 

mangrove establishment on the seaward area has succeeded. In the meantime, the established 

pioneer seedlings may retain concentrations of metals in their roots. Reduction of metal 

concentrations in soils will allow the next growth of mangroves to develop as healthy plants. 

Restoration of mangroves in severe AASS should apply a proper remediation strategy since the 

restoration may result in a very low establishment and growth rate. Construction of canal 

networks in severe AASS areas to allow tidal access should be planned carefully, because some 

evidence shows that the channel establishment itself may result in activation of AASS (Anda et 

al., 2009). That is, the application of lime to remediate the AASS area requires proper planning, 

as the activation of AASS can result in higher uptakes of bioavailable metal by the seedlings. 

These strategies are particularly important in countries that usually employ direct planting 

methods in their restoration projects, without considering environmental conditions. 
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GENERAL CONCLUSIONS 
 

To conclude, this study has generated some major findings: 

 The type of experimental environment influenced the survivability of seedlings, where 

the number of seedlings survived in non-ASS environments was higher than those in ASS 

mediums.  Similar results are also found in the field study. In general, higher pH and 

pHfox, a reducing environment, and lower potential acidity are the primary geochemical 

conditions that are required by mangrove seedlings, and are demonstrated to have higher 

success rates for their density, establishment and growth. Other geochemical variables, 

such as lower sulfate and total extractable sulfur also provided a good living environment 

for mangrove seedlings to establish and develop. The environment type (non-ASS or 

ASS) did not significantly affect on both the value of seedlings‘ relative growth rate and 

root length in the experimental study. 

 The presence of pyrite in surface soils provided a greater opportunity for the oxidation 

process, which then enhanced the release of water-soluble sulfate, extractable sulfur, and 

exchangeable Al into subsurface soils and resulted in high acidity in subsurface soils. In 

such high acid conditions, mangrove seedlings can grow and survive but with lower 

values of density, establishment, and relative growth rate. This process emphasises the 

important effect of the amount of potential acid (TPA and TSA) and pyrite in the surface 

soils on the acidity, density, establishment and growth of the seedlings in the study area. 

In contrast, the existing acidity (TAA) in both surface and subsurface soils did not 

significantly influence the density, establishment and growth of the mangrove seedlings 

in the field study area. Other associated existing acidity, such as water-soluble sulfate, 

exchangeable sulfur, and exchangeable Fe in subsurface soils did not affect those 

biological indicators.  

 Mangrove seedlings demonstrated their ability to tolerate high levels of metals in the 

experimental study by regulating, retaining and excluding them through roots, and 

excreting them through leaves. The seedlings accumulated and adsorbed high levels of 
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metal in roots and  distributed them in limited amount to the aerial parts, which was 

confirmed by higher BCF values  in roots and low BCF values in stem and leaf tissues, as 

well as low translocation factors. These conditions were very obvious in ASS 

experimental mediums. Selective strategy was also clearly shown by the seedlings in the 

experimental mediums, particularly against the non-essential metal, Al, where the 

seedlings strongly excluded it from the roots. High levels of exchangeable Al in 

subsurface soils also had a strong negative effect on the establishment of mangrove 

seedlings. 

 Free inundation of seawater improved the quality of soils in the study area, in terms of 

higher pH (field and oxidisable), non-jarosite top soils, higher silt/clay percentage, and 

low organic content. Free tidal inundation also produced low existing acidity, potential 

acidity and pyrite percentage in surface soils and reducing environments, thereby 

minimising the opportunity for pyrite to oxidise. As a result, the amount of water-soluble 

sulfate, extractable sulfur and exchangeable Fe and Al in subsurface soils was low. Low 

organic material in these sites resulted in a low amount of potential sulfur in the 

environment. This condition in turn provided a good environment, which led to higher 

density, establishment and relative growth of mangrove seedlings. This study also 

demonstrated that metal concentrations in soils and roots were affected by physical and 

geochemical factors, which highlight the importance of tidal inundation in mangrove 

restoration projects. Furthermore, free tidal inundation also provided access for propagule 

supply, which is advantageous to seedlings to establish naturally. 



 

125 

 

BIBLIOGRAPHY 
 

 

AGORAMOORTHY, G., CHEN, F. A. & HSU, M. J. 2008. Threat of heavy metal pollution in 

halophytic and mangrove plants of Tamil Nadu, India. Environmental Pollution, 155, 

320-326. 

AHERN, C. R. & MCELNEA, A. E. 2000. Simplified chemistry of acid sulfate soil. In: 

AHERN, C. R., HEY, K. M., WATLING, K. M. & ELDERSHAW, V. J. (eds.) Acid 

sulfate soils: environmental issues, assessment and management. Technical Papers. 

Queensland: Queensland Acid Sulfate Soils Investigation Team (QASSIT). Department 

of Natural Resources. 

AHERN, C. R., MCELNEA, A. E. & SULLIVAN, L. A. 2004. Acid Sulfate Soils Laboratory 

Methods Guidelines. Indooroopilly, Queensland: Queensland Department of Natural 

Resources, Mines and Energy. 

ALLOWAY, B. J. & AYRES, D. C. 1997. Chemical Principles of Environmental Pollution, 

London, Blackie Academic & Professional. 

ALONGI, D., CLOUGH, B., DIXON, P. & TIRENDI, F. 2003. Nutrient partitioning and storage 

in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees -  

Structure and Function, 17, 51-60. 

ALONGI, D. M. 2002. Present state and future of the world‘s mangrove forests. Environmental 

Conservation, 29, 331-349. 

ALONGI, D. M. 2009. The energetics of mangrove forests, Dordrecht, Springer. 

ALVES, M. E. & LAVORENTI, A. 2004. Sulfate adsorption and its relationships with 

properties of representative soils of the São Paulo State, Brazil. Geoderma, 118, 89-99. 

ANDA, M., SISWANTO, A. B. & SUBANDIONO, R. E. 2009. Properties of organic and acid 

sulfate soils and water of a `reclaimed' tidal backswamp in Central Kalimantan, 

Indonesia. Geoderma, 149, 54-65. 

ANTONIADIS, V., TSADILAS, C. D., SAMARAS, V. & SGOURAS, J. 2006. Chapter 3. 

Availability of heavy metals applied to soil through sewage sludge. In: PRASAD, M. N. 

V., NAIDU,R., SAJWAN, K. S. (ed.) Trace Elements in the Environment: 

Biogeochemistry, Biotechnology, and Bioremediation. Boca Raton, Florida: CRC Press 

Taylor and Francis Group. 

ANZECC & ARMCANZ. 2000. Australian and New Zealand Guidelines for Fresh and Marine 

Water Quality. Canberra: Australian and New Zealand Environment and Conservation 

Council and Agriculture and Resource Management Council of Australia and New 

Zealand. 



  Bibliography 

 

126 

 

APHA 1999. Standard Method for the Examination of Water and Wastewater. 20th Edition. 

Washington, DC: American Public Health Association. 

ARMSTRONG, J. & ARMSTRONG, W. 2005. Rice: Sulfide-induced barriers to root radial 

oxygen loss, Fe
2+

 and water uptake, and lateral root emergence. Annals of Botany, 96, 

625-638. 

ÅSTRÖM, M., ÖSTERHOLM, P., BÄRLUND, I. & TATTARI, S. 2007. Hydrochemical effects 

of surface liming, controlled drainage and lime-filter drainage on boreal acid sulfate soils 

Water, Air and Soil Pollution, 179, 107-116. 

ATANASSOVA, I. & OKAZAKI, M. 1997. Adsorption-desorption characteristics of high levels 

of copper in soil clay fractions. Water, Air, and Soil Pollution, 98, 213-228. 

AUDEBERT, A. & SAHRAWAT, K. L. 2000. Mechanisms for iron toxicity tolerance in 

lowland rice. Journal of Plant Nutrition, 23, 1877-1885. 

AUXTERO, E. A. & SHAMSHUDDIN, J. 1991. Growth of oil palm (Elaeis guineensis) 

seedlings on acid sulfate soils as affected by water regime and aluminium. Plant and soil, 

137, 243-257. 

AZARIAH, J., AZARIAH, H., GUNASEKARAN, S. & SELVAM, V. 1992. Structure and 

species distribution in Coringa mangrove forest, Godavari Delta, Andhra Pradesh, India. 

Hydrobiologia, 247, 11-16. 

BAKER, A. J. M. 1981. Accumulators and excluders - strategies in the response of plants to 

heavy metals. Journal of Plant Nutrition, 3, 643 - 654. 

BALDWIN, D. S. & FRASER, M. 2009. Rehabilitation options for inland waterways impacted 

by sulfidic sediments – A synthesis. Journal of Environmental Management, 91, 311-

319. 

BARCELÓ, J. & POSCHENRIEDER, C. 2002. Fast root growth responses, root exudates, and 

internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a 

review. Environmental and Experimental Botany, 48, 75-92. 

BAYEN, S. 2012. Occurrence, bioavailability and toxic effects of trace metals and organic 

contaminants in mangrove ecosystems: A review. Environment International, 48, 84-101. 

BECKER, M. & ASCH, F. 2005. Iron toxicity in rice—conditions and management concepts. 

Journal of Plant Nutrition and Soil Science, 168, 558-573. 

BELL, A. M. & DUKE, N. C. 2005. Effects of Photosystem II inhibiting herbicides on 

mangroves—preliminary toxicology trials. Marine Pollution Bulletin, 51, 297-307. 

BENNING, L. G., WILKIN, R. T. & BARNES, H. L. 2000. Reaction pathways in the Fe–S 

system below 100°C. Chemical Geology, 167, 25-51. 



  Bibliography 

 

127 

 

BERNER, R. A. 1970. Sedimentary pyrite formation. American Journal of Science, 268, 1 - 23. 

BERTRAND, M., GUARY, J. & SCHOEFS, B. 2002. How plants adapt their physiology to an 

excess of metals. In: PESSARAKLI, M. (ed.) Handbook of Plant and Crop Physiology. 

New York: Marcel Dekker, Inc. 

BOHN, H. L., MC NEAL, B. L. & O'CONNOR, G. A. 1985. Soil chemistry, New York, John 

Wiley and Sons. 

BOSIRE, J. O., DAHDOUH-GUEBAS, F., KAIRO, J. G. & KOEDAM, N. 2003. Colonization 

of non-planted mangrove species into restored mangrove stands in Gazi Bay, Kenya. 

Aquatic Botany, 76, 267-279. 

BUCHNER, P. 2008. Chapter 4. Plant sulfate transporters. In: JAIWAL, P. K., SINGH, R. P. & 

DHANKHER, O. P. (eds.) Plant Membrane and Vacuolar Transporters. Wallingford, 

Oxon, GBR: CABI Publishing. 

BURCHETT, M. D., FIELD, C. D. & PULKOWNIK, A. 1984. Salinity, growth and root 

respiration in the grey mangrove, Avicennia marina. Physiologia Plantarum, 60, 113-

118. 

BURTON, E. D., BUSH, R. T., JOHNSTON, S. G., SULLIVAN, L. A. & KEENE, A. F. 2011. 

Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-

flooded wetland. Geochimica et Cosmochimica Acta, 75, 3434-3451. 

BURTON, E. D., BUSH, R. T. & SULLIVAN, L. A. 2006. Reduced inorganic sulfur speciation 

in drain sediments from acid sulfate soil landscapes. Environmental Science & 

Technology, 40, 888-893. 

BURTON, E. D., BUSH, R. T., SULLIVAN, L. A., JOHNSTON, S. G. & HOCKING, R. K. 

2008. Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich 

acid-sulfate soil. Chemical Geology, 253, 64-73. 

CAREY, E. & TAILLEFERT, M. 2005. The Role of Soluble Fe(III) in the Cycling of Iron and 

Sulfur in Coastal Marine Sediments. Limnology and Oceanography, 50, 1129-1141. 

CHANG, Y. C., YAMAMOTO, Y. & MATSUMOTO, H. 1999. Accumulation of aluminium in 

the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a 

combination of aluminium and iron. Plant, Cell & Environment, 22, 1009-1017. 

CHOWDHURY, M. A. 2001. Changes in mangrove forest soils: a comparison between cultured 

and naturally inundated conditions. Wetlands Ecology and Management, 9, 81-89. 

CHU, C., LIN, C., WU, Y., LU, W. & LONG, J. 2006. Organic matter increases jarosite 

dissolution in acid sulfate soils under inundation conditions. Soil Research, 44, 11-16. 



  Bibliography 

 

128 

 

CHURCH, C. D., WILKIN, R. T., ALPERS, C. N., RYE, R. O. & MCCLESKEY, R. B. 2007. 

Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochemical 

Transactions, 8, 10 - 14  

CLARK, M. W., MCCONCHIE, D., SAENGER, P. & AND PILLSWORTH, M. 1997. 

Hydrological controls on copper, cadmium, lead and zinc concentrations in an 

anthropogenically polluted mangrove ecosystem, Wynnum, Brisbane, Australia. Journal 

of Coastal Research, 13, 1150-1158. 

CLARKE, A. & JOHNS, L. 2002. Mangrove nurseries: construction, propagation and planting. 

Fish Habitat Guideline FHG 004, Queensland Fisheries Service. Department of Primary 

Industries. 

CLOUGH, B. F. 1984. Growth and salt balance of the mangroves Avicennia marina (Forsk.) 

Vierh. and Rhizophora stylosa Griff. in relation to salinity. Functional Plant Biology, 11, 

419-430. 

CONNELL, W. E. & PATRICK, W. H., JR. 1968. Sulfate reduction in soil: Effects of redox 

potential and pH. Science, 159, 86-87. 

COOK, F. J., DOBOS, S. K., CARLIN, G. D. & MILLAR, G. E. 2004. Oxidation rate of pyrite 

in acid sulfate soils: in situ measurements and modelling. Soil Research, 42, 499-507. 

COOK, F. J., HICKS, W., GARDNER, E. A., CARLIN, G. D. & FROGGATT, D. W. 2000. 

Export of acidity in drainage water from acid sulphate soils. Marine Pollution Bulletin, 

41, 319-326. 

DAVIDSON, C. M., THOMAS, R. P., MCVEY, S. E., PERALA, R., LITTLEJOHN, D. & 

URE, A. M. 1994. Evaluation of a sequential extraction procedure for the speciation of 

heavy metals in sediments. Analytica Chimica Acta, 291, 277-286. 

DEFEW, L. H., MAIR, J. M. & GUZMAN, H. M. 2005. An assessment of metal contamination 

in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Marine 

Pollution Bulletin, 50, 547-552. 

DELHAIZE, E. & RYAN, P. R. 1995. Aluminum toxicity and tolerance in plants. Plant 

Physiology, 107, 315-321. 

DELHAIZE, E., RYAN, P. R. & RANDALL, P. J. 1993. Aluminum  tolerance in wheat 

(Triticum aestivum L.): II. Aluminum stimulated excretion of malic acid from root apices. 

Plant Physiology, 103, 695-702. 

DENT, D. 1986. Acid sulphate soils: a baseline for research and development, International 

Institute for Land Reclamation and Improvement/ILRI. 

DJAMALUDDIN, R. 2006. Cost Effective Mangrove Rehabilitation Focusing on Restoration of 

Hydrology. Tiwoho, North Sulawesi: KELOLA. 



  Bibliography 

 

129 

 

DJPB. 2011. Revitalisasi tambak idle menuju kebangkitan perudangan nasional [Online]. 

Direktorat Jenderal Perikanan Budidaya. Kementerian Kelautan dan Perikanan Republik 

Indonesia.  [Accessed 25 March 2014]. 

DO NASCIMENTO, C. W. A., DE MELO, É. E. C., DO NASCIMENTO, R. S. D. M. P. & 

LEITE, P. V. V. 2007. Effect of liming on the plant availability and distribution of zinc 

and copper among soil fractions. Communications in Soil Science and Plant Analysis, 38, 

545-560. 

DOLLA, A., FOURNIER, M. & DERMOUN, Z. 2006. Oxygen defense in sulfate-reducing 

bacteria. Journal of Biotechnology, 126, 87-100. 

DUKE, N. C. 2006. Australia's Mangroves: The Authoritative Guide to Australia's Mangrove 

Plants, Brisbane, University of Queensland. 

DUKE, N. C., BALL, M. C. & ELLISON, J. C. 1998. Factors influencing biodiversity and 

distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7, 27-

47. 

EVANGELOU, V. P. 1995. Pyrite oxidation and its control: solution chemistry, surface 

chemistry, acid mine draingae (AMD), molecular oxidation mechanisms, microbial role, 

kinetics, control, ameliorates and limitations, microencapsulation, CRC Press. 

FAGERIA, N. K., SANTOS, A. B., BARBOSA FILHO, M. P. & GUIMARÃES, C. M. 2008. 

Iron Toxicity in Lowland Rice. Journal of Plant Nutrition, 31, 1676-1697. 

FANNING, D. S., RABENHORST, M. C., BALDUFF, D. M., WAGNER, D. P., ORR, R. S. & 

ZURHEIDE, P. K. 2010. An acid sulfate perspective on landscape/seascape soil 

mineralogy in the U.S. Mid-Atlantic region. Geoderma, 154, 457-464. 

FARIAS, C. O., HAMACHER, C., WAGENER, A. D. L. R., CAMPOS, R. C. D. & GODOY, J. 

M. 2007. Trace metal contamination in mangrove sediments, Guanabara Bay, Rio de 

Janeiro, Brazil. Journal of the Brazilian Chemical Society, 18, 1194-1206. 

FERREIRA, T. O., OTERO, X. L., VIDAL-TORRADO, P. & MACÍAS, F. 2007. Effects of 

bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove 

substrate. Geoderma, 142, 36-46. 

FIELD, C. D. 1998. Rehabilitation of mangrove ecosystems: An overview. Marine Pollution 

Bulletin, 37, 383 - 392. 

FITZPATRICK, R., MERRY, R., WILLIAMS, J., WHITE, J., BOWMAN, G. & TAYLOR, G. 

1998. Acid sulfate soil assessment: coastal, inland and minesite conditions. National 

Land and Water Resources Audit Methods Paper [Online]. Available: 

http://www.nlwra.gov.au/full/30_themes_and_projects/50_scoping_projects/04_methods

_papers?09_Fitzpatrick/Acid_Sulfate_Conditions.html [Accessed 22 October 2008]. 

http://www.nlwra.gov.au/full/30_themes_and_projects/50_scoping_projects/04_methods_papers?09_Fitzpatrick/Acid_Sulfate_Conditions.html
http://www.nlwra.gov.au/full/30_themes_and_projects/50_scoping_projects/04_methods_papers?09_Fitzpatrick/Acid_Sulfate_Conditions.html


  Bibliography 

 

130 

 

FITZPATRICK, R. W. 2003. Overview of acid sulfate soil properties, environmental hazards, 

risk mapping and policy development in Australia. In: ROACH, I. C. (ed.) Advances in 

regolith. CRC LEME. 

FRIESS, D. 2014. Understanding the biophysical factors that control mangrove seedling 

establishment and survival. In: LEWIS III, R. R. & BROWN, B. (eds.) Ecological 

Mangrove Rehabilitation. A Field Manual for Practitioners. 1 ed.: The Canadian 

International Development Agency and OXFAM - GB - Restoring Coastal Livelihoods 

Program. 

GENON, J. G., HEPCÉE, N., DELVAUX, B., DUFEY, J. E. & HENNEBERT, P. A. 1994. 

Redox conditions and iron chemistry in highland swamps of Burundi. Plant and soil, 166, 

165-171. 

GLEASON, S. M., EWEL, K. C. & HUE, N. 2003. Soil redox conditions and plant-soil 

relationships in a micronesian mangrove forest. Estuarine, Coastal and Shelf Science, 56, 

1065-1074. 

GLOVER, F., WHITWORTH, K. L., KAPPEN, P., BALDWIN, D. S., REES, G. N., WEBB, J. 

A. & SILVESTER, E. 2011. Acidification and buffering mechanisms in acid sulfate soil 

wetlands of the Murray-Darling Basin, Australia. Environmental Science and 

Technology, 45, 2591-2597. 

GOLEZ, N. V. 1995. Formation of acid sulfate soil and its implications to brackishwater ponds. 

Aquacultural Engineering, 14, 297-316. 

GOPAL, B. & KRISHNAMURTHY, K. 1993. Wetlands of South Asia. In: WHIGHAM, D. F., 

KYJOVA, D. D. & HEJNY, S. (eds.) Wetlands of the world. Netherlands: Kluwer 

Academic Publishers. 

GREGER, M. 2004. Metal availability, uptake, transport and accumulation in plants. In: 

PRASAD, M. N. V. (ed.) Heavy metal stress in plants: from biomolecules to ecosystems. 

Second ed. Berlin: Springer-Verlag. 

GUNSÉ, B., POSCHENRIEDER, C. & BARCELÓ, J. 2000. The role of ethylene metabolism in 

the short-term responses to aluminium by roots of two maize cultivars different in Al-

resistance. Environmental and Experimental Botany, 43, 73-81. 

HARBISON, P. 1986. Mangrove muds--A sink and a source for trace metals. Marine Pollution 

Bulletin, 17, 246-250. 

HARRIS, R. R. & SANTOS, M. C. F. 2000. Heavy metal contamination and physiological 

variability in the Brazilian mangrove crabs Ucides cordatus and Callinectes danae 

(Crustacea: Decapoda). Marine Biology, 137, 691-703. 

HAZELTON, P. A. & MURPHY, B. W. 2007. Interpreting Soil Test Results: What Do All the 

Numbers Mean  Victoria, Australia, CSIRO Publishing. 



  Bibliography 

 

131 

 

HE, X. T., LOGAN, T. J. & TRAINA, S. J. 1995. Physical and chemical characteristics of 

selected U.S. municipal solid waste composts. Journal of Environmental Quality, 24, 

543-552. 

HEIRI, O., LOTTER, A., F.   & LEMCKE, G. 2001. Loss on ignition as a method for estimating 

organic and carbonate content in sediments: reproducibility and comparability of results. 

Journal of Paleolimnology, 25, 101-110. 

HICKS, W., BOWMAN, G. & FITZPATRICK, R. The geochemistry of Australian tropical acid 

sulfate soils and their environmental hazard.  Soil Science: Confronting new realities in 

the 21st century. Transactions of International Union of Soil Science 17th World 

Congress of Soil Science, 2002 Bangkok, Thailand. 

HOGARTH, P. 2007. The Biology of Mangroves and Seagrasses, New York, Oxford University 

Press. 

INDRARATNA, B., GLAMORE, W. C. & TULARAM, G. A. 2002. The effects of tidal 

buffering on acid sulphate soil environments in coastal areas of New South Wales. 

Geotechnical and Geological Engineering, 20, 181 - 199. 

JASIŃSKA, A., BURSKA, D. & BOLAŁEK, J. 2012. Sulfur in the marine environment. 

Oceanological and Hydrobiological Studies, 41, 72-82. 

JOHNSTON, S. G., BURTON, E. D., BUSH, R. T., KEENE, A. F., SULLIVAN, L. A., SMITH, 

D., MCELNEA, A. E., AHERN, C. R. & POWELL, B. 2010a. Abundance and 

fractionation of Al, Fe and trace metals following tidal inundation of a tropical acid 

sulfate soil. Applied Geochemistry, 25, 323-335. 

JOHNSTON, S. G., BUSH, R. T., SULLIVAN, L. A., BURTON, E. D., SMITH, D., 

MARTENS, M. A., MCELNEA, A. E., AHERN, C. R., POWELL, B., STEPHENS, L. 

P., WILBRAHAM, S. T. & VAN HEEL, S. 2009a. Changes in water quality following 

tidal inundation of coastal lowland acid sulfate soil landscapes. Estuarine, Coastal and 

Shelf Science, 81, 257-266. 

JOHNSTON, S. G., KEENE, A. F., BURTON, E. D., BUSH, R. T., SULLIVAN, L. A., 

MCELNEA, A. E., AHERN, C. R., SMITH, C. D., POWELL, B. & HOCKING, R. K. 

2010b. Arsenic mobilization in a seawater inundated acid sulfate soil. Environmental 

Science & Technology, 44, 1968-1973. 

JOHNSTON, S. G., KEENE, A. F., BUSH, R. T., BURTON, E. D., SULLIVAN, L. A., 

ISAACSON, L., MCELNEA, A. E., AHERN, C. R., SMITH, C. D. & POWELL, B. 

2011. Iron geochemical zonation in a tidally inundated acid sulfate soil wetland. 

Chemical Geology, 280, 257-270. 

JOHNSTON, S. G., KEENE, A. F., BUSH, R. T., BURTON, E. D., SULLIVAN, L. A., SMITH, 

D., MCELNEA, A. E., MARTENS, M. A. & WILBRAHAM, S. 2009b. Contemporary 



  Bibliography 

 

132 

 

pedogenesis of severely degraded tropical acid sulfate soils after introduction of regular 

tidal inundation. Geoderma, 149, 335-346. 

JONES, G. B., MERCURIO, P. & OLIVIER, F. 2000. Zinc in fish, crabs, oysters, and mangrove 

flora and fauna from Cleveland Bay. Marine Pollution Bulletin, 41, 345-352. 

JONG, W., SAM, D. D. & HUNG, T. V. 2006. Forest rehabilitation in Vietnam:  histories, 

realities and future. Bogor: Center for International Forestry Research. 

JØRGENSEN, S. E., HALLING-SØRENSEN, B. & MAHLER, B. 1998. Handbook of 

Estimation Methods in Ecotoxicology and Environmental Chemistry, Boca Raton, 

Florida, Lewis Publisher. 

KABATA-PENDIAS, A. & PENDIAS, H. 2001. Trace elements in soil and plants, Boca Raton, 

Florida, CRC Press. 

KAMALI, B. & HASHIM, R. 2011. Mangrove restoration without planting. Ecological 

Engineering, 37, 387-391. 

KATHIRESAN, K. & BINGHAM, B. L. 2001. Biology of mangroves and mangrove 

ecosystems. Advances in Marine Biology, 40, 81-251. 

KATHIRESAN, K. & THANGAM, T. S. 1990. A note on the effects of salinity and pH on 

growth of Rhizophora seedlings. The Indian Forester, 116, 243-244. 

KHRISNAMURTY, K. V., SHPRIRT, E. & REDDY, M. M. 1976. Trace metal extraction of 

soils and sediments by nitric acid-hydrogen peroxide. Atomic Absorption Newsletter, 15, 

68 - 70. 

KIDD, P. S., LLUGANY, M., POSCHENRIEDER, C., GUNSE, B. & BARCELO, J. 2001. The 

role of root exudates in aluminium resistance and silicon-induced amelioration of 

aluminium toxicity in three varieties of maize (Zea mays L.). Journal of Experimental 

Botany, 52, 1339-1352. 

KIDD, P. S. & PROCTOR, J. 2000. Effects of aluminium on the growth and mineral 

composition of Betula pendula Roth. Journal of Experimental Botany, 51, 1057-1066. 

KITAYA, Y., JINTANA, V., PIRIYAYOTHA, S., JAIJING, D., YABUKI, K., IZUTANI, S., 

NISHIMIYA, A. & IWASAKI, M. 2002. Early growth of seven mangrove species 

planted at different elevations in a Thai estuary. Trees, 16, 150-154. 

KOCHIAN, L. V., HOEKENGA, O. A. & PIÑEROS, M. A. 2004. How do crop plants tolerate 

acid soils? Mechanisms of aluminium tolerance and phosphorus efficiency. Annual 

Review of Plant Biology, 55, 459-493. 

KONSTEN, C. J. M. & SARWANI, M. Actual and potential acidity and related chemical 

characteristics of acid sulphate soils in Pulau Petak, Kalimantan.  Workshop on Acid 

Sulfate Soils in Humid Tropics, 1990 Bogor. AARD AND LAWOO, 30 – 47. 



  Bibliography 

 

133 

 

KONSTEN, C. J. M., VAN BREEMEN, N., SUPING, S., ARIBAWA, I. B. & 

GROENENBERG, J. E. 1994. Effects of flooding on pH of rice-producing, acid sulfate 

soils in Indonesia. Soil Science Society of America Journal, 58, 871 - 883. 

KOSCHORRECK, M. 2008. Microbial sulphate reduction at a low pH. FEMS Microbiology 

Ecology, 64, 329-342. 

KRAAL, P., BURTON, E. D. & BUSH, R. T. 2013. Iron monosulfide accumulation and pyrite 

formation in eutrophic estuarine sediments. Geochimica et Cosmochimica Acta, 122, 75-

88. 

KRISTENSEN, E. 2007. Mangrove crabs as ecosystem engineers; with emphasis on sediment 

processes. Journal of Sea Research, 59, 30 - 43. 

KUSMANA, C. 1990. Soil as a factor influencing the mangrove forest communities in 

Talidendang Besar, Riau. Biotropica, 4, 9 -18. 

LABRENZ, M. & BANFIELD, J. F. 2004. Sulfate-Reducing Bacteria-Dominated Biofilms That 

Precipitate ZnS in a Subsurface Circumneutral-pH Mine Drainage System. Microbial 

Ecology, 47, 205-217. 

LACERDA, L. D. 1998. Biogeochemistry of Trace Metals and Diffuse Pollution in Mangrove 

Ecosystems. International Society for Mangrove Ecosystems occasional Papers. 

Okinawa. 

LAWTON, J. R., TODD, A. & NAIDOO, D. K. 1981. Preliminary investigation into the 

structure of the roots of the mangroves, Avicennia marina and Bruguiera gymnorrhiza, in 

relation to ion uptake. New Phytologist, 88, 713-722. 

LEVITT, J. 1980. Responses of Plants to Environmental Stresses: Water, Radiation, Salt, and 

Other Stresses, London, Academic Press. 

LEWIS, R. R. 2005. Ecological engineering for successful management and restoration of 

mangrove forests. Ecological Engineering, 24, 403-418. 

LEWIS, R. R. & BROWN, B. 2014. Ecological Mangrove Rehabilitation. A Field Manual for 

Practitioners. 1 ed.: The Canadian International Development Agency and OXFAM - GB 

- Restoring Coastal Livelihoods Program. 

LEWIS, R. R. & MARSHALL, M. J. Principles of successful restoration of shrimp aquaculture 

ponds back to mangrove forests.  Programa/resumes de Marcuba ‘97, September 15/20, 

1997 Palacio de Convenciones de La Habana, Cuba. 126. 

LEWIS, R. R., QUARTO, A., ENRIGHT, J., CORETS, E., PRIMAVERA, J., 

RAVISHANKAR, T., STANLEY, O. D. & DJAMALUDDIN, R. 2006. Five Steps to 

Successful Ecological Restoration of Mangroves. Yogyakarta, Indonesia: Mangrove 

Action Project And Yayasan Akar Rumput Laut. 



  Bibliography 

 

134 

 

LIAN, Y., XU, J., LIN, P., MEGURO, S. & KAWACHI, S. 1999. Five heavy metals in 

propagules of ten mangrove species of China Journal of Wood Science, 45, 343-347. 

LIN, C., HASKINS, P. G. & LIN, J. 2003. Factors controlling deoxygenation of ―floodwater‖ 

overlying an acid sulfate soil: experimental modeling. Pedosphere, 13, 323-330. 

LIN, S., HUANG, K.-M. & CHEN, S.-K. 2000. Organic carbon deposition and its control on 

iron sulfide formation of the southern East China Sea continental shelf sediments. 

Continental Shelf Research, 20, 619-635. 

LOCKHART, D. 1996. Geochemical Baseline Study: Heavy Metals in Sediments, Logan River 

Estuary. (unpbl.). Brisbane Australia School of Natural Resource Sciences, Queensland 

University of Technoology. 

LÖFGREN, S., AASTRUP, M., BRINGMARK, L., HULTBERG, H., LEWIN-PIHLBLAD, L., 

LUNDIN, L., KARLSSON, G. P. & THUNHOLM, B. 2011. Recovery of soil water, 

groundwater, and streamwater from acidification at the Swedish integrated monitoring 

catchments. Ambio, 40, 836 - 856. 

LUNA, L. G. (ed.) 1968. Manual of Histologic Staining Methods of the Armed Forces Institute 

of Pathology: McGraw-Hill Book Company. 

LYIMO, T. J. & MUSHI, D. 2005. Sulfide concentration and redox potential patterns in 

mangrove forests of Dar es Salaam:  Effects on Avicennia marina and Rhizophora 

mucronata seedling establishment. Western Indian Ovean Journal of Marine Science, 4, 

163 -173. 

LYUBENOVA, L. & SCHRODER, P. 2010. Uptake and effect of heavy metals on the plant 

detoxification cascade in the presence and absence of organic pollutants. In: 

SHERAMETI, I. & VARMA, A. (eds.) Soil Heavy Metals. Berlin: Springer-Verlag. 

MA, J. F. & RYAN, P. R. 2010. Foreword: Understanding how plants cope with acid soils. 

Functional Plant Biology, 37, iii-vi. 

MACDONALD, B. C. T., SMITH, J., KEENE, A. F., TUNKS, M., KINSELA, A. & WHITE, I. 

2004. Impacts of runoff from sulfuric soils on sediment chemistry in an estuarine lake. 

Science of The Total Environment, 329, 115-130. 

MACDONALD, B. C. T., WHITE, I., ÅSTRÖM, M. E., KEENE, A. F., MELVILLE, M. D. & 

REYNOLDS, J. K. 2007. Discharge of weathering products from acid sulfate soils after a 

rainfall event, Tweed River, eastern Australia. Applied Geochemistry, 22, 2695-2705. 

MACFARLANE, G. R. 2002. Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh 

as potential biomarkers of heavy metal stress in estuarine ecosystems. Marine Pollution 

Bulletin, 44, 244-256. 

MACFARLANE, G. R. & BURCHETT, M. D. 2000. Cellular distribution of copper, lead and 

zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquatic Botany, 68, 45-59. 



  Bibliography 

 

135 

 

MACFARLANE, G. R. & BURCHETT, M. D. 2001. Photosynthetic pigments and peroxidase 

activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina 

(Forsk.) Vierh. Marine Pollution Bulletin, 42, 233-240. 

MACFARLANE, G. R. & BURCHETT, M. D. 2002. Toxicity, growth and accumulation 

relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) 

Vierh. Marine Environmental Research, 54, 65-84. 

MACFARLANE, G. R., KOLLER, C. E. & BLOMBERG, S. P. 2007. Accumulation and 

partitioning of heavy metals in mangroves: A synthesis of field-based studies. 

Chemosphere, 69, 1454-1464. 

MACFARLANE, G. R., PULKOWNIK, A. & BURCHETT, M. D. 2003. Accumulation and 

distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.)Vierh.: 

biological indication potential. Environmental Pollution, 123, 139-151. 

MACHADO, W., GUEIROS, B. B., LISBOA-FILHO, S. D. & LACERDA, L. D. 2005. Trace 

metals in mangrove seedlings: role of iron plaque formation. Wetlands Ecology and 

Management, 13, 199-206. 

MACINTOSH, D. J. & ASHTON, E. C. 2002. A Review of Mangrove Biodiversity 

Conservation and Management. Denmark: Center for Tropical Ecosystems Research. 

University of Aarhus. 

MANSUR, H., PAENA, M., SYARIANAH, ROSMIATI, HUSAIN, ANSAR & FAHRUDDIN, 

A. 2008. Yearly report. 2007. Research Institution of Coastal Aquaculture. Ministry of 

Marine Affairs and Fisheries, Indonesia. 

MARSCHNER, H. 1991. Mechanism of adaptation of plants to acid soils. Plant Soil, 134, 1-20. 

MARSCHNER, H. 1995. Mineral nutrition of higher plants, San Diego, Academic Press. 

MATTHIJS, S., TACK, J., VAN SPEYBROECK, D. & KOEDAM, N. 1999. Mangrove species 

zonation and soil redox state, sulphide concentration and salinity in Gazi Bay (Kenya), a 

preliminary study. Mangroves and Salt Marshes, 3, 243-249. 

MCDONALD, B. C. T., SMITH, J., KEENE, A. F., TUNKS, M., KINSELA, A., AND WHITE, 

I. 2007. Impacts of runoff from sulphuric soils on sediment chemistry in an estuarine 

lake. Science of Total Environment, 329, 115-130. 

MCELNEA, A. E., AHERN, C. R., MANDERS, J. A. & SMITH, C. D. Variability of acid 

sulfate soil chemistry at East Trinity remediation site, Far North Queensland. Paper No. 

689.  ISCO 2004 - 13th International Soil Conservation Organisation Conference. 

Conserving Soil and Water for Society: Sharing Solutions, 2004 Brisbane, Australia.: 

Department of Natural Resources Mines and Energy, 1 - 4. 



  Bibliography 

 

136 

 

MCELNEA, A. E., AHERN, C. R. & MENZIES, N. W. 2002. Improvements to peroxide 

oxidation methods for analysing sulfur in acid sulfate soils. Soil Research, 40, 1115-

1132. 

MCKEE, K. L. 1993. Soil physicochemical patterns and mangrove species distribution--

reciprocal effects? Journal of Ecology, 81, 477-487. 

MCKEE, K. L. 1995a. Interspecific variation in growth, biomass partitioning, and defensive 

characteristics of neotropical mangrove seedlings: Response to light and nutrient 

availability. American Journal of Botany, 82, 299-307. 

MCKEE, K. L. 1995b. Seedling recruitment patterns in a Belizean mangrove forest: Effects of 

establishment ability and physico-chemical factors. Oecologia, 101, 448-460. 

MENZIES, N. W. 2003. Toxic elements in acid soils: Chemistry and measurement. In: 

ZDENKO, R. (ed.) Handbook of Soil Acidity. New York: Marcel Dekker, Inc. 

MICROSOFT. 2012. Bing Maps - Mare, South Sulawesi, Indonesia. 

MISHRA, S. & DUBEY, R. S. 2005. Heavy metal toxicity induced alterations in photosynthetic 

metabolism in plants. In: PESSARAKLI, M. (ed.) Handbook of Photosynthesis. Second 

edition ed. Boca Raton: Taylor and Francis. 

MORSE, J. W. 1999. Sulfides in sandy sediments: New insights on the reactions responsible for 

sedimentary pyrite formation. Aquatic Geochemistry, 5, 75-85. 

MORSE, J. W. & WANG, Q. 1997. Pyrite formation under conditions approximating those in 

anoxic sediments: II. Influence of precursor iron minerals and organic matter. Marine 

Chemistry, 57, 187-193. 

MULLER, P. G. 2006. Acid Sulfate Soils of Bowen, North Queensland. pp. 36. 

NEDHI, A., SINGH, L. J. & SINGH, S. I. 1990. Effect of cadmium and nickel on germination, 

early seedling growth and photosynthesis of wheat and pigeon pea. International Journal 

of Tropical Agriculture, 8, 141-147. 

NELSON, P. N. & SU, N. 2010. Soil pH buffering capacity: a descriptive function and its 

application to some acidic tropical soils. Soil Research, 48, 201-207. 

NGUYEN, N., HIEP, N. & FUJITA, K. 2005. Iron enhances aluminum-induced leaf necrosis 

and plant growth inhibition in Eucalyptus camaldulensis. Plant and Soil, 277, 139-152. 

NICKERSON, N. & THIBODEAU, F. 1985. Association between pore water sulfide 

concentrations and the distribution of mangroves. Biogeochemistry, 1, 183-192. 

NORDMYR, L., ASTROM, M. & PELTOLA, P. 2008. Metal pollution of estuarine sediments 

caused by leaching of acid sulphate soils. Estuarine, Coastal and Shelf Science, 76, 141-

152. 



  Bibliography 

 

137 

 

NORDSTROM, D. K. 1982. Aqueous pyrite oxidation and the consequent formation of 

secondary iron minerals. In: KITTRICK, J. A., FANNING, D. S. & HOSSNER, L. R. 

(eds.) Acid Sulfate Weathering. Madison, Wisconsin: Soil Science Society of America, 

Special Publication. 

ONG CHE, R. G. 1999. Concentration of 7 Heavy Metals in Sediments and Mangrove Root 

Samples from Mai Po, Hong Kong. Marine Pollution Bulletin, 39, 269-279. 

ONO, K., YAMAMOTO, Y., HACHIYA, A. & MATSUMOTO, H. 1995. Synergistic inhibition 

of growth by aluminum and iron of tobacco (Nicotiana tabacum L.) cells in suspension 

culture. Plant and Cell Physiology, 36, 115-125. 

OXMANN, J., PHAM, Q., SCHWENDENMANN, L., STELLMAN, J. & LARA, R. 2010. 

Mangrove reforestation in Vietnam: the effect of sediment physicochemical properties on 

nutrient cycling. Plant and soil, 326, 225-241. 

PAENA, M., ROSMIATI, SYARIANAH, ANSAR & HUSAIN 2010. Yearly report. 2009. 

Research Institution of Coastal Aquaculture. Ministry of Marine Affairs and Fisheries, 

Indonesia. 

PAGE, C. D. & STEINBOCK, B. 2009. Water extraction of sediments for nutrient anions and 

cations. FTP Deo State Florida. 

PARKER, D. R. 1995. Root growth analysis: An underutilised approach to understanding 

aluminium rhizotoxicity. Plant and soil, 171, 151-157. 

PERCIVAL, J. B. & LINDSAY, P. J. 1997. Chapter two. Measurement of physical properties of 

sediments. In: MUDROCH, A., AZCUE, J. M., AND MUDROCH, P. (ed.) Manual of 

Physico-Chemical Analysis of Aquatic Sediments. Florida: CRC Press, Inc. 

POORTER, H. & GARNIER, E. 2007. Chapter 3. Ecological significance of inherent variation 

in relative growth rate and its components. In: VALLADARES, P. A. (ed.) Functional 

Plant Ecology. 

POSTGATE, J. 1959. Sulphate reduction by bacteria. Annual Reviews in Microbiology  

POWELL, B. & AHERN, C. R. 2000. Nature, origin and distribution of acid sulfate soils:  issues 

for Queensland. In: AHERN, C. R., HEY, K. M., WATLING, K. M., AND 

ELDERSHAW, V. J. (ed.) Acid sulfate soils: environmental issues, assessment and 

management.  Technical Papers. Queensland Acid Sulfate Soils Investigation Team 

(QASSIT). Department of Natural Resources Queensland. 

PRASAD, M. N. V., GREGER, M. & ARAVIND, P. 2006. Chapter 24. Biogeochemical cycling 

of trace elements by aquatic and wetland plants: Relevance to phytoremediation. In: 

PRASAD, M. N. V., NAIDU, R. & SAJWAN, K. S. (eds.) Trace Elements in the 

Environment: Biogeochemistry, Biotechnology, and Bioremediation. Boca Raton, 

Florida: CRC Press Taylor and Francis Group. 



  Bibliography 

 

138 

 

PREDA, M. & COX, M. E. 2001. Trace metals in acid sediments and waters, Pimpama 

catchment, southeast Queensland, Australia. Environmental Geology, 40, 755-768. 

PREDA, M. & COX, M. E. 2002. Trace metal occurrence and distribution in sediments and 

mangroves, Pumicestone region, southeast Queensland, Australia. Environment 

International, 28, 433-449. 

PREDA, M. & COX, M. E. 2004. Temporal variations of mineral character of acid-producing 

pyritic coastal sediments, Southeast Queensland, Australia. Science of The Total 

Environment, 326, 257-269. 

QUICKSALL, A. N. 2009. Iron and sulfur mineralogy and redox transformations in soils and 

sediments: Implications for trace metal dynamics. Ph.D. 3397938, Dartmouth College. 

RAMANATHAN, A. L., SUBRAMANIAN, V., RAMESH, R., CHIDAMBARAM, S. & 

JAMES, A. 1999. Environmental geochemistry of the Pichavaram mangrove ecosystem 

(tropical), southeast coast of India. Environmental Geology, 37, 223-233. 

RAMOS E SILVA, C. A., DA SILVA, A. P. & DE OLIVEIRA, S. R. 2006. Concentration, stock 

and transport rate of heavy metals in a tropical red mangrove, Natal, Brazil. Marine 

Chemistry, 99, 2-11. 

REDDY, R. K. & DELAUNE, R. D. 2008. Biogeochemistry of Wetlands: Science and 

Applications, Boca Raton, FL, CRC Press. 

REGVAR, M. & VOGEL-MIKUS, K. 2008. Arbuscular mycorrhiza in metal hyperaccumulating 

plants. In: VARMA, A. (ed.) Mycorrhiza: State of the Art, Genetics and Molecular 

Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics. Third 

ed. Heidelberg: Springer. 

REID, R. & BUTCHER, C. 2011. Positive and negative impacts of plants on acid production in 

exposed acid sulphate soils. Plant and soil, 349, 183-190. 

RENNENBERG, H. 1984. The fate of excess sulfur in higher plants. Annual Review of Plant 

Physiology, 35, 121-153. 

SABANG, R., NURJANNA & PASANDE, R. 2005. Pyrite analysis for Acid Sulfate Soils. 

Buletin Teknik Litkayasa Akuakultur, 4, 37 - 41. 

SAENGER, P. 2002. Mangrove Ecology, Silviculture and Conservation, Netherlands, Kluwer 

Academic Publishers. 

SAENGER, P., MCCONCHIE, D. & CLARK, M. 1990. Mangrove forests as a buffer zone 

between anthropogenically polluted area and the sea. Coastal Zone Management 

Workshop. Yepoon, Queensland. 

SAHRAWAT, K. L. 2004. Iron Toxicity in Wetland Rice and the Role of Other Nutrients. 

Journal of Plant Nutrition, 27, 1471-1504. 



  Bibliography 

 

139 

 

SALOMONS, W. & FORSTNER, U. 1984. Metals in the Hydrocycle, Berlin, Springer-Verlag. 

SAMAC, D. A. & TESFAYE, M. 2003. Plant improvement for tolerance to aluminum in acid 

soils - a review. Plant Cell, Tissue and Organ Culture, 75, 189-207. 

SAMMUT, J., CALLINAN, R. B. & DOVE, M. 1999. A brief review of the aquatic impacts of 

acid sulphate soils. In: AHERN, C. R., ELDERSHAW, V. J., WATLING, K. M. & 

ANOROV, J. M. (eds.) Acid Sulphate Soils Workshop Papers. 

SARANGI, R. K., KATHIRESAN, K. & SUBRAMANIAN, A. N. 2002. Metal concentrations 

in five mangrove species of the Bhitarkanika, Orissa, east coast of India. Indian Journal 

of Geo-Marine Sciences, 31, 251-253. 

SCHIPPERS, A. & JØRGENSEN, B. B. 2002. Biogeochemistry of pyrite and iron sulfide 

oxidation in marine sediments. Geochimica et Cosmochimica Acta, 66, 85-92. 

SIEDLECKA, A. 1995. Some aspects of interactions between heavy metals and plant mineral 

nutrients. Acta Societatis Botanicorum Poloniae (Poland), 64, 265-272. 

SILVA, C. A. R., DA SILVA, A. P. & DE OLIVEIRA, S. R. 2006. Concentration, stock and 

transport rate of heavy metals in a tropical red mangrove, Natal, Brazil. Marine 

Chemistry, 99, 2-11. 

SILVA, C. A. R., LACERDA, L. D. & REZENDE, C. E. 1990. Metals reservoir in a red 

mangrove forest. Biotropica, 22, 339-345. 

SOKOLOVA, T. & ALEKSEEVA, S. 2008. Adsorption of sulfate ions by soils (A review). 

Eurasian Soil Science, 41, 140-148. 

STARKEY, R. L. 1946. Sulfate reduction and the anaerobic corrosion of iron. Journal of Series 

Paper of the New Jersey Agricultural Experiment Station, Rutgers University, 

Department of Microbiology, 193 - 203. 

STEVENSON, N. J. 1997. Disused shrimp ponds: Options for redevelopment of mangrove. 

Coastal Management, 25, 425-435. 

SUMNER, M. E. & NOBLE, A. D. 2003. Soil acidification: The world story. In: RENGEL, Z. 

(ed.) Handbook of Soil Acidity. New York: Marcell Decker, Inc. 

SUNDSTÖRM, R., ASTRÖM, M., AND ÖSTHERHOLM P. 2002. Comparison of the metal 

content in acid sulphate soil runoff and industrial effluents in Finland. Environmental 

Science and Technology, 36, 4269-4272. 

TAM, N. F. Y. & WONG, Y. S. 2000. Spatial variation of heavy metals in surface sediments of 

Hong Kong mangrove swamps. Environmental Pollution, 110, 195-205. 

TAN, E. O. 1983. Part A. Coastal aquaculture in the Philippines. Coastal Aquaculture in Asia. 

Taipe City, Taiwan, Republic of China: Food and Fertiliser Technology Center. 



  Bibliography 

 

140 

 

THOMAS, C. & EONG, O. J. 1984. Effect of heavy metals zinc and lead on Rhizophora 

mucronata Lam. and Avicennia alba Bl. seedlings. Proceeding of the Asian Symposium 

on Mangrove Environment, Research and Management. Kuala Lumpur: University of 

Malaya Press. 

TOMASICK, T., MAH, J. M., NONTJI, A. & MOOSA, M. K. 1997. Chapters 19. Mangroves. 

The Ecology of the Indonesian Seas.  Part II. Singapore: Periplus Editions (HK) Ltd. 

VAN BREEMEN, N. 1973. Soil forming processes in acid sulphate soils. Acid Sulphate Soils. 

ILRI Publication. (ILRI: Wageningen, The Netherlands). 

VAN BREEMEN, N. 1993. Environmental aspects of acid sulphate soils. In: DENT, D. L. & 

VAN MENSVOORT, M. E. F. (eds.) Selected Papers of the Ho Chi Minh City 

Symposium  on Acid Sulfate Soils. Wageningen, The Netherlands: ILRI Publ. 

International Institute for Land Reclamation and Improvement. 

VANUCCI, M. 2002. Chapter 3: Indo-West Pacific mangroves. In: LACERDA, L. D. (ed.) 

Mangrove Ecosystems: Function and Management. Berlin: Springer. 

VERKLEIJ, J. A. C. & SCHAT, H. 1990. Chapter 12. Mechanisms of metal tolerance in higher 

plants. In: SHAW, A. J. (ed.) Heavy Metal Tolerance in Plants: Evolutionary Aspects. 

Boca Raton, Florida: CRC Press. 

WALSH, G. E., AINSWORTH, K. A. & RIGBY, R. 1979. Resistance of red mangrove 

(Rhizophora mangle L.) seedlings to lead, cadmium and mercury. Biotropica, 11, 22-27. 

WALTERS, B. B., RÖNNBÄCK, P., KOVACS, J. M., CRONA, B., HUSSAIN, S. A., 

BADOLA, R., PRIMAVERA, J. H., BARBIER, E. & DAHDOUH-GUEBAS, F. 2008. 

Ethnobiology, socio-economics and management of mangrove forests: A review. Aquatic 

Botany, 89, 220-236. 

WANG, Y., QIU, Q., XIN, G., YANG, Z., ZHENG, J., YE, Z. & LI, S. 2012. Heavy metal 

contamination in a vulnerable mangrove swamp in South China. Environmental 

Monitoring and Assessment, 185, 5775-87. 

WARD, N. J., SULLIVAN, L. A. & BUSH, R. T. 2004a. Soil pH, oxygen availability, and the 

rate of sulfide oxidation in acid sulfate soil materials: implications for environmental 

hazard assessment. Soil Research, 42, 509-514. 

WARD, N. J., SULLIVAN, L. A., FYFE, D. M., BUSH, R. T. & FERGUSON, A. J. P. 2004b. 

The process of sulfide oxidation in some acid sulfate soil materials. Soil Research, 42, 

449-458. 

WATLING, K. M., AHERN, C. L. & HEY, K. M. 2004. Acid sulfate soils field pH test. In: 

AHERN, C. R., MCELNEA, A. E. & SULLIVAN L. A. ). (eds.) Acid Sulfate Soils 

Laboratory Methods Guidelines. Indooroopilly, Queensland, Australia: Department of 

Natural Resources, Mines and Energy. 



  Bibliography 

 

141 

 

WHEELER, D., THOMPSON, J. & BELL, J. 1999. Laboratory comparison of soil redox 

conditions between red soils and brown soils in Minnesota, USA. Wetlands, 19, 607-616. 

WHITE, I. & MELVILLE, M. D. 1993. Treament and containment of potential acid sulfate soils. 

Report to the Roads and Traffic Authority. Technical Report No. 53. CSIRO, Center for 

Environmental Mechanics. 

WHITE, I., MELVILLE, M. D., WILSON, B. P., PRICE, C. B. & WILLET, I. K. Understanding 

acid sulphate soils in canelands.  National Conference on Acid Sulphate Soils, 1993 

Wollongbar, New South Wales. ASSMAC, 130 - 148. 

WILKINS, P. C. & WILKINS, R. G. 1997. Inorganic Chemistry in Biology, New York, Oxford 

Science Publications. 

WILLOW, M. A. & COHEN, R. R. H. 2003. pH, dissolved oxygen, and adsorption effects on 

metal removal in anaerobic bioreactors. Journal of Environmental Quality, 32, 1212. 

WOLANSKI, E. 2006. Thematic paper: synthesis of the protective functions of coastal forests 

and trees against natural hazards. In: BRAATZ, S., FORTUNA, S., BROADHEAD, J. & 

LESLIE, R. (eds.) Coastal protection in the aftermath of the Indian Ocean tsunami: What 

role for forests and trees? : Food and Agriculture organisation of the United Nations. 

WONG, M. T. F. & SWIFT, R. S. 2003. Role of organic matter in alleviating soil acidity. In: 

ZDENKO, R. (ed.) Handbook of Soil Acidity. New York: Marcel Dekker, Inc. 

WONG, V. N. L., JOHNSTON, S. G., BURTON, E. D., BUSH, R. T., SULLIVAN, L. A. & 

SLAVICH, P. G. 2010. Seawater causes rapid trace metal mobilisation in coastal lowland 

acid sulfate soils: Implications of sea level rise for water quality. Geoderma, 160, 252-

263. 

XIONG, L. M. & LU, R. K. 1993. Effect of liming on plant accumulation of cadmium under 

upland or flooded conditions. Environmental Pollution, 79, 199-203. 

YADAV, D. V., JAIN, R. & RAI, R. K. 2010. Impact of Heavy Metals on Sugarcane. In: 

SHERAMETI, I. & VARMA, A. (eds.) Soil Heavy Metals. Berlin: Springer-Verlag. 

YE, Y., TAM, N. F. Y., LU, C. Y. & WONG, Y. S. 2005. Effects of salinity on germination, 

seedling growth and physiology of three salt-secreting mangrove species. Aquatic 

Botany, 83, 193-205. 

YOUSSEF, T. & SAENGER, P. 1998. Photosynthetic gas exchange and accumulation of 

phytotoxins in mangrove seedlings in response to soil physico-chemical characteristics 

associated with waterlogging. Tree Physiology, 18, 317-324. 

YU, S. H., KE, L., WONG, Y. S. & TAM, N. F. Y. 2005. Degradation of polycyclic aromatic 

hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environment 

International, 31, 149-154. 



  Bibliography 

 

142 

 

ZAGURY, G. J., KULNIEKS, V. I. & NECULITA, C. M. 2006. Characterization and reactivity 

assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage 

treatment. Chemosphere, 64, 944-954. 

ZHANG, C. G., LEUNG, K. K., WONG, Y. S. & TAM, N. F. Y. 2007a. Effect of heavy metal 

stress on oxidative enzymes and lipid peroxidation in leaves and roots of two mangrove 

plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67, 44 - 50. 

ZHANG, C. G., LEUNG, K. K., WONG, Y. S. & TAM, N. F. Y. 2007b. Germination, growth 

and physiological responses of mangrove plant (Bruguiera gymnorrhiza) to lubricating 

oil pollution. Environmental and Experimental Botany, 60, 127-136. 

ZHENG, W. J. 1997. Accumulation and biological cycling of heavy metal elements in 

Rhizophora stylosa mangroves in Yingluo Bay, China. Marine ecology. Progress series, 

159, 293. 

ZHOU, Y., PENG, Y., LI, X. & CHEN, G. 2011. Accumulation and partitioning of heavy metals 

in mangrove rhizosphere sediments. Environmental Earth Sciences, 64, 799 - 807. 

 

 

 

 

 



 

143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES



  

144 

 

 

 

 

 

 

 

 

 
 

 

 

 

APPENDIX A. DATA OF METAL CONCENTRATIONS, BIOCONCENTRATION AND 
TRANSLOCATION IN THE LABORATORY ENVIRONMENT 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    Appendix A 

 

145 

 

Appendix A.1. Concentration of metals in laboratory environment 
 

Table A.1.1. The concentration of metals in soil samples in laboratory environment 

 

Fe Al Ni Cu

Control mangrove 1 1400 1237 2 0.5

Control mangrove 2 1300 1134 1 0.5

Control mangrove 3 1200 1037.5 0 1

Ni 25 µg/g 1 1092.5 1756 38 3

Ni 25 µg/g 2 1192.5 1761.5 25 1

Ni 25 µg/g 3 1092.5 1575.5 44.5 1

Ni 55 µg/g 1 1350 1176 67 0.5

Ni 55 µg/g 2 1250 1082 52.5 0

Ni 55 µg/g 3 1350 1187 54 0.5

Cu 70 µg/g 1 1742.5 2054.5 0.2 114

Cu 70 µg/g 2 1442.5 1959.5 5.85 99

Cu 70 µg/g 3 1692.5 2043 6.5 114

Cu 280 µg/g 1 1100 1452 0 340

Cu 280 µg/g 2 950 1222 0 280

Cu 280 µg/g 3 1050 1354.5 0.5 290

ASS 1 16288.35 6225 9.5 6

ASS 2 16997.05 6200 7 6

ASS 3 16806.15 6060 11 5.5

ASS + Ni 25 µg/g 1 10839.15 7015.45 27 12.5

ASS + Ni 25 µg/g 2 12828.75 8200.7 37 8

ASS + Ni 25 µg/g 3 10621.15 6793.05 29.5 11.5

ASS + Ni 55 µg/g 1 17939 6615 49.5 6.5

ASS + Ni 55 µg/g 2 17380.3 6305 48 6

ASS + Ni 55 µg/g 3 17316.5 6215 43.5 5.5

ASS + Cu 70 µg/g 1 12426.6 7042.05 7.5 105

ASS + Cu 70 µg/g 2 12521.9 6969.15 12.5 85

ASS + Cu 70 µg/g 3 12791.25 7094.05 11 235

ASS + Cu 280 µg/g 1 13094.85 7089.85 11.5 245

ASS + Cu 280 µg/g 2 12548.15 6575 7.5 240

ASS + Cu 280 µg/g 3 9854.9 6838.95 16 260

Environment
Concentration (µg/g)

 
ND = not detected 
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Table A.1.2. The survival days of mangrove seedlings in laboratory environment 

Environment Survival day

Control mangrove 1 45

Control mangrove 2 (Lived) 80

Control mangrove 3 (Lived) 80

Ni 25 µg/g 1 (Lived) 80

Ni 25 µg/g 2 (Lived) 80

Ni 25 µg/g 3 (Lived) 80

Ni 55 µg/g 1 (Lived) 80

Ni 55 µg/g 2 (Lived) 80

Ni 55 µg/g 3 (Lived) 80

Cu 70 µg/g 1 (Lived) 80

Cu 70 µg/g 2 (Lived) 80

Cu 70 µg/g 3 (Lived) 80

Cu 280 µg/g 1 (Lived) 80

Cu 280 µg/g 2 33

Cu 280 µg/g 3 45

ASS 1 (Lived) 80

ASS 2 (Lived) 80

ASS 3 58

ASS + Ni 25 µg/g 1 27

ASS + Ni 25 µg/g 2 (Lived) 80

ASS + Ni 25 µg/g 3 37

ASS + Ni 55 µg/g 1 54

ASS + Ni 55 µg/g 2 33

ASS + Ni 55 µg/g 3 45

ASS + Cu 70 µg/g 1 27

ASS + Cu 70 µg/g 2 45

ASS + Cu 70 µg/g 3 37

ASS + Cu 280 µg/g 1 64

ASS + Cu 280 µg/g 2 33

ASS + Cu 280 µg/g 3 (Lived) 80  
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Table A.1.3.The concentration of Fe in mangrove seedling parts in laboratory environment 

Environment

Stem Leaf Root

Control mangrove 1 12.08 37.50 5985.00

Control mangrove 2 (Lived) 17.10 66.25 2360.00

Control mangrove 3 (Lived) 14.77 20.83 6235.00

Ni 25 µg/g 1 (Lived) 20.11 39.10 8235.00

Ni 25 µg/g 2 (Lived) 7.58 36.25 4630.00

Ni 25 µg/g 3 (Lived) 13.75 112.63 4625.00

Ni 55 µg/g 1 (Lived) 14.58 50.00 4490.00

Ni 55 µg/g 2 (Lived) 15.22 45.00 9132.66

Ni 55 µg/g 3 (Lived) 16.35 27.50 3485.00

Cu 70 µg/g 1 (Lived) 16.35 41.85 1337.50

Cu 70 µg/g 2 (Lived) 15.22 21.46 1537.50

Cu 70 µg/g 3 (Lived) 17.24 32.50 1487.50

Cu 280 µg/g 1 (Lived) 19.08 58.75 2375.00

Cu 280 µg/g 2 9.00 41.25 2925.00

Cu 280 µg/g 3 13.69 53.33 2287.50

ASS 1 (Lived) 18.18 50.00 13235.00

ASS 2 (Lived) 17.14 46.67 18819.83

ASS 3 18.75 91.67 17177.37

ASS + Ni 25 µg/g 1 16.58 57.50 7485.00

ASS + Ni 25 µg/g 2 (Lived) 12.78 81.25 20950.00

ASS + Ni 25 µg/g 3 18.06 79.75 10306.65

ASS + Ni 55 µg/g 1 11.50 280.00 9200.00

ASS + Ni 55 µg/g 2 27.08 120.00 5490.00

ASS + Ni 55 µg/g 3 28.75 133.75 7727.50

ASS + Cu 70 µg/g 1 50.00 38.33 5487.50

ASS + Cu 70 µg/g 2 7.14 20.00 2737.50

ASS + Cu 70 µg/g 3 23.33 65.83 4487.50

ASS + Cu 280 µg/g 1 10.56 66.25 2987.50

ASS + Cu 280 µg/g 2 30.00 62.50 2225.00

ASS + Cu 280 µg/g 3 (Lived) 17.50 30.00 3987.50

Fe (µg/g)
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Table A.1.4.The concentration of Al in mangrove seedling parts in laboratory environment 

Environment

Stem Leaf Root

Control mangrove 1 ND ND 237.50

Control mangrove 2 (Lived) ND ND 185.00

Control mangrove 3 (Lived) ND ND 162.50

Ni 25 µg/g 1 (Lived) ND ND 167.50

Ni 25 µg/g 2 (Lived) ND ND 550.00

Ni 25 µg/g 3 (Lived) 1.67 0.44 46.25

Ni 55 µg/g 1 (Lived) ND 8.12 142.50

Ni 55 µg/g 2 (Lived) ND 10.83 264.42

Ni 55 µg/g 3 (Lived) ND 2.50 132.50

Cu 70 µg/g 1 (Lived) ND 10.80 190.00

Cu 70 µg/g 2 (Lived) ND ND 190.00

Cu 70 µg/g 3 (Lived) ND ND 275.00

Cu 280 µg/g 1 (Lived) ND ND 450.00

Cu 280 µg/g 2 ND ND 355.00

Cu 280 µg/g 3 ND ND 287.50

ASS 1 (Lived) ND 8.75 220.00

ASS 2 (Lived) 13.21 42.50 230.00

ASS 3 ND 4.17 247.48

ASS + Ni 25 µg/g 1 ND ND 240.00

ASS + Ni 25 µg/g 2 (Lived) 14.72 16.25 365.00

ASS + Ni 25 µg/g 3 ND 312.50 387.70

ASS + Ni 55 µg/g 1 ND 170.00 235.00

ASS + Ni 55 µg/g 2 6.25 27.50 242.50

ASS + Ni 55 µg/g 3 9.38 268.75 332.50

ASS + Cu 70 µg/g 1 ND ND 257.50

ASS + Cu 70 µg/g 2 ND ND 242.50

ASS + Cu 70 µg/g 3 ND 5 390.00

ASS + Cu 280 µg/g 1 ND ND 230.00

ASS + Cu 280 µg/g 2 ND ND 132.50

ASS + Cu 280 µg/g 3 (Lived) ND ND 172.50

Al (µg/g)

 
ND = not detected 
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Table A.1.5. The concentration of Ni in mangrove seedling parts in laboratory environment 

 
ND = not detected 
 

 

 

 

 

 

 

 
 

 

 

 

 

Stem Leaf Root 

Control mangrove 1  2.50 5.00 ND 

Control mangrove 2 (Lived) 2.10 1.25 10.00 

Control mangrove 3 (Lived) 2.50 ND ND 

Ni 25 µg/g 1 (Lived) 3.57 12.75 370.00 

Ni 25 µg/g 2 (Lived) ND 1.25 130.00 

Ni 25 µg/g 3 (Lived) ND 19.88 196.25 

Ni 55 µg/g 1 (Lived) 4.58 3.75 637.50 

Ni 55 µg/g 2 (Lived) 4.17 0.83 1057.68 

Ni 55 µg/g 3 (Lived) 5.50 2.50 255.00 

ASS 1 (Lived) 3.00 12.50 15.00 

ASS 2 (Lived) 1.10 ND 18.33 

ASS 3 3.44 2.50 20.84 

ASS + Ni 25 µg/g 1 9.35 32.50 244.87 

ASS + Ni 25 µg/g 2 (Lived) 1.11 15.00 35.00 

ASS + Ni 25 µg/g 3 6.31 15.00 239.16 

ASS + Ni 55 µg/g 1 2.50 25.00 160.00 

ASS + Ni 55 µg/g 2 5.83 37.50 145.00 

ASS + Ni 55 µg/g 3 6.88 3.75 107.50 

Environment 
Ni (µg/g) 
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Table A.1.6. The concentration of Cu in mangrove seedling parts in laboratory environment 

Stem Leaf Root

Control mangrove 1 3.75 5.83 7.50

Control mangrove 2 (Lived) 2.10 10.00 10.00

Control mangrove 3 (Lived) 1.67 8.33 5.00

Cu 70 µg/g 1 (Lived) 4.58 5.40 397.50

Cu 70 µg/g 2 (Lived) 3.13 10.10 372.50

Cu 70 µg/g 3 (Lived) 2.92 7.50 522.50

Cu 280 µg/g 1 (Lived) 5.36 17.50 8915.0

Cu 280 µg/g 2 3.00 13.75 9926.50

Cu 280 µg/g 3 4.74 10.00 6753.75

ASS 1 (Lived) 2.50 5.00 22.50

ASS 2 (Lived) 2.14 5.83 16.67

ASS 3 2.19 6.67 49.50

ASS + Cu 70 µg/g 1 15.83 6.67 3025.50

ASS + Cu 70 µg/g 2 4.29 3.33 8217.50

ASS + Cu 70 µg/g 3 6.39 5.00 6535.00

ASS + Cu 280 µg/g 1 13.06 20.00 9495.75

ASS + Cu 280 µg/g 2 10.00 27.50 6294.25

ASS + Cu 280 µg/g 3 (Lived) 2.95 10.00 9280.00

Environment
Cu (µg/g)
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Appendix A.2. Bioconcentration factors of metals in the laboratory environment 
 
Table A.2.1. The bioconcentration factors of Fe and Al in mangrove parts in laboratory environment 

 

 
ND = not detected 

 

 

 

 

 

Stem Leaf Root Stem Leaf Root 

Control mangrove 1  0.009 0.027 4.275 ND ND 0.192 

Control mangrove 2 (Lived) 0.013 0.051 1.815 ND ND 0.163 

Control mangrove 3 (Lived) 0.012 0.017 5.196 ND ND 0.157 

Ni 25 µg/g 1 (Lived) 0.018 0.036 7.538 ND ND 0.095 

Ni 25 µg/g 2 (Lived) 0.006 0.030 3.883 ND ND 0.312 

Ni 25 µg/g 3 (Lived) 0.013 0.103 4.233 0.001 0.000 0.029 

Ni 55 µg/g 1 (Lived) 0.011 0.037 3.326 ND 0.007 0.121 

Ni 55 µg/g 2 (Lived) 0.012 0.036 7.306 ND 0.010 0.244 

Ni 55 µg/g 3 (Lived) 0.012 0.020 2.581 ND 0.002 0.112 

Cu 70 µg/g 1 (Lived) 0.009 0.024 0.768 ND 0.005 0.092 

Cu 70 µg/g 2 (Lived) 0.011 0.015 1.066 ND ND 0.097 

Cu 70 µg/g 3 (Lived) 0.010 0.019 0.879 ND ND 0.135 

Cu 280 µg/g 1 (Lived) 0.017 0.053 2.159 ND ND 0.310 

Cu 280 µg/g 2 0.009 0.043 3.079 ND ND 0.291 

Cu 280 µg/g 3  0.013 0.051 2.179 ND ND 0.212 

ASS 1 (Lived) 0.001 0.003 0.813 ND 0.001 0.035 

ASS 2 (Lived) 0.001 0.003 1.107 0.002 0.007 0.037 

ASS 3 0.001 0.005 1.022 ND 0.001 0.041 

ASS + Ni 25 µg/g 1 0.002 0.005 0.691 ND ND 0.034 

ASS + Ni 25 µg/g 2 (Lived) 0.001 0.006 1.633 0.002 0.002 0.045 

ASS + Ni 25 µg/g 3 0.002 0.008 0.970 ND 0.046 0.057 

ASS + Ni 55 µg/g 1 0.001 0.016 0.513 ND 0.026 0.036 

ASS + Ni 55 µg/g 2 0.002 0.007 0.316 0.001 0.004 0.038 

ASS + Ni 55 µg/g 3 0.002 0.008 0.446 0.002 0.043 0.053 

ASS + Cu 70 µg/g 1 0.004 0.003 0.442 ND ND 0.037 

ASS + Cu 70 µg/g 2 0.001 0.002 0.219 ND ND 0.035 

ASS + Cu 70 µg/g 3 0.002 0.005 0.351 ND 0.001 0.055 

ASS + Cu 280 µg/g 1 0.001 0.005 0.228 ND ND 0.032 

ASS + Cu 280 µg/g 2 0.002 0.005 0.177 ND ND 0.020 

ASS + Cu 280 µg/g 3 (Lived) 0.002 0.003 0.405 ND ND 0.025 

Environment 
Fe  Al  
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Table A.2.2. The bioconcentration factors of Ni in mangrove parts in laboratory environment 

 
ND = not detected 
 

 

 

 

 

 

 

 

 

 

 

 
 

Stem Leaf Root 

Control mangrove 1  1.25 2.50 ND 

Control mangrove 2 (Lived) 2.10 1.25 10.00 

Control mangrove 3 (Lived) ND ND ND 

Ni 25 µg/g 1 (Lived) 0.09 0.34 9.74 

Ni 25 µg/g 2 (Lived) ND 0.05 5.20 

Ni 25 µg/g 3 (Lived) ND 0.45 4.41 

Ni 55 µg/g 1 (Lived) 0.07 0.06 9.51 

Ni 55 µg/g 2 (Lived) 0.08 0.02 20.15 

Ni 55 µg/g 3 (Lived) 0.10 0.05 4.72 

ASS 1 (Lived) 0.32 1.32 1.58 

ASS 2 (Lived) 0.16 ND 2.62 

ASS 3 0.31 0.23 1.89 

ASS + Ni 25 µg/g 1 0.35 1.20 9.07 

ASS + Ni 25 µg/g 2 (Lived) 0.03 0.41 0.95 

ASS + Ni 25 µg/g 3 0.21 0.51 8.11 

ASS + Ni 55 µg/g 1 0.05 0.51 3.23 

ASS + Ni 55 µg/g 2 0.12 0.78 3.02 

ASS + Ni 55 µg/g 3 0.16 0.09 2.47 

Environment 
Ni  
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Table A.2.3. The bioconcentration factors of Cu in mangrove parts in laboratory environment 

Stem Leaf Root

Control mangrove 1 7.50 11.67 15.00

Control mangrove 2 (Lived) 4.20 20.00 20.00

Control mangrove 3 (Lived) 1.67 8.33 5.00

Cu 70 µg/g 1 (Lived) 0.04 0.05 3.49

Cu 70 µg/g 2 (Lived) 0.03 0.10 3.76

Cu 70 µg/g 3 (Lived) 0.03 0.07 4.58

Cu 280 µg/g 1 (Lived) 0.02 0.05 26.22

Cu 280 µg/g 2 0.01 0.05 35.45

Cu 280 µg/g 3 0.02 0.03 23.29

ASS 1 (Lived) 0.42 0.83 3.75

ASS 2 (Lived) 0.36 0.97 2.78

ASS 3 0.40 1.21 9.00

ASS + Cu 70 µg/g 1 0.15 0.06 28.81

ASS + Cu 70 µg/g 2 0.05 0.04 96.68

ASS + Cu 70 µg/g 3 0.03 0.02 27.81

ASS + Cu 280 µg/g 1 0.05 0.08 38.76

ASS + Cu 280 µg/g 2 0.04 0.11 26.23

ASS + Cu 280 µg/g 3 (Lived) 0.01 0.04 35.69

Environment
Cu 
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Appendix A.3. Translocation factors of metals in the laboratory environment 
 
Table A.3.1. The translocation factors of Fe and Al in mangrove parts in laboratory environment 

Environment Fe Al Ni Cu

Control mangrove 1 0.0020 ND ND 0.5000

Control mangrove 2 (Lived) 0.0072 ND 0.2100 0.2100

Control mangrove 3 (Lived) 0.0024 ND ND 0.3333

Ni 25 µg/g 1 (Lived) 0.0024 ND 0.0097  -

Ni 25 µg/g 2 (Lived) 0.0016 ND ND  -

Ni 25 µg/g 3 (Lived) 0.0030 0.0360 ND  -

Ni 55 µg/g 1 (Lived) 0.0032 ND 0.0072  -

Ni 55 µg/g 2 (Lived) 0.0017 ND 0.0039  -

Ni 55 µg/g 3 (Lived) 0.0047 ND 0.0216  -

Cu 70 µg/g 1 (Lived) 0.0122 ND  - 0.0115

Cu 70 µg/g 2 (Lived) 0.0099 ND  - 0.0084

Cu 70 µg/g 3 (Lived) 0.0116 ND  - 0.0056

Cu 280 µg/g 1 (Lived) 0.0080 ND  - 0.0006

Cu 280 µg/g 2 (Lived) 0.0031 ND  - 0.0003

Cu 280 µg/g 3 (Lived) 0.0060 ND  - 0.0007

ASS 1 (Lived) 0.0014 ND 0.2000 0.1111

ASS 2 (Lived) 0.0009 0.0575 0.0600 0.1286

ASS 3 0.0011 ND 0.1649 0.0442

ASS + Ni 25 µg/g 1 0.0022 ND 0.0382  -

ASS + Ni 25 µg/g 2 (Lived) 0.0006 0.0403 0.0317  -

ASS + Ni 25 µg/g 3 0.0018 ND 0.0264  -

ASS + Ni 55 µg/g 1 0.0013 ND 0.0156  -

ASS + Ni 55 µg/g 2 0.0049 0.0258 0.0402  -

ASS + Ni 55 µg/g 3 0.0037 0.0282 0.0640  -

ASS + Cu 70 µg/g 1 0.0091 ND  - 0.0052

ASS + Cu 70 µg/g 2 0.0026 ND  - 0.0005

ASS + Cu 70 µg/g 3 0.0052 ND  - 0.0010

ASS + Cu 280 µg/g 1 0.0035 ND  - 0.0014

ASS + Cu 280 µg/g 2 0.0135 ND  - 0.0016

ASS + Cu 280 µg/g 3 (Lived) 0.0044 ND  - 0.0003  
ND = not detected 
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APPENDIX B. ANCOVA RESULTS OF METAL BIOCONCENTRATIONS IN 
MANGROVE SEEDLING PARTS AND SURVIVAL DAYS IN THE LABORATORY 

ENVIRONMENTS 
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Appendix B. 1. ANCOVA results of Fe bioconcentrations in different parts of 
mangrove seedlings and survival days in laboratory environments. 
 
Table B.1.1. ANCOVA results of Fe bioconcentrations in stem tissues and survival days in laboratory 

environment 

Tests of Between-Subjects Effects 

Dependent Variable:BCF Fe stem     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model .001
a
 16 5.336E-5 8.725 .000 

Intercept 3.827E-5 1 3.827E-5 6.256 .027 

Environment .000 6 1.718E-5 2.808 .056 

Survday 5.262E-6 1 5.262E-6 .860 .371 

Environment * 

Survday 
4.091E-5 6 6.818E-6 1.115 .406 

Error 7.952E-5 13 6.117E-6   

Total .002 30    

Corrected Total .001 29    

a. R Squared = ,915 (Adjusted R Squared = ,810)   

 
Table B.1.2. ANCOVA results of Fe bioconcentrations in leaf tissues and survival days in laboratory 

environment 

Tests of Between-Subjects Effects 

Dependent Variable:BCF Fe leaf     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model .011
a
 16 .001 2.111 .090 

Intercept .000 1 .000 .679 .425 

Environment .001 6 .000 .469 .820 

Survday 1.731E-6 1 1.731E-6 .006 .942 

Environment * 

Survday 
.000 6 2.181E-5 .069 .998 

Error .004 13 .000   

Total .029 30    

Corrected Total .015 29    

a. R Squared = ,722 (Adjusted R Squared = ,380)   
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Table B.1.3. ANCOVA results of Fe bioconcentrations in root tissues and survival days in laboratory 

environment 

 

Tests of Between-Subjects Effects 

Dependent Variable:BCF Fe root     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 93.717
a
 16 5.857 2.832 .032 

Intercept 1.647 1 1.647 .796 .388 

Environment 3.753 6 .626 .302 .925 

Survday .013 1 .013 .006 .939 

Environment * 

Survday 
1.180 6 .197 .095 .996 

Error 26.885 13 2.068   

Total 239.064 30    

Corrected Total 120.601 29    

a. R Squared = ,777 (Adjusted R Squared = ,503)   
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Appendix B. 2. ANCOVA results of Al bioconcentrations in different parts of 
mangrove seedlings and survival days in laboratory environments. 
 
Table B.2.1. ANCOVA results of Al bioconcentrations in stem tissues and survival days in laboratory 

environment 

Tests of Between-Subjects Effects 

Dependent Variable:BCF Al stem     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 6.395E-6
a
 16 3.997E-7 1.353 .294 

Intercept 5.101E-9 1 5.101E-9 .017 .897 

Environment 1.854E-6 6 3.090E-7 1.046 .440 

Survday 9.825E-8 1 9.825E-8 .333 .574 

Environment * 

Survday 
2.493E-6 6 4.155E-7 1.407 .284 

Error 3.840E-6 13 2.954E-7   

Total 1.391E-5 30    

Corrected Total 1.024E-5 29    

a. R Squared = ,625 (Adjusted R Squared = ,163)   

 
Table B.2.2. ANCOVA results of Al bioconcentrations in leaf tissues and survival days in laboratory 

environment 

Tests of Between-Subjects Effects 

Dependent Variable:BCF Al leaf     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model .002
a
 16 .000 1.071 .457 

Intercept 2.790E-7 1 2.790E-7 .002 .965 

Environment .000 6 7.609E-5 .561 .754 

Survday 5.951E-5 1 5.951E-5 .438 .519 

Environment * 

Survday 
.000 6 6.886E-5 .507 .792 

Error .002 13 .000   

Total .005 30    

Corrected Total .004 29    

a. R Squared = ,569 (Adjusted R Squared = ,038)   
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Table B.2.3. ANCOVA results of Al bioconcentrations in root tissues and survival days in laboratory 

environment 

Tests of Between-Subjects Effects 

Dependent Variable:BCF Al root     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model .177
a
 16 .011 2.319 .066 

Intercept .010 1 .010 2.118 .169 

Environment .017 6 .003 .607 .721 

Survday 4.060E-5 1 4.060E-5 .009 .928 

Environment * 

Survday 
.001 6 .000 .026 1.000 

Error .062 13 .005   

Total .568 30    

Corrected Total .238 29    

a. R Squared = ,741 (Adjusted R Squared = ,421)   
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Appendix B. 3. ANCOVA results of Ni bioconcentrations in different parts of 
mangrove seedlings and survival days in laboratory environments. 
 

Table B.3.1. ANCOVA results of Ni bioconcentrations in stem tissues and survival days in laboratory 

environment 

 

Tests of Between-Subjects Effects 

Dependent Variable:SQRT BCF Ni stem     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 8.467
a
 16 .529 .418 .950 

Intercept 1.295 1 1.295 1.022 .330 

Environment .877 6 .146 .115 .993 

Survday .644 1 .644 .508 .488 

Environment * 

Survday 
.652 6 .109 .086 .997 

Error 16.469 13 1.267   

Total 33.985 30    

Corrected Total 24.936 29    

a. R Squared = ,340 (Adjusted R Squared = -,473)   

 

Table B.3.2. ANCOVA results of Ni bioconcentrations in leaf tissues and survival days in laboratory 

environment 

Tests of Between-Subjects Effects 

Dependent Variable:BCF Ni leaf     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 56.073
a
 16 3.505 .336 .979 

Intercept 2.717 1 2.717 .260 .619 

Environment 3.504 6 .584 .056 .999 

Survday .774 1 .774 .074 .790 

Environment * 

Survday 
1.763 6 .294 .028 1.000 

Error 135.744 13 10.442   

Total 221.064 30    

Corrected Total 191.817 29    

a. R Squared = ,292 (Adjusted R Squared = -,579)   
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Table B.3.3. ANCOVA results of Ni bioconcentrations in root tissues and survival days in laboratory 

environment 

Tests of Between-Subjects Effects 

Dependent Variable:BCF Ni root     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 916.711
a
 16 57.294 .416 .951 

Intercept 2.608 1 2.608 .019 .893 

Environment 82.623 6 13.770 .100 .995 

Survday .001 1 .001 .000 .998 

Environment * 

Survday 
52.912 6 8.819 .064 .999 

Error 1791.451 13 137.804   

Total 3449.967 30    

Corrected Total 2708.162 29    

a. R Squared = ,338 (Adjusted R Squared = -,476)   
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Appendix B. 4. ANCOVA results of Cu bioconcentrations in different parts of 
mangrove seedlings and survival days in laboratory environments. 
 

Table B.4.1. ANCOVA results of Cu bioconcentrations in stem tissues and survival days in laboratory 

environment 

Tests of Between-Subjects Effects 

Dependent Variable:SQRT  Cu stem     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 16.033
a
 16 1.002 2.239 .074 

Intercept 1.133 1 1.133 2.533 .136 

Environment 2.125 6 .354 .792 .592 

Survday .144 1 .144 .323 .580 

Environment * 

Survday 
.607 6 .101 .226 .961 

Error 5.817 13 .447   

Total 41.916 30    

Corrected Total 21.851 29    

a. R Squared = ,734 (Adjusted R Squared = ,406)   

 
Table B.4.2. ANCOVA results of Cu bioconcentrations in leaf tissues and survival days in laboratory 

environment 

Tests of Between-Subjects Effects 

Dependent Variable:SQRT BCF Cu leaf     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 42.904
a
 16 2.682 1.919 .121 

Intercept 1.464 1 1.464 1.048 .325 

Environment 1.187 6 .198 .142 .988 

Survday .001 1 .001 .001 .975 

Environment * 

Survday 
.074 6 .012 .009 1.000 

Error 18.166 13 1.397   

Total 117.568 30    

Corrected Total 61.071 29    

a. R Squared = ,703 (Adjusted R Squared = ,336)   
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Table B.4.3. ANCOVA results of Cu bioconcentrations in root tissues and survival days in laboratory 

environment 

Tests of Between-Subjects Effects 

Dependent Variable:BCF Cu root     

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model 11230.838
a
 16 701.927 2.222 .076 

Intercept 16.374 1 16.374 .052 .823 

Environment 1947.346 6 324.558 1.027 .450 

Survday 1444.013 1 1444.013 4.571 .052 

Environment * 

Survday 
3581.982 6 596.997 1.890 .158 

Error 4106.883 13 315.914   

Total 29347.411 30    

Corrected Total 15337.721 29    

a. R Squared = ,732 (Adjusted R Squared = ,403)   
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APPENDIX C. ANOVA RESULTS OF METAL BIOCONCENTRATION IN THE 
LABORATORY ENVIRONMENT 
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Appendix C. 1. ANOVA results for Fe bioconcentrations in mangrove seedlings parts. 
 
Table C.1.1. ANOVA result of Fe bioconcentrations in stem tissues of mangrove seedlings. 

ANOVA 

Fe stem 

 Sum of Squares df Mean Square F Sig. 

Between Groups .001 9 .000 14.296 .000 

Within Groups .000 20 .000   

Total .001 29    

 

 

 
 

Table C.1.2. ANOVA result of Fe bioconcentrations in leaf tissues of mangrove seedlings. 

ANOVA 

Fe leaf 

 Sum of Squares df Mean Square F Sig. 

Between 

Groups 
.010 9 .001 5.522 .001 

Within Groups .004 20 .000   

Total .015 29    

 

 

 
Table C.1.3. ANOVA result of Fe bioconcentrations in root tissues of mangrove seedlings. 

ANOVA 

Fe root 

 Sum of Squares df Mean Square F Sig. 

Between 

Groups 
92.267 9 10.252 7.236 .000 

Within Groups 28.334 20 1.417   

Total 120.601 29    
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Appendix C. 2. Post hoc and homogenous subsets results for Fe bioconcentrations in 
stem tissues of mangrove seedlings in different environments. 
 
Table C.2.1. Post hoc results for Fe bioconcentrations in stem tissues of mangrove seedlings in different 

environments. 

 

(I) Environment (J) Environment p 

1 6 0.002 

 
7 0.003 

 
8 0.003 

 
9 0.006 

 
10 0.004 

2 6 0.001 

 7 0.001 

 8 0.001 

 9 0.002 

 10 0.001 

3 6 0.001 

 7 0.002 

 8 0.002 

 9 0.004 

 10 0.003 

4 6 0.009 

 7 0.012 

 8 0.011 

 9 0.026 

 10 0.016 

5 6 0.000 

 7 0.000 

 8 0.000 

 9 0.001 

 10 0.000 
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Table C.2.2. Groups in homogenous subsets for Fe bioconcentrations in stem tissues of mangrove 

seedlings. 

Fe stem 

 
Enviro

nment N 

Subset for alpha = 0.05 

 1 2 

Tukey 

HSD
a
 

6 3 .001083  

8 3 .001287  

7 3 .001410  

10 3 .001660  

9 3 .002137  

4 3  .010040 

1 3  .011363 

3 3  .011693 

2 3  .012450 

5 3  .013283 

Sig.  1.000 .840 

Means for groups in homogeneous subsets are 

displayed. 

a. Uses Harmonic Mean Sample Size = 3,000. 
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Appendix C. 3. Post hoc and homogenous subsets results for Fe bioconcentrations in 
leaf tissues of mangrove seedlings in different environments. 
 
Table C.3.1. Post hoc results for Fe bioconcentrations in leaf tissues of mangrove seedlings in different 

environments. 

 

(I) Environment (J) Environment p 

2 6 0.007 

 7 0.012 

 8 0.023 

 9 0.007 

 10 0.008 

5 6 0.027 

 7 0.043 

 9 0.025 

 10 0.030 

 

 

 
Table C.3.2. Groups in homogenous subsets for Fe bioconcentrations in leaf tissues of mangrove 

seedlings. 

Fe leaf 

 
Enviro

nment N 

Subset for alpha = 0.05 

 1 2 3 

Tukey 

HSD
a
 

9 3 .003267   

6 3 .003767   

10 3 .004367   

7 3 .006367   

8 3 .010067 .010067  

4 3 .019367 .019367 .019367 

3 3 .031133 .031133 .031133 

1 3 .031733 .031733 .031733 

5 3  .049200 .049200 

2 3   .056433 

Sig.  .374 .080 .112 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 3,000.  
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Appendix C. 4. Post hoc and homogenous subsets results for Fe bioconcentrations in 
root tissues of mangrove seedlings in different environments. 
 
Table C.4.1. Post hoc results for Fe bioconcentrations in root tissues of mangrove seedlings in different 

environments. 

 

(I) Environment (J) Environment p 

1 9 0.052 

 10 0.045 

2 4 0.007 

 6 0.009 

 7 0.011 

 8 0.003 

 9 0.002 

 10 0.002 

3 4 0.044 

 6 0.052 

 8 0.016 

 9 0.013 

 10 0.011 

4 2 0.007 

 3 0.044 
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Table C.4.2. Groups in homogenous subsets for Fe bioconcentrations in root tissues of mangrove 

seedlings. 

Fe root 

 
Enviro

nment N 

Subset for alpha = 0.05 

 1 2 3 4 

Tukey 

HSD
a
 

10 3 .270000    

9 3 .337000 .337000   

8 3 .425000 .425000   

4 3 .904133 .904133   

6 3 .980600 .980600 .980600  

7 3 1.098033E0 1.098033E0 1.098033E0  

5 3 2.472200E0 2.472200E0 2.472200E0 2.472200E0 

1 3  3.762067E0 3.762067E0 3.762067E0 

3 3   4.404500E0 4.404500E0 

2 3    5.217933E0 

Sig.  .449 .052 .052 .193 

Means for groups in homogeneous subsets are displayed.  

a. Uses Harmonic Mean Sample Size = 3,000.   
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Appendix C. 5. Anova results for Al bioconcentrations in mangrove seedlings parts. 

 
Table C.5.1. ANOVA result of Al bioconcentrations in stem tissues of mangrove seedlings. 

ANOVA 

BCF Al stem 

 Sum of Squares df Mean Square F Sig. 

Between Groups .000 9 .000 .993 .476 

Within Groups .000 20 .000   

Total .000 29    

 

 

 
Table C.5.2. ANOVA result of Al bioconcentrations in leaf tissues of mangrove seedlings. 

ANOVA 

BCF Al leaf 

 Sum of Squares df Mean Square F Sig. 

Between Groups .002 9 .000 1.945 .103 

Within Groups .002 20 .000   

Total .004 29    

  

 

 
Table C.5.3. ANOVA result of Al bioconcentrations in root tissues of mangrove seedlings. 

ANOVA 

BCF Al root 

 Sum of Squares df Mean Square F Sig. 

Between Groups .176 9 .020 6.236 .000 

Within Groups .063 20 .003   

Total .238 29    
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Appendix C. 6. Post hoc and homogenous subsets results for Al bioconcentrations in 
root tissues of mangrove seedlings in different environments. 
 
Table C.6.1. Post hoc results for Al bioconcentrations in root tissues of mangrove seedlings in different 

environments. 

 

(I) Environment (J) Environment p 

4 5 0.048 

5 6 0.002 

 7 0.003 

 8 0.002 

 9 0.002 

 10 0.001 

 

 
Table C.6.2. Groups in homogenous subsets for Al bioconcentrations in root tissues of mangrove 

seedlings. 

Alroot 

 
Enviro

nment N 

Subset for alpha = 0.05 

 1 2 

Tukey HSD
a
 10 3 .025933  

6 3 .037733  

9 3 .042133  

8 3 .042500  

7 3 .045267  

4 3 .108033  

2 3 .145667 .145667 

3 3 .159067 .159067 

1 3 .170567 .170567 

5 3  .270900 

Sig.  .105 .223 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 3,000. 
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Appendix C. 7. ANOVA results for Ni bioconcentrations in mangrove seedlings parts. 
 
Table C.7.1. ANOVA result of Ni bioconcentrations in stem tissues of mangrove seedlings. 

ANOVA 

SQRTBCF Ni stem 

 Sum of Squares df Mean Square F Sig. 

Between Groups .971 5 .194 1.764 .195 

Within Groups 1.321 12 .110   

Total 2.292 17    

 

 

 

 
Table C.7.2. ANOVA result of Ni bioconcentrations in leaf tissues of mangrove seedlings. 

ANOVA 

BCF Ni leaf 

 Sum of Squares df Mean Square F Sig. 

Between Groups 2.576 5 .515 1.282 .334 

Within Groups 4.821 12 .402   

Total 7.397 17    

 

 

 

 
Table C.7.3. ANOVA result of Ni bioconcentrations in root tissues of mangrove seedlings. 

ANOVA 

BCF Ni root 

 Sum of Squares df Mean Square F Sig. 

Between Groups 180.225 5 36.045 1.743 .199 

Within Groups 248.104 12 20.675   

Total 428.329 17    
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Appendix C. 8. ANOVA results for Cu bioconcentrations in mangrove seedlings parts. 
 
Table C.8.1. ANOVA result of Cu bioconcentrations in stem tissues of mangrove seedlings. 

ANOVA 

SQRT BCF Custem 

 Sum of Squares df Mean Square F Sig. 

Between Groups 8.183 5 1.637 18.080 .000 

Within Groups 1.086 12 .091   

Total 9.270 17    

 

 

 

 
Table C.8.2. ANOVA result of Cu bioconcentrations in leaf tissues of mangrove seedlings. 

ANOVA 

SQRT BCF Cu leaf 

 Sum of Squares df Mean Square F Sig. 

Between Groups 27.037 5 5.407 48.305 .000 

Within Groups 1.343 12 .112   

Total 28.380 17    

 

 

 
Table C.8.3. ANOVA result of Cu bioconcentrations in root tissues of mangrove seedlings. 

ANOVA 

BCF Cu root 

 Sum of Squares df Mean Square F Sig. 

Between Groups 5107.705 5 1021.541 3.582 .033 

Within Groups 3422.021 12 285.168   

Total 8529.725 17    
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Appendix C. 9. Post hoc and homogenous subsets results for Cu bioconcentrations in 
stem tissues of mangrove seedlings in different environments. 
 
Table C.9.1. Post hoc results for Cu bioconcentrations in stem tissues of mangrove seedlings in different 

environments. 

 

(I) Environment (J) Environment p 

1 4 0.000 

 5 0.000 

 6 0.001 

 9 0.000 

 10 0.000 

 

 

 

 
Table C.9.2. Groups in homogenous subsets for Cu bioconcentrations in stem tissues of mangrove 

seedlings. 

SQRTBCFCustem 

 

Enviro

nment N 

Subset for alpha = 

0.05 

 1 2 

Tukey 

HSD
a
 

5 3 .1191  

4 3 .1794  

10 3 .1806  

9 3 .2593  

6 3 .6246  

1 3  2.0263 

Sig.  .368 1.000 

Means for groups in homogeneous subsets are 

displayed. 

a. Uses Harmonic Mean Sample Size = 3,000. 
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Appendix C. 10. Post hoc and homogenous subsets results for Cu bioconcentrations 
in leaf tissues of mangrove seedlings in different environments. 
 
Table C.10.1. Post hoc results for Cu bioconcentrations in leaf tissues of mangrove seedlings in different 

environments. 

 

(I) Environment (J) Environment p 

1 4 0.000 

 5 0.000 

 6 0.000 

 9 0.000 

 10 0.000 

 

 

 

 
Table C.10.2. Groups in homogenous subsets for Cu bioconcentrations in leaf tissues of mangrove 

seedlings. 

SQRTBCFCuleaf 

 

Enviro

nment N 

Subset for alpha = 

0.05 

 1 2 

Tukey 

HSD
a
 

9 3 .1989  

5 3 .2117  

4 3 .2647  

10 3 .2737  

6 3 1.0000  

1 3  3.5915 

Sig.  .101 1.000 

Means for groups in homogeneous subsets are 

displayed. 

a. Uses Harmonic Mean Sample Size = 3,000. 
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Appendix C. 11. Post hoc and homogenous subsets results for Cu bioconcentrations 
in root tissues of mangrove seedlings in different environments. 
 
Table C.11.1. Post hoc results for Cu bioconcentrations in root tissues of mangrove seedlings in different 

environments. 

(I) Environment (J) Environment p 

4 9 0.045 

6 9 0.052 

 

 

 

 

 

 
Table C.11.2. Groups in homogenous subsets for Cu bioconcentrations in root tissues of mangrove 

seedlings. 

Cu root 

 
Enviro

nment N 

Subset for alpha = 0.05 

 1 2 

Tukey 

HSD
a
 

4 3 3.944333  

6 3 5.175733 5.175733 

1 3 1.333343E1 1.333343E1 

5 3 2.832050E1 2.832050E1 

10 3 3.355893E1 3.355893E1 

9 3  5.109987E1 

Sig.  .327 .052 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 3,000. 
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Appendix D.1. Speciation of metals in the field study area  
 
Table D.1.1. Speciation of Fe in soils and total concentration of root samples in the field study area 

Site 
Fe (µg/g) 

Total Exchangeable Fe Mn oxy Organic Root 

1 38923.69 1271.66 1407.42 1852.87 19316.50 

1 35580.19 74.64 1383.96 2715.79 19053.00 

1 45382.89 727.58 929.18 2562.95 19371.50 

4 36055.89 108.30 1119.88 2701.48 7222.50 

4 58048.89 435.64 1352.02 2422.53 3233.75 

4 43844.59 1219.82 1483.46 2237.83 4629.13 

5 30236.89 435.96 1483.04 2705.05 7956.63 

5 24652.26 195.00 1551.88 2638.44 6217.92 

5 25458.14 305.16 1541.54 2639.74 9696.50 

6 8225.74 239.22 987.68 1719.24 6756.63 

6 9909.36 352.92 1366.22 1766.28 7553.25 

6 9116.29 432.52 1228.32 1707.20 9624.63 

7 16946.14 1370.96 1495.32 2368.31 5586.42 

7 19328.59 1154.08 1490.02 2758.70 1557.00 

7 15642.21 1326.64 1496.18 2394.63 3103.25 

 

 
Table D.1.2. Speciation of Al in soils and total concentration of root samples in the field study area 

Site 
Al (µg/g) 

Total Exchangeable Fe Mn oxy Organic Root 

1 48625.47 333.74 1712.62 1592.85 3180.25 

1 45423.37 189.96 3041.16 1704.43 4053.75 

1 30955.47 172.10 2258.66 1475.32 3376.75 

4 24150.39 293.40 3704.74 3776.40 1814.38 

4 31445.19 339.76 2978.24 3006.78 2975.00 

4 25628.61 593.50 2915.30 3594.33 5117.69 

5 22974.04 127.66 2452.10 1713.22 2042.75 

5 22820.62 157.42 3086.04 1720.46 2488.67 

5 23420.94 112.18 2723.26 1503.53 3048.88 

6 8575.02 170.32 1647.84 459.55 1111.25 

6 9582.77 151.40 1987.50 681.17 1365.50 

6 9814.74 143.38 1503.46 775.64 1599.25 

7 14290.32 284.02 3190.18 929.53 1215.83 

7 15420.89 181.98 3103.64 1044.82 1429.25 

7 14155.52 217.98 3069.40 885.96 1639.13 
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Appendix E.1. Field pH peroxide test (pHfox) 

Equipment 
Plastic container, stirrer, pH probemeter. 

 

Reagent 
30% hydrogen peroxide (H2O2) adjusted to pH4.5 – 5.5 with NaOH. 

 

 

Procedure 

1. Transfer ½ teaspoon of soils to a container and add few drops of 30% H2O2  

and stir the mixture. 

2. Wait for about 15 min to complete the reaction and record the pH with pH probemeter. 

(Ahern et al., 2004). 
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Appendix E.2. Analysis of organic content 

Equipment 

Ceramic dish, combustion, balance. 

 

Procedure 
1. Oven-dry 4 g of soil samples at 105

o
C for 24 h. 

2. Measure the weight of the sample. 

3. Heat the soils at 550
o
C for 4 h.  

4. Weigh the soils. 

 

Calculation 

The LOI is measured using the following equation: 

 

 LOI550 = ((DW105 – DW550)/DW105) x 100 

 

Where: LOI550 = LOI at 550
o
C (in percentage) 

     DW105 = the dry weight of the sample before combustion (in g) 

     DW550 = the dry weight of the sample after heating to 550
o
C (in g) 

(Heiri et al., 2001). 
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Appendix E.3. Analysis of water-soluble sulfate 

Equipment  

Shaker, centrifuge, spectrophotometer, 50 ml graduated cylinder, 15 ml plastic centrifuge tubes, 

0.45 m membrane filter. 

 

Reagents  

Deionised water 

 

Sample handling and preservation 

Store extracted samples at 4oC. The holding time for the extracted samples is 28 days. 

 

Procedure  

1. Shake 2.5 g soils with 50 ml deionised water in a mechanical shaker for 30 min at 200 rpm. 

Include a blank in each of the series. 

2. Centrifuge 25 ml of the suspension for 20 min at 5,800 x g, and filter using 0.45 m 

membrane.  

3. Measure the soil extract using spectrophotometer.  

(Page and Steinbock, 2009). 
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Appendix E.4. Analysis of HCl extractable sulfur 

Equipment 

Electronic balance (100 ± 0.01 g), fume hood, plastic extraction bottle, sample shaker, thick 

medium speed high retention filter paper (eg. Whatman #3 paper). 

 

Reagent 

4 M HCl 

Add about 97.5 ml of concentrated (31.5–33% w/V) HCl to 100 ml deionised water and dilute to 

250 ml at 20 °C. 

 

Procedure 
1. Weigh 1g of oven-dried finely ground soil samples into a plastic extraction bottle. 

2. Make a 1:40 soil suspension by adding 40 ml of 4 M HCl and stopper bottle in a fume hood. 

This addition can cause a strong reaction. Wait until reaction settles before closing the sample 

bottle lid. Include a solution blank with each analysis batch. 

(Ahern et al., 2004). 
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Appendix E.5. Determination of sulfate using turbidimetric method 

Equipment 

Magnetic stirrer, measuring spoon with capacity 0.2 to 0.3 ml, stopwatch, spectrophotometer. 

 

Reagents 
a. Buffer solution  

 Dissolve 15 g magnesium chloride, MgCl2⋅6H2O, 2.5 g sodium acetate,CH3COONa⋅3H2O,  

 0.5 g potassium nitrate, KNO3, and 10 ml acetic acid, CH3COOH (99%), in 250 ml  

 distilled water and make up to 500 ml. 

c. Barium chloride, BaCl2, crystals, 20 to 30 mesh. In standardisation, uniform turbidity is 

 produced with this mesh range and the appropriate buffer. 

d. Standard sulfate solution: Prepare a standard sulfate solution by dissolving 0.0739 g   

 

 

Procedure 

1. Measure 25 ml sample into a 150 ml erlenmeyer flask. A suitable portion made up to 25 ml 

can also be made, for instance 2.5 ml into 25 ml. 

2. Add 5 ml buffer solution and mix with a stirrer. Add half spoon of BaCl2 crystals while  

     stirring the solution, and begin timing immediately. Stir for 60 ± 2 s at constant speed. 

4. Transfer solution into the spectrophotometer tube, and wait for about 5 ± 0.5 min before 

determining turbidity. 

5. Determine SO4
2–

 concentration in sample by comparing turbidity reading with a calibration 

curve of SO4
2–

 standards. Prepare standard in a range of 0 to 40 mg/L SO4
2–

 with interval 

standards at 5 mg/l. Run a standard every three or four samples to check reliability of 

calibration curve. 

6. Run blanks to which BaCl2 is not added to correct sample color and turbidity. 

 

Calculation 

Determine SO4
2–

 concentration directly from the calibration curve after subtracting sample 

absorbance before adding BaCl2.  

(APHA, 1999). 
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Appendix E.6. Methylene blue method 

Equipment 

Test tubes, droppers, delivering 20 drops/ml methylene blue solution, dark glass bottle 500 ml, 

spectrophotometer. 

 

Reagents 
a. Amine-sulfuric acid stock solution:  

1. Dissolve 27 g N,N-dimethyl-p-phenylenediamine oxalate in an iced mixture of 50 ml  

 concentrated H2SO4 and 20 ml distilled water.  

2. Cool and dilute to 100 ml with distilled water. Use fresh oxalate to prevent oxidation  

 resulting from old supply.  

3. Store in a dark glass bottle. 

 Note: When this stock solution is diluted and used in the procedure with a sulfide-free  

 sample, the color will change from pink to colorless within 3 min. 

 

b. Amine-sulfuric acid reagent:  

Dilute 12.5 ml amine-sulfuric acid stock solution with 487.5 ml 1 + 1 H2SO4. Store in a dark 

glass bottle. 

 

c. Ferric chloride solution: 

Dissolve 50 g FeCl3⋅6H2O in 20 ml water. 

 

d. Sulfuric acid solution,  

H2SO4, 1 + 1. 

 

e. Diammonium hydrogen phosphate solution:  

Dissolve 25 g (NH4)2HPO4 in 50 ml distilled water. 

 

Preparation of sulfide standards 

1. Prepare sulfide standards from sodium sulfide nonahydrate (Na2S⋅9H2O) crystals. Use 

reagent water to prepare sulfide standards and sample dilutions.  

2. Boil and degas with argon while cooling.  

3. Remove single crystals of Na2S⋅9H2O from reagent bottle with plastic tweezers; rinse it in 

degassed reagent water as soon as possible to remove surface contamination, and blot crystal 

dry with a tissue for the excess water present at the surface of the crystal.  

4. Tranfer the crystal to a tared immediately to 3.750 g Na2S⋅9H2O and dilute it up to 500 mL to 

give a stock solution of which 1.00 mL = 1.00 mg S2–. Prepare a range of sulfide 

concentrations between 1 and 8 mg/L.  
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Procedure 
1. Transfer 7.5 ml sample to each of two matched test tubes. As sample has been preserved  

    with zinc acetate, shake the tubes briskly before splitting the sample.  

2. Add 0.5 ml amine-sulfuric acid reagent and 0.15 ml (3 drops) FeCl3 solution to Tube A.  

3. Invert the tube once slowly to prevent low results due to the loss of H2S.  

4. Add 0.5 ml 1 + 1 H2SO4 and 0.15 ml (3 drops) FeCl3 solution to Tube B and shake gently  

    to mix. Appereance of blue color in Tube A indicates the presence of S2–. The complete  

    color development usually appears in around 1 min or longer.  

5. Wait between 3 and 5 min and add 1.6 ml (NH4)2HPO4 solution to each tube.  

6. Wait at least 10 min before making color comparisons.  

7. Determine the absorbance of sample on spectrophotometer at 664 nm. Read sulfide  

    concentration from calibration curve by plotting the concentration vs. absorbance obtained.  

(APHA, 1999). 
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Appendix E.7. Total Actual Acidity (TAA) and pHKCl method 

Equipment 

Extraction plastic bottle, sample shaker, pH probemeter. 

Reagent 

a. 1 M KCl  

Dissolve 74,55 g KCl and dilute to 1000 ml distilled water. 

b. 0,05 N NaOH  

Dissolve 2 g NaOH in 1000 ml distilled water and standardised with 0,1 HCl.  

 

Procedure 
1. Weigh 2.5 g of oven dried 0.5 µm sieved sample and transfer to the extraction plastic bottle. 

2. Add the soils with 25 mL of 1M KCl. Prepare a blank for each series. 

3. Extract the solution on a shaker for 30 min and allow to stand overnight.  

4. Record the pH. If pH is more than 5.5 then TAA is zero. If the pH is less than 5.5, 0.05 N    

    NaOH  should be added to the solution to reach pH 5.5. 

 

Calculation 

TAA = (V1/V2) x (T1-T2) x M x (1000/W) 

Where: 

V1 = Volume of extracted sample  

V2 = Volume of sample that is used 

T1 = Amount of sample titrated 

T2 = Amount of blank titrated 

M = concentration of NaOH 

W = mass of sample 

(White and Melville, 1993). 
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Appendix E.8. KCl extractable sulfur (S KCl % ) method 

Equipment 

Spectrophotometer 

Reagent 
a. BaCl2 

Weight 366 g of BaCl2 to 1000 ml distilled water. 

b. Conditioning Reagent 

1. Dissolve 150 g NaCl to 550 ml distilled water. 

2. Add 60 ml concentrated HCl, 200 ml absolute ethanol, 100 ml glycerine, and make to 1000 

ml with distilled water. 

 

Procedure 
1. Drop 0.5 ml of KCl extract obtained from TAA measurement to tube and add 4.5 ml of 

distilled water. 

2. Add 1 ml conditioning reagent and 1 ml of BaCl2. 

3. Prepare blank from distilled water for each of series. 

4. Shake to mix the solution and read the absorbance of sample on the spectrophotometer at 520 

nm. Determine sulfide concentration from calibration curve by plotting the concentration vs. 

absorbance obtained. 

5. Report KCl extractable S value as SKCl %. 

(White and Melville, 1993). 
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Appendix E.9. Total Potential Acidity (TPA) dan pHOX method  

Equipment 

Extraction plastic bottle, hot plate, shaker, pH probemeter 

Reagent 
a. 1 M KCl  

Dissolve 74.55 g KCl to 1000 ml distilled water 

 

b. 0,05 N NaOH  

Dissolve 2 g NaOH to 1000 ml distilled water and standarised with 0.1 HCl. 

 

c. 30 % H2O2  

 

Procedure 
1. Weigh 2.5 g of 0.5 µm  oven-dried sample to 100 ml erlemeyer flask. 

2. Titrate 25 ml of 1 M KCl. 

3. Weigh the erlenmeyer, sample, and KCl to obtain the initial weight.  

4. Add 5 ml of H2O2 and gently heat the suspension on a hot plate at 55 – 60
o
C until oxidaton is 

complete. Spray the suspension with distilled water before the sample froths over.  

5. Remove the sample from the hot plate and allow the suspension to cool. 

6. Weigh and add distilled water to obtain the same initial weight.  

7. Remove the extraction bottle, shake for 30 min and allow to stand overnight. 

8. Record the pH to obtain pHox. If the pH is less than 5.5, add 0.05 N NaOH to reach pH 5.5. 

 

Calculation 

TPA = (V1/V2) x (T1-T2) x M x (1000/W) 

Where: 

V1 = Volume of extracted sample  

V2 = Volume of sample that is used 

T1 = Amount of sample titrated  

T2 = Amount of blank titrated 

M = concentration of NaOH 

W = mass of sample 

(White and Melville, 1993). 
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Appendix E.10. Peroxide sulfur (SP) method 

Equipment 

Spectrophotometer 

 

Reagent 
a. BaCl2 

Dissolve 366 g BaCl2 to 1000 ml distilled water 

b. Conditioning Reagent 

Dissolve 150 g NaCl to 550 ml distilled water, add 60 ml concentrated HCl, 200 ml absolute 

ethanol, 100 ml glycerine, extract of H2O2 from the TPA step, and make up to 1000 ml with 

distilled water. 

 

Procedure 
1. Drop 0.5 ml H2O2 extract obtained from the TPA measurement to a tube and add 4.5 ml 

distilled water. 

2. Add 1 ml of conditioning reagent, 1 ml BaCl2 and shake to mix. 

3. Prepare blank from distilled water and run in each batch. 

4. Read the absorbance on the spectraphotometer at 520 nm. Determine sulfide concentration 

from calibration curve by plotting the concentration vs. absorbance obtained. 

5. Report KCl extractable S value as SP %. 

(White and Melville, 1993). 
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Appendix E.11. Determination of Total Sulfate Acidity, Peroxide Oxidisable Sulfur, 
and Pyrite 
 

Total Sulfate Acidity (TSA) is obtained by subtracting the TAA from the TPA. 

 

Peroxide Oxidisable Sulfur is obtained by subtracting the SKCl from the SP. 

 

Estimation of pyrite is conducted using the formula below:  

Pyrite = (TSA : 22.4 ) x 0.1 

 

Where:  

TSA unit is in mmol H
+
/100g = mmol H

+
/0.0001t 

     = 0.001 mol H
+
/0.0001t 

     = mol H
+
/0.1t 

Therefore: 

% Pyrit (% FeS2) = (TSA : 22.4 ) x 0.1 

 

(Konsten and Sarwani, 1990, Sabang et al., 2005, White and Melville, 1993). 
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Appendix E.12. Total metal analysis 

Equipment 

Digester tube or glass container, glass cylinder, digester block or hot plate, flask, filter paper, 

ICP OES, or AAS. 

 

Reagent 
Distilled water, concentrated nitric acid, 30% hydrogen peroxide. 

 

Procedure 
1. Transfer 1 g oven-dried soils, or available amount of mangrove tissues to a digester tube or 

glass container, slurry it with 1 ml distilled water, and cover with glass cylinder. Prepare 

blank each of series. 

2. Digest the sample with 10 ml of concentrated nitric acid on a digester block, or hot plate at 

approximately 100
o
C for two hours. 

3. Heat the extraction mixture again for another hour after the addition of 3 ml of 30% H2O2.  

4. The digestates were filtered and made to the volume of a 50 ml flask for soils and root, and 25 

ml for mangrove stem and leaf. 

5. Detect the metal concentration using using ICP OES, or AAS.  

(Defew et al., 2005, Khrisnamurty et al., 1976, MacFarlane and Burchett, 2001, Ramos e Silva et 

al., 2006) 
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Appendix E.13. Sequential extraction metal analysis 

Equipment 

Extraction plastic bottle, shaker, centrifuge tube, centrifuge, AAS. 

 

Reagent 
a. Ammonium acetate  

b. Nitric acid  

c. Hydrochloric acid,  

d. 0 .11 mol/1 acetic acid  

e. 30% w/v hydrogen peroxide (8.8 mol/1)  

f. 0 .1 mol/Hydroxylammonium chloride, adjusted to pH 2 with nitric acid 

g. ammonium acetate 

 

Procedure 

a. Exchangeable metal extraction 

1. Transfer 1 g of dry soils (< 63 μm fraction) in a 100 ml polypropylene centrifuge tube and add 

40 ml volume of acetic acid.  

2. Shake sample overnight at around 20°C at speed of 40 rpm. 

3. Centrifuge the suspension at 8000 rpm for 40 min, transfer the clean liquid into a sample 

bottle and store at 4°C for analysis.  

4. Wash the residue with 20 ml distilled water, shake for 15 min, centrifuge, and discard the 

washings. 

 

b. Reducible metal extraction 

1. Transfer the residue from step 1 to an extraction plastic bottle and add 40 ml volume of 

hydroxylammonium chloride to the residue from step one (exchangeable metal extraction). 

2. Perform the same procedure as described in step 1, i.e . shake the sample overnight, centrifuge 

to separate the clean liquid, and and wash the residue with distilled water. 

 

c. Oxidisable metal extraction 

1. Transfer the residue from step 2 to a container, and add carefully in small aliquots 10 ml of 

hydrogen peroxide, and cover with a watch glass. 

2. Digest the sample at room temperature for about one hour and shake intermittently. 

3. Continue to digest the sample by transferring it to a water bath at 85°C for around one hour.  

4. Remove the watch glass to reduce the sample volume to about 1-2 ml.  

5. Add a second 10 ml H202 and cover the container with the watch glass, and heat to 85°C for 

about one hour.  

6. Remove the cover to reduce the volume as performed before.  

7. Add 50 ml volume of ammonium acetate, and allow the sample to cool to a moist residue. 

8. Shake the sample, centrifuge and separate the extract as mentioned in step one.  

(Davidson et al., 1994). 
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Appendix E. 14. Lillie’s method for ferric and ferrous iron microscopic analysis 

Fixation 

Submerge sample with10% buffered neutral formalin 

Technique 
Cut paraffin section at 6 microns 

 

Reagent 
a. Potassium Ferrocyanide solution 

 - 0.4 g Potassium ferrocyanide (K4Fe(CN)6.3H2O)  

 - 40 ml 0.06 N Hydrochloric acid 

 Add 1 ml concentrated HCl to 500 ml distilled water and make up to 200 ml with distilled  

 water. 

b. Potassium Ferricyanide solution 

 40 ml 0.6 N Hydrochloric acid  

Note: Prepare all fresh solutions before use. 

c. Basic Fuchsin solution 

 - 0.5 g Basic fuchsin 

 - 100 ml distilled water 

 -1 ml Glacial acetic acid 

 

Procedure 
Use control slide. Use chemically clean glassware. 

1. Deparaffinise and hydrate sample with distilled water. 

2. Place sample section for ferric iron analysis in potassium ferrocyanide solution for one hour. 

And place sample section for ferrous iron analysis in potassium ferricyanide solution for one 

hour. 

3. Wash well in 1% aqueous glacial acetic acid. 

4. Immerse sample with Basic fuchsin solution for 10 minutes and rinse it in distilled water. 

5. Dehydrate sample in 95% alcohol, then absolute alcohol, then clear in xylene, change two 

times each. 

6. Mount sample with permount or Histoclad. 

 

Result 

Ferric iron appears as a dark Prussian blue 

Ferrous iron appears as a dark turnbull‘s blue 

The background is light red 

(Luna, 1968). 
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Appendix F.1. The abstract submitted to the Asian Conference on Sustainability, 
Energy, and the Environment in Osaka, Japan (3 – 6 May, 2012). 
 

Natural improvements of geochemical conditions of acid sulfate soils caused 

by free tidal inundation and its effects on the mangrove seedlings 
 

Rantih Isyrini, David Gust, Ian Williamson, Tanya Scharaschkin, and Alfian Noor
 

 

Queensland University of Technology, Brisbane, QLD 4001. 

Abstract 

 

Acid sulfate soils (ASS) are one of the stressor factors that cause many mangrove restoration 

projects to fail. Achieving successful rehabilitation in an ASS affected area requires an 

understanding of the geochemical conditions that influence the establishment and growth of 

mangrove seedlings.  

Tidal inundation influences many physic and geochemical factors, and this condition are made 

even more complex by the oxidation of pyrite. This study evaluated the effect of tidal inundation 

on geochemical conditions in subsurface soils near roots and their impacts on the density, 

establishment, and growth of mangrove seedlings.  This study is also to seek the answer the 

question: In which geochemical conditions can mangrove seedlings establish naturally, and/or be 

replanted in abandoned aquaculture ponds?  

The study area was in abandoned ponds complex situated in the Mare District, adjacent to Bone 

Bay, South Sulawesi, Indonesia. The study used six replications of pH, pHfox, redox potential, 

organic content, water-soluble sulfate, KCl extractable sulfur, peroxide oxididable sulfur, and 

grain size of subsurface soils near roots (10 - 15 cm) of soil cores were measured. Three 

replications of pyrite analysis were conducted for the surface and subsurface soils. The density, 

establishment and the growth of Rhizophoraceae were also determined. 

Free tidal inundation at abandoned pond site improved the soil quality. High density, 

establishment, and growth of mangrove seedlings were characterized by freely drained areas 

with a higher pH (field and oxidisable), lower organic content, and high proportion of silt/clay. 

Higher density and growth also correlated to reduced environments. Sulfur species did not 

influence the density, establishment, and growth of the seedlings directly. A supply of 

propagules from the mangrove stands, or access to good waterways were also important for 

seedlings to establish naturally. 
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Appendix G.1. Maps of sample collection sites for laboratory study  
 

  
 

Figure G.1. Map of Myora Springs, Stradbroke Island, Queensland (left side), and Brighton, Queensland 

(right side)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




