Memory and Epileptogenesis in Complex Biological and Simulated Systems

Klopp, John, , Halgren, Eric, Marinkovich, Ksenija, & Nenov, Valeriy (1997) Memory and Epileptogenesis in Complex Biological and Simulated Systems. In Bower, James M. (Ed.) Computational Neuroscience : Trends in Research, 1997. Plenum Press, New York, pp. 359-364.

View at publisher

Description

Oscillations of neural activity may bind widespread cortical areas into a neural representation that encodes disparate aspects of an event. In order to test this theory we have turned to data collected from complex partial epilepsy (CPE) patients with chronically implanted depth electrodes. Data from regions critical to word and face information processing was analyzed using spectral coherence measurements. Similar analyses of intracranial EEG (iEEG) during seizure episodes display HippoCampal Formation (HCF)—NeoCortical (NC) spectral coherence patterns that are characteristic of specific seizure stages (Klopp et al. 1996). We are now building a computational memory model to examine whether spatio-temporal patterns of human iEEG spectral coherence emerge in a computer simulation of HCF cellular distribution, membrane physiology and synaptic connectivity. Once the model is reasonably scaled it will be used as a tool to explore neural parameters that are critical to memory formation and epileptogenesis.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 81277
Item Type: Chapter in Book, Report or Conference volume (Chapter)
DOI: 10.1007/978-1-4757-9800-5_58
ISBN: 9781475798005
Pure ID: 57142191
Divisions: Past > QUT Faculties & Divisions > Faculty of Health
Past > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 29 Jan 2015 00:15
Last Modified: 03 Mar 2024 20:33