Rapid detection of TNT in aqueous media by selective label free surface enhanced Raman spectroscopy

, , , & (2015) Rapid detection of TNT in aqueous media by selective label free surface enhanced Raman spectroscopy. Talanta, 134, pp. 732-738.

View at publisher

Description

We report rapid and ultra-sensitive detection system for 2,4,6-trinitrotoluene (TNT) using unmodified gold nanoparticles and surface-enhanced Raman spectroscopy (SERS). First, Meisenheimer complex has been formed in aqueous solution between TNT and cysteamine in less than 15 min of mixing. The complex formation is confirmed by the development of a pink colour and a new UV–vis absorption band around 520 nm. Second, the developed Meisenheimer complex is spontaneously self-assembled onto unmodified gold nanoparticles through a stable Au–S bond between the cysteamine moiety and the gold surface. The developed mono layer of cysteamine-TNT is then screened by SERS to detect and quantify TNT. Our experimental results demonstrate that the SERS-based assay provide an ultra-sensitive approach for the detection of TNT down to 22.7 ng/L. The unambiguous fingerprint identification of TNT by SERS represents a key advantage for our proposed method. The new method provides high selectivity towards TNT over 2,4 DNT and picric acid. Therefore it satisfies the practical requirements for the rapid screening of TNT in real life samples where the interim 24-h average allowable concentration of TNT in waste water is 0.04 mg/L.

Impact and interest:

70 citations in Scopus
59 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 84124
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Kiriakous, Emadorcid.org/0000-0003-1353-6827
Fredericks, Peterorcid.org/0000-0002-5292-5027
Measurements or Duration: 7 pages
DOI: 10.1016/j.talanta.2014.12.022
ISSN: 0039-9140
Pure ID: 32878515
Divisions: Past > Institutes > Institute for Future Environments
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Past > Schools > School of Chemistry, Physics & Mechanical Engineering
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 14 May 2015 03:58
Last Modified: 08 May 2024 08:22