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Abstract

A new database called the World Resource Table (WRT) is constructed in this study.
Missing values are known to produce complications when constructing global databases.
This study provides a solution for applying multiple imputation techniques and
estimates the global environmental Kuznets curve (EKC) for CO2, SOz, PM10, and
BOD. Policy implications for each type of emission are derived based on the results of
the EKC. Finally, we predicted the future emissions trend and regional share of CO>
emissions. We found that East Asia and South Asia will be increasing their emissions
share while other major CO. emitters will still produce large shares of the total global
emissions.
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1. Introduction

History tells us that environmental quality may deteriorate as a result of economic
development because an increase in economically valuable activities with massive
industrial production and transportation often consume natural resources and emit
pollutants and greenhouse gases (GHGs). However, we can mitigate the environmental
deterioration by adopting environmentally friendly innovations, which may appear after
countries achieve a certain level of economic development. The environmental Kuznets
curve (EKC) is a variation of the Kuznets Curve (Kuznets 1955) that represents such
relationship between economic development and environmental degradation. According
to the EKC hypothesis, relationship between economic development and environmental
quality can be described as an inverted U-shaped curve, but this is merely a hypothesis
that has yet to be empirically tested. For sustainable development, environmental
quality must be maintained or improved with the economic growth, which was argued
in Our Common Future by the World Commission on Environment and Development
(1987). By investigating the EKC hypothesis, we can predict whether the economic
growth will be sustainable in terms of natural resource management.

However the existence of global EKC has not yet been confirmed even though over a
thousand empirical studies have been undertaken. The literature has shown that model
specification, econometric methods, and features of the dataset substantially affect the
results of the analyses of EKC estimations (Millimet et al. 2003; Stern 2004; Bertinelli
and Strobl 2005). In particular, deleting low-income countries from analyses because of
data availability issues is common in the field and might bias estimation results. One of
the reasons to cause such a problem is data availability. Especially information about
natural resource and environmental quality tend to be missing for developing countries,
so the necessary information for panel data regression is frequently missing in global
datasets. The problem of missing data is widely recognized in the field of applied
economics analysis, including EKC estimations, because missing data may cause
estimation bias and also affect the projection of future emissions/concentrations. In
addition, when the range of analyses on EKCs are limited to certain regions and
countries, it may cause misunderstanding of whole picture of relationship between
economic development and environmental quality.

In order to cope with the missing data problem on panel data analysis, three types of
methods are used: deleting samples or variables with missing values, single imputation,



and multiple imputation. The most common method of sample deletion is listwise
deletion that samples with missing values are deleted before statistical analysis. Sample
deletion used to be the major way to deal with missing data until the computer
calculation technology has been developed after 1990s. Deleting sample with missing
values may cause estimation bias if the missing pattern is not at random. Single
imputation is imputing a value for the missing data unit. Linear/ spline regression and
hot deck/ cold deck imputation are major single imputation methods used for statistical
analysis. Hot deck imputation is also called “matching” that if a sample has a missing
value, other complete samples, which have similar values for other variables are chosen
and the value of that samples are substituted for the missing value (Andridge and Little
2010). Single imputation is the most common way of addressing the problem of missing
values (e.g., as applied in the World Bank databases), but tends to underestimate the
error variance of missing data (see Junninen et al. 2004: 2906-2907).

On the other hand, multiple values are estimated for the missing data imputation by
multiple imputation. Multiple imputation mitigates the problem of estimation bias and
underestimation of standard errors. However, multiple imputation has not been widely
used until recently because it requires large computational power to undertake the
calculations required to generate a sufficient number of imputed datasets. The rapid
development of computer technology since the turn of the century has made multiple
imputation one of the more common methods currently used to address missing data
issues, particularly in medical science studies in which some data of respondents are
often missing. Multiple imputation enables future levels of emissions for each
country—even low-income countries—to be estimated, which allows political goals to
be set for such countries.

Therefore, in this article, we apply multiple imputation to EKC estimation to global
panel data analysis and emission projection to draw a path to the environmental friendly
and low carbon society. By imputing missing values in the dataset, we can include more
countries for longer time periods. We first estimate the EKC. Second, we compare the
results of the estimation by multiple imputation with listwise deletion. Third, using the
results of the EKC estimation, we show the future projections of global emissions of
CO2 by focusing on each region's share of the total emissions of emerging economies.

We implement the analysis described above on four major environmental indices, which
have various rate of missingness: CO2/ SO, emissions per capita, PM10* concentration



per cubic meter, and BOD (biological oxygen demand) per day per worker?. CO; and
SOz emissions are the most common environmental indices for EKC analyses and have
low rates of missing data. PM10 concentration is one of the major indices to evaluate air
quality, and also has a long and wide range of data collection and the lowest missing
rate in our dataset. The BOD indicates how much the water microorganisms consume
oxygen to resolve organic matters in the water. The higher BOD is detected, the more
polluted the water resource is, thus is important to measure water pollution; however,
not every country collect BOD data and this index thus has the highest rate of missing
data among the four indices.

In the next section, we first describe the abstract of our dataset. Second, we explain the
missing mechanisms of the dataset, which is the main reason why we must use multiple
imputation. Third, the data imputation and EKC estimation methods are described.
Forth, after implementing the multiple imputation, we use the imputed global dataset to
estimate the global EKCs for the four environmental indices, which have different rates
of data missing. Using the estimated parameters of the EKC, we project the CO-
emissions until 2018. Finally, we summarize our findings and discuss the implications
of this study.

2. Data

We include industry- and environment-related variables in the imputation model, as
shown in Table 13. The data sources are the World Development Indicators (WDI) 2012,
Pen World Table (PWT) Ver. 7.1 (Nov. 2012), and Environmental Performance Index
(EPI) 2012. The data periods used in this study are 1970-2010 for CO, and SO,
1990-2010 for PM10, and 1990-2007 for BOD. For the CO, emission projection, we
used the total population data (medium fertility) from the World Population Prospects
(the 2012 revision) by UNDESA and GDP growth rate from the World Economic
Outlook by the IMF. We construct a new database titled World Resource Table (WRT)
using the imputed method described below. Missing rates of the dataset for CO2, SOa,
PM10 and BOD are 36.3%, 40.6%, 7.2% and 47.2%, respectively.

Countries in the dataset are categorized by geographical region and income level, which
are controlled by dummy variables in the regression. In total, 181 countries are included
for CO2, SOz, and PM10, and 97 countries are included for BOD, based on data
availability*. The 181 countries are categorized into 12 regional subcategories (Table 2):
(1) South Asia, (2) Central Asia, (3) Middle East and North Africa, (4) Sub-Saharan



Africa, (5) Latin America and the Caribbean, (6) North America, (7) Western Europe,
(8) Central Asia, (9) Western Asia and Eastern Europe (10) Pacific Oceania, (11)
Southeast Asia, and (12) East Asia. Thirty countries are categorized as high-income
OECD countries, 19 countries are high-income non-OECD countries, 49 countries are
middle-income countries, 49 countries are lower middle-income countries, and 34
countries are low-income countries. The missing data rate is higher in Pacific Oceania
and Sub-Saharan Africa for SO., CO», and BOD. Data for PM10 are missing more often
in the regions with developed economies compared with regions that have more
emerging economies.

Data imputation enables us to include more countries; therefore, we can categorize
countries into smaller geographical units of 12 that capture the detailed regional feature
of the EKCs. Our approach is more inclusive and detailed compared to the EKC
literatures, in which geographical information is treated either as larger categories, such
as Asia, Europe, North America, and Africa, or as individual countries (Lee et al., 2010;
Grossman and Krueger 1991; Orubu and Omotor 2011). Especially PM10 has been
studied only for a limited number of countries and cities, i.e., US, Mexico, and Italy
(Dasgupta et al. 2002; Mazzanti et al. 2007).

3. Methods

Missing mechanisms

We create a large database for the WRT by imputing the missing data. Before choosing
an imputation method, we must first identify the “missing mechanism” of the dataset,
which is defined by Rubin (1976). The missing mechanism tells us whether we can
derive unbiased estimator from the dataset, it thus helps us determine which imputation
method to adopt (Cranmerand and Jeff Gill 2013). The missing mechanism is classified
into three separate patterns: missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR) or nonignorable (NI).

Let D denote a matrix of n X k, where n is the sample size and k is the number of
variables. D embraces all dependent and independent variables, including some missing
values,to be used in subsequent analyses. We denote Dobs as the observed values and
Dmiss as the missing values in D; thus, D = [Dobs, Dmiss].

MCAR
The missing mechanism is MCAR if the probability of missingness is identical for all



the data units, i.e., p(M|D) = p(M), which indicates that the missing pattern M is
independent of D. For example, when the missing pattern is determined by coin flips,
the missing mechanism of the dataset is MCAR. If the missing mechanism is MCAR,
the listwise/pairwise deletion and single/multiple imputation methods do not cause the
estimators to be biased. Sample deletion in this context only affects efficiency.

MAR

The second missing mechanism is called MAR, such that the missing pattern M
depends on Dops but is independent of Dmiss; more formally, p(M|D) = p(M|Dobs). In this
case, missingness is determined by the observed values of variables without the missing
values. For example, if the probability of the missingness of a variable is higher for
older people, and the “Age” variable, which has no missing data, is included in the
dataset, then the missing mechanism of the dataset is MAR. In the case of MAR,
listwise/pairwise deletion causes estimation bias, whereas single/multiple imputation
methods do not.

MNAR/NI

When the missing pattern is determined by the missing values Dmiss, the missing
mechanism is MNAR or NI. When the missing mechanism is MNAR, the probability of
missingness is dependent on the missing data; thus, the missing pattern cannot be
predicted because we do not have information about the missing values. The methods
discussed  above—Ilistwise/pairwise deletion and single/multiple  imputation
methods—may cause the estimators to be biased when the missing mechanism is
MNAR. However, we can convert the MNAR dataset to MAR by adding auxiliary
variables (AV), by which we can predict the missing pattern M. The missing mechanism
of a dataset cannot be determined with certainty because we do not have information
about missing values. To avoid causing bias with the MNAR datasets, we must use
priors and expert information to make the dataset MAR when it is highly likely that the
given dataset is MNAR.

We verify the missing mechanism of the dataset by using correlations of the indicator
matrix and values of the dataset (see Kabacoff 2011: 360- 362). One way to verify a
missing mechanism is to examine the correlation of observed values and matrix of a
missing pattern®. We generate a dataset with indicator variables that are coded 1 for
missing and O for observed. The resulting 0, 1 matrix is called the “shadow matrix”. All
of the correlations between the shadow matrix and observed values are lower than 0.4,



which indicates that the missing mechanism of the dataset can be assumed to be either
MCAR or MARS. If the missing mechanism of the dataset is MAR, multiple imputation
is an appropriate way to deal with the missing unit in the dataset.

Multiple imputation with EMB

The idea of multiple imputation has been introduced by Rubin (1977). While only one
value is imputed for a missing value in case of the single imputation, different values
are imputed for the missing elements in the multiple imputation process, such that m
numbers of imputed datasets are generated based on observed values. As with Single
imputation, there are various ways to generate the multiple imputed datasets. Among
those, two algorithms are widely used for multiple imputation, the imputation-posterior
(IP) approach and expectation maximization with importance sampling (EMis) (King et
al. 2001). IP is a method based on a Markov chain and Monte Carlo algorithm that
requires both expertise and a lengthy computational time. EMis is based on the
expectation maximization (EM) algorithm, the iterative estimation method, which
requires less expertise and is faster than IP. These two methods have been used as major
algorithms for multiple imputation. However, both IP and EMis have the disadvantage
that they require considerable computational time and expertise. In addition, a large
panel dataset that includes cross-sectional and time series information, may not be
properly treated by these methods.

A newly introduced method of multiple imputation that is implemented by Amelia, a
statistical package for R (Honaker and King 2010) addresses the missing data of a panel
dataset. Amelia can handle both cross-sectional and time-series features of panel data.
The imputation method used in Amelia is based on the EM algorithm with
bootstrapping (EMB), which can efficiently estimate missing values. The process of
multiple imputation using the EMB is shown in Figure 1. The EMB is suitable for large
datasets because the drawing process of the mean vector and joint covariance matrix is
simplified by bootstrapping. Bootstrapping has better lower order assumptions than the
parametric approaches implemented by EMis and IP (see Honaker and King 2010:
564-565).

Regarding the number of imputed datasets, many articles in the literature have indicated
that 5 to 20 imputations are sufficient for consistent analyses (see King et al. 2001, p.53;
Gelman and Hill 2006, p.542). However, most recent studies have found that estimation
results with small numbers of imputed datasets can be biased. Generating more than 100



imputations is recommended because of the reduced computational time of today's
technology (Graham et al. 2007). Following the recent study, we execute 100
imputations for our analysis.

EKC estimation

After the imputation, we estimate the regression model for the EKC. We calculate the
OLS estimators for the parameters in regression model described by equation (1). E;;
is the emission/concentration level in country i at time t, X is the GDP per capita, Year
Is a time trend variable, « is the intercept, u; is a fixed effect of the region (we have
12 regions here), and ¢;; is an error term. To consider nonlinearity, we include the
second and third power terms of GDP per capita.

Eir = a + ByXie + BoXit® + BaXit® + p; + Year + (1)

We recognize that arguments have been made that sing a parametric regression may not
produce reliable results because the functional form and distribution are assumed in
advance; therefore, semi-parametric methods have become commonly used to estimate
the relationship between environmental degradation and income (Bertinelli and Strobl
2005; Azomahou et al. 2006; Tsurumi and Managi 2010). However, the main purpose of
this study is not to investigate the existence of the EKC but to compare the regression
results from two methods: listwise deletion and multiple imputation. In addition we use
the estimated parameters for future emission projection. We therefore implement
parametric estimation and focus on a simple form of the EKC.

In our study, we adopt the integration method developed by Rubin and Schenker (1986)
to combine multiple imputed datasets into one result because the method can consider
variance among m estimations. To combine the multiple imputed datasets using this
method, we use estimated coefficients and standard errors. Therefore we select
parametric regressions for the EKC estimation. By Rubin and Schenker’s (1986)
method, the variance of standard errors among the imputed datasets is used to calculate
the integrated standard error, which means that too large a missing rate for small
datasets may make the integrated estimated coefficients insignificant.

4. Results
4.1.  Results of multiple imputations
Figures 2-5 are scatter plots of imputed mean values and observed values from the WRT.



The open circles are imputed mean values, and the filled circles are observed values.
For all the four environmental indicators, the missing data are imputed for various
levels of GDP per capita nearly uniformly. The data for CO. exhibits a clear increasing
relationship with the GDP per capita. The data for PM10 and BOD are more scattered
compared with other indices. Overall, the multiple imputation succeeds in reproducing a
reasonable distribution of the imputed dataset based on the observed data.

4.2. EKC estimations

Tables 3-6 list the estimated coefficients and standard errors of the panel data
regressions. All four environmental indices exhibit a significant relationship with the
GDP per capita both before and after the imputation. The signs for the terms of the GDP
per capita do not change after imputation, although their magnitudes are slightly
different. The significance of the estimated parameters does not differ between the
listwise deletion and multiple imputation. This may be because the sample size is large
enough for the coefficients to be statistically significant with small standard error even
after the multiple imputation.

Figure 6-9 show the estimated EKC for each environmental index. The year trend and
regional fixed effects for the 12 regions are averaged to describe the mean relationship
between the environmental indices and GDP per capita. The broken line is the fitted
value derived from the listwise deletion, and the solid line is the result of multiple
imputation.

CO;

The curve for CO2 emissions per capita exhibits a monotonic increase (see Figure 6).
The results of the listwise deletion and multiple imputation show almost the same trend
except the fitted value for the multiple imputation dataset is slightly larger than that for
the listwise deletion. At higher than 80,000 dollars GDP per capita, where number of
observations is more limited than for the lower GDP countries, the slope is steeper for
the listwise deletion. With the imputed dataset, a linear relationship is found between
the CO. emission per capita and GDP per capita.

This result is different from early studies of EKC, such as those by Holtz-Eakin and
Selden (1995), who found an inverted U-shaped relationship between the global CO-
emissions per capita and GDP per capita. Their estimated emissions peaked at 35,428
US dollars of GDP per capita. However, our imputed dataset does not support this EKC



relationship. Many other empirical studies have found a monotonously increasing
relationship between CO2 emissions per capita and GDP per capita within the observed
income levels (e.g., Shafik 1994; Heil and Selden 2001). Our results thus confirm the
empirical results of those studies and imply that merely GDP per capita growth alone
does not contribute to the low-carbon society.

SOz

SO- emissions per capita shows a U (N)-shaped trend (Figure 7). Countries reduce SO>
emissions more efficiently than CO2 emissions until a GDP per capita of 90,000
international dollars. The emissions peak for the imputed results at lower GDP levels is
at 31,800 international dollars per capita, which is a higher level of GDP per capita than
in the results of the listwise deletion. The results with the imputed dataset show more
realistic figures compared with those of the listwise results because we could minimize
the bias of the estimators with the imputation.

Technologies, which are the source of SOz emissions, normally decrease as the GDP per
capita increases. Therefore, where most countries remain in the developing stage, the
SO2 emissions per capita are increasing at lower economic levels and begins to decrease
at higher GDP levels, which is consistent with recent studies (e.g., lwami 2004; Yaguchi
et al. 2007; Coleman 2009). SO; is considered a local pollutants that is easier to control
than global emissions. Sulfur, as a byproduct of industrial production in factories, can
be reduced by using an end-of-pipe filter, which is a widely applicable technology even
in developing countries. These two factors—being a local pollutant and the existence of
applicable clean technology—may help SO emissions be lower at the middle and
high-middle income countries.

PM10

The relationship between PM10 concentrations and the GDP per capita is an inverted
N-shaped curve (Figure 8). The PM 10 concentration peak is at 84,100 international
dollars for the imputed dataset with a higher concentration level compared to the result
of the listwise deletion. Many articles in the literature that have found an inverted
U-shaped relationship between the PM10 concentration and GDP per capita have used
city-level data for air pollution (e.g., Grossman and Krueger 1995), which may have a
strong relationship with GDP per capita because the population and industry
concentration in urban areas is strongly related to the GDP growth. However, our result
shows that the PM10 concentration increases at 25,000 dollars GDP per capita and starts
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to decrease again at 85,000 dollars GDP per capita that such level of income is still too
high for many countries because the mean GDP per capita is 4,712 international dollars
for our global dataset. Therefore, results from previous studies showing an inverted
U-shaped relationship are too optimistic for current global situation, and we must
consider how to decrease the PM10 emissions from emerging nations whose GDP per
capita is below 85,000 dollars.

BOD

The level of BOD shows the overall decreasing trend relative to increases of the GDP
per capita (Figure 9). The BOD has the highest missing rate among the four
environmental indices in our analysis; therefore, the results differ the most between the
listwise deletion and multiple imputation, and the difference is larger at the higher GDP
per capita. Up to approximately 80,000 dollars GDP per capita, the BOD emission does
not decrease much. The emissions increase from 20,000 to 70,000 dollars GDP per
capita, which means that for most of the countries, controlling the BOD may still be a
problem for economic development. Managi et al. (2009) found that the BOD of a
country decreases as the trade openness of the country increases. Therefore,
encouraging trade to increase income may also improve the water quality of the country.

4.3. Prediction of emission level
Figures 10 and 11 show the predicted annual trend and regional shares of CO, emissions
from 1992 to 2018. The predicted emission levels are calculated by the estimated
parameters. We multiply the 2010 GDP from the PWT (in 2005 international dollars) by
the growth rate of each country’s GDP (in constant national currency) from WEO2013
to derive the projection of the GDP per capita from 2011 to 2018.

Our estimation results show that the annual CO emission levels in 2018 in Asia will be
almost twice the emission levels in 1992 (see Figure 10). North America, East Asia and
Europe are the three largest CO, emitters throughout the period. The share of Europe
and North America will decline gradually until 2018whereas South Asia and East Asia
will increase their emissions share.

Increases in the emission share for East Asia and South Asia can be explained by
population pressures in the regions. Because of increasing population pressures, the
decreasing trend in per capita emissions is insufficient to cause a reduction in total CO>
emissions. China and India—the two world most populated countries, thus the two
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largest emitters of CO. in Asia— will further increase their population and emission
levels per capita. Emissions from Central Asian countries are also growing. With
massive population growth, these countries will continue to become a global warming
threat.

5. Conclusion

We constructed a new database, the World Resource Table (WRT), in this study. We
provide an application of multiple imputation so that coverage increases compared with
the existing databases described in previous studies. This study then estimates the global
EKC using WRT. First, by choosing the appropriate imputation method and model, we
imputed reasonable values into datasets with missing values. Second, we estimated
global EKC for four environmental indices—CO», SO,, PM10, and BOD. Finally, we
predicted the future emission trend and regional share of CO, emissions.

We found that with a large sample such as the global dataset, which we used for our
analysis, increase in the standard errors by multiple imputation do not affect the
statistical significance of the estimated parameters. Therefore the regression parameters
for the GDP remain significant at a 1% significance level after the imputation, such that
we can produce an obvious relationship of environmental indices with GDP per capita.

We also calculated the projection of future global CO. emission levels and each region’s
share. As a result of rapid population growth, East Asia and South Asia, where China
and India are located, will increase their emission shares by 2018, whereas other major
CO2 emitters such as Europe and North America will still produce a large share of the
total global emissions. The total CO2 emissions will be twice as large in 2018 compared
to 1992. Further studies on environmentally friendly technology and implementation are
required to mitigate this trend.

The results of this study indicate that multiple imputation can serve to expand the
datasets of environmental indices with missing values for panel data analysis. These
results will contribute to the prediction of future trends of global environmental quality
and help set the goals for constructing a low carbon society. Since East Asia and South
Asia are predicted to increase their emission share rapidly in the world, further studies
focusing on Asian countries are urgently needed.

1 PM10 stands for Particulate Matter up to 10 micrometers in size.
2 BOD is an index to evaluate water quality.
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% Dataset used for this paper is basically the one from the data used in Miyama and Managi
(2014). In Miyama and Managi (2014), we implemented multiple imputation and panel data
analysis to Asian countries. We expand the panel data analysis to the global dataset in this
article.

4 1f the country does not exist during the covered period because it is occupied by other
countries, the country is excluded from the analysis until its year of independence. Thus, the
dataset is unbalanced.

® This method is a simple example to verify the missing mechanisms. More formal tests to
determine the MCAR are introduced by Little (1988).

¢ See Miyama and Managi (2014) for detailed result of the missing mechanism test.
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Table 1 Variables used for multiple imputation

Variables Unit Source Period
GDP per capita 1,000 constant 2005 international dollar (I$) per person PWT 1970-2010
Investment Share of GDP Per Capita % of PPP Converted GDP Per Capita at 2005 constant prices PWT 1970-2010
Openness of Economy % at 2005 constant prices PWT 1970-2010
SO, emission per capita SO, emissions kg per person EPI 1970-2010
CO, emission per capita CO, emissions kg per person EPI 1970-2010
School enrollment, primary % WDI 1970-2010
Total Population person WDI 1970-2010
Manufacturing, value added % of GDP WDI 1970-2010
Organic water pollutant emissions (BOD)* kg per day per worker (country level) WDI  1990-2007
PM10 concentration micrograms per cubic meter WDI  1990-2010
CO, per GDP CO, emissiona kg per GDP EPI 1970-2010
Renewable electricity % of electricity production EPI 1970-2010

* Organic water pollutants are measured by biochemical oxygen demand (BOD),
which refers to the amount of oxygen that bacteria in water will consume in breaking down waste.

Note: PWT indicates Penn World Table Version 7.1 (2012 November), WDI indicates World
Development Indicators 2012, and EPI indicates the Environmental Performance Index 2012.
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Table 2 List of countries categorized by region

Region Country

Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal,
Pakistan, Sri Lanka

Algeria, Bahrain, Djibouti, Egypt—Arab Rep., Iran—Islamic Rep.,
Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco,
Oman, Qatar, Saudi Arabia, Syrian Arab Republic*, Tunisia,
United Arab Emirates

Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon,
Cape Verde, Central African Republic, Chad, Comoros,
Congo, Dem. Rep.*, Congo—Rep., Céte d’lvoire, Equatorial
Guinea, Eritrea*, Ethiopia, Gabon, Gambia, Ghana, Guinea,
Sub—Saharan Africa Guinea—Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi,
Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger,
Nigeria, Rwanda, S0 Tomé and Principe, Senegal,
Seychelles, Sierra Leone, Somalia*, South Africa, Sudan,
Swaziland, Tanzania, Togo, Uganda, Zambia, Zimbabwe
Antigua and Barbuda, Argentina, Bahamas, Barbados, Belize,
Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba*, Dominica,
Dominican Republic, Ecuador, El Salvador, Grenada,

Latin America & Caribbean |Guatemala, Guyana, Haiti, Honduras, Jamaica, Mexico,
Nicaragua, Panama, Paraguay, Peru, Puerto Rico*, St. Kitts
and Nevis, St. Lucia, St. Vincent and the Grenadines,
Suriname, Trinidad and Tobago, Uruguay, Venezuela—RB
North America Bermuda*, Canada, United States

Albania, Austria, Belgium, Bulgaria, Cyprus*, Czech Republic*,
Denmark, Estonia, Finland, France, Germany, Greece, Iceland,
Western Europe Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia—FYR,
Netherlands, Norway, Poland, Portugal, Romania*, Russian
Federation, Slovak Republic, Spain, Sweden, United Kingdom
Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan,

South Asia

Middle East & North Africa

Central Asia

Uzbekistan
Western Asia Armenia, Azerbaijan, Turkey
Eastern Europe Belarus, Georgia, Hungary, Moldova, Switzerland, Ukraine*

Australia, Fiji, Kiribati, Marshall Islands, Micronesia—Fed. Sts.,
New Zealand, Palau*, Papua New Guinea, Samoa, Solomon

Pacific Oceania Islands, Tonga, Vanuatu
Brunei Darussalam, Cambodia, Indonesia, Lao PDR, Malaysia,
Southeast Asia Philippines, Singapore, Thailand, Vietnam
China, Hong Kong—SAR, China, Japan, Korea—Rep., Macao—
East Asia SAR, China, Mongolia

Note: All the countries listed above are included for the multiple imputation and EKC
estimations, but countries with * are excluded from the CO; emission projection due to the data
availability.
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Table 3 Results of the EKC estimation (CO,)

Dep. var: CO2 emissions kg per capita Listwise deletion Multiple imputation
Coefficient Std. Error Coefficient Std. Error

Intercept 458.5 315.2 1262.18%%% 401.52
GDP 441 3%%x 21.9 388.37%*x 41.04
GDP? —3.15%%% 0.68 -1.38 1.69
GDP® 0.02%%% 0.01 0.004 0.02
South Asia -395.1 388.3 —1218.31%%x 431.49
Middle East & North Africa 2368%** 302.6 1835.29%%% 403.53
Sub—Saharan Africa -326.2 315.7 —1228.82%%x 387.48
Latin America & Caribbean —651.1%% 296.3 —1531.14%%x 371.94
North America 7199%%% 4923 10322.99%*x 1241.35
Western Europe 631.5%% 2948 45493 395.29
Central Asia 3142%%x 478.7 2240.1%%% 531.08
Western Asia -1.84 498.1 -531.85 562.61
Eastern Europe -301.7 396.9 -604.59 484.13
Pacific Oceania 1501 %% 489.1 -153.14 41457
Southeast Asia —1165%%% 346.0 -1668.3%*x 423.67
Year —14.06%** 5.03 -12.39%%x 473
Number of obs. 4291 6902

*** Significantly different from zero at the 1% significance level
** Significantly different from zero at the 5% significance level
* Significantly different from zero at the 10% significance level

Table 4 Results of the EKC estimation (SO,)

Dep. var: SO2 emissions kg per capita Listwise deletion Multiple imputation
Coefficient Std. Error Coefficient Std. Error

Intercept 13.19%%% 3.17 16.86%%* 3.38
GDP 3.19%** 0.27 2 .49%%x% 0.25
GDP? —0.1%%x 0.01 —-0.06%** 0.01
GDP® 0.0009%** 0.0001 0.0003%** 0.0001
South Asia -435 3.97 -3.36 3.87
Middle East & North Africa 13.94%%* 3.08 15.96%%* 3.33
Sub—Saharan Africa 10.12%%% 3.18 3.82 3.35
Latin America & Caribbean 0.17 2.99 0.69 3.2
North America 80.37%%x 5.16 123.52%%* 15.72
Western Europe 25.56%*xx 3.03 21.63%xx 3.24
Central Asia 25.99%%x 5.26 22.38%%x 492
Western Asia 3.92 5.32 3.99 5.45
Eastern Europe 22.77%%x% 4.2 16.86%%* 4.41
Pacific Oceania 31.81%%x 512 14.12%%* 429
Southeast Asia -0.61 3.48 -2.56 3.73
Year —0.56%** 0.06 —0.62%%* 0.05
Number of obs. 4291 6902

*** Significantly different from zero at the 1% significance level
** Significantly different from zero at the 5% significance level
* Significantly different from zero at the 10% significance level
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Table 5 Results of the EKC estimation (PM10)

Dep. var: PM10 concentration
micrograms per cubic meter

Listwise deletion

Multiple imputation

Coefficient Std. Error Coefficient Std. Error

Intercept 107.3%%* 428 108.95%** 4.2
GDP —2.56%%* 0.22 —2.65%%* 0.21
GDP? 0.07x%% 0.01 0.07x%% 0.01
GDP? —0.0004%*x 0.00004 —0.0004%*x 0.00004
South Asia -1.31 493 -3.01 4385
Middle East & North Africa 16.0%%* 434 13.83%** 429
Sub—Saharan Africa =14 . 7%%* 4.25 -17.09%%x 415
Latin America & Caribbean —26.39%** 416 —=27.32%%% 4.09
North America —40.38%** 6.91 —41.33%%x 6.09
Western Europe —36.76%%% 423 —38.05%%* 417
Central Asia —26.88%** 5.49 =27 45%%x 5.36
Western Asia -1.24 6.18 2.85 6.04
Eastern Europe —35.44%%% 5.16 —36.47%%* 5.06
Pacific Oceania —49 47%%* 5.06 =50.97%%x 449
Southeast Asia —20.67%%* 474 —=22.25%%% 467
Year —1.89%** 0.10 —1.86%%* 0.10
Number of obs. 3908 6902

*** Significantly different from zero at the 1% significance level
** Significantly different from zero at the 5% significance level
* Significantly different from zero at the 10% significance level

Table 6 Results of the EKC estimation (BOD)

Dep. var: BOD g per day per worker Listwise deletion

Multiple imputation

Coefficient Std. Error Coefficient Std. Error

Intercept 173.5%%% 8.95 178.02%%* 8.05
GDP =5.1%%k 0.69 —4.04%%* 0.61
GDP? 0.16%*x 0.03 0.11%%x 0.02
GDP® —-0.001%%* 0.0003 -0.001%** 0.0002
South Asia -7.89 16.91 0.46 0.3
Middle East & North Africa 16.53%* 8.21 10.51 71
Sub—Saharan Africa 55.61%%x 8.55 51.18%%x 7.83
Latin America & Caribbean 100.2%%* 8.43 87.01%%x 8.2
North America 19.21% 11.43 17.28 10.79
Western Europe 25.61%xx 7.16 19.71%%% 6.67
Central Asia 38.77%%x 10.07 33.83%*x 9.25
Western Asia 6.93 10.69 -2.06 10.29
Eastern Europe 118.8%%% 10.18 106.79%%* 10.63
Pacific Oceania 105.5%%* 10.29 104.6%%* 9.73
Southeast Asia —18.92%* 8.98 -8.68 8.5
Year 0.66%* 0.33 -5.92 14.93
Number of obs. 905 1725

*** Significantly different from zero at the 1% significance level
** Significantly different from zero at the 5% significance level
* Significantly different from zero at the 10% significance level
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