Pattern recognition using Markov random field models

Cai, Jinhai & Liu, Zhi-Qiang (2002) Pattern recognition using Markov random field models. Pattern Recognition, 35(3), pp. 725-733.

View at publisher


In this paper, we propose Markov random field models for pattern recognition, which provide a flexible and natural framework for modelling the interactions between spatially related random variables in their neighbourhood systems. The proposed approach is superior to conventional approaches in many aspects. This paper introduces the concept of states into Markov random filed models, presents a theoretic analysis of the approach, discusses issues of designing neighbourhood system and cliques, and analyses properties of the models. We have applied our method to the recognition of unconstrained handwritten numerals. The experimental results show that the proposed approach can achieve high performance.

Impact and interest:

16 citations in Scopus
13 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

268 since deposited on 16 Jul 2007
8 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 8626
Item Type: Journal Article
Refereed: Yes
Keywords: Pattern recognition, Markov random field, Neighbourhood system, Handwritten numerical recognition
DOI: 10.1016/S0031-3203(01)00071-1
ISSN: 0031-3203
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Pattern Recognition and Data Mining (080109)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2002 Elsevier
Copyright Statement: Reproduced in accordance with the copyright policy of the publisher.
Deposited On: 16 Jul 2007 00:00
Last Modified: 09 Jun 2010 12:42

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page