The Development, validity, and reliability of a manual muscle testing device with integrated limb position sensors

Li, Raymond C., Jasiewicz, Jan M., Middleton, James, Condie, Peter, Barriskill, Andrew, Hebnes, Heidi, & Purcell, Brendan (2006) The Development, validity, and reliability of a manual muscle testing device with integrated limb position sensors. Archives of Physical Medicine and Rehabilitation, 878(3), pp. 411-417.

PDF (39kB)

View at publisher


Li RC, Jasiewicz JM, Middleton J, Condie P, Barriskill A, Hebnes H, Purcell B. The development, validity, and reliability of a manual muscle testing device with integrated limb position sensors. Objective: To report the development and validation of a new hand-held muscle strength-testing device that is integrated with orientation sensors and designed to test the strength of major muscle groups at a given limb or joint position. Design: Design description and validation study. Setting: University-based human movement facility. Participants: Twenty-eight able-bodied, healthy subjects. Interventions: Not applicable. Main Outcome Measure: A device was developed based on a hand-held force dynamometer with integrated orientation sensors. The validity and reliability (interrater, intertrial) of 5 maximum isometric contractions of hip flexion, knee extension, and ankle plantarflexion and dorsiflexion were assessed. The results were compared with those from an isokinetic dynamometer (KinCom). Results: The new manual muscle tester was highly reliable and valid in estimating muscle strength of the lower limbs. The coefficient of variation between trials of all movements was low, with a mean less than 10% (range, 3.7%–8.9%). The only significant difference in muscle strength between the new device and the isokinetic dynamometer was found for hip flexion. Conclusions: The new hand-held muscle strength tester appears to be a reliable and valid clinical assessment tool that can be used to objectively assess muscle strength at particular limb positions and/or joint angles. This feature appears to represent a technical advance in portable muscle strength devices, providing comparable information to those obtained by isokinetic dynamometers at a fraction of the cost and size. However, the device needs to be validated in clinical populations, such as patients with spinal cord injury and stroke, in order to demonstrate its general clinical utility.

Impact and interest:

23 citations in Scopus
21 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,518 since deposited on 18 Jul 2007
61 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 8682
Item Type: Journal Article
Refereed: Yes
Keywords: Muscles, Rehabilitation, Reliability and validity, Transducers
DOI: 10.1016/j.apmr.2005.11.011
ISSN: 0003-9993
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600) > Biomechanics (110601)
Divisions: Past > Research Centres > Centre for Health Research
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2006 Elsevier
Copyright Statement: Reproduced in accordance with the copyright policy of the publisher.
Deposited On: 18 Jul 2007 00:00
Last Modified: 10 Aug 2011 15:35

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page