Targeting glucocorticoid receptors that promote resilience in the treatment of addiction

, , Tarren, Josephine, , & (2015) Targeting glucocorticoid receptors that promote resilience in the treatment of addiction. In 25th Biennial Meeting of the International Society for Neurochemistry jointly with the 13th Meeting of the Asian-Pacific Society for Neurochemistry in conjunction with the 35th Meeting of the Australasian Neuroscience Society, 2015-08-23 - 2015-08-27.

Open access copy at publisher website

Description

There is strong evidence to suggest that the combination of alcohol and chronic repetitive stress leads to long-lasting effects on brain function, specifically areas associated with stress, motivation and decision-making such as the amygdala, nucleus accumbens and prefrontal cortex. Alcohol and stress together facilitate the imprinting of long-lasting memories. The molecular mechanisms and circuits involved are being studied but are not fully understood. Current evidence suggests that corticosterone (animals) or cortisol (humans), in addition to direct transcriptional effects on the genome, can directly regulate pre- and postsynaptic synaptic transmission through membrane bound glucocorticoid receptors (GR). Indeed, corticosterone-sensitive synaptic receptors may be critical sites for stress regulation of synaptic responses. Direct modulation of synaptic transmission by corticosterone may contribute to the regulation of synaptic plasticity and memory during stress (Johnson et al., 2005; Prager et al., 2010). Specifically, previous data has shown that long term alcohol (1) increases the expression of NR2Bcontaining NMDA receptors at glutamate synapses, (2) changes receptor density, and (3) changes morphology of dendritic spines (Prendergast and Mulholland; 2012). During alcohol withdrawal these changes are associated with increased glucocorticoid signalling and increased neuronal excitability. It has therefore been proposed that these synapse changes lead to the anxiety and alcohol craving associated with withdrawal (Prendergast and Mulholland; 2012). My lab is targeting this receptor system and the amygdala in order to understand the effect of combining alcohol and stress on these pathways. Lastly, we are testing GR specific compounds as potential new medications to promote the development of resilience to developing addiction.

Impact and interest:

1 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 88926
Item Type: Contribution to conference (UNSPECIFIED)
Refereed: No
ORCID iD:
Bartlett, Selenaorcid.org/0000-0002-1741-3958
Holgate, Joanorcid.org/0000-0002-7953-0180
Belmer, Arnauldorcid.org/0000-0001-6640-5631
Additional Information: Abstract published in Journal of Neurochemistry, Volume 134, Issue Supplement S1, pages 35–36, August 2015
Keywords: Addiction, Glucocorticoid, Receptors, Resilience
DOI: 10.1111/jnc.13185
Pure ID: 57279024
Divisions: Past > QUT Faculties & Divisions > Faculty of Health
Past > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 12 Oct 2015 00:23
Last Modified: 01 Mar 2024 22:54