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Abstract. Companies such as NeuroSky and Emotiv Systems are sell-
ing non-medical EEG devices for human computer interaction. These de-
vices are significantly more affordable than their medical counterparts,
and are mainly used to measure levels of engagement, focus, relaxation
and stress. This information is sought after for marketing research and
games. However, these EEG devices have the potential to enable users to
interact with their surrounding environment using thoughts only, with-
out activating any muscles. In this paper, we present preliminary results
that demonstrate that despite reduced voltage and time sensitivity com-
pared to medical-grade EEG systems, the quality of the signals of the
Emotiv EPOC neuroheadset is sufficiently good in allowing discrimina-
tion between imaging events. We collected streams of EEG raw data and
trained different types of classifiers to discriminate between three states
(rest and two imaging events). We achieved a generalisation error of less
than 2% for two types of non-linear classifiers.

Keywords: EEG, Machine Learning, Device Control, BCI, K-nearest
Neighbors, SVM

1 Introduction

Attempts to decipher the brain and interface it with hardware can be traced
back to the 1970’s when Brain Computer Interface (BCI) research started [24].
BCI devices and methods enable their users to have their brain activity moni-
tored. These devices were in the past confined to the medical arena however in
recent years, technological advances have significantly lowered the price of these
devices and allowed for the development of non-medical applications [14,15]. An
important factor in the usability of EEG devices is their setup and calibration
time. New EEG biosensors are easier to operate to the point that they are even
used in games to offer novel experience to players [15].

In this paper, we investigate the capabilities of one such device, the Emotiv
EPOC neuroheadset [3]. This headset comes with the ability to extract raw EEG
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Fig. 1. Left: the Emotiv EPOC headset. Right: the location of its electrodes. The CMS
and DRL electrodes act as reference nodes [3].

data from 14 sensors, positioned according to the 10/20 International System,
as pictured in Figure 1.

We tried a variety of classifiers using standard machine learning techniques
to determine whether it was possible to discriminate between three different
mental states. Section 2 retraces briefly the evolution of BCI technology. Sec-
tion 3 describes the experimental methodology. Section 4 presents experimental
results.

2 Related Work

This section briefly reviews the history of BCI.

2.1 Pioneering Days of EEG

Hans Berger The German psychiatrist Hans Berger was researching tempera-
ture changes in the cortex of dogs when he first became interested in the electrical
activity of the brain [2, 10]. Berger later on became the first person to monitor
and record human brain activity from the cortical surface of a 17-year-old un-
dergoing brain surgery [8] thus conducting the first electroencephalography on
humans [10, 23]. Berger developed the theory of changes in physiological sleep,
coined the “on and off effect”, noted the psychological significance of different
EEG patterns, and investigated the applications of EEG [8,10] as well.

EEG Frequencies EEG waves are obtained using electrodes attached to the
scalp. These sensitive electrodes pick up postsynaptic potentials, created by in-
hibitory and excitatory potentials in the dendrites of neurons in the cerebral
cortex [21]. Berger suggested that the complex EEG was composed of two fun-
damental waveforms: the larger α waves correlated with mental activity, and
the smaller β waves associated with the metabolic activities of cortical tis-
sue [10]. This observation was refined and led to the identification of five fre-
quency ranges [16]. Each range corresponds to a particular state of mind as
indicated in Table 1.
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Table 1. EEG Frequency Bands

Band Frequencies State of Mind

δ 0.5-4 Hz Deep dreamless sleep

θ 4-7.5 Hz Dreamlike, drowsy, meditative

α 8-13 Hz Relaxed, conscious

β 14-26 Hz Relaxed but focused, alert, thinking and aware of surroundings

γ 30-40 Hz Active thinking and information processing

2.2 Brain Computer Interfaces

Although EEG has been primarily used for medical applications such as diagnos-
ing sleep disorders or epilepsy, they have also enabled BCI applications [18,22].
The simplest form of BCI is switching. This can be achieved through blinking,
or the acts of having the eyes open or closed [19]. EEG-based BCI can also be
controlled by means of steady state visual evoked potentials, P300 evoked po-
tentials and motor imagery. Many BCI systems share the architecture shown in
Figure 2 where an EEG data stream is fed to a classifier whose output is then
used to generate control commands.

Fig. 2. Architecture of a BCI with feedback loop. The generated output command is
displayed to the user as feedback.

P300 Evoked Potentials P300 brainwaves were first discovered by Sutton in
1965 and are evoked via a visual stimulus that a user concentrates upon while
different non-target stimuli are also presented [20]. The P300 signal is evoked
250 to 500 ms after the subject detects the target stimulus among the several
non-target stimuli [4,13]. The P300 speller is a device that operates on the P300
evoked potentials. The device presents 36 letters in a 6 x 6 matrix. Each row
or column flashes up in turn and the subject concentrates on a particular letter
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that they wish to write. When the selected letter is lit up, a signal is evoked in
the brain and appears in the EEG data [4].

Steady State Visual Evoked Potentials Steady State Visual Evoked Po-
tentials (SSVEP) are the responses evoked from visual stimulus at different fre-
quencies. The SSVEP characteristic increases activity in the EEG signal at the
stimulus frequency. An example of SSVEP applications in BCI are demonstrated
by Guneysu and Akin who used the SSVEP induced by observing LED lights
flashing at different frequencies to control a humanoid robot to draw a square [5].

Motor Imagery Motor imagery is the act of mentally imagining a particular ac-
tion. Imagining the movement of limbs induces significant changes in the cortical
area [7]. This in turn results in changes in potentials allowing for measurements
to be made with electrodes. A key component of utilising motor imagery for BCI
control is training. Within a few days a tetraplegic patient can learn to control
a hand orthosis with mental imaging of left and right hand movements as was
demonstrated by Pfurtscheller and Neuper [12].

2.3 Invasive and Non-Invasive BCI

BCI controls can be both via invasive and non-invasive methods. Invasive meth-
ods involve directly implanting BCI technologies onto the grey matter of the
brain. In 1998 Kennedy implanted the first BCI object to produce a high qual-
ity signal into the outer layer of a human neocortex. Conducted on a patient
with locked-in syndrome, the recorded signals were transmitted and processed
to drive a computer cursor [9].

Due to the costly and dangerous nature of invasive methods, interest exists in
non-invasive ones, however these are more sensitive to noise and have lower signal
resolution. Nevertheless advances in technology, lower costs, ease of portability
and no requirement for surgery has stimulated the development of non-invasive
BCI control methods [17,21,25].

2.4 EEG Technology

The study of EEG began with the development of mirror and strong galvanome-
ters with the ability to respond to a time constant less than several seconds [2].
Du Bois-Reymond developed non-polarizable electrodes from clay which were
used for many years for animal and human EEG recordings [1]. In 1875 Caton
first recorded electrical activity in the exposed brains of animals and Berger the
first human EEG recordings with an Edelmann galvanometer [2, 10].

In current times, the technology of EEG has undergone further developments
after entering the digital age. Through the commercialisation of EEG headsets
for applications such as game control and artistic experimentation, products such
as NeuroSky, Mindflex, and the device used in this study, the Emotiv EPOC
neuroheadset, are finding new roles outside the medical professions.
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3 Stimulus Classification with the Emotiv EPOC

In order to test the suitability of the Emotiv EPOC headset as a BCI device with
multiple control outputs, an experiment was set up to record EEG signals from
three subjects (the authors of this paper). Subjects were shown three different
types of visual stimuli and data were collected with an Emotiv EPOC headset.
Several classifiers were investigated as will be explained in the following sections.

3.1 Experimental Setup

The three tasks the subjects performed were

– Neutral: Watching a white screen for 10 seconds

– Push: Watching a blue cube being pushed away from the subject for 5
seconds

– Pull: Watching a blue cube being pulled towards the subject for 5 seconds

Screen shots of the cube being pushed and pulled are displayed in Figure 3
and Figure 4. The cube animation starts at the same size and then becomes
either larger (Pull) or smaller (Push).

Fig. 3. Animation of the Cube Pull

Fig. 4. Animation of the Cube Push
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The following standard protocol was followed when preparing subjects for
data collection.

1. Subjects were asked to confirm that they were not feeling any drowsiness or
discomfort (such as headaches or pain) prior to conducting the experiment.

2. The Emotiv sensors were moistened with saline drops and connected to the
headset.

3. The Emotiv headset was fitted onto the subject. Positioning of the sensors
were corrected with the assistance of Emotiv EPOC sensor software until all
sensors displayed on the console turned ‘green’ indicating a strong connection
and correct positioning.

4. Subjects sat comfortably in a chair facing a computer screen during the ex-
periment. They were advised to remain in a passive state and not interact
with any of the equipment used in the experiment as well as to follow in-
structions as advised by the experimenter. Subjects were also advised to limit
blinking and head movements (whilst undertaking a recording) to reduce the
interference of artifacts.

3.2 Data Collection

All data was collected in one sitting for each subject. Detailed below are the steps
the experimenter followed to record the EEG signals produced by the subjects
undertaking the tasks during the experiment.

Collecting Raw EEG data The headset undertakes sequential sampling at
128 Hz for each sensor with Analog to Digital Conversion of the data. Located in
the headset are digital notch filters at 50 Hz and 60 Hz and a built-in digital 5th
order sinc filter. The raw data is transmitted in packets via Bluetooth 2.4 GHz
band from the neuroheadset to a USB dongle [3]. The protocol followed for the
data recording was the same for each subject. The experiment was conducted in a
quiet room to reduce the influence of external distractions. Two applications were
run during the experiment, the visual stimulus and the EEG signal recording
applications.

1. During the experiment subjects were exposed to each of the 3 scenarios. Prior
to being shown the scenario, the subject was made aware of the upcoming
scenario. As well as this, prior to the display of a scenario, the recording
application was prepared by selecting the scenario being recorded as well as
selecting the duration to record a signal for (5 seconds or 10 seconds for the
neutral scenario).

2. Each scenario was displayed for 7 seconds (or 12 seconds for the neutral sce-
nario) and recording of the EEG signal evoked began approximately 1 second
after the start of the stimulus (recording activation was started manually).
This was done in order to remove any impulse signals that may be observed
in the data as a result of the sudden start of a stimulus.

3. Subject was notified upon the completion of a scenario recording.
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4. Multiple recordings for each scenario were made. Recordings were made until
subject expressed discomfort from the neuroheadset or until a suitably sized
data set was accumulated.

Table 2 displays the total recording duration for each task and subject.

Table 2. Recording Durations

Subject A Subject B Subject C

Neutral 100 sec 100 sec 80 sec

Push 75 sec 100 sec 100 sec

Pull 75 sec 100 sec 100 sec

3.3 Signal Preprocessing and Classification

The processing pipeline for exploiting the trained classifiers was illustrated in
Figure 2. The main steps involved for training and testing the different classifiers
are described below:

1. Load Raw EEG Data: Upon receiving the data packets from the Emo-
tiv headset, all raw EEG data for each subject was extracted via the data
recording application and loaded into the Python workspace as a Numpy
matrix.

2. Concatenate Samples: As was discussed in the experiment setup section,
each task was timed for 5 or 10 seconds, and all samples of the same task
were concatenated

3. Extract the 14 EEG Channels: From these concatenated task data from
each subject, information which was not relevant to the study, like the inertial
measurement unit (IMU) data, was removed so that only data from the 14
EEG sensors remained. This created a data matrix with 14 columns with
each row corresponding to a time sample (at a rate of 128 samples per
second).

4. Preprocessing: A question of interest of this study was to determine if any
preprocessing of data had an impact in improving the classification rate of a
signal. We tried principal component analysis and data normalisation (using
the mean and standard deviation).

5. Training and Test Set: After optional preprocessing, the data was divided
into a training set and a test set.

6. Building Classifier: Each classifier used in this study was built using the
training set. Cross validation of the model was conducted.

7. Testing: Once the classifier was trained its performance was evaluated using
the test set from Step 5. The generalisation capabilities of the trained classi-
fiers are measured by the percentage of test data points correctly classified.
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Linear and non-linear classifiers were trained on the collected datasets. The
linear classifiers tested were linear discriminant analysis, logistic regression and
linear support vector machines. The non-linear classifiers tested included k-
nearest neighbors, decision trees and support vector machines with Gaussian
kernels.

4 Experimental Results

In this section, we report on the performance of the different classifiers for the
classification task of the three stimuli. We also discuss the effect of preprocessing.

4.1 Preprocessing

All classifiers tested benefited from centering and scaling the data to unit vari-
ance. All results reported are on the dataset centered and scaled to unit variance.
Scaling was essential for the success of non-linear SVM classifiers.

For some noisy datasets, performing principal components analysis (PCA)
and projecting the input vectors on the first few principal components that
explain a given percentage of the variance of the data can in theory reduce
the noise in the data and improve the performance of a classifier. We tried to
reduce the dimensionality of the input vectors by projecting them on the first few
principal components that explain 95% of the variance of the data, but classifiers
trained on this subspace performed worse.

In summary, for our dataset, centering and scaling was beneficial and applied
systematically. However, PCA preprocessing did not help.

4.2 Support Vector Machine

There is a parameter C, common to all SVM kernels, that controls how smooth
the decision surface between classes is. This parameter trades off misclassification
of training examples against the simplicity of the decision surface. The larger
C is, the more emphasis is put on classifying all training examples correctly,
whereas a smaller C will make the decision surface smoother.

SVM - Linear Kernel Table 3 displays the accuracy results for a SVM with
a linear kernel trained on the dataset of Subject B with a 3 fold cross-validation
for different values of the regularisation parameter C. From this table, it can be
noted that the best accuracy does not exceed 54%. A random classifier would
score around 33% because we have three classes. The same procedure was re-
peated for the other subjects and led to very similar results.

The performance of other classifiers based on linear frontiers like linear dis-
criminant analysis and logistic regression was slightly worse (around 50%).
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Table 3. Subject B - SVM (Linear Kernel)

C = 0.1 C = 1.0 C = 10 C = 100

Score 1 0.540000 0.538125 0.536250 0.536172

Score 2 0.538516 0.536328 0.538047 0.538125

Score 3 0.536563 0.539609 0.539531 0.539609

SVM - Gaussian Kernel Table 4 displays the accuracy for a SVM with a
Gaussian kernel trained on the data of Subject B for different values of the
regularisation parameter C. The best choice of C is 1000, giving an accuracy
rate of 97%.

Table 4. Subject B - SVM (Gaussian Kernel)

C = 0.1 C = 1.0 C = 10 C = 100 C = 1000 C = 10000

Score 1 0.754766 0.865313 0.926875 0.959609 0.971354 0.967839

Score 2 0.756406 0.865234 0.930547 0.959297 0.972786 0.969531

Score 3 0.752578 0.863047 0.931016 0.960703 0.969661 0.969141

The experiment was repeated for the other subjects and led to the same
choice for C. Gaussian SVM’s were then trained for all three subjects with a 10
fold cross validation. The results are presented in Table 5. The average accuracy
values were 99.76%, 97.30% and 98.13% for Subject’s A, B and C respectively.

Table 5. SVM (RBF Kernel) with C = 1000

Subject A Subject B Subject C

Score 1 0.998125 0.97161458 0.97991071

Score 2 0.996875 0.97473958 0.98158482

Score 3 0.996875 0.9734375 0.98102679

Score 4 0.9990625 0.97395833 0.98214286

Score 5 0.9978125 0.97213542 0.98353795

Score 6 0.99625 0.96953125 0.98074777

Score 7 0.9971875 0.97421875 0.97684152

Score 8 0.9965625 0.97369792 0.98186384

Score 9 0.99875 0.97421875 0.98465402

Score 10 0.998125 0.97239583 0.98074777

Average 0.9975625 0.972995 0.9813058

Standard Deviation 0.0009035 0.0015052 0.00199649
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4.3 Decision Tree

The decision trees performed better than the linear classifiers, but not as well as
the Gaussian SVM. Pruning the trees, and limiting the size of their leaves did
not help significantly. Using a 10 fold cross validation, the accuracy values were
on average 97% for Subject A, 84.8% for Subject B and 88.9% for Subject C.

4.4 K-Nearest Neighbors

The best performance was obtained with the conceptually simplest classifier.
The idea behind the nearest neighbor method is to find a predefined number k
of training samples closest in distance to the unlabeled query point, and predict
the most common label of these k neighbors as the class label of the query point.

Table 6 shows the accuracy values of different k-Nearest Neighbors classifiers
using 10 fold cross validation. We observed that that k = 1 provides the best
results.

Table 6. k Nearest Neighbors

k = 1 k = 3 k = 5 k = 7

Subject A Avg 0.99996875 0.9995625 0.99946875 0.9993125

Subject A Std 9.375e-05 0.0004677 0.0004204 0.0004146

Subject B Avg 0.991432292 0.987526042 0.984375 0.98145833

Subject B Std 0.0011076 0.00131478 0.00159259 0.00145833

Subject C Avg 0.99199218 0.98858817 0.9863560 0.98334263

Subject C Std 0.00088277 0.00143063 0.00265419 0.002260045

5 Discussion

Collecting data and training classifiers can be time consuming. A natural ques-
tion to ask is whether a classifier trained on one person generalizes well to other
people. The answer is unfortunately negative. For example, the SVM classifier
built from Subject B data achieved an accuracy of 97% on this person’s test data.
However when applied to Subject A and Subject C, the accuracy of the same
SVM dropped to 26% and 36% respectively. That is, the classifier performed as
badly as random guessing. This observation leads to the conclusion that trained
classifiers are not transferable between subjects.

In the future, we would like also to assess the suitability of the Emotiv EPOC
neuroheadset for classifying mental workloads. Our interest in assessing mental
workloads stems from the road transport field where it is consistently shown that
high mental workloads (e.g conversation on a mobile phone) distracts drivers
and causes crashes. Identifying the most representative objective measures of
mental workload whilst driving is a complex and significant area of research in
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transport as cognitive workload is a function of situation complexity and driving
experience [6, 11]. Mental workload influences the driving performance and its
measure can be used to tailor BCI based interventions which will reduce crashes
related to driver distractions.

6 Conclusion

In this paper, we demonstrated that the Emotiv EPOC neuroheadset which was
primarily designed for use in entertainment, market research and neurotherapy,
is also suitable for BCI control systems. We showed that using the sensor values
of its 14 electrodes, we can train classifiers to discriminate between three men-
tal states with high accuracy. The best results were obtained with a 1-nearest
neighbor classifier achieving a generalisation error of less than 1% across all
the subjects. Our experiments on the collected EEG data show that non-linear
classifiers perform substantially better than linear classifiers with the highest
accuracy of a linear classifier being only 54%. In the future, we plan to explore
further the capabilities of the device to determine what is the maximum number
of classes that can be discriminated at a given level of accuracy. Our prelimi-
nary results are encouraging because they show that the difficult classification
task of distinguishing between an object moving closer or moving away can be
performed with high accuracy.
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