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Abstract 

Chlamydia trachomatis is the most common sexually transmitted bacterial 

pathogen worldwide. Among the many proteases expressed by bacteria, the High 

Temperature Requirement protein A (HtrA) family of proteins have been 

documented to have both chaperone and proteolytic activities. HtrA has been 

demonstrated to be important for both stress response and virulence of a number of 

bacterial pathogens. C. trachomatis HtrA (CtHtrA) has been documented to be 

elevated during heat stress and penicillin persistence models of this organism. 

However, the specific function of CtHtrA for the growth and pathogenicity of C. 

trachomatis has not been elucidated. Therefore, this PhD aimed to characterize the 

biological role of CtHtrA for developmental cycle during normal and stress 

conditions using the CtHtrA inhibitor compound, JO146, as well as genetic 

approaches. JO146 addition at 16 h PI (replicative phase) resulted in complete 

bacterial lethality as indicated by the loss of infectious progeny production at the end 

of the chlamydial developmental cycle. JO146 treatment resulted in marked decrease 

in the size of inclusions compared to the inclusions formed in the control, DMSO-

treated cells when the cultures were examined for CtHtrA and MOMP through 

immunocytochemistry and confocal microscopy. Therefore, CtHtrA was important 

for the maintenance of cell morphology and infectious progeny production during the 

replicative phase of the chlamydial developmental cycle. The inhibitory effects of 

JO146 appeared to be partially reversible, signifying a bacteriostatic effect, as 

indicated by the recovery of infectious progeny when the compound was removed 

from the cultures. In addition, JO146 inhibited chlamydial growth without 

compromising the host cell viability. The inhibitory effect of JO146 was not 

mediated by host cell autophagy and lysosome pathways as indicated by the absence 

of sequestration between the chlamydial inclusions and the autophagy and lysosome 

markers LAMP1 and SQSTM1 during JO146 treatment.  

It was identified that CtHtrA was essential during detrimental conditions such 

as heat stress and penicillin induced persistence where it is expected that 

extracytoplasmic proteins were compromised. JO146 addition during penicillin 

persistence resulted in slightly decreased infectious progeny yield. However, JO146 
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treatment during reversion and recovery to infectivity from penicillin persistence was 

completely lethal for Chlamydia. Therefore, CtHtrA was important either for the 

stress, or restoration of outer membrane protein assembly during recovery from 

penicillin persistence. Penicillin persistence may be a strategy for Chlamydia to 

reduce cellular and protein stress which may explain the reduced lethality of JO146 

when the compound was added during persistence compared to when added during 

recovery from persistence. 

Chemical mutagenesis coupled with whole genome sequencing of mutants that 

survived in continued sequential cultivation in the presence of JO146 was used to 

identify genetic loci that are involved in JO146 susceptibility that may link to CtHtrA 

function. Three clones that were less susceptible to JO146 and designated as 1A3, 

1B3 and 2A3 were isolated and genotypically and phenotypically characterized. 

Genome sequence analysis revealed that the mutants acquired unique single 

nucleotide variants (SNVs) in the two genes, CT776 and CT206 which code for 

acyltransferases, signifying that these two loci were impacted by the function of 

JO146. CT776 and CT206 are both involved in fatty acid metabolism which was 

previously found to be highly essential for RB replication. Therefore, CT776 and 

CT206 may have compensated for CtHtrA inhibition by JO146 and may have 

indirect contributions to CtHtrA functions particularly for outer membrane protein 

biogenesis and maintenance of the bacterial envelope. Single base substitutions in 

these two loci may have conferred the mutants beneficial phenotypic characteristics. 

The mutants had higher yields of infectious progeny compared to wild-type C. 

trachomatis D (CtDpp) as shown in the growth analysis during normal conditions. 

Higher numbers of recoverable infectious EBs were also observed for the mutants 

with reduced susceptibility to JO146 during heat stress in combination with JO146 

treatment and also during recovery from penicillin persistence.  

Furthermore, results from this study demonstrated that JO146 was effective 

against currently circulating C. trachomatis clinical isolates representing different 

serovars. JO146 addition at mid-replicative phase resulted in loss of infectious 

progeny production and a reduction in inclusion vacuole size in C. trachomatis 

clinical isolates grown in McCoy B cells. Infectious progeny were recovered when 

JO146 was removed from the cultures, indicating that the compound had a 

bacteriostatic effect and should be left in the cultures until the end of the chlamydial 
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developmental cycle for it to be effective against Chlamydia. Western blot analysis 

showed a clear reduction on MOMP in the clinical isolates treated with JO146 

compared to matched DMSO-treated controls.  

Overall, this study demonstrated that inhibition of CtHtrA by the inhibitor 

JO146 during the replicative phase resulted in a disrupted chlamydial developmental 

cycle, reduction of inclusion vacuole size and prevented the formation of infectious 

progeny without being toxic to the host cells. CtHtrA was essential for chlamydial 

recovery from penicillin persistence and for heat stress conditions. The 

acyltransferases, CT776 and CT206 were the two identified loci in mutants with less 

susceptibility to JO146, indicating that these proteins which are involved in fatty acid 

synthesis might have an indirect impact on CtHtrA functions. JO146 was also 

effective against recent clinical isolates of C. trachomatis. These findings provide 

proof of concept that CtHtrA is a good, potential target for future development of 

anti-chlamydial therapeutics.   
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1.1 BACKGROUND 

Chlamydia (C.) trachomatis is an obligate bacterial intracellular pathogen that 

is the most prevalent bacterial sexually transmitted infections worldwide. C. 

trachomatis can result in serious, long-term sequelae such as tubal scarring, pelvic 

inflammatory disease, infertility and ectopic pregnancy in women and urethritis and 

epididymitis in men [1-6]. C. trachomatis is also the leading cause of preventable 

blindness, trachoma [7]. Pathogenic organisms employ a suite of metabolic 

mechanisms and virulence factors (including proteases) in order to successfully 

establish host-cell attachment and initiate subsequent infection. One biochemical 

activity that is often found in bacterial virulence factors is proteolysis. The high 

temperature requirement protein A (HtrA) is a highly conserved bacterial protease 

that has been generally described as a bacterial quality control protein that is critical 

for cellular survival during stress. HtrA has also been identified as essential for 

pathogenesis for several important infectious diseases [8-13]. However, much has yet 

to be uncovered about the role of CtHtrA in chlamydial infection. The present study 

aimed to identify the roles of CtHtrA for C. trachomatis pathogenicity and 

development especially during stress conditions by using the CtHtrA protease 

inhibitor, JO146.  

 

1.2 CONTEXT 

The works presented in this thesis clearly demonstrated that inhibition of 

CtHtrA using the chemical compound, JO146 led to loss of chlamydial inclusion 

morphology, decreased inclusion size, and complete loss of infectious progeny 

production when the compound was added at the mid-replicative phase of the 

developmental cycle. These effects occurred in the absence of host cell cytotoxicity 

and were partially reversible by removal of the compound. JO146 treatments during 

heat stress and during reversion from penicillin-induced persistence were also found 

to be lethal to Chlamydia. These data indicate that the function of CtHtrA appears to 

be essential during the replicative phase as well as during conditions when 

extracytoplasmic protein homeostasis is compromised. Mutants with reduced 

susceptibility to the inhibitor compound had higher infectious yield compared to wild 

type C. trachomatis D during heat stress and during recovery from penicillin-induced 
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persistence. One possible explanation could be that mutations in the acyltransferase 

genes observed in the mutants might have conferred them growth advantage over 

wild type C. trachomatis D, especially during harmful conditions. The current study 

also provided evidence that JO146 is effective against C. trachomatis clinical 

isolates, supporting the notion that CtHtrA might be a relevant target for future 

development of anti-chlamydial therapeutics.  

 

1.3 PURPOSES 

The overall objective of the study is to contribute to the knowledge about the 

C. trachomatis HtrA (CtHtrA) and its role in pathogenicity and normal 

developmental cycle of C. trachomatis.  

 The three specific aims of the study were investigated and are presented as 

three results chapters. The aims were: 

1. To determine if CtHtrA is essential for chlamydial growth and persistence 

in human cell culture models using the inhibitor, JO146. 

2. To isolate C. trachomatis genetic mutants resistant to the CtHtrA inhibitor 

(JO146) and characterize the phenotypic and genetic basis of this 

resistance. 

3. To establish if JO146 is effective against currently circulating clinical 

isolates of C. trachomatis, thus validating if CtHtrA is a clinically relevant 

target for future development of anti-chlamydial drugs.  

 

1.4 SCOPE  

Previous investigations in the group identified JO146 in a library of serine 

protease inhibitors. The compound appeared to be specific for CtHtrA based on 

studies conducted within the group prior to the commencement of this PhD study. 

This project investigated the role of CtHtrA in chlamydial infection and pathogenesis 

using the inhibitor of CtHtrA activity, JO146, during a suite of in vitro experiments. 
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1.5 THESIS OUTLINE 

Chapter Two is a review of the literature relevant to the project area. 

Chapter Three provides a detailed account of the procedures that were followed 

in completing the experiments for this PhD project. 

Chapter Four describes the application of the CtHtrA inhibitor, JO146 to 

cultures of Chlamydia to investigate CtHtrA function. Inclusion morphology and 

production of chlamydial infectious progeny upon treatment with the compound 

were determined. Evaluation of the role of host cell autophagy pathways on the 

inhibitory impact of JO146, as well as the host cell cytotoxicity of the compound was 

also conducted. The role of CtHtrA during stress conditions such as heat stress and 

penicillin induced persistence was also assessed by JO146 treatments during these 

conditions.   

Chapter Five describes the isolation and characterization of C. trachomatis 

mutants resistant to JO146. Three mutants with reduced susceptibility to JO146 were 

isolated. The isolated mutants were phenotypically characterized. The mutants 

recovered more infectious progeny compared to the wild-type strain during normal 

and stress conditions. Comparative genome sequence analysis of the mutants with 

reference to wild type C. trachomatis D revealed mutations in acyltransferase genes, 

which are mainly involved in bacterial membrane biogenesis and catabolism, thus 

relating to CtHtrA functions.  

Chapter Six describes the application of JO146 against currently circulating C. 

trachomatis clinical isolates representing different serovars. This work demonstrated 

that JO146 was effective in inhibiting chlamydial growth and resulted in decreased 

inclusion size for the clinical isolates examined, indicating that CtHtrA inhibition 

may form the basis for developing new class of anti-chlamydial drugs.  

Chapters Four and Six have been accepted in peer reviewed international 

journals. Chapter Seven is a comprehensive discussion of the main findings and 

future directions of this study. 
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2.1 INTRODUCTION 

Chlamydia (C.) trachomatis is an obligate intracellular bacterial pathogen that 

causes sexually transmitted infections. C. trachomatis infection can result in serious 

complications such as pelvic inflammatory disease, infertility and ectopic pregnancy 

in women [14-17]. Clinical manifestations of C. trachomatis in men include 

epididymitis and urethritis [6]. Chlamydial infections can also cause chlamydial 

conjunctivitis and pneumonia in neonates passing through the birth canal of an 

infected woman [18]. Previous studies have demonstrated a number of virulence 

factors employed by C. trachomatis in order to successfully establish host-cell 

attachment, infection and propagation of the infection. One example family of 

virulence factors is the high temperature requirement protein A (HtrA) which plays a 

critical role in protein quality control. HtrA in organisms such as Escherichia coli, 

Campylobacter jejuni and Shigella flexneri efficiently cleaves E-cadherin on host 

cells to disrupt the epithelial barrier, a highly conserved and common mechanism in 

bacterial pathogenesis [10]. The potential role of HtrA in bacterial pathogenesis of C. 

trachomatis has been previously studied. Huston and co-workers [19] detected 

increased levels of HtrA in C. trachomatis (CtHtrA) during heat stress compared to 

acute (untreated) conditions. The reversibility of the heat-shock process was analysed 

by Kahane and Friedman [20], who reported that cultures that were incubated at 

42
o
C for 2, 5, and 9 hours recovered full infectivity when returned to 37

o
C. These 

findings suggest a key role for CtHtrA in the heat stress response by C. trachomatis 

and its essential contribution in maintaining the viability of C. trachomatis especially 

during conditions detrimental to extracytoplasmic protein stability [19]. CtHtrA has 

also been found to be highly expressed during penicillin persistence but down 

regulated during IFN-γ persistence [19, 21, 22], indicating that CtHtrA may have 

potential functions during penicillin-induced persistence of C. trachomatis.  

Additionally, CtHtrA appears to be actively secreted into host cell cytosol [23]. 

Therefore, CtHtrA has the potential to be a significant factor for chlamydial 

development as well as for survival during stress conditions.  
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2.2  C. TRACHOMATIS EPIDEMIOLOGY AND DISEASE 

 C. trachomatis serovars and strains 2.2.1

C. trachomatis is the leading cause of sexually transmitted infections globally 

and the etiologic agent of preventable blindness in the developing world. C. 

trachomatis belongs to the family Chlamydiaceae, order Chlamydiales [24]. Based 

on phylogenetic analyses of 16S and 23S rRNA gene sequence, current taxonomic 

status of chlamydiae indicate that a single genus, Chlamydia, should be used for 

species of the genera Chlamydia and Chlamydophila [25]. These species are 

Chlamydia trachomatis, C. suis, C. muridarum, C. pecorum, C. pneumoniae, C. 

psittaci, C. felis, C. abortus, C. caviae, C. avium, and C. gallinacea [26-28]. 

Currently, the typing scheme for C. trachomatis is based on serospecificity of the 

major outer membrane protein (MOMP) [29, 30] that constitutes 60% of all the 

surface-exposed proteins [31] and functions as a porin [32]. C. trachomatis serovars 

can be divided into trachoma causing ocular infections, and urogenital strains 

causing ano-genital tract infections.  

Genital Tract Infections 

Nucleotide sequence differences between the serovars correlate with tissue 

tropism [33, 34]. Serovars A-C primarily infect ocular tissue, serovars D-K typically 

infect urogenital tissue, and serovars L1-L3 infect lymphatic tissue, which may 

involve perirectal and/or perianal lymphatic tissues [35, 36]. C. trachomatis 

particularly serovars D to K [37], are the most common causes of sexually 

transmitted diseases worldwide. In the United States, over 1.4 million cases of C. 

trachomatis infection were reported in 2012, the highest number of cases ever 

reported to CDC for any condition [38]. The actual infection rates are presumably 

underestimated because many infections are neither diagnosed nor treated due to the 

asymptomatic nature of the disease. As high as 50% and 80% asymptomatic cases of 

Chlamydia infections have been reported in men and women, respectively [4]. 

According to the National Notifiable Diseases Surveillance System of the 

Department of Health, Australia, chlamydial infections have exhibited a steady rise 

of prevalence, with 82,576 cases reported from the period April 2014 to April 2015 

(http://www.health.gov.au/cdnareport). An age-structural heterosexual transmission 

model was developed to assess the impact of screening and treatment scenarios on 

age-dependent Chlamydia incidence and prevalence in Australian population [39]. 
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The model predicts that Chlamydia prevalence in Australia would be reduced rapidly 

over 10 years in all age groups if 40% of men and women were screened yearly, with 

>50% of the reduction being achieved during the first 4 years, provided that 40% 

screening is achieved [39]. Figure 2.1 shows the predicted prevalence of C. 

trachomatis infections in different age groups in Australia after introduction of 

screening.  

 

Figure 2.1. Predicted age-specific prevalence of C. trachomatis in Australia after 

introduction of the screening model  

Age-specific prevalence in males (dashed lines) and females (solid lines) at 0, 2, 4, 6, 8, and 

10 years after the introduction of screening, when 40% of both males and females are 

screened annually. Figure copied directly from Regan and co-workers, 2008 [39] 

C. trachomatis is associated with non-gonococcal urethritis and epididymitis in 

men [6], and cervicitis, and pelvic inflammatory disease (PID) in women [15]. Some 

women develop disease sequelae such as tubal infection [16] or tubal factor 

pathology, one of the leading causes of ectopic pregnancy and infertility in women 

[17]. Women who had two and three or more chlamydial infections are also known 

to have elevated risks of hospitalizations for ectopic pregnancy and PID [40]. C. 

trachomatis infection has also been associated with increased risk of acquiring 

human immunodeficiency virus (HIV) [41].  
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Lymphogranuloma venereum (LGV) is an invasive infection caused by C. 

trachomatis serovars  L1, L2, and L3 [42]. While infections with C. trachomatis 

serovars D-K are mostly associated with mild symptoms and are more often 

asymptomatic, infections with L genotypes are more invasive and cause ano-genital 

ulcer [43]. There have been recent outbreaks of LGV in Europe and South America 

particularly among men having sex with men (MSM) [43]. It was reported that 

89.6% of patients with LGV were HIV-infected and that the epidemic of LGV in 

predominantly HIV-positive MSM is ongoing [43].  

Ocular infections 

C. trachomatis serovars A, B and C are the leading cause of infectious 

blindness worldwide, trachoma. Multiple episodes of reinfections cause 

inflammation and roughening of the conjunctival lining of the upper eyelid and can 

cause the eyelashes to scratch the cornea (trichiasis) [44]. Trachoma is endemic in 48 

countries including large areas of the Middle East and Africa and smaller areas in 

south and central Asia, Latin America and Australasia [45]. More than 1 million 

people have become blind due to trachoma and 10 million people with trichiasis are 

in imminent danger of going blind [44]. There have been many programs established 

to control the rate of increase of trachoma infections worldwide. In 1998, the World 

Health Organization (WHO) and a consortium of nongovernmental organizations 

launched the Global Alliance in the Elimination of Blinding Trachoma by 2020 

(GET 2020). The integrated strategy promoted by these organizations is known by 

the acronym SAFE (surgery, antibiotics, facial cleanliness and environmental 

improvement), an innovative public health approach designed to treat and prevent 

trachoma [44, 46]. At the 17th meeting of the WHO Alliance for GET 2020 in 

Geneva, Switzerland in 2013, a number of countries, Ghana, Islamic Republic of 

Iran, Morocco, Myanmar and Oman, have reported that they have reached the goal 

for eliminating blinding trachoma [47].  

 

2.3 CHLAMYDIA DIAGNOSIS AND TREATMENT  

 Diagnostic tools for C. trachomatis 2.3.1

Effective diagnosis and treatment of patients with C. trachomatis, as well as 

their sexual partners, is important to prevent the spread and transmission of the 
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disease and reduce health burden. An array of diagnostic protocols has been 

developed for detection of C. trachomatis. Cell culture of cervical, vaginal swab, and 

urine was the main tool for diagnosis of C. trachomatis infection until the 

development of antigen and nucleic acid detection technologies [48, 49]. Cell culture 

is nearly 100% specific for C. trachomatis in urogenital specimens [reviewed by 50]. 

McCoy, HEp2 and HeLa cells are most commonly used for C. trachomatis, wherein 

clinical specimens are inoculated onto cycloheximide-treated monolayer of any of 

these appropriate cells followed by incubation for 48 to 72 hours and subsequent 

staining for cytoplasmic inclusions [reviewed by 49]. However, cell culture is not a 

recommended diagnostic method for routine use due to its complexity and technical 

skills required as well as the laborious nature of the technique. More sensitive 

techniques such as C. trachomatis nucleic acid amplification tests (NAATs) have 

been developed and implemented which are now commonly used.  

A number of studies have found NAATs to be more sensitive than culture for 

detection of chlamydial infections [51-54]. Bachmann and co-workers [51] evaluated 

the performance of culture and NAATs employing transcription-mediated 

amplification (TMA), strand-displacement amplification (SDA) and PCR 

amplification for the detection of rectal gonococcal and chlamydial infections using 

rectal swab specimens. Their group found that each of these three NAATs is 

substantially more sensitive than is culture for the detection of C. trachomatis, with 

sensitivities ranging from 36.1% to 45.7% for culture and among NAATs from 

91.4% to 95.8% for PCR to 100% for TMA [51]. Although DNA amplification 

technique is a sensitive and specific method for the diagnosis of C. trachomatis 

infection and is most relevant for detection of current infection, recent studies had 

also developed other rapid and sensitive screening techniques such as immunological 

diagnostic methods, particularly serological diagnostic tests [55-59] .  

Serological detection of anti-chlamydial antibodies is an easier method 

particularly in developing countries. It is an easy and non-invasive method to 

diagnose disease sequelae, and other ELISA kits can also detect active infection [60, 

61]. Accordingly, chlamydial serology is of great importance since a positive 

antibody result would be the sole non-invasive indicator of the presence of C. 

trachomatis in women who might be harbouring the pathogen only in the upper 

genital tract. In 1975, Wang and co-workers [55] developed a simplified 
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microimmunoflourescence (MIF) test with C. trachomatis antigens as a screening 

method for antibody in human sera. MIF detected antibodies to chlamydial 

elementary bodies and has long been considered the “gold standard” for the 

serodiagnosis for chlamydial infections [55, 56]. Another reference assay developed 

for C. trachomatis infections is the whole cell inclusion immunofluorescence (WIF) 

which was developed by Richmond and Caul in 1975 [57] wherein the whole 

chlamydial inclusion (LGV type 2 strain of C. trachomatis) acts as the antigen. WIF 

has been found to be more reliable in the diagnosis of UGT infection than MIF [62]. 

Since serological assays employ different C. trachomatis antigens, these tests have 

varying associations with degree of infection. For instance, the MIF-based serum 

chlamydial IgG antibody test (CAT) detect serum IgG antibodies which signify past 

infections [58, 63] while seropositivity with IgM as well as IgA showed significant 

correlation to proven current C. trachomatis infection [59].   

C. trachomatis antibody diagnostic tests may have been greatly influenced by 

the type of chlamydial immunogens utilized by these methods. Varying 

immunogenic proteins utilized by different serological methods include the major 

outer membrane protein (MOMP) (Medac Diagnostics, Wedel, Germany), which is 

considered to be species and serovar specific [64], chlamydial heat shock protein 

(HSP) 60 and HSP10 [65, 66] and Pgp3, a 28 kDa polypeptide encoded by open 

reading frame (ORF) 5 of the chlamydial plasmid [67]. Pgp3 is a promising C. 

trachomatis immunogen since the plasmid is rarely found in C. pneumoniae isolates 

[68]. The antigen has recently been evaluated for determination of seroprevalence of 

chlamydia in young women in England using an indirect IgG ELISA [69]. Overall, 

efficient diagnostic tools for C. trachomatis infections include NAATs because they 

detect current, active infection, while past chlamydial infection can be detected by 

serological methods. 

 C. trachomatis treatment  2.3.2

Treatment of C. trachomatis infections varies according to different factors 

such as the site of infection, the age of the patient, and the severity of the infection 

[70]. The standard therapy for acute genital C. trachomatis infections is a single 1.0 g 

oral dose of the macrolide antibiotic azithromycin [71] or a 7-day course of 

doxycycline (100 mg twice a day). Previous studies have reported that both regimens 

were both safe and efficacious in treating C. trachomatis infections and have been 
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shown to result in satisfactory cure rates (93-97%) in clinical trials [72-74]. Horner 

[75] indicated that doxycycline may possibly be more efficacious than azithromycin 

in individuals with acute chlamydial infection. In vitro studies demonstrated that 1.0 

µg ml
-1

 concentration of azithromycin resulted in an efficient suppression as 

indicated by the lack of detection of chlamydial HSP60 and MOMP [37]. However, a 

number of recently published studies challenge the efficacies of azithromycin 

therapy for chlamydial infections [75-78]. Batteiger and co-workers [78] conducted a 

cohort study among adolescent women and used a classification algorithm to 

characterize treatment outcomes among the study subjects after directly observed 

azithromycin treatment was given. Among women with paired, same-genotype 

episodes, as indicated by ompA genotyping, 31.6% were classified as 

possible/probable treatment failures while 68.64% were classified as 

possible/probable reinfections [78]. 

Another antimicrobial agent against C. trachomatis is rifalazil, one of the 

newest generations of ansamycins compounds [79]. Studies have shown that the 

ansamycin rifampicin and its derivatives have extraordinary potency against both C. 

trachomatis and C. pneumoniae in vitro with MICs reported at 0.0025 µg ml
-1

 for C. 

trachomatis and from 0.00125 to 0.0025 µg ml-1 for C. pneumoniae [80]. However, 

a single mutation in only one gene, rpoB which codes for the β subunit of RNA 

polymerase (RpoB) confer stable and high-level resistance in C. trachomatis to 

rifampicin [81]. By investigating the effect of serial passage on the development of 

genotypic and phenotypic resistance in vitro, Kutlin and co-workers [82] 

demonstrated that C. trachomatis is also able to acquire resistance to sub-inhibitory 

concentrations of rifampicin within six passages.   

Incubation of chlamydial cultures with ciprofloxacin and ofloxacin, two 

antibiotics shown to have different efficacies in treating chlamydial infections in 

clinical trials, did not eradicate the pathogens from host cells but rather induced a 

state of chlamydial persistence [83]. This condition could, in turn, lead to absence of 

clinical manifestations, thus making it difficult for Chlamydia infections to be 

detected. As repeat infection is common in chlamydial infections, it is important to 

distinguish re-infection from antibiotic treatment failure to effectively evaluate or re-

establish treatment recommendations and infection control strategies. It is therefore a 

concern that treatment failure with azithromycin, the most commonly used antibiotic 
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for chlamydial infections, could result in a proportion of cases not resolving the 

infection [78].  

 

2.4 CHLAMYDIAL DEVELOPMENTAL CYCLE 

The chlamydiae have a unique biphasic developmental cycle. The cycle begins 

when the extracellular, infectious, elementary bodies (EB) attach to and stimulate 

uptake by the host cell. The internalized EB remains within a host-derived 

parasitophorous vacuole termed the inclusion, and differentiate into larger, actively 

replicating reticulate bodies (RB).  The RBs undergo several rounds of multiplication 

by binary fission and approximately 24 h PI (varies depending on the serovar from 

18-24 h PI), RBs asynchronously commence the transition back to EBs [84, 85]. At 

approximately 44-48 h PI (varies depending on the species from 48 to 96 h PI), the 

EBs are released by either lysis or extrusion [86] of the inclusion vacuole and then 

infect neighbouring cells (Figure 2.2). Although EBs have long been referred to as 

metabolically inactive, Sixt and co-workers [87] recently reported metabolic 

capabilities of EBs of the amoeba symbiont, Protochlamydia amoebophila. Their 

study revealed uptake of D-glucose by host-free P. amoebophila, with the pentose-

phosphate pathway identified as the major route of D-glucose catabolism, and that 

the availability of substrates prolonged the infectivity in both P. amoebophila and C. 

trachomatis EBs [87]. This is consistent with the results of Omsland and co-workers 

[88] who identified that C. trachomatis EBs possess metabolic activity in axenic 

culture, although the requirement for EBs and RBs differed. EBs preferentially used 

glucose-6-phosphate as an energy source while RBs utilized ATP [88]. These 

findings indicated that EBs are capable of metabolism and respiration outside of, and 

independent from, their natural host cells, and are important in understanding the 

extended survival of the infectious forms of Chlamydia [87].  
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Figure 2.2. A schematic diagram of the developmental cycle of Chlamydia.  

Chlamydia trachomatis has a biphasic developmental cycle. The cycle is initiated by 

the endocytic uptake into the host cell of an infectious elementary body (EB). Upon entry 

and internalization, the EB is surrounded by a host-derived parasitophorous vacuole termed 

an inclusion, which creates a permissive intracellular niche for the replication of C. 

trachomatis. Within the inclusion, the EB transforms into a larger metabolically active, 

replicative form called the reticulate body (RB). RBs divide by binary fission from 12-24 h 

PI. From 24 h PI, the RBs asynchronously transform back into infectious EBs, which are 

subsequently released by host cell lysis or by extrusion of the inclusion vacuole to infect 

neighbouring cells. During conditions deleterious to growth such as iron deprivation, nutrient 

depletion, and the presence of growth inhibitors such as IFN-γ and antibiotics such as 

penicillin, intracellular C. trachomatis enter into a non-replicating, viable but non-culturable 

state called persistence. Bacteria in the persistent form differentiate back into infectious 

forms after removal of the growth inhibitory factor.  

 

Through the use of quantitative-competitive polymerase chain reaction (QC-

PCR) and reverse transcription (RT) PCR, it was established that C. trachomatis 

doubles its DNA content every 2-3 hours, with DNA synthesis starting between 2 

and 4 h after infection [84]. Miyairi and co-workers [89] identified the differences in 

length of developmental cycle between C. trachomatis serovars. The first 8 h after 

infection represent the lag phase for C. trachomatis D, which is associated with the 

period of attachment, endocytocis and primary differentiation of EB to RB [89]. Log 

phase, or replicative phase, is equivalent to the phase of RB replication before 

transition to EB. Genomic DNA copy number doubling rate determined that C. 
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trachomatis D generation time is similar to that of C. trachomatis L2 at 2.4 and 2.2 

h, respectively [89]. Terminal differentiation from RBs to EBs started at 24 h PI and 

completion of developmental cycle occurred at 44-48 h PI for C. trachomatis D [89]. 

Chlamydiae become transcriptionally active as early as 1 h after infection with 3.2% 

of its genome being transcribed [90]. Temporal gene expression patterns that 

correspond with specific phases and activities in the chlamydial developmental cycle 

have been elucidated [84, 90]. The gene expression program which consisted of early 

genes (2 h after infection), mid-genes (2 or 6 h after infection but are present by 12 

h) and late genes (20 h after infection) relate to the onset of transcription of 

developmentally expressed genes as the Chlamydia transitions between the different 

developmental phases namely, early, mid-cycle, and late [84]. Early genes include 

dnaE, the α subunit of DNA polymerase [91], rpoB, the β subunit of RNA 

polymerase [92], and groEL, a heat shock chaperone [93]. These genes are important 

in the establishment of the organism’s intracellular niche in which chlamydiae then 

replicate [84]. The mid-cycle phase is primarily devoid of EBs and expressed genes 

products involve catabolic enzymes (including (eno)) or structural components (such 

as ompA) essential for RB replication by binary fission [84]. ompA encodes the major 

outer membrane protein (MOMP), which comprises 60% of the total outer 

membrane protein content of chlamydiae [31] and is primarily the antigenic protein 

to which typing of different C. trachomatis serovars has been based. In the final 

phase, late genes include hctA and hctB which encode the histone-like proteins Hc1 

and Hc2, respectively, and are believed to mediate the condensation of DNA to form 

a nucleoid [94-96]. Other genes transcribed late in the developmental cycle are 

cysteine rich outer membrane proteins (OmcA and OmcB) which are transcribed at a 

point when RBs begin to differentiate back to infectious EBs [84].   

 C. trachomatis entry  2.4.1

The columnar cells of the endocervix of women and the urogenital epithelia of 

men are the primary site of chlamydial infections of the genital tract in humans [97]. 

A combination of host cell factors and bacterial proteins contributes to Chlamydia 

entry to the cell. The identity of specific receptor-ligand interactions have proven to 

be somewhat elusive largely due to the complexities caused by biovar- and serovar-

specific mechanisms employed in chlamydial invasion [reviewed by 98]. Previous 

studies have demonstrated that alternative means of entry such as Fc-mediated 



 

Chapter 2: Literature Review 16 

endocytosis of opsonised EBs [99] can lead to productive infection. This observation 

suggests that the vesicular interactions of the chlamydial inclusion are defined by 

parasite-directed modification of the endocytic vesicle rather than by the route of 

internalization. 

It has also been reported that binding to the host heparan sulfate proteoglycans 

(HSPGs) is important in the initial reversible binding step for many C. trachomatis 

serovars [100]. Cell surface HSPGs facilitate the interactions of a large number of 

differentiation factors and growth factors with their receptors. It has been reported 

that the fibroblast growth factor 2 (FGF2) is crucial and necessary for successful 

binding of C. trachomatis to host cells in an HSPG-dependent manner [100]. FGF2 

functions as a bridging molecule to facilitate interactions of EBs with the FGF 

receptor (FGFR) on the host cell surface and contributes to bacterial uptake to non-

phagocytic cells [100]. The host cell epidermal growth factor receptor (EGFR) has 

also been reported to have important function to C. trachomatis attachment and 

development in the host cells [101].  

In addition, phosphorylation of host cell proteins has been shown to be induced 

by chlamydial entry. Tyrosine phosphorylation events occur very early in infection 

and the phosphorylated proteins have been found to be relatively stable over the first 

several hours post infection [102, 103]. However, the identity and source of these 

phosphorylated proteins remains controversial. Swanson and co-workers [104] 

examined the tyrosine phosphorylation of a ∼70-kDa protein complex and identified 

the polypeptide as the host protein ezrin, a member of the ezrin-radixin-moesin 

(ERM) protein family that serves as a physical link between host cell receptors and 

the actin cytoskeleton. They determined that ezrin is tyrosine phosphorylated upon C. 

trachomatis infection, an integral component in the pathogenesis of C. trachomatis. 

However, no tyrosine phosphorylation occurred after infection with C. caviae, a 

pathogen of guinea pigs, indicating that induction of tyrosine phosphorylation of 

ezrin occurred in a species-specific manner. A number of other tyrosine 

phosphorylated proteins including a triple band 68-66-64, 97 and 140 kDa [103], 75-

85 and 100 kDa [102] were presumed to be of host cellular origin although definitive 

identification of these proteins was not achieved.   
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 Inclusion formation and nutrient acquisition  2.4.2

Intracellular pathogens like Chlamydia establish direct membrane contact sites 

(MCSs) with organelles as well as utilize non-vesicular transport machinery of the 

host cell to mediate bacterial metabolism and signalling events crucial for chlamydial 

development. A number of previous studies have demonstrated the association of C. 

trachomatis inclusion with the endoplasmic reticulum (ER) [105-108]. The ER-

Inclusion MCSs formed during infection are platforms composed of host and 

bacterial factors, namely, the mammalian ceramide transfer protein CERT, the C. 

trachomatis inclusion membrane protein IncD and the integral membrane proteins 

VAPA and VAPB [106, 107] which were proposed to mediate non-vesicular 

trafficking of lipids to the inclusion. A novel component of the ER-Inclusion MCSs, 

the ER calcium sensor stromal interaction molecule 1 (STIM1), was recently 

identified by Agaisse and co-workers [109]. STIM1 was found to co-localize with 

CERT and VAPB throughout the developmental cycle [109].   

In all stages of the infection, Chlamydia secrete effector proteins that interact 

with host factors to establish and maintain an intracellular niche, and suppress the 

host’s innate immune response [110]. Many of these secreted effector proteins are 

likely substrates of the type III secretion system [111]. Bacterial type III secretion 

system (T3SS) is a protein export system used by some Gram-negative bacteria to 

translocate proteins to the cytoplasm of the host cell by using a needle-like apparatus. 

The T3SS delivery system is consequently central to the translocation of effectors 

into target cells [112] thereby activating promotion of uptake into epithelial cells, 

cytokine production, and bacterial invasion of professional phagocytes [113]. Type 

III secretion apparatuses which have been found so far in the animal pathogens 

Yersinia, Shigella, Salmonella, enteropathogenic Escherichia coli, and Pseudomonas 

enable these bacteria to secrete pathogenicity proteins into the host cell cytosol 

[reviewed by 114]. Other bacterial pathogens infecting plant or human and animal 

hosts that depend on T3SS to cause disease include species of Bordetella, Vibrio, 

Burkholderia, Aeromonas, Erwinia, Ralstonia, Pantoea, and Xanthomonas [115, 

116]. One of the well-studied C. trachomatis type III secreted effector proteins is 

called Tarp (translocated actin recruiting phosphoprotein). 

Clifton and co-workers [117] reported that Tarp was of chlamydial origin. Tarp 

was found to be translocated and tyrosine phosphorylated at the site of entry and 
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associated with the recruitment of actin that coincides with endocytosis [118]. Thus, 

Tarp functions as a multivalent phosphorylation-dependent signalling hub that is 

important during the early phase of chlamydial infection [119]. It has been found that 

C. trachomatis Tarp is phosphorylated by src family tyrosine kinases [120]. Tyrosine 

phosphorylation occurs primarily within the repeat region of Tarp, while recruitment 

of actin is mediated by the C-terminal domain of the protein [118, 121].  

The participation of the actin-containing cytoskeletal network in phagocytosis 

and endocytosis has been extensively studied [122]. In the initiation of Chlamydia 

infection, Tarp directly associates with actin, as suggested by the acceleration of 

actin polymerization in the absence of cellular factors such as Arp 2/3, a complex of 

seven proteins known to nucleate new actin filaments within eukaroyotic cells [121]. 

This direct association between mammalian actin and Tarp proteins suggests that 

chlamydiae directly manipulate the host cell’s microfilament network. Thus, Tarp 

participates in the observed “parasite-specified phagocytosis” [123] by promoting the 

rapid polymerization of actin filaments required for EB uptake. This was 

corroborated by the findings of Clifton and co-workers [117] who identified that the 

translocation and phosphorylation of the Chlamydia effector protein CT456 (Tarp) 

by Type III secretion system is important in the initiation of chlamydial entry by 

recruiting actin at the site of chlamydial invasion. However, sequence analysis 

studies have found variations in the tyrosine-rich repeats and actin binding domains 

of Tarp between different C. trachomatis serovars. Through phylogenetic analysis of 

tarP from reference strains as well as ocular, urogenital and LGV clinical isolates, 

Lutter and co-workers [124] demonstrated that Tarps from LGV strains contained the 

highest number of tyrosine-rich repeat regions and the fewest predicted actin binding 

domains which is in contrast to the ocular strain that contained up to four actin 

binding domains and the fewest tyrosine-rich repeats. Their findings suggest that C. 

trachomatis Tarp varies in relation to disease and tissue tropism [124].    

The role of actin-dependent mechanisms in chlamydial internalization has been 

studied using cytochalasin D as an inhibitor of host cell microfilament function. 

Studies using cytochalasin D showed consistency with Tarp variability since it was 

determined that the inhibitory effect of the toxin was dependent on the C. 

trachomatis serovar as well as on the time of treatment, which associated with stage 

of inclusion maturation [125, 126]. Other widely characterized host cell interactive 
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proteins translocated by T3SS are the membrane localizing proteins called Incs [127, 

128]. Incs are a family of integral inclusion membrane proteins that share a large 40-

60 amino acids bi-lobal hydrophobic motif [111]. Examples of Incs include IncA and 

IncG which mediate homotypic fusion of inclusions [129, 130] and localization of 

host protein 14-3-3β at the inclusion membrane [131, 132], respectively. IncA 

interacts directly with several host SNARE (soluble NSF (N-ethylmaleimide-

sensitive factor) attachment protein receptors) proteins and plays a predominant role 

in SNARE recruitment [133, 134]. SNAREs are essential for membrane fusion, 

however, SNARE-like proteins encoded by intracellular bacteria such as Chlamydia 

inhibit SNARE-like mediated fusion and is one important mechanism employed by 

Chlamydia to manipulate membrane fusion of the host cells in order to escape 

lysosomal fusion and degradative pathway [134].  

Considering the complex interactions manifested during invasion and early 

cycle development, it is probable that additional effector proteins are required at the 

time of chlamydial invasion. Hower and co-workers [135] identified CT694, a gene 

product transcribed late in the C. trachomatis developmental cycle which could 

represent additional EB-localized effector proteins capable of functioning during 

invasion or early cycle development. They demonstrated CT694, a T3SS substrate, 

as a novel chlamydial effector protein capable of contributing to pathogenic 

mechanisms as early as chlamydial entry, and that the protein is an early cycle-

associated effector protein capable of functioning during early invasion or early cycle 

development [135]. In addition, it was observed that CT694 is unique to C. 

trachomatis and its interaction with host proteins such as AHNAK may be important 

for invasion [135]. Overall, these studies demonstrate that C. trachomatis invasion 

into host cells involve a suite of different host and bacterial factors as well as specific 

effector proteins that help establish infection and modulate cellular functions.  

 C. trachomatis Persistence  2.4.3

During conditions deleterious to growth, the chlamydiae can enter into 

persistence, which is a reversible state characterized by culture-negative but viable 

Chlamydia cells involving morphologically enlarged, aberrant, and non-dividing RBs 

[136, 137]. Arrested growth and the culture-negative state of chlamydiae during 

persistence is associated with a significant decrease in metabolic activity which 
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restricts growth and division and delays differentiation to cultivatable EBs, [reviewed 

by 138]. 

There is a paucity of information that definitively describes persistence in vivo. 

However, indirect evidence for this alternative growth in vivo has been reported. This 

includes recurrent same-serovar infections despite denials of re-exposure, detection 

of chlamydial nucleic acids and antigens in the absence of cultivability, as well as 

high serological titres for individuals who were tested culture-negative [137-142]. 

Through detailed morphologic and molecular analyses of cells and secretions from 

the endocervix, and identification of differing chlamydial growth patterns and 

contrasting responses to IFN-γ between two patients, Lewis and co-workers recently 

provided the first evidence of the existence of persistence in human genital tract 

[143]. This indicates that when the infection milieu resembles that of IFN γ-induced 

persistence in vitro, C. trachomatis persistent forms can be isolated from the human 

endocervix. 

Although chlamydial persistence was recently demonstrated to occur in vivo, it 

was first described and reproduced using in vitro models. Several studies employing 

different experimental conditions have identified different inducers of chlamydial 

persistence including IFN-γ, nutrient/amino acid starvation, iron deprivation, 

antibiotics such as penicillin, the host cell differentiation state, and herpes simplex 

virus (HSV) infection [reviewed by 137]. The best characterized among these factors 

is IFN- γ-induced persistence.  

Beatty and co-workers have determined using cell culture systems that low 

concentrations of IFN-γ completely inhibited chlamydial growth and differentiation 

and establish persistent chlamydial infection [144]. Upon infection of human 

epithelial cells, Chlamydia induces the production of antigen-specific IFN-γ-

secreting CD4+ and CD8+ T cells [145]. In turn, IFN- γ activates the expression of 

indoleamine 2,3-deoxygenase (IDO) in the epithelial cells, an enzyme that catalyses 

the initial step of tryptophan degradation [146], thus affecting development of the 

tryptophan auxotroph Chlamydia. IFN-γ induced persistent chlamydiae are 

characterized by atypical inclusions containing aberrant bodies that are larger than 

typical RBs [144, 147]. Upon removal of IFN-γ or when tryptophan host pools are 

replenished, chlamydiae re-enter the active developmental cycle wherein the 
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persistent forms retransform back to normal RBs which then differentiate to 

infectious EBs  [21, 144].  

Very low tryptophan levels effectively suppress early chlamydial development 

by inhibiting both microtubule-organizing center (MTOC) trafficking and fusion of 

multiple inclusions in the cell [148]. However, Caldwell and co-workers [149] 

proposed that host-parasite relationship between chlamydial genital strains and the 

human epithelial cells involves the production of indole by components of the 

vaginal microflora thereby allowing the chlamydiae to escape IFN-γ-mediated 

tryptophan depletion and thus establish chlamydial persistent infection.  

A number of previous studies have also determined and analysed antimicrobial 

agents as mediators of persistent chlamydial development. An example of which is 

the β-lactam antibiotic, penicillin. Penicillin does not inhibit conversion of infectious 

EBs to RBs but the transition from RB to EB becomes retarded [136]. RBs enlarge to 

become aberrant RBs within an inclusion in a viable but non-infectious state. The 

mechanism governing the formation of aberrant RBs is unknown although penicillin 

typically acts by blocking peptidoglycan (PG) biosynthesis through binding with 

penicillin binding proteins (PBPs) [150, 151]. Chlamydia has 3 PBPs and they are 

present in both EBs and RBs [152]. Each of the 3 PBPs binds to and is inhibited by 

beta-lactams [151, 152].  

All attempts to detect and purify PG from Chlamydia had been unsuccessful 

[152-154]. However, a recent study by Leichti and co-workers [155] has put an end 

to the speculation concerning the chlamydial phenomenon that has long been debated 

by chlamydiologists. The group used a novel approach to metabolically label 

chlamydial PG using D-alanine-D-alanine (DA-DA) analogues as probes coupled 

with click chemistry assay to selectively capture functional groups of these peptides 

once incorporated into a macromolecule such as PG [155]. Fluorescent coupling to 

the dipeptide enabled detection and localization of peptidoglycan in Chlamydia for 

the first time [155].  

In penicillin persistent Chlamydia, inclusions contain large aberrant RBs with 

multiple copies of the chromosomal DNA [156]. Whilst penicillin treatment blocks 

RB division [157], RBs continue to grow and expand and chlamydial chromosomal 

DNA and plasmid replication resumes at the same rate as the non-persistent culture 

[156, 158]. Upon removal of penicillin, the normal developmental cycle is recovered 
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although this is both dose and time dependent [136]. Skilton and co-workers [158] 

identified that the emergence of normal developmental cycle occurs 10-20 hours 

after removal of penicillin, although this does not happen in all inclusions. During 

resumption of normal developmental cycle, enlarged aberrant RBs do not revert back 

to smaller “normal’ RBs but rather retained their large size and structure, and 

remained present and immobile within inclusions until cell death [158]. This finding 

is consistent with what was observed during normal developmental cycle resumption 

when penicillin was added at mid-log phase in the developmental cycle [159]. 

Reversion back to the active RB form occurs via a RB budding from the aberrant 

body, with this only productively occurring in some inclusions [136, 158]. Figure 2.3 

shows electron micrographs of standard inclusions containing EBs and RBs as well 

as inclusions in penicillin-persistent in vitro cultures of C. trachomatis serovar E.  
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Figure 2.3. Electron micrographs of penicillin-persistent Chlamydia.  

Electron photomicrographs showing penicillin-persistent Chlamydia trachomatis 

serovar E cultured in human endometrial epithelial cells in vitro. A, Untreated (control) cells 

containing RBs and elementary bodies (EBs) in a C. trachomatis–infected HEC-1B cell at 24 

h PI. B and C, C. trachomatis–infected HEC-1B cells at 36 h PI, exposed to penicillin G (20 

µg/mL) for a total of 35 h (penicillin was added at 1 h PI). The RBs are swollen, abnormal, 

and non-dividing (RB*). Arrowheads show blebbed vesicles resulting from excessive 

shedding of RB outer membrane into the inclusion lumen; these blebbed vesicles contain 

antigens such as the major outer membrane protein and lipopolysaccharide and somehow 

fuse with or cross the inclusion membrane and emerge into the cytoplasm of the infected 

host cell. D, C. trachomatis–infected HEC-1B cells pre-exposed to penicillin G (20 µg/mL) 

for 35 h, followed by removal of the antibiotic and continued cultivation of the infected cells 

for an additional 12 h. The miniature bodies indicate recovering RBs and signify their 

reprogrammed attempt to undergo cell division to produce progeny. Bars represent 10 µm at 

Х2900 (A–C) or 2 µm at Х10,000 (D) magnification.  Image directly copied from Wyrick, 

2010 [137]. 
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 Methods to assess development and persistence in Chlamydia 2.4.4

A number of different methods can be used to assess persistence in Chlamydia. 

Byrne and co-workers [160] utilized reverse transcription (RT)-PCR from C. 

pneumoniae cultures treated with low and high doses of IFN-γ in order to analyse 

differential expression of C. pneumoniae genes that are involved in DNA replication 

and cytokinesis under non-persistent and persistent conditions. It was identified that 

transcripts from genes involved in bacterial chromosome replication, namely, dnaA, 

polA, mutS, and minD were expressed regardless of the presence of IFN-γ. In 

contrast, transcripts of the genes that encode products for bacterial replication, such 

as ftsK and ftsW, were reduced and lost in cells treated with low-dose and high doses 

of IFN-γ, respectively. This is corroborated by the findings of Skilton and co-

workers [158] who demonstrated through time-lapse photomicroscopy, qPCR, 

electron microscopy and immunofluorescence assay that chlamydial chromosomal 

and plasmid DNA replication was unaffected by the addition of penicillin, and 

bacterial cytokinesis was arrested in penicillin-persistent cultures, resulting in 

enlarged RBs with multiple copies of the genome [158]. The same morphological 

effects were reported by Lambden and co-workers [156] for penicillin persistent 

culture. Beatty and co-workers demonstrated that treatment of C. trachomatis serovar 

A with low dose of IFN-γ resulted in slightly increased cHSP60 levels while MOMP 

levels decreased significantly. In in vitro cell culture systems, persistent Chlamydia 

are characterized by loss of infectivity while viability is retained as indicated by 

recovery of infectious EBs once the persistence-inducing agent is removed [142, 

161]. Immunofluorescence assays also indicate the appearance of small, atypical 

inclusions containing fewer chlamydiae in persistent cultures [142].   

 

2.5 GENETIC TOOLS FOR C. TRACHOMATIS 

Studies using genetic manipulation of C. trachomatis have not been successful 

for a number of years due to the complex, obligate intracellular developmental cycle 

of the organism. This paucity of genetic tools has impeded the progress of 

chlamydial research. However, in the past five years, there have been exciting 

advances in Chlamydia genetics. 
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 Plasmid transformation system 2.5.1

A highly conserved, cryptic plasmid of approximately 7.5 kb is present in 

almost all C. trachomatis strains [162, 163]. There are approximately 4 [164] to 10 

[162, 165] plasmids per chlamydial particle. The presence of this plasmid has long 

been associated with glycogen synthesis. However, it is noteworthy that most C. 

psittaci and C. pneumoniae strains carry the plasmid, yet neither accumulates 

glycogen in the inclusions [68, 166, 167]. It has been determined that the plasmid is 

important for the pathophysiology of the disease [168], although it is not required for 

survival of the organism [169, 170]. In fact, naturally-occurring plasmid-free strains 

of C. trachomatis have been described.  

O’Connell and Nicks [163] used novobiocin as a curing agent to inhibit 

chlamydial plasmid replication. They determined that plasmid-deficient derivatives 

of C. muridarum strain Nigg were unable to accumulate glycogen within 

intracytoplasmic inclusions and formed small plaques compared to wild-type strain 

[163]. They also identified a defect in the attachment and uptake that could be 

partially resolved by centrifugation [163] of the chlamydial inoculum onto the 

monolayer. Although the distinct role of the chlamydial plasmid remains unknown, it 

can be speculated that it functions in glycogen accumulation and efficiency of plaque 

formation [163]. 

A recent study by Song and co-workers [171] identified through transformation 

techniques and deletion mutagenesis, that the chlamydial ORF, pgp4, a 

transcriptional regulator of multiple chromosomal genes including the glycogen 

synthase, glgA, plays an important role in chlamydial virulence. A plasmid-based 

transformation system based on the conserved plasmid was developed by Wang and 

co-workers [172]. They developed the transformation protocol based on expression 

of β-lactamase that utilizes rescue from the penicillin-induced culture, which is 

characterized by failure of the host cells to lyse due to blockage of RB to EB 

differentiation. The vector, carrying both the endogenous chlamydial plasmid and an 

E. coli plasmid origin of replication, cured the endogenous chlamydial plasmid when 

introduced into C. trachomatis L2. Through penicillin resistance, Wang and co-

workers were able to isolate transformants with restored ability to synthesize and 

accumulate glycogen in inclusions, a characteristic that is down-regulated in 
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plasmid-free strains [170]. The development of stable, reproducible transformation 

method permits future analysis of genome function by complementation.  

 Homologous recombination  2.5.2

Homologous recombination methods were also described for C. trachomatis. 

Notable recombination studies in C. trachomatis were performed by Binet and 

Maurelli [173]. The E. coli KsgA protein, which represents a family of rRNA 

adenine dimethylase, is functionally important for methylation, one of the post-

transcriptional modifications of nucleotides. Binet and Maurelli [173] showed that 

the chlamydial KsgA protein is able to replace the orthologous enzyme in E. coli and 

was able to complement for the loss of ksgA in E. coli. Firstly, ATM809, an E. coli 

strain with deletion of the ksgA gene was constructed by λ red recombinase method 

described by Datsenko and Wanner [174]. ATM809 was then transformed with high 

copy number of plasmid pRAK316 (i.e. overexpressing C. trachomatis L2 KsgA, 

and was designated as ksgAL2). This resulted in, and was confirmed by, the restored 

sensitivity of ATM809 overexpressing KsgAL2 to kasugamycin (KSM), suggesting 

methylation of A1518 and A1519 in E. coli 16S rRNA [173]. It was also 

demonstrated that mutations in C. trachomatis ksgA negatively affected chlamydial 

growth in cell culture, indicating that this functional rRNA demethylase enzyme is 

important for normal development of C. trachomatis [173].  

Another study by Binet and Maurelli constructed variants by homologous 

recombination by introducing the recombinant DNA to C. psittaci 6BC through 

electroporation [175]. Different concentrations of linearized or circular plasmids 

containing varying concentrations of rRNA regions homologous to the chromosomal 

copy were introduced into C. psittaci 6BC infectious particles [175]. 

Recombination/exchange of “heterologous” DNA sequences into the bacterial 

chromosome resulted in four nucleotide substitutions, three of which imparted 

bacterial resistance to kasugamycin (Ksm) and spectinomycin (Spc) [175]. 

Identification of double resistance and replacement of 16S rRNA gene as well as 

isolation of plaques resistant to the two antibiotics indicated successful, first step of 

genetic manipulation of Chlamydia. However, it is noteworthy that this stable 

transformation system involving homologous gene targeting has not been reported 

since. 



 

Chapter 2: Literature Review 27 

 Chemical mutagenesis 2.5.3

Recently, Kari and co-workers [176] generated C. trachomatis D trpB (CTD 

trpB-) null mutants by a process called targeting-induced local lesions in genomes 

(TILLING) [177] through ethyl methanesulfonate (EMS) mutagenesis coupled with 

digestion using the mismatch-specific endonuclease, CEL1 [178]. EMS is a mutagen 

that induces C-G to T-A transition mutations [179]. The optimal levels of 

mutagenesis was assessed by determining the percent killing (i.e., decrease in the 

number of infectious progeny) and the frequency of rifampicin resistant (RifR) 

strains [176, 180], which emerged as a result of point mutations in the β-subunit of 

RNA polymerase [181]. Kari and co-workers [176] determined that the infectivity of 

CTD trpB- was not rescued by exogenous indole, the substrate used by genital but 

not ocular C. trachomatis serovars to synthesize tryptophan and escape the 

antimicrobial effect of IFN-γ-induced tryptophan starvation [182]. Recently, reverse 

genetics approach was also employed by Bao and co-workers [183], who were able 

to isolate a C. muridarum (mouse pneumonitis pathogen, MoPn) mutant which was 

resistant to a T3SS inhibitor, CF0001, through continued cultivation of the strain in 

the presence of the inhibitor. By genomic sequencing of the mutant strain designated 

as MCR (MoPn with CF0001 resistance), the group were able to identify 4 single 

nucleotide polymorphisms (SNPs), however, the particularly affected gene that 

regulates the susceptibility to the inhibitor was not identified [183].  

Nguyen and Valdivia [180] utilized forward genetic approaches by combining 

chemical mutagenesis, genome sequencing and subsequent DNA exchange (lateral 

gene transfer, [184]) among Chlamydia strains to identify genes responsible for 

certain phenotypes. Like Kari and co-workers, they also utilized EMS mutagenesis 

and used Rif
R
 to determine frequency of mutation. They were able to generate 

recombinant strains by co-infecting of host cells with mutants carrying antibiotic 

(spectinomycin, trimethoprim, or rifampicin) resistance markers and allowed natural 

DNA exchange among chlamydiae to occur. Recombinants that formed plaques in 

the presence of both antibiotics were then selected. Through whole genome 

sequencing (WGS), the group identified underlying genetic lesions in these mutants, 

which enable association between mutations in a common gene and a common 

plaque morphotype [180]. For instance, mutations in glgB led to the accumulation of 
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glycogen granule aggregates within inclusions and granular plaque morphology 

[180].  

 

2.6 SMALL MOLECULE APPROACHES FOR C. TRACHOMATIS 

Small molecule approaches have been used to investigate bacteria. These small 

molecule inhibitors typically are molecules that inhibit known virulence factors. One 

of the virulence systems widely characterized due to employment of such inhibitors 

is the Yersinia T3SS, an attractive target for therapeutic strategy for infectious 

diseases. Through chemical genetics approach, Kauppi and co-workers [185] 

screened a large library of synthetic compounds for the ability to inhibit Yersinia 

T3SS gene expression. They identified a group of inhibitors with general structure of 

acylated hydrazones of salicylaldehydes [185]. Such inhibitors include INP0010 and 

INP0400 which inhibits C. pneumoniae developmental cycle and prevents replication 

of C. pneumoniae and C. trachomatis in in vitro infection models respectively, 

thereby indicating an important role for T3SS in the chlamydial developmental cycle 

[186]. These findings were corroborated by Muschiol and co-workers [187] who 

showed that INP0400 inhibits Chlamydia growth in a dose-dependent manner. The 

group also demonstrated a link of T3SS to inclusion membrane proteins IncA and 

IncG since these two effector proteins failed to localize in the inclusion membrane in 

the presence of INP0400. Also through the use of Yersinia T3SS inhibitor, 

designated as compound 1 (C1) [185], Wolf and co-workers identified that T3SS 

activity and chlamydial development are interlinked processes [188]. Although 

Chlamydia remained viable and metabolically active, inhibition of T3SS resulted in 

stalled RB to EB differentiation [188]. Since inhibition of T3SS with these 

compounds was speculated to be coupled with iron deprivation, Bao and co-workers 

[183] recently developed benzylidene acylhydrazides (derivatives of acylhydrazides), 

which cannot chelate iron, and demonstrated a T3SS-independent anti-chlamydial 

effects. Small molecule approaches have also been employed to determine the role of 

lipooligosaccharides (LOS) in C. trachomatis. Through the use of small molecule 

inhibitors of LpxC, the enzyme that catalyses the first committed step in the 

biosynthesis of lipid A, the synthesis of lipooligosaccarides (LOS) in C. trachomatis 

is blocked [189]. In the absence of LOS, C. trachomatis remains viable but non-

infectious and replicative RBs failed to express selected late-stage proteins and 
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transition to EBs [189]. Based on previous findings that 2-pyridone carboxylic acids 

block biofilm formation in E. coli and prevent infection of L. monocytogenes, 

Engström and co-workers [190] investigated the inhibitory effect of 2-pyridone 

amide inhibitors on C. trachomatis. Through isolating variants resistant to the 

inhibitor, they determined that 2-pyridone inhibitors, KSK120 and its analogues, 

prevent C. trachomatis infectivity by affecting the glucose-6-phosphate metabolism. 

 

2.7 C. TRACHOMATIS PATHOGENIC FACTORS 

Prevention of host cell apoptosis is one of the mechanisms used by Chlamydia 

to maintain infection and survival. Studies have previously reported anti-apoptotic 

effect of chlamydial infection that likely facilitates long-term survival in the infected 

host cell. Such anti-apoptotic activities include blockade of mitochondrial 

cytochrome c release and blocking the activation of caspases, inhibition of the 

activation of proapoptotic multidomain Bcl-2 proteins Bax and Bak, and degradation 

of pro-apoptotic BH3-only proteins [191-193]. BH3 is one of the four BH domains 

of a prototype of Bcl-2 proteins [194]. Philippe and co-workers [195] described the 

cellular function of BAD, a proapoptotic BH3-only protein in chlamydial host-cell 

survival. They demonstrated that the phosphorylation of BAD is accompanied by 

recruitment of this protein to the chlamydial inclusion, where BAD binds to a 

cellular adapter protein, 14-3-3-β which in turn, is attracted to the inclusion by a 

membrane protein produced by Chlamydia. These cellular mechanisms show that the 

chlamydial inclusion sequesters BAD away from mitochondria, where BAD could 

induce host-cell apoptosis. On the other hand, Fischer and co-workers [196] observed 

that blockade of apoptotic stimuli by destruction of BH3-only proteins (Bim/Bod, 

Puma and Bad) during infection occurred upstream of the mitochondrial activation of 

Bax/Bak. Bax and Bak are two proapoptotic members of Bcl-2 family that regulate 

mitochondrial cytochrome c release [197]. BH3-only molecules induce the activation 

of Bax and Bak, resulting in the permeabilization of the outer mitochondrial 

membrane and the efflux of cytochrome c [198]. Cytochrome c is an apoptogenic 

factor that participates in the formation of the apoptosome, leading to activation of 

down-stream effector caspases, including caspase-3, -6 and -7 which in turn, cleave a 

wide range of cellular molecules and also activate endonucleases [191]. Overall, the 

understanding of chlamydial interference in apoptosis is still to be fully elucidated.  
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Chlamydia also has mechanisms for the evasion of the host immune response. 

Previous studies have shown that among these immune evasion mechanisms is the 

inhibition of NF-κB activation, a crucial pathway for host inflammatory responses 

[199]. The C. trachomatis deubiquitinating and deneddylating [200] protease 

ChlaDub1 suppresses NF-κB activation by binding to the  NF-κB  inhibitory subunit 

IκBα, thereby impairing its ubiquitination and degradation [199], a prerequisite for 

NF-κB nuclear translocation/activation [201]. Additionally, Lad and co-workers 

[202] found that a bacterial tail-specific protease (Tsp) CT441 was responsible for 

chlamydial protease activity that cleaves the p65 protein, an important regulator of 

the NF-κB pathway of inflammatory response. Another virulence factor known to 

cleave host proteins is the chlamydial protease/proteasome-like activity factor 

(CPAF). CPAF was thought to have a wide range of host cell targets including those 

involved in apoptosis, cell cycle, cell structure, cellular adhesion, hypoxia signalling, 

and DNA repair [196, 203]. However, it was recently demonstrated that most of its 

host targets are artefact of inaccurate methods [204].  

CPAF is secreted into the host cell cytosol by a Sec-dependent or type II 

secretion pathway [205]. Due to the protease’s ability to degrade many different 

types of host proteins [206], it can alter multiple cellular functions. Chen and co-

workers [207] recently examined 11 published CPAF substrates and found that there 

was no detectable proteolysis when CPAF activity was inhibited during cell harvest 

and lysate preparation. Although not ruling out the important role that CPAF plays 

during intracellular chlamydial infection, they concluded that the published cleavage 

and degradation of the host proteins in Chlamydia-infected cells are not likely to 

have occurred in intact cells but instead are due to in vitro proteolysis by CPAF 

during cell processing, thereby, highlighting the need to evaluate Chlamydia 

literature on CPAF [207].  

Another virulence factor for C. trachomatis is its plasmid. The 7.5 kb C. 

trachomatis plasmid, originally described by Lovett and co-workers (1980) is found 

to be highly conserved within the species [68]. Although it is not required for 

survival of the organism [169, 170], the chlamydial plasmid is important for the 

pathophysiology of the disease [168]. This plasmid encodes 8 genes or coding 

sequences (CDS) and is considered a chlamydial virulence factor [208-211]. The 

presence or loss of the whole plasmid is not strictly a mutation. In fact, naturally-
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occurring plasmid-free strains, human C. trachomatis lymphogranuloma venereum 

(LGV, L2, strain 25667R) [169] and trachoma isolate (serovar A, strain A2497P-) 

[212] have been described. Infections with these attenuated plasmid-deficient strains, 

particularly strain A2497P- elicited/caused no pathology in mice models but induced 

an anti-chlamydial immune response [212].  

 Chlamydia HtrA role in developmental cycle and stress 2.7.1

CtHtrA has been previously described to play critical roles during conditions 

deleterious to growth. Huston and co-workers [19] reported elevated levels of 

CtHtrA during heat stress, while major outer membrane protein (MOMP) levels 

decreased under the same conditions. Transmission electron microscopy revealed 

that heat-stressed cultures contained larger but fewer RBs with excess membranous-

like material within the inclusion [19]. In addition, C. trachomatis htrA gene was 

able to heterologously complement the lethal heat stress phenotype of E. coli htrA- 

thus protecting E. coli htrA- from the detrimental effects of heat stress [19]. 

CtHtrA has been found to perform similar dual functions as chaperone and 

protease as those of its homologues in other bacteria. Also, CtHtrA was upregulated 

during penicillin-induced persistence but down-regulated during IFN-γ persistence 

[19] as indicated by transcriptional profiling conducted by Belland and co-workers 

[90]. This was corroborated by the findings of Huston and co-workers [19] who 

identified through immunocytochemistry and confocal microscopy analyses that 

CtHtrA and MOMP proteins were present during mid and later (20 h PI and 44 h PI, 

respectively) stages of penicillin persistence, with higher levels of CtHtrA detected at 

44 h PI compared to the control, non-persistent cultures. This data indicated that 

CtHtrA may likely play an essential role during penicillin-induced persistence.  

 

2.8 PROTEASES 

Proteases are enzymes that oversee a range of regulatory mechanisms and 

cellular processes such as stability of the key metabolic enzymes, removal of 

terminally damaged polypeptides, and protein processing assembly [reviewed by 

213]. Proteases are pivotal regulators in a multitude of biological and physiological 

processes such as digestion, blood clotting, pathogenic infections, conception, birth, 

growth, ageing and death, to name a few. Proteolytic enzymes are found ubiquitously 
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in both eukaryotic and prokaryotic organisms [214, 215]. Proteases can be divided 

into five classes according to the catalytic residue that affects enzymatic hydrolysis. 

These are the aspartic acid, cysteine, metallo, threonine, glutamic acid, and serine 

proteases [215, 216]. Serine proteases constitute almost one-third of all proteases and 

were named for the nucleophilic Ser residue at the active site [217]. Examples of 

serine proteases include chymotrypsin, trypsin, elastase, and thrombin. Therefore, 

based on the nature of P1 residue in their peptide substrates [218, 219], serine 

proteases can be divided into three classes namely, trypsin-like (positively charged 

residues Lys/Arg preferred at PI), elastase-like (small hydrophobic residues Ala, Val 

at PI) or chymotrypsin-like (large hydrophobic residues Phe/Tyr/Leu at PI) [217]. On 

the basis of three-dimensional structures, serine peptidases can be divided into clans 

that may share common ancestors [220]. Four of the most widely studied clans 

include chymotrypsin, subtilisin, carboxypeptidase C, and D-ala-D-ala peptidase A 

[219, 220]. HtrA belongs to the trypsin clan where the order of the catalytic triad is 

His-Asp-Ser [221]. An up to date list of families of proteases can be found in the 

MEROPS database [217, 220]. 

The most extensively studied and well-characterized bacterial proteases are the 

energy-dependent, intracellular proteases in E. coli, with the Clp protease and Lon 

protease being the two major groups. The multi-component Clp protease consists of a 

proteolytic component ClpP and the ATP-hydrolyzing, chaperonin-like ClpA [222]. 

Lon protease has been shown to play an essential role in the degradation of 

abnormally-folded proteins as well as unstable regulatory proteins [reviewed by 

223]. The expression of serine proteases can be greatly associated with the 

pathogenicity of Gram-negative bacteria since they are believed to be linked to the 

resistance of microorganisms to lysosomal proteolytic activity by phagocytes and 

have been shown to play a role in skin and mucous membrane bacterial colonization 

[224].  

 Mechanism of serine protease inhibitors  2.8.1

The most common mechanism of protease inhibitors involves binding in and 

blocking access to the active site of their target protease [225]. Amide bond 

hydrolysis occurs in a groove or cleft where proteases bind their substrates [215]. 

Figure 2.4 shows a cartoon showing substrate/inhibitor residues (P) and protein 

binding sites (S) of proteases. S3, S2, S1, S1’, S2’ and S3’ designate the enzyme sub-
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sites occupied by amino acid side chain of substrates that bind to corresponding 

substrate/inhibitor residues P3, P2, P1, P1’, P2’ and P3’ [215].  

 

Figure 2.4. Cartoon showing substrate/inhibitor residues (P) and protease binding sites 

(S).  

Prime and non-prime designations distinguish C-versus N-sides respectively of 

cleavage site. Figure copied directly from Abbenante and Fairlie, 2005 [215]  

 

 In serine protease inhibitors, the large reactive centre loop (RCL) is presented 

to the protease for proteolytic processing. Cleavage of the RCL leads to insertion of 

the N-terminal half of the protease, which is still attached to the protease as acyl 

enzyme intermediate, into the β-sheet of the body of the inhibitor [225]. This results 

in steric collisions and deformation of the active site, thus rendering the protease 

irreversibly and completely inactive [225]. In addition, the electrophilic property of 

phosphonate group in phosphonate peptide analogues, allow the phosphonate group 

to undergo a nucleophilic displacement reaction by the active site serine hydroxyl 

group [218, 226]. A trigonal bipyramidal molecular geometry is present in the 

substituent attached to the phosphorous atom, and the hydrolysis of peptide 

substrates lead to changes in bond angles and structural distortions, thereby 

inhibiting activity of the serine protease [226]. Phosphorylating agents and a series of 

mono-, di-, and tetrapeptide analogues with tetrahedral phosphonate moiety have 

also been reported as the prototypical inactivators of serine proteases [214].  
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 Proteases as target for inhibitors 2.8.2

Due to their importance in health and disease processes, particularly in 

replication and transmission of infectious bacteria, protozoans and viruses, proteases 

are attractive targets for drug development. Protease inhibitors that have successfully 

progressed through clinical trials and are currently available as relatively safe and 

effective medicines for humans include ACE inhibitors for treating high blood 

pressure, human immunodeficiency virus (HIV) protease inhibitors (PIs) for treating 

people living with HIV/AIDS, thrombin inhibitors for treating stroke, and an elastase 

inhibitor for treating systemic inflammatory response syndrome (SIRS) [215]. HIV 

PIs are considered the first breakthrough in over a decade of HIV research [216] and 

are the most potent retroviral drugs in HIV clinical practice  [227]. HIV PIs work by 

blocking HIV protease from making new HIV particles [216]. Most thrombin 

inhibitors such as melagatran and ximelagatran, both developed by AstraZeneca, are 

directed towards the inhibition of thrombin [215], a serine protease important in 

blood coagulation and fibrinolysis [228]. Argatroban and BIBR 1048 are thrombin 

inhibitors launched for treating arterial and venous thrombosis, respectively [215]. 

Argatroban is also used to treat peripheral vascular disease, thrombocytopenia, 

cerebral ischemia, and stroke [215]. A list of serine protease inhibitors and their 

clinical status as of 2005 is provided in Table 2.1.    

 

Table 2-1. Serine protease inhibitors in clinical development.  

Target Indication Drug Name Company Name 
Clinical 

Status 

Thrombin Venous Thrombosis Ximelagatran Astra Zeneca Launched 

 Thrombosis, general Melagatran Astra Zeneca Pre-

registration 

 Arterial Thrombosis Argatroban Mitsubishi 

Pharma 

Launched 

 Venous Thrombosis BIBR-1048 Boehringer 

Ingelheim 

Phase III 

 Thrombosis, general MCC-977 Mitsubishi 

Pharma 

Phase II 

 Thrombosis, general TGN-167, 

TGN-255 

Trigen Phase II 

 Thrombosis, general SSR-182289 Sanofi-Synthlabo Phase I 

 Thrombosis, general AZD-0837 Astra Zeneca Phase II 

 Thrombosis, general E-5555 Eisai Phase II 

 Venous Thrombosis LB-30870 LG Life Sciences Preclinical 

Factor Xa Thrombosis, Angina DX-9065a Daiichi Phase II 
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Target Indication Drug Name Company Name 
Clinical 

Status 

 Venous thrombosis DPC-906 BMS Phase II 

 Thrombosis CI-1031 Berlex 

Biosciences 

Phase II 

 Venous thrombosis JTV-803 Japan Tobacco Phase II 

NS3-

protease 

Hepatitis C Virus 

Infection 

BILN-2061, 

Ciluprevir 

Boehringer-

Ingleheim 

Phase II 

 Hepatitis C Virus 

Infection 

VX-950 Vertex Phase I 

Elastase SIRS, Inflammation, Sivelestat, 

Elaspol 

Ono Launched 

(Japan) 

 COPD Midesteine Medea Research Pre-

registration 

(Italy) 

 COPD AE-3763 Dainippon Pre-clinical 

 COPD R-448 Roche Phase I 

Broad-

Spectrum 

Pancreatitis, 

Inflammation 

Nafamostat, 

FUT-175 

Japan Tobacco Launched 

 Pancreatitis Camostat 

mesilate 

Ono Launched 

Urokinase Cancer, 

Gastrointestinal 

WX-UK1 Wilex Phase II 

Chymase Restenosis NK-3201 Nippon Kayaku Preclinical 

DPP IV Diabetes Type II LAF-237 Novartis Phase III 

 Diabetes MK-0431 Merck PhaseII 

 Diabetes P32/98 (P3/01) ProBiodrug Phase I 

 Diabetes T-6666 Tanabe Seiyaku Phase I 

 

 

NS3/A4 

serine-

protease 

inhibitors 

Diabetes 

 

Hepatitis-C 

NN-7201 

 

Telaprevir (VX 

9-50) 

 

 

Boceprevir 

(Sch503034) 

ITMN-191           

Novo-Nordisk 

 

Vertex 

 

 

 

Schering-Plough 

 

InterMune/Roche 

Phase I 

 

Phase III 

 

 

 

Phase III 

 

Phase I 

 

 

 

 

B1201335 

TMC435 

MK7009 

Boehringer 

Medivir/Tibotec 

Merck 

Phase I 

Phase II 

Phase I 

Table adapted from Arabshahi and co-workers [229] and Reiser and Timms [230]. 

 Activity-based approaches to investigate proteases 2.8.3

Activity-based proteomics utilizing activity-based probes (ABPs) is a new 

subdivision of proteomics that defines protein activity as well as directly detects the 

enzymatic activities in complex proteomes [reviewed by 231]. Additionally, these 

chemical probes are designed to target and subsequently identify and/or purify 

functionally distinct families of enzymes as well as modify specific active-site 
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residues by using an activity-dependent chemical reaction, hence the name activity-

based probes [reviewed by 232]. Distinct basic structures shared by all ABPs include 

those elements required for targeting, modification, and detection of labelled protein, 

which correspond to the reactive group, linker and tag, respectively. Development of 

selective activity probes that specifically target serine proteases has been previously 

described [233, 234].  

 Functions of proteases 2.8.4

One function of proteases is as quality control factors, recognizing regions that 

are commonly found on misfolded or unfolded proteins but not on native proteins 

[235]. These quality control factors not only recognize non-native conformations but 

also distinguish between substrates that can be refolded from severely damaged 

proteins that have to be degraded [221], thereby preventing the detrimental effects of 

protein accumulation and playing an essential role in bacterial survival under 

stressful conditions [236]. If these quality control options fail, damaged proteins 

accumulate as aggregates, a process known to be toxic to humans and has been 

implicated in causing amyloid [237] as well as neurodegenerative diseases [238]. 

Aggregation of misfolded proteins in bacteria results in the formation of disordered 

intracellular precipitates and is similarly detrimental and lethal.  

Additionally, chaperones and proteases share common features because their 

substrates are similar even though they carry out antagonistic reactions [239].  

 The HtrA Family  2.8.5

Structure and functions of HtrA 

Among the several putative proteases encoded by bacterial genomes, the high 

temperature requirement protein A (HtrA) family has been demonstrated to be 

important for virulence of a number of bacterial pathogens. The HtrA family of 

proteins is a group of heat shock-induced proteins exhibiting a temperature-

dependent, ATP-independent dual chaperone-protease function in the periplasmic 

space of Gram-negative bacteria [194] with important roles in bacterial stress 

response and protein quality control. HtrA proteases are usually in a resting state that 

can be activated upon sensing of molecular stimulus (e.g. unfolded proteins) [240]. A 

well-characterized HtrA protease is DegP, a member of the widely conserved HtrA 

family of serine proteases (Figure 2.5). The DegP (HtrA) protein is essential for the 
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survival of Escherichia coli at elevated temperature and is involved in the 

degradation of misfolded proteins and correct processing of secreted proteins [241], 

and has been found to have homologues in almost all organisms [242]. Biochemical 

and structural studies of DegP from E. coli demonstrated that the resting hexameric 

DegP can be converted to proteolytically active 12-mer or 24-mer complexes by 

effector-binding to the PDZ domain of DegP [240].  HtrA proteins such as DegP are 

primarily composed of three distinct domains, an N-terminal protease comprising the 

catalytic triad which is composed of His105, Asp135 and Ser210, and two C-terminal 

PDZ domains, PDZ1 and PDZ2 [reviewed by 243]. These three domains and their 

trimeric assembly act to control and regulate entry of substrate into the central cavity 

and their interplay enables the protease to reversibly switch between active and 

inactive state as well as allowing the enzymatic activity to adjust according to the 

needs of the cell [reviewed by 243]. Other members of the HtrA family in E. coli 

include degQ and degS, which encode homologs of DegP [244]. Although neither 

gene is heat-inducible, DegQ has the properties of a serine endoprotease and can 

functionally substitute for DegP under some conditions, while DegS cannot 

substitute for DegP [244].  
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Figure 2.5. Structure of DegP.  

a, Stereo ribbon presentation of DegP. The domains are represented by different 

colours, N terminal, purple; protease, green; PDZ1, yellow; PDZ2, red. The nomenclature of 

secondary structure elements are represented by letters for helices and numbers for strands. 

The termini of the protein as well as the regions that were not defined by electron density are 

indicated. b, Molecules A and B show the top and side views of DegP, respectively. Both 

hexamers are approximately equal in size, having a height of 105A° and a diameter of 

120A°. Image directly copied from Krojer and co-workers, 2002 [245]. 

 HtrA as a pathogenic factor in bacteria  2.8.6

The important contribution of HtrA to the pathogenicity and virulence of a 

number of bacterial pathogens have been previously described. Both the chaperone 
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and protease activities of Salmonella enterica serovar Typhimurium HtrA are 

essential for survival and successful infection of the organism in liver and spleen of 

mice [12] and are essential for the organism to divide and replicate within the host 

cell as well as to withstand oxidative killing in macrophages [246]. HtrA has been 

also found to play a crucial role in the virulence of Streptococcus pneumoniae as 

deletions of the htrA gene in murine models completely attenuated and dramatically 

reduced the virulence of strains D39 and TIGR4, respectively [11]. HtrA is also vital 

in host cell interaction and subsequent efficient bacterial adherence and invasion of 

gastrointestinal pathogens such as Campylobacter jejuni [8] and Helicobacter pylori 

[9]. Through the use of small molecule inhibitor of H. pylori HtrA (HpHtrA) activity, 

HHI, Hoy and co-workers [9] identified that HpHtrA was crucial for H. pylori-

induced ectodomain E-cadherin cleavage in MKN-28 cells. However, it was 

identified that HtrA from Neisseria gonorrhoeae, the etiologic agent inducing 

gonorrhoea, did not cleave E-cadherin, suggesting structural differences in the active 

site pocket of HtrA in N. gonorrhoeae and the gastrointestinal pathogens [10]. Baek 

and co-workers [8] assessed the requirement for the dual (protease and chaperone) 

activities of C. jejuni HtrA in the interaction with host cells. Through comparison of 

an htrA mutant lacking protease activity, but retaining chaperone activity, with a 

ΔhtrA mutant and a wild-type strain, it was revealed that the chaperone activity alone 

greatly stimulated adherence to the host cell and promote bacterial virulence of C. 

jejuni [8]. Shigella flexneri requires all three periplasmic chaperones DegP, a 

member of the HtrA family, Skp, and SurA for plaque formation and proper 

presentation of IcsA [247], an autotransporter involved in S. flexneri actin-based 

intracellular movement [248, 249]. HtrA in Listeria monocytogenes, a pathogen often 

sourced from contaminated foods, has been found to play essential role in degrading 

proteins that accumulate under stress conditions such as elevated-NaCl 

environments, heat shock and H2O2 stress [13]. 

In C. trachomatis, genomic transcriptional profiling performed by Belland and 

co-workers [90] determined that CtHtrA expression may occur throughout much of 

the developmental cycle from ~8 h PI to its highest levels from 24 to 40 h PI. In the 

preliminary work conducted by our team immediately prior to this PhD project, it 

was identified that inhibition of CtHtrA activity during mid-replicative phase, but not 

during early or late stages of the chlamydial developmental cycle was lethal for C. 
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trachomatis [250]. Direct immunofluorescence and/or functional implications 

indicated that CtHtrA was exported into the host cell cytosol and thus may play a 

role in chlamydial interactions with the host cell, and may be involved in chlamydial 

proteolysis strategy in manipulating the host cell signalling pathway [23, 251]. It was 

speculated that chlamydial proteases such as HtrA and CPAF were delivered to the 

periplasmic region by sec-dependent pathway and were further exported to the lumen 

of inclusion via outer membrane vesicles (OMVs) budding mechanism. This OMV 

budding process was supported by observations reported by Matsumoto and Manire  

[136] and the detection of extra-inclusion vesicles devoid of Chlamydia reported by 

Giles and co-workers [252], as well as the identification of globular structures 

containing Pmp-like secreted (Pls) proteins within the inclusion lumen and at the 

inclusion membrane of C. trachomatis as demonstrated by Jorgensen and Valdivia 

[253]. While the role of HtrA in the pathogenicity of a wide array of bacteria has 

been studied, the possible role of HtrA in C. trachomatis virulence is yet to be 

elucidated. CtHtrA deserves further study since the secretion of CtHtrA into the host 

cell cytosol suggests that CtHtrA may play an important role in chlamydial 

interactions with host cells [23]. Chlamydia HtrA may have similar virulence 

functions with both host and bacterial cell targets as the HtrA in other bacteria and 

therefore has a potential role in chlamydial infection and virulence.  

 Chlamydia trachomatis HtrA (CtHtrA) 2.8.7

It has been suggested that CtHtrA has similar physiological functions as those 

of homologs in other bacteria by both protease and chaperone activities such as 

extracytoplasmic protein quality control [19]. One of the unique characteristics of 

CtHtrA is its ability to differentially respond to the substrate which requires either 

chaperone or proteolysis activity, with preferences to cleave non-polar residues 

[254]. The cleaved peptides have been observed to always have at least one 

hydrophobic residue (termed I, L, A, V, or P) and through further analysis of CtHtrA 

substrate specificity, Huston and co-workers [254] demonstrated that I was the most 

preferred residue on the P1 site with V and L the next preferred residues for P1. This 

preference for V/I/A on the PI site of CtHtrA justifies and validates the substrate 

specificity of JO146, the CtHtrA tripeptide (Boc-Val-Pro-ValP(OPh)2) inhibitor used 

in the present study. Furthermore, molecular modelling studies on CtHtrA protein 

active site structure identified that mutation of the S1-S3 subsite residue V266 
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inhibits in vivo interactions of CtHtrA with a broad range of protein sequences with 

high affinity, suggesting the essential role of this residue during substrate binding 

[255]. A molecular model of the structure of CtHtrA protease domain is shown in 

Figure 2.6. Structural and amino acid sequence analyses demonstrated that CtHtrA 

has a conserved critical role during the replicative of the chlamydial developmental 

cycle in different species of Chlamydia infecting a range of different hosts: C. 

trachomatis, human, C. suis: pig, C. pecorum: cattle/sheep, C. caviae: guniea pig 

[256]. 

 

Figure 2.6. Structural model of the CtHtrA protease domain  

In this figure, the catalytic triad S247, H143, D173 are shown in yellow. The flexible 

loop 1 (I242; S247) and loop 2 (I265; V266) encompassing the substrate-binding sites S1–S3 

are also indicated. The residues predicted to be important for specificity (I242, V266 and 

I265) are shown in brown. Figure directly copied from Gloeckl and co-workers, 2012 [255]. 

 

In 2007, Huston and co-workers [257] demonstrated that CtHtrA is 

temperature activated at 34
o
C and can function both as chaperone and protease at 

37
o
C in an ATP-independent manner, which is in contrast to the temperature-

dependent “switch’ mechanism of HtrA described in E. coli. [258]. CtHtrA is a 
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hexamer under native condition [257] and conversion to the 12/24-mers complexes is 

induced by the presence of substrates and activators [254]. Differences in the 

inhibitory molecules against CtHtrA compared to those against human HtrA and E. 

coli HtrA, indicate the potential consequent differences in access to the active site for 

CtHtrA [257]. It was confirmed by bioinformatics analyses of the CtHtrA sequence 

that the features previously reported in E. coli HtrA by Clausen and co-workers [221] 

such as excretion signal sequence to mediate periplasmic export, two C-terminal 

PDZ domains, and essential catalytic site serine residues, were also found in CtHtrA 

[257]. The interaction between the protein subunits such as the PDZ1 domain, loop 

L3, and loop LD, in the presence of substrates induces the formation of 12/24 mers 

[254]. The PDZ1-L3-LD interaction cascade is important for activating the 

proteolytic activity of CtHtrA [254, 259]. The same activation mechanism was 

reported for E. coli DegP [245]. Interestingly, CtHtrA and other chlamydial proteases 

RseP and Tsp have been found not to elicit a pathology-related serum IgG immune 

response in C. trachomatis-infected individuals [260].  

It is pertinent to review all serine proteases in Chlamydia as it may have “off-

target” impact other serine proteases. A complete list of bioinformatically annotated 

serine proteases in the genome is provided in Table 2.2. An amino acid sequence 

percent identity between C. trachomatis HtrA and its homologues in other 

Chlamydia species and some pathogens are presented in Table 2.3. Data from Table 

2.3 were gathered through multiple alignment of the proteins and calculations of the 

different amino acid residues across the length of the longest protein. The highest 

percent identity was found to be between C. trachomatis HtrA and C. pecorum HtrA 

(Table 2.3). C. trachomatis HtrA and its homologue in E. coli, DegP have 45.1% 

amino acid sequence identity (Table 2.3). 



 

Chapter 2: Literature Review 43 

 

Table 2-2. C. trachomatis serine proteases and their physiologic functions 

Denham et. al., 2008 

Thomsen et. al., 2002 
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Table 2-3. A matrix of amino acid sequence percent identity between C. trachomatis 

HtrA (CtHtrA) and its homologues in other Chlamydia species and in some pathogens.   
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C. trachomatis HtrA 45.1 
        C_muridarum HtrA 44.3 93.4 

       C. pneumoniae_HtrA 43.7 75.3 75.9 
      C. pecorum HtrA 44.1 75.1 76.3 82.9 

     Escherichia coli DegQ 63.6 43.3 42.9 42.5 42.9 
    C. suis HtrA 44.1 93.0 93.6 76.1 75.3 43.5 

   C. trachomatis HtrA 45.1 100.0 93.4 75.3 75.1 43.3 93.0 
  Salmonella enterica DegP 93.0 45.1 44.5 44.3 44.1 63.6 44.5 45.1 

 Shigella flexeneri DegP 99.4 45.3 44.1 43.5 44.3 63.8 44.3 45.3 92.4 
 

 Identification of the CtHtrA inhibitor, JO146  2.8.8

Prior to commencement of this PhD project, experiments were conducted in 

our team that led to the identification of the compound, JO146 as specific and 

selective to CtHtrA. Firstly, Gloeckl and co-workers [250] screened a library of 1090 

serine protease inhibitors [261, 262] including isocoumarins and peptides with 

various electrophiles for the ability to block CtHtrA in vitro protease activity through 

CtHtrA protease assays with the substrate MCA-ENLHLPLPIIF-DNP previously 

described by Huston and co-workers [254]. A uniform concentration of 500 µM was 

initially used for all the compounds screened. The compounds which demonstrated 

complete lethality at 500 µM were then selected and further screened at different 

concentrations to identify compounds that were most effective at low concentrations 

in vitro. Using mass spectrometry, the top hits were validated for purity and 

structural integrity and this led to the selection of two compounds, JO146 and JCP83, 

as the most effective compounds that were structurally intact and pure. These two 

lead compounds were then tested against several other proteases to ensure they didn’t 

have general serine protease inhibition. These proteases included chymotrypsin, 
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trypsin, elastase, E. coli DegP and DegS [263, 264] and recombinant forms of 

HTRA1 (human) and HTRA2 (human).  

The two inhibitors (at a series of concentrations, namely, 0, 10, 50, 100, and 

150 µM) were added to C. trachomatis HEp2 cultures ((multiplicity of infection, 

(MOI) of 0.3 and 3.0)) at different time points throughout the developmental cycle, 

namely, at 0, 8, 16, 20, 24, and 32 h PI. The resulting inclusion forming units at 

completion of the developmental cycle after each of these independent treatments 

was then assessed. It was determined that JO146 and JCP83 resulted in complete or 

significant loss of EB formation when added at mid-replicative phase [250]. When 

JO146 was added at 0, 8, 20, 24, and 32 h PI, infectious progeny yield was observed 

at the end of the chlamydial developmental cycle in cultures treated with 50 µM 

JO146. However, treatment with 50 µM JO146 at 16 h PI was completely lethal for 

Chlamydia with an MOI of 0.3. The activity was most effective at higher doses, with 

100 and 150 µM JO146 treatments resulting in complete loss of infectious progeny 

yield for all the cultures except when added at 32 h PI, wherein infectious progeny 

were observed even at 150 µM JO146 treatments. At 16 h PI even 10 µM JO146 had 

a significant impact on the formation of EBs when added to Chlamydia cultures with 

MOI of 0.3. The host cell numbers were the same under each condition so these data 

indicate that the amount of Chlamydia present (MOI) associates with the 

effectiveness of the compounds [250].  

It was identified that JO146 was more effective against CtHtrA, with an IC50 of 

12.5 µM, compared to 47.19 µM of JCP83 [250]. JO146 was then chosen, over 

JCP83, as the CtHtrA inhibitor utilized and characterized in the said study. JO146 

was most effective when added at 16 h PI, which is consistent with an effect on the 

mid-replicative phase of the chlamydial developmental cycle, but not when added 

during early or late phases of the developmental cycle [250]. 3D structure 

illumination microscopy (3D SIM) was used to further examine the chlamydial 

inclusion and morphology using immunofluorescence on cultures from 20 h PI (time 

of treatment), 22 and 28 h PI. JO146 treated inclusions failed to increase in size, 

exhibited a flatter appearance and eventually lost their morphology, with very few 

spherical cell shaped structures detected within the inclusions at 28 h PI. It was 

identified that the lethality of JO146 determined at 44 h PI was found to be 

maintained in the presence of cycloheximide, indicating that JO146 activity does not 
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require host cell protein synthesis [250]. Using the lactate dehydrogenase assay for 

cell lysis (LDH Assay) and through monitoring the metabolic turnover using the 

MTS incorporation assay (MTS Assay) after treatment with JO146 and DMSO 

control, it was determined that JO146 was not toxic to the host cells, HEp2 and 

McCoy cells [250]. The compound’s stability during the mid-developmental cycle 

conditions where lethality was observed was tested by monitoring the in vitro 

stability of the JO146-activity-based probe (JO146-Cy5). Through SDS PAGE 

analysis after adding the probe, it was determined that JO146-Cy5 was stable 

throughout the experiment, suggesting that the critical nature of the timing of the 

compound addition for maximum effectiveness related specifically to a 

developmental cycle feature of Chlamydia rather than compound stability [250]. 

Wide-field microscopy analysis of lysotracker labelling of live host cells indicated 

that the JO146 inhibitory effect on Chlamydia was not mediated by recruitment of 

lysosomes to the chlamydial inclusions [250].  

JO146-Cy5 activity-based probes identified three predominantly labelled 

proteins with one additional weakly labelled band. A dominant doublet of proteins 

around 48–50 kDa were labelled by JO146-Cy5 throughout the developmental cycle 

[250]. These labelled proteins are consistent with the banding pattern and molecular 

weight of CtHtrA as observed by Western blot done for this study and as consistent 

with previous reports using alternative antibodies [265]. Competitive binding assays 

confirmed that the JO146-Cy5 activity-based probe bound to the same targets as 

JO146.  

A JO146-biotin activity-based probe was used to isolate the labelled proteins 

and confirm their identities by proteomics. Purified recombinant CtHtrA was 

incubated with the JO146-biotin activity-based probed and streptavidin magnetic 

bead binding was used to confirm that CtHtrA can be isolated using this 

methodology, and therefore that this activity-based probe binds to CtHtrA [250]. 

This approach was applied to chlamydial cell culture lysates to identify proteins 

labelled by JO146-biotin at 24 h PI. After proteins were isolated by the JO146-biotin 

activity-based probe streptavidin isolation, CtHtrA was identified by mass 

spectrometry (∼48 kDa) as the only band which corresponds to this molecular mass 

with two peptides identified which correspond to CtHtrA, confirming that JO146-

biotin binds to CtHtrA in a cell culture lysate [250].  
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Real-time widefield microscopy revealed that the inclusions of C. trachomatis-

infected HEp2 cultures treated with JO146 at 16 h PI appeared to diminish in size 

and eventually could not be visualized [250]. In contrast, the inclusions in control 

cultures treated either with DMSO or media only increased in size over time [250].  

The effectiveness of JO146 in vivo was evaluated using the mouse C. 

muridarum model of disease. It was initially determined that JO146 and JCP83 

inhibited CmHtrA, with IC50 of 47 µM and 93.69 µM, respectively [250]. Treatment 

with JO146 and JCP83 of C. muridarum-infected McCoy cells resulted in 2–2.5 log 

reduction in infectious progeny production, with JO146 being slightly more 

effective. The C. muridarum life cycle is complete within 26-30 h PI and the most 

effective time (12 h PI) for JO146 treatment was consistent with the replicative 

phase. Examination of the chlamydial load in vaginal swabs from progesterone-

synchronized mice treated vaginally with JO146 every second day of infection 

indicated a small but statistically significant decrease in the total viable Chlamydia 

shed compared with DMSO-treated mice [250].  

Overall, these data indicate that JO146 is specific to CtHtrA and the compound 

is lethal to Chlamydia when added at mid-replicative phase of the developmental 

cycle [250]. In C. trachomatis, CtHtrA has been found to perform similar dual 

functions as chaperone and protease as those of its homologues in other bacteria. 

Also, CtHtrA is upregulated during penicillin-induced persistence and heat-shock 

conditions, suggesting its role in stress resistance [18]. However, while the role of 

HtrA in the pathogenicity of a wide array of bacteria has been studied, the role of 

CtHtrA in C. trachomatis developmental cycle is yet to be elucidated.
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3.1 GENERAL STOCKS AND SOLUTIONS 

 Supplemented Dulbecco’s minimal essential medium (DMEM) 3.1.1

DMEM (Life Technologies, Eugene, OR, U.S.A.) was supplemented with 5% 

fetal calf serum (Lonza, Auckland, New Zealand), 10 µg ml
-1

 gentamicin 

(Invitrogen, Eugene, OR, U.S.A.), 100 µg ml
-1

 streptomycin sulphate (Sigma-

Aldrich, St. Louis, MO, U.S.A.) and used in cell culture experiments with McCoy 

and HEp2 cell lines.   

  

 2X DMEM 3.1.2

2x DMEM was prepared by mixing 8.3 g powdered DMEM (Sigma-Aldrich, 

St. Louis, MO, U.S.A), 3.7 g NaHCO3 (Merck, Darmstadt, Germany) and 4.5 g D-

glucose (Merck, Darmstadt, Germany) in 300 ml distilled water. The solution was 

added with 10 ml 200 mM L-glutamine (Life Technologies, Eugene, OR, U.S.A), 10 

ml 1 M HEPES (Calbiochem, CA, U.S.A.), 10 mL sodium pyruvate (Sigma-Aldrich, 

St. Louis, MO. U.S.A.), 1 ml 55 mM 2-mercaptoethanol (Life Technologies, Eugene, 

OR, U.S.A.) and 0.2 ml 50 mg ml
-1

 gentamicin (Invitrogen, Eugene, OR, U.S.A.). 

The solution was made up to a total volume of 500 ml with distilled water and was 

then filter-sterilized (0.2 µm pore-size, Corning, NY, U.S.A.) into 200 ml sterile 

Schott bottles. The solution was stored in aliquots at 4
o
C. 

 

 Phosphate buffered saline (PBS) 3.1.3

PBS used for immunocytochemistry was made by 10x stock by combination of 

81 g NaCl (Ajax Finechem, New South Wales, Australia), 4 g Na2HPO4 (Merck, 

Darmstadt, Germany) and 1.65 g NaH2PO4 (Merck, Darmstadt, Germany) in 1 L of 

Milli-Q (Biocel, Australia) water. The 10x stock was diluted to obtain 1x 

concentration with Milli-Q water. PBS used for cell culture was made from PBS 

tablets Dulbecco ‘A’ (Oxoid, Hampshire, England). One (1) tablet was suspended in 

every 100 ml Milli-Q water. The solution was autoclaved (Tomy SX-500 E, NY, 

U.S.A.) at 121
o
C for 15 minutes. 
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 Sucrose phosphate glutamate (SPG) solution 3.1.4

SPG was made by combining 13.68 ml of 0.5 M Na2HPO4 (Merck, Darmstadt, 

Germany), 6.32 ml of 0.5 M NaH2PO4 (Merck, Darmstadt, Germany), 85.575 g 

sucrose (Chem Supply, Adelaide, South Australia), 0.736 g L-glutamic acid (Life 

Technologies, Eugene, OR, U.S.A.) in 900 ml Milli-Q water. The pH was adjusted to 

7 and the total volume of the solution was adjusted to 1 L with Milli-Q water. The 

solution was filter sterilized using 0.2 µm pore-size filters (Corning, NY, U.S.A.), 

aliquoted in 100 mL Schott bottles and stored at 4
o
C.  

 

 JO146 3.1.5

For the purposes of this study, JO146 (chemical formula: C31H44N3O7P) was 

commercially sourced. The compound was synthesised, HPLC purified, and 

confirmed by MALDI-MS by GL Biochem (Shanghai, China). The compound was 

obtained in powder form (100 mg).  Molecular weight of the compound is 607.67 

g/mol. When dissolved in DMSO, the total concentration of stock JO146 is 0.166 M.  

 

 

 

 

Figure 3.1. Chemical structure of JO146  

JO146 is a tripeptide (Boc-Val-Pro-ValP (OPh)2) inhibitor with valine both in P1 and 

P3 sites for substrate specificity and proline in the P2 substrate specificity site. The 

phosphonate “warhead” acts irreversibly with the protease active site serine residue. Boc 

serves as a protecting group.  

 

 

 Penicillin  3.1.6

Benzylpenicillin sodium (BenPen, CSL Biosciences, Victoria, Australia) was 

obtained in powder form (600 mg). When dissolved in sterile water, the resulting 

concentration was 1.0 x 10
5
 U ml

-1
. Appropriate amount of the solution was 

dissolved in DMEM to obtain the concentration needed for cell cultures (typically 

100 U ml
-1

).  
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 1.1% agarose 3.1.7

1.1% agarose was obtained for plaque purification of Chlamydia. 1.1g agarose 

LE (Roche Diagnostics GmbH, Mannheim, Germany) was dissolved in 100 ml 

sterile distilled water.  The solution was aliquoted in sterile 50 ml Schott bottles and 

was autoclaved at 121
o
C for 5 minutes.  

 

 

3.2 CELL LINES  

HEp2 (human epithelial type 2, ATCC
®

 CCL-23
™

) and McCoy B (mouse 

fibroblasts, ATCC
®

 CRL-1696
™

) cell lines were used in all cell culture experiments. 

The cell lines were regularly tested as mycoplasma free. HEp2 and McCoy cells 

were maintained in supplemented DMEM.   

 

 Mycoplasma testing of cell lines 3.2.1

Cells were grown in antibiotic-free media for 24 hours. The cells were 

harvested in PBS and DNA was extracted using a DNA extraction kit (Qiagen). 

Previously described primer set (UM 4, forward primer, and UM3, reverse primer) 

[266] were used to detect and amplify the 16S rRNA gene of mycoplasma in the cell 

lines. PCR was performed by 1 cycle of 95
o
C for 5 min followed by 30 cycles each 

consisting of denaturation for 30 s at 94
o
C, 30 s of annealing at 55

o
C and 60 s 

extension at 72
o
C. An amplicon size of approximately 270 bp (detected by agarose 

gel electrophoresis) would denote a positive contamination of mycoplasma in cell 

lines. 

 

3.3 CHLAMYDIA STRAIN PROPAGATION  

Chlamydia trachomatis serovar D (UW-3/Cx) was used in all experiments. In 

Chapter 5, plaque cloned C. trachomatis D was used as a control strain in relation to 

the Chlamydia clinical isolates. All Chlamydia strains were routinely cultured in 

DMEM and incubated at 37
o
C, 5% CO2. High yield stocks were prepared. Briefly, 

Chlamydia strains were used to infect T75 culture flasks with 90% confluent HEp2 
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or McCoy cells. The flasks were centrifuged at 500 × g for 30 minutes at 28
o
C. 

Media was replaced with fresh media at 4 h PI. The cells were incubated up to end of 

chlamydial developmental cycle (i.e., 44-48 h PI) and were harvested by replacing 

the media with 3 ml SPG per flask. By using a cell scraper, the infected monolayer 

was gently removed from the flask. The cell lysate was transferred to a 50 ml Falcon 

tube containing sterile glass beads to an equivalent of 5 ml. The tubes were vortexed 

for approximately 2 minutes. The cell lysate was then transferred to a new Falcon 

tube and was centrifuged at 500 × g for 5 minutes at 4
o
C to separate the host cell 

debris from Chlamydia. The supernatant was removed, transferred to a new falcon 

tube where it was mixed well, and then aliquoted in 1.5 ml cryovials and stored at -

80
o
C for further processing. To determine the titre of the stocks, Chlamydia was 

quantified from each stock or batch of SPG harvest by reinfecting fresh HEp2 or 

McCoy B cell monolayers in 96-well plates as described in section 3.4.   

 

3.4 CHLAMYDIA QUANTIFICATION 

HEp2 or McCoy cells were cultured in supplemented DMEM in 48 well cell 

culture plates. The host cells were infected with C. trachomatis D at 24 h post 

seeding using a stock of Chlamydia with known titre. The experiments were 

routinely performed using multiplicity of infection (MOI) of 0.3. Variations from this 

MOI are indicated in the appropriate sections. Treatments with JO146 or penicillin 

were performed accordingly at different doses and time points post infection as 

indicated for each experiment. Chlamydia was harvested at the completion of the 

chlamydial developmental cycle either by adding SPG equal to the amount of 

DMEM in the cultures or by replacing the media with SPG. The plates were stored at 

-80
o
C. To determine the infectious viable yield for these cultures, the plates were 

thawed. The cells were then sonicated on ice 3 times per well (10 seconds each time) 

by using an ultrasonic processor (Microson, New York, U.S.A.). The harvested 

cultures were then serially diluted and cultured in fresh HEp2 or McCoy (the same 

cell line as the experiment) monolayers in 96 well plates. Briefly, Chlamydia from 

triplicate wells in 48 well plates were 3x serially diluted across the wells of 96 well 

plates. Chlamydia from one well of 48 well plate were used to reinfect 3 

corresponding wells in 96 well culture plate, resulting to a total number of 9 

independent wells per dilution per condition. Cultures were incubated for 4 hours at 
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37
o
C, after which the media was changed with fresh DMEM containing 1 µg ml

-1
 

cycloheximide (Sigma-Aldrich, St. Louis, MO. U.S.A.). At 30 h PI, cultures were 

fixed with absolute methanol or 4% paraformaldehyde (PFA, Electron Microscopy 

Sciences, Hatfield, Pennsylvania, U.S.A.) in PBS (PFA-PBS) for 10 minutes. The 

number of inclusions was determined by immunocytochemistry C. trachomatis HtrA 

or MOMP. Firstly, the cells were permeabilized with 0.5% Triton X-100 (Merck, 

Darmstadt, Germany) for 15 minutes, after which the permeabilization buffer was 

removed and replaced with blocking buffer. Non-reactive sites were blocked with 

1% bovine serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO, U.S.A.) in PBS for 

2 hours. Then, the plates were incubated with anti-C. trachomatis HtrA (1:500 

dilution in 1% BSA-PBS) antibody raised in rabbit [257], or mouse C. trachomatis 

MOMP (1:2,000 dilution in 1% BSA-PBS) (Biodesign International, Maine U.S.A.) 

and DAPI (1:40,000 dilution in blocking buffer) (4’6-diamidino-2-phenylindole, Life 

Technologies, Eugene, OR, U.S.A) for 1 hour. Unbound antibodies were removed by 

washing the wells with 0.2% Tween 20 (Merck, Darmstadt, Germany) in PBS 

(TPBS) for three times (5 minutes each time). Then, the wells were incubated with 

anti-rabbit or anti-mouse IgG, IgM AlexaFlour 488 conjugate as secondary antibody 

(1:500 dilution in blocking buffer) (Invitrogen, Eugene, OR, U.S.A.) for 45 minutes. 

The wells were again, washed with TPBS. Images were obtained using Nikon 

Eclipse Ti (Tokyo, Japan) fluorescence microscope. Inclusions were counted from 

triplicate fields of view per well from at least three independent culture wells, 

making it a total of 27 fields of view for each dilution. The size of the field of view 

on that particular microscope and camera was then extrapolated to the size of the 

wells to calculate the total number of inclusions per well. The volume of Chlamydia 

added to the well as well as the dilution wherein the inclusions were counted was 

accounted for to determine viable IFU ml
-1

. 

 

3.5 CONFOCAL MICROSCOPY 

McCoy or HEp2 (25,000 cells well
-1

) cells were cultured on coverslips (8 mm) 

in 48 well culture plates. The cultures were fixed with either 4% PFA-PBS (for C. 

trachomatis MOMP) or absolute methanol (for C. trachomatis HtrA) at designated 

time points post infection. The cells were permeabilized with 0.5% Triton X-100 

(Merck, Darmstadt, Germany) for 15 minutes, after which the permeabilization 
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buffer was removed and replaced with blocking buffer, 1% BSA-PBS and the plates 

were incubated at 4
o
C overnight. The cells were examined for the appropriate C. 

trachomatis and host cell proteins by incubating the coverslips with the primary 

antibody (C. trachomatis MOMP (1:2,000 in blocking buffer) (Biodesign 

International, Maine U.S.A) or HtrA (1:500 in blocking buffer) [257]; host cell 

LAMP1 (1:3,000 in blocking buffer) (Abcam, Victoria, Australia), SQSTM1 

(1:5,000 in blocking buffer) (Abcam, Victoria, Australia); actin was examined with 

phalloidin 594 (2 µl per coverslip) (Invitrogen, Eugene, OR, U.S.A.) and nucleus 

was examined with DAPI (1:40,000 in blocking buffer) (Life Technologies, Eugene, 

OR, U.S.A) at room temperature for 2 hours. The cells were then washed with TPBS 

three times (5 min each time). Secondary antibody conjugated to Alexa Flour 488 

(Invitrogen, Eugene, OR, U.S.A.) was then added to the wells at 1:500 (HtrA) or 

1:2,000 (MOMP) dilutions in blocking buffer. After incubation at room temperature 

for 1 hour, the cells were washed thrice with TPBS (5 minutes each time). The final 

wash was removed and replaced with PBS. The coverslips were mounted onto 

labelled, clear white glass slide using a drop (approximately 20 µl) ProlongGold
®

 

antifade reagent (Invitrogen, Eugene, OR, U.S.A) for each coverslip. C. trachomatis 

cultures were examined using either Leica SP5 (Leica Microsystems, Wetzlar, 

Germany) or Olympus FV1200 (Olympus Corporation, Japan) confocal laser 

scanning microscopes. The settings were adjusted according to the 

emission/excitation wavelengths of the fluorophores. The excitation/emission (nm) 

wavelengths for the fluorophores were 358/461 for DAPI, 581/609 for phalloidin 

594, and 495/519 for AlexaFlour fluorophores. Images were taken using 20x or 63x 

objectives using the suite of software on the microscope. 

 

3.6 PLAQUE PURIFICATION OF CHLAMYDIA  

Purification by plaque cloning was performed to isolate clones of Chlamydia 

suitable for the experiments. Briefly, 6-well plates were seeded with 1.2 x 10
6
 

McCoy cells well
-1

 in 3 ml DMEM. Then, 24 hours after seeding, the monolayers 

were infected with the corresponding Chlamydia isolates at 10, 50, or 100 IFU well
-1

 

by centrifugation at 500 × g for 30 minutes at 25
o
C. The agarose overlay was 

prepared by mixing the following: 22.5 ml 2x DMEM, 22.5 mL 1.1% agarose, 5 ml 
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FCS (Lonza, Auckland, New Zealand) and 50 µl cyclohexemide (Sigma-Aldrich, St. 

Louis, MO, U.S.A.). The mixture was placed in a 45
o
C water bath for 10 minutes.  

After centrifugation, the media in each well was replaced with 2 ml agarose overlay 

and was allowed to solidify. Meanwhile, the non-agarose overlay was prepared by 

obtaining a mixture containing the following components: 12.5 ml 2x DMEM, 10 ml 

dH2O and 2.5 ml FCS (Lonza, Auckland, New Zealand), 25 µl cyclohexemide 

(Sigma-Aldrich, St. Louis, MO, U.S.A). After incubating the mixture in a 37
o
C water 

bath for 5 minutes, 2 ml of the non-agarose overlay was then added to each well and 

the plates were stored at 37
o
C, 5% CO2. The plates were examined for presence of 

plaques every day for 14 days.  

As soon as plaques appeared in the wells, the plaques were “picked” and used 

to reinfect fresh host cell monolayers to propagate the clonal C. trachomatis isolates. 

Briefly, to “pick’ the strains from the plaques, the non-agarose overlay was carefully 

removed from the wells. Plaques that were not too close to each other were picked 

through the aid of sterile yellow P200 tips cut at the end. Each picked up plaque was 

then dispensed in 300 µl SPG in a 1.5 ml cryovial filled with sterile glass beads to an 

equivalent of 250 µl.  The cryovials with Chlamydia were vortexed for 2 minutes 

after which, the cell lysates were used to reinfect fresh HEp2 or McCoy B cell 

monolayers in 96 well culture plates previously seeded with 40,000 host cells/well in 

200 µL DMEM.  The monolayers were infected by replacing the media with 100 µl 

of the cell lysate and spinning the plates at 500 × g for 1 hour at 25
o
C. The plates 

were incubated at 37
o
C, 5% CO2 for 30 minutes. The media was changed with fresh 

media containing 1 µg ml
-1

 cyclohexemide (Sigma-Aldrich, St. Louis, MO, U.S.A.) 

and plates were incubated further. At 35 h PI, Chlamydia was harvested from the 

plates by replacing the media with 200 µl SPG well
-1

. The infected monolayers were 

dislodged and elementary bodies (EBs) were released from the inclusions by 

vigorously pipetting the SPG up and down the wells using a multichannel pipette. 

The supernatant was transferred to a new 1.5 ml tube. These stocks were labelled 

passage 1. Then, 30 µl of the SPG harvest from passage 1 was used to reinfect fresh 

HEp2 or McCoy B cell monolayers in 96 well plates (seeded the previous day with 

40,000 host cells well
-1

). At 30 h PI, Chlamydia was harvested by replacing the 

media with SPG and vigorously pipetting up and down the wells as previously 

described. The SPG stock from this step was designated passage 2. Chlamydia from 
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stock 2 was then used to reinfect for passage 3. Briefly, 6-well plates seeded with 6.0 

x 10
5
 McCoy cells well

-1
 were infected with Chlamydia from passage 2 (100 µl well

-

1
). DMEM from the wells seeded with the host cells were replaced with media 

containing Chlamydia and 1 µg ml
-1

 cyclohexemide (Sigma-Aldrich, St. Louis, MO, 

U.S.A). At 44 h PI, the cells were harvested by replacing the media with SPG (1 ml 

well
-1

). By using cell scrapers, cells were gently scraped from the wells. The 

monolayers were completely dislodged by pipetting up and down the wells. The cell 

suspensions were pooled in a 50 ml tube containing glass beads to an equivalent of 3 

ml. The 50 ml tubes containing the cell suspensions were vortexed for 2 minutes. 

The supernatant was gently transferred to a new 50 ml tube and were stored in 

aliquots (200 µl in 1.5 ml tube) at -80
o
C. These stocks were designated as passage 3. 

For passage 4, T75 flasks (with 90-100% confluent host cells) were infected with 

stocks from passage 3 (200 µl flask
-1

). The cells were harvested at 44 h PI by 

replacing the media with SPG and scraping the cells from the flasks using a cell 

scraper. The supernatant was transferred to a 50 ml tube containing glass beads and 

the tube was vortexed for 2 minutes. To separate the host cell debris, the 50 ml tubes 

were centrifuged at 500 × g for 5 minutes at 4
o
C. The supernatant was transferred to 

a new 50 ml tube and mixed by pipetting up and down the tube. The cells were 

stored in aliquots at -80
o
C. The stock of each clone was then quantified to determine 

IFU ml
-1

 using the method described in section 2.4. For all infection and reinfection 

steps involved in propagating plaque cloned isolates, the plates or flasks were spun at 

500 × g for 30 minutes at 25
o
C and were incubated at 37

o
C, 5% CO2 until harvest.  

 

3.7 GENERATION OF C. TRACHOMATIS MUTANTS USING EMS 

MUTAGENESIS 

Generation of C. trachomatis mutants as well as estimating the rate of 

mutations was performed following the procedure of Kari and co-workers [176] with 

minor modifications. Low-level ethyl methanesulfonate (EMS) was used as a 

mutagen since it has been shown to introduce C-G to T-A transition mutations. 

Briefly, a 6-well cell culture plate was seeded with 1.5 x 10
6
 McCoy cells/well in 3 

ml DMEM supplemented with 10 % FCS, 10 µg ml
-1

 gentamicin and 100 µg ml
-1

 

streptomycin. 24 hours later, the cells were infected with C. trachomatis D at an MOI 

of 1.0 by centrifugation at 500 × g for 30 minutes at 25
o
C. At 22 h PI, infected host 
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cells were exposed for one hour to EMS at 37
o
C. Preliminary experiment using 

different concentrations of EMS namely, 2.0, 3.0 and 4.0 mg ml
-1

 was performed to 

evaluate the right amount of EMS to be used relative to “percent killing” and 

appropriate mutation frequency of 3-4 mutations per genome. After treatment with 

EMS, the media was removed and replaced with fresh media containing 1µg ml
-1

 

cyclohexemide and the cells were incubated at 37
o
C, 5% CO2. Untreated (non-

mutagenized) C. trachomatis D control was included. The cells were harvested in 

sucrose phosphate glutamate (SPG) buffer at 44 h PI. In brief, the media was 

removed from the wells and replaced with 1 ml well
-1

 SPG. The infected monolayers 

were harvested and stored in aliquots at -80
o
C. Viable infectious yield and “percent 

killing” was determined by re-infecting fresh McCoy and HEp2 cells and number of 

IFUs was determined following the procedures previously described. 

The rate of mutation was estimated by determining the frequency of 

rifampicin-resistant (Rif
R
) mutants which emerged as a result of point mutations in β-

subunit of RNA polymerase [181]. To determine the concentration of rifampicin to 

be used for identifying rifampicin resistant mutants, a preliminary experiment using 

different concentrations of rifampicin (0.05 µg ml
-1

 0.1 µg ml
-1

, 0.3 µg ml
-1

) was 

conducted. This was performed by plaque assay on wild type, laboratory strain of C. 

trachomatis D (UW-3/Cx) as described in Materials and Methods Section 3.6 to 

confirm which concentration of rifampicin was inhibitory to the wild-type strain. 6-

well plates seeded with 1.2 x 10
6
 McCoy cells well

-1
 were infected with a total of 2 x 

10
6 

EBs by centrifugation at 500 × g for 30 minutes at 25
o
C. Rifampicin was added 

to the non-agarose mixture to achieve the desired rifampicin concentration. The 

plates were examined for presence of plaques every day for 14 days. Once the 

concentration of rifampicin (0.1 µg ml
-1

 [176]) for determining mutation frequency 

was established, the plaque assay was again performed as previously described; 

however, this time, 2.0 x 10
6
 EMS-mutagenized C. trachomatis D strains were used 

to infect the monolayers. The number of plaques was noted and the rate of mutation 

was calculated.  

The C. trachomatis genome contains 4.30 x 10
5
 G-C base pairs. Transition of 

five of these C-G pairs results in Rifampicin resistance [79, 81, 184, 267-269]. 

Therefore, we estimated the rate of mutation using this formula: [(number of plaques 

observed/2.0 x 10
6 
EBs) x 4.30 x 10

5
]/5.  
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3.8 STATISTICAL ANALYSIS  

All statistical analysis and graph construction was performed using PRISM 

Version 6.0 (GraphPad Software Inc.). Results are expressed as mean ± SEM. Two-

way analysis of variance (ANOVA) with a post hoc Bonferroni multiple comparison 

test were used to assess the differences between the treatments at different time 

points relative to DMSO. Statistical significance was defined as p < 0.05.
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4.1 INTRODUCTION 

Chlamydia (C.) trachomatis is an obligate intracellular bacterial pathogen. It is 

the most common sexually transmitted infection worldwide. Chlamydial infections 

are often asymptomatic [1-3] with as many as 50% and 80% of cases reported to be 

asymptomatic in men and women, respectively [4]. Chlamydia can cause long-term 

sequelae such as tubal scarring, ectopic pregnancy, infertility and pelvic 

inflammatory disease in women [5, 16, 18].  

C. trachomatis exhibits a unique, bi-phasic developmental cycle. This cycle 

consists of an infectious spore-like extracellular form, termed the elementary body 

(EB), and an intracellular replicative form termed the reticulate body (RB), which 

replicates by binary fission prior to converting back to the infectious EB form 

(reviewed, [85]). The intracellular form is located within a unique vacuole inside the 

host cell that is called the inclusion vacuole. In addition to these two forms, the 

organism has a persistent phase of intracellular growth. Persistence is defined as 

viable but non-culturable Chlamydia. Persistent Chlamydia (also called aberrant 

bodies), are typified by a much larger chlamydial cell size, and the inclusions are 

morphologically distinct from the active replicating form with only a few cells 

visible per inclusion (and typically smaller inclusion vacuole sizes) [137, 153, 160, 

270]. Persistence is induced by stressors such as immune pressure, amino acid 

deprivation, penicillin, iron limitation, or the presence of other intracellular 

pathogens [144, 160, 161, 271-274]. The ability to become persistent is thought to 

provide the organism with a survival mechanism to avoid any conditions where they 

would be unable to survive (reviewed, [270]). Whilst there are numerous means of 

inducing persistence and the chlamydial cellular morphology appears similar for 

each of these, there are distinct transcriptional and protein profiles associated with 

the different forms of persistence (reviewed, [137]).   

Amino acid deprivation has been shown to induce persistence, which was able 

to be restored by cysteine and isoleucine [272, 275]. The best characterised 

mechanism of persistence is that induced by IFN- (interferon-gamma). IFN- 

(secreted by immune cells) induces a large range of responses in the epithelial cell 

[144, 271]. One of the proteins that is highly induced in human epithelial cells in 

response to IFN- is IDO1 (indoleamine 2,3-dioxygenase) [144, 271, 276]. This 

enzyme catabolises the host cell tryptophan resulting in reduced tryptophan supply 
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for the pathogen that is a tryptophan auxotrophic. C. trachomatis persistence induced 

by IFN- is able to be reversed by the removal of IFN- and addition of tryptophan 

during in vitro laboratory models [144]. IFN- aberrant bodies are typified by a loss 

of expression of genes required for cytokinesis with continuing chromosomal 

replication [21, 160]. Another commonly used laboratory model of persistence is that 

which occurs in response to cell wall targeting antibiotics. Models of this form of 

persistence typically involve penicillin. Penicillin persistence has been described to 

result in the Chlamydia cells rapidly ceasing cellular division, whilst chromosomal 

and plasmid replication continue at the same rate [160]. The removal of the penicillin 

then allows reversion back to the active RB form, which occurs via a RB budding 

from the aberrant body, with this only productively occurring in some inclusions and 

some aberrant bodies [158]. 

The unique, developmental cycle and the obligate intracellular nature of the 

Chlamydia have hitherto hampered efforts to develop traditional techniques to 

genetically manipulate the organism. However, recent reports demonstrate that 

genetic manipulation of Chlamydia is now possible. Wang and co-workers [172] 

demonstrated stable transformation of C. trachomatis L2/434/Bu through the use of 

shuttle vector based on the E. coli plasmid pBR325. The development of stable, 

reproducible transformation method permits analysis of genome function by 

complementation. Kari and co-workers [176] described targeting-induced local 

lesions in genome (TILLING)-based reverse genetic approach where a pool of ethyl 

methyl sulfonate (EMS)-generated mutants were screened for specific mutations. 

Nguyen and Valdivia [180] utilized forward genetic approaches by combining 

chemical mutagenesis and genome sequencing along with DNA exchange (lateral 

gene transfer) among Chlamydia strains to identify genes responsible for certain 

phenotypes. Such technologies clearly demonstrate that both reverse and genetic 

approaches can be performed to analyse Chlamydia which had been previously 

considered “unamenable” to genetic manipulations. 

Chlamydial proteins have also been widely characterized through the advent of 

small molecule approaches. One of the most widely studied chlamydial virulence 

factors is the type III secretion system (T3SS). A peptide mimetic to the T3SS 

ATPase protein interaction domain could disrupt protein interactions of T3SS system 

and block chlamydial invasion [277]. Wolf and co-workers [188] have utilized a 
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T3SS-specific small molecule inhibitor to address contribution of the T3SS to the 

biology of Chlamydia [188]. Through the use of Yersinia T3SS inhibitor C1, it was 

identified that T3SS plays an important role in the progression of C. trachomatis 

developmental cycle, most notably in the RB to EB differentiation phase [188]. 

Overall, chemical and genetic approaches are proven powerful strategies to 

investigate the function of proteins within this unique organism.    

A number of proteins are hypothesized to be important for chlamydial biology, 

virulence, and infection. An example of such an interesting protein is the high 

temperature requirement protein A (HtrA). HtrA has been described as having a 

number of virulence functions for pathogenic bacteria [9, 278]. It is a bacterial 

protease with essential roles for cell surface protein assembly and extracytoplasmic 

protein maintenance [279]. HtrA has been described in C. trachomatis using in vitro 

and microscopy methods, and in Chlamydia it potentially functions both as a 

bacterial cell-associated protease and is secreted into host cell from 28 h post 

infection [19, 257, 265]. Our previous investigations into the biochemical mechanism 

of CtHtrA activation implicated outer membrane protein sequences with activation of 

the chaperone form, suggesting a potential role in surface protein assembly [254]. 

However, the function of CtHtrA for the pathogenicity of C. trachomatis is not well 

elucidated. 

Therefore, this study aimed to characterize the biological impact and possible 

role of CtHtrA for chlamydial development using the CtHtrA inhibitor compound, 

JO146. CtHtrA has been documented to be important for stress tolerance and 

survival of C. trachomatis as it has been reported that CtHtrA is highly expressed 

during penicillin-induced persistence and down regulated during IFN-γ persistence 

[19, 21, 22]. Furthermore, CtHtrA has been previously found to be elevated during 

heat stress and has been determined by heterologous complementation experiments 

to protect E. coli htrA- against the detrimental effects of heat stress [19]. Therefore, 

the potential critical role that CtHtrA plays during detrimental conditions such as 

penicillin persistence and heat stress was also investigated.  
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4.2 MATERIALS AND METHODS 

 Chlamydia cultures and cells 4.2.1

Chlamydia culture was conducted essentially as described in Materials and 

Methods section 3.3. Briefly, C. trachomatis (serovar D UW-3/Cx) was routinely 

cultured in HEp2 cells in DMEM supplemented with 5% fetal calf serum, 10 µg ml
-1

 

gentamicin, 100 µg ml
-1

 streptomycin sulphate and incubated at 37
o
C, 5% CO2. All 

cultures were conducted at a multiplicity of infection (MOI) of 0.3. 

 

 Growth curve and time frame required for lethality of JO146  4.2.2

The effect of the HtrA inhibitor on the growth and viability of C. trachomatis 

was determined by treating C. trachomatis -infected HEp2 cells either with DMSO 

or 0 µM, 10 µM, 50 µM, or 100 µM JO146 at 16 hours post-infection (h PI) and 

harvesting cultures in SPG buffer at 16, 20, 24, 28, 32, 36, 40, and 44 h PI. DMSO 

treatment was used as the negative control since JO146 was suspended in DMSO. 

The yield of infectious particles (i.e. infectious EBs able to form inclusions in the 

assay) at each time point was then assessed. The determination of inclusion forming 

units or infectious yield was conducted as described in Materials and Methods, 

Section 3.4. 

 

 Microscopy approaches to characterize chlamydial inclusion morphology  4.2.3

To determine the morphology of C. trachomatis at indicated time points and 

treatment, immunocytochemistry was performed as described in Materials and 

Methods Section 3.5. The cultures were examined using the Leica SP5 confocal 

microscope. Images were prepared using the supplied Leica software suite. Sizes of 

inclusions were measured using the tools available on the Leica application suite.  

 

 Assessment of the role of host cell pathways in JO146 lethality  4.2.4

The presence and localisation of specific host proteins such as LAMP1 and 

SQSTM1 relative to the chlamydial inclusions was examined using confocal 

microscopy and immunocytochemistry. Briefly, C. trachomatis D-infected HEp2 

monolayers cultured on coverslips were treated with either 100 µM JO146 or DMSO 
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at 16 h PI. Following fixation with 4% paraformaldehyde (PFA) at 16, 20, and 24 h 

PI, the cells were stained with antibodies against LAMP1 (Abcam, Australia) or 

SQSTM1 (Abcam, Australia) and Alexa Flour 488 conjugates (Invitrogen, Eugene, 

OR, U.S.A.) were used as secondary antibodies. The cells were visualized using a 

Leica TCS SP5 confocal laser scanning microscope (Leica Microsystems, Wetzlar, 

Germany).  

 

 Determination of cellular toxicity of JO146 on HEp2 cells  4.2.5

The effect of JO146 on the viability of C. trachomatis - infected host cells was 

assessed by using LIVE/DEAD® Fixable Red Dead Cell Stain Kit (Life 

Technologies, Eugene, OR, U.S.A.). The assay is based on the reaction of a 

fluorescent dye with cellular amines. The reactive dye can permeate the 

compromised membranes of dead or necrotic cells and react with free amines both in 

the interior and on the cell surface, resulting in intense fluorescent staining. The 

control dead cell population (purposely killed by suspension in ethanol) was used as 

a positive control. In the present study, the intensity of fluorescence between the 

control samples, dead and live cells, differed by two logarithmic values. C. 

trachomatis-infected HEp2 cells treated either with 100 µM JO146 or DMSO at 16 h 

PI were fixed and assayed at 16, 18, 20, 22, 24, 32, 40 and 44 h PI. These samples 

were analysed using a FC500 Flow cytometer (Beckman Coulter, CA, U.S.A.) at 488 

nm excitation and 585 nm emission wavelengths. Flow cytometry data was analysed 

using FlowJo version 7.6.4 (Tree Star Inc.). 

 

 Determination of bacteriocidal or bacteriostatic effect of JO146 4.2.6

JO146 was added to the cultures at 16 h PI. The compound was removed from 

the cultures at 20 and 24 h PI (i.e., after 4 and 8 hours exposure to the compound, 

respectively) by media washes (3 times with pre-warmed media). The cells were 

further incubated for harvesting at 44, 54, and 64 h PI. The infectious yield was then 

determined through titration in fresh HEp2 monolayers (as in Materials and Methods 

section 3.4). 
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 Determination of the effect of JO146 on heat stressed C. trachomatis   4.2.7

A variety of stress conditions were tested to test for a role for CtHtrA. Heat 

shock was conducted at 20 h PI for 4 h (20-24 h PI), as research in our team has 

previously shown an increase in CtHtrA protein at this time point during heat shock 

[19]. JO146 was added at 20 h PI, immediately at commencement of heat shock at 

42°C, 5% CO2 for 4 h. At the conclusion of the 4 h heat shock, JO146 was removed 

from the cultures by three washes in 37°C pre-warmed media, prior to returning the 

culture to 37°C for the remainder of the developmental cycle. In a separate 

experiment, the role of CtHtrA during recovery from heat shock was also analysed 

by the addition of JO146 immediately (at 24 h PI) after the 4 h heat shock treatment 

and was removed by media washes (three) at 28 h PI. The cultures were harvested at 

44 h PI and viable infectious yield was determined as described in Materials and 

Methods Section 3.4. (see experiment outline figures at the beginning of Results 

sections).  

 

 Effect of JO146 on penicillin-induced persistent C. trachomatis cultures  4.2.8

Penicillin persistence was established by the addition of 100 U ml
-1

 of 

penicillin at 4 h PI and JO146 was added at 16 h PI to determine the impact of JO146 

treatment during persistence. In order to measure the impact on infectious progeny 

yield, the cultures were allowed to revert from persistence by the removal of 

penicillin. Penicillin was removed by three sequential rounds of media washes and 

medium was replaced with penicillin-free media at 30 h PI. The infectious yield was 

subsequently measured at 68, 78, and 90 h PI. Cultures were also monitored for 

infectivity at 44 h PI without the removal of the penicillin to demonstrate lack of 

infectivity consistent with persistence (in conjunction with the ability to subsequently 

rescue these same culture conditions to detectable infectious particles by penicillin 

removal) [158]. Control cultures with no JO146 were included for each experiment. 

In order to assess the impact of JO146 on Chlamydia during reversion from penicillin 

persistence, a separate experiment was conducted where the persistence was induced 

in the cultures using penicillin (4 h PI, 100 U ml
-1

); at 40 h PI the penicillin was 

removed (washes and media change). At 52 h PI when reversion is likely to be 

underway in most inclusions JO146 was added to the cultures. The cultures were 
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harvested and inclusion forming units were determined at 84, 90, and 100 h PI as 

described in Materials and Methods section 3.4. Control cultures without JO146 

treatment were included for each experiment. Cultures for immunocytochemistry 

were conducted on glass coverslips, using the method previously described 

(Materials and methods section 3.5). A summary of the experimental methods used 

in this study is shown in Figure 4.1.  
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Figure 4.1 A summary of the experimental methods used in Chapter 4. 
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Flow chart of stress conditions tested and the corresponding expected growth phases 

of the Chlamydia that were tested during this project (A) Key to the components of a 

Chlamydia-infected host cell. Small, open circles: elementary bodies (EB); large black 

circles: reticulate bodies (RB); large grey circles: aberrant bodies (AB); green circle: host 

cell; yellow circle: chlamydial inclusion vacuole. (B) The Chlamydia trachomatis (serovar 

D) development cycle is represented by the cartoon. The relative time-points are shown 

below the cells and each stage of the cycle is shown in grey arrows above the cells. The five 

different sets of experiments (C-G) are presented in coloured backgrounds. (C) Experimental 

conditions used to assess the impact of JO146 after addition at 16 h PI. (D) Experimental 

plan to determine the time frame required for lethality of JO146, thus, assessing the 

bacteriostatic or bacteriocidal effect of the compound. (E) Experimental conditions used to 

assess the impact of JO146 addition during penicillin persistence. (F) Experimental plan to 

determine the impact of JO146 on C. trachomatis reversion from persistence. (G) 

Experimental plan to use the JO146 inhibitor to determine the role of CtHtrA for infectivity 

of C. trachomatis during heat stress conditions. The pink boxes represent the experimental 

actions taken, with arrows extending to the specific time-point for each action. The grey 

arrows indicate the stage of the development cycle represented by the cartoon. “PEN” 

represents penicillin. “+/−” indicates that separate experiments were conducted with or 

without the addition of penicillin (“+/− PEN”) or the JO146 inhibitor (“+/− JO146”). “× 

PEN” indicates that penicillin was removed in the experiments where it was added. The 

yellow/orange highlighted section of the developmental cycle indicates the expected 

presence and relative duration of persistence when induced by the addition of penicillin at 4 

h PI in the persistence experiments. The cartoon representations of the expected chlamydial 

developmental cycle phases and the associated time points under these experimental 

conditions are based on previously published data [89, 158, 160]. The appropriate 

experimental outline is presented at the beginning of each corresponding section in Results. 

 

 Statistical analysis  4.2.9

All statistical analysis was performed using PRISM Version 6.0 (GraphPad 

Software Inc.). Results are expressed as mean ± SEM. Two-way analysis of variance 

(ANOVA) with a post hoc Bonferroni multiple comparison test were used to assess 

the differences between the treatments at different time points relative to DMSO. 

Statistical significance was defined as p < 0.05. 
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4.3 RESULTS  

 Addition of JO146 at mid-replicative stage of the chlamydial 4.3.1

developmental cycle is lethal for C. trachomatis. 

 

 

Figure 4.2. Schematic diagrams of the C. trachomatis inclusion and developmental cycle 

and the assessment of the inhibitory action of JO146 after addition at 16 h PI 

(A) Key to the components of a Chlamydia-infected host cell. Small, open 

circles: elementary bodies (EB); large black circles: reticulate bodies (RB); large 

grey circles: aberrant bodies (AB); green circle: host cell; yellow circle: chlamydial 

inclusion vacuole. (B) The Chlamydia trachomatis (serovar D) development cycle is 

represented by the cartoon. The relative time-points are shown below the cells and 

each stage of the cycle is shown in grey arrows above the cells. The five different 

sets of experiments (C-G) are presented in coloured backgrounds. (C) Experimental 

conditions used to assess the impact of JO146 after addition at 16 h PI. 

 

Concurrent experiments conducted in our team demonstrated that JO146 

addition at mid-replicative phase (16 h PI) was most effective in preventing 

formation of infectious progeny when cultures were harvested at 44 h PI. The 

duration of JO146 treatment required to prevent infectious progeny formation was 

assessed. JO146 was added at 16 h PI and cells were harvested at different time 

points (16, 20, 24, 28, 32 and 36 h PI) until the end of the chlamydial developmental 

cycle. Inclusion forming units were then measured by re-culturing the harvests. No 

Chlamydia growth was observed during the first three time points (16, 20 and 24 h 

PI) in all treatments (Figure 4.3). At 28 h PI, inclusions were observed at 0 µM 
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JO146 and DMSO treated cells. Very few inclusions (1,137 IFU ml
-1

) were observed 

at this time point in infected cells treated with 10 µM JO146.  

An increasing number of inclusion forming units was observed over time in C. 

trachomatis-infected cells treated with 0 µM JO146, DMSO, and 10 µM JO146 as 

expected (Figure 4.3). Inhibition of CtHtrA function through the addition of the 

higher concentration of JO146 (100 µM) prevented the formation of infectious 

progeny at all time points post-infection. At 36 h PI, infectious progeny were 

identified in cells treated with 50 µM JO146 but not in cells treated with 100 µM 

JO146. Loss of inclusion forming units was also detected even at relatively lower 

concentration of JO146 treatment (10 µM) compared to DMSO-treated and untreated 

cells particularly at 28 hours PI wherein very few infectious particles were recovered 

(Figured 4.3).  The number of IFU ml-
1
 observed in cells treated with 10, 50, and 100 

µM JO146 were all significantly different at 28, 32, and 36 h PI compared to the 

DMSO control (p < 0.001). A second experiment was conducted that focused on 

extended time points. Chlamydial inclusions were observed from cultures harvested 

at 32 h PI in cells treated with 0 µM JO146 and DMSO (Figure 4.4). No Chlamydia 

inclusions were observed in C. trachomatis-infected host cells treated with 100 µM 

JO146 even at the end of the chlamydial developmental cycle (44 h PI) (Figure 4.4). 

The numbers of IFU ml
-1

 in DMSO-treated cells compared with 100 µM JO146 

treated cells were significantly different at 32, 40 and 44 hours PI (p < 0.001) (Figure 

4.4).  
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Figure 4.3. Yields of infectious progeny after JO146 treatment at 16 h PI of C. 

trachomatis 

JO146 has a dose-dependent effect on the generation of formable EBs after 

treatment at 16 h PI. Each bar represents the number of inclusion forming units (y 

axis) at each of the hours PI (x axis). Data are presented as mean ± S.E.M, *** 

indicates p < 0.001, **** p < 0.0001, n=27. 
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Figure 4.4. Growth analysis of C. trachomatis treated with JO146 

Generation of infectious elementary bodies throughout the late stage of C. 

trachomatis developmental cycle indicated loss of EB formation after treatment with 

JO146 at 16 h PI. Data are presented as mean ± S.E.M, *** indicates p < 0.001, 

n=27. 

 

 Treatment with JO146 results in failure to increase the inclusion size and 4.3.2

loss of chlamydial cellular morphology  

Inclusion vacuole size and morphology after JO146 treatment was examined 

using confocal microscopy and immunocytochemistry. It was observed that although 

there was no difference in the size of inclusions at 20 h PI regardless of JO146 or 

DMSO treatment, Chlamydia inclusions from cultures in the presence of JO146 

appeared smaller than those formed in DMSO treated cells both in cultures 

immunolabeled with CtHtrA and MOMP antibodies at 24 h PI (Figures 4.5 and 4.6).   

There was a significant difference (p < 0.001) of the size of the inclusions 

formed particularly at 24 h PI between infected cells treated with JO146 (average 

inclusion size of 4.56 µm) and DMSO treated cells (average inclusion size of 9.31 

µm) stained with antibodies for CtHtrA, (Figure 4.5). At 24 h PI, a significant 

difference (p < 0.001) in inclusion size was also observed between the inclusions 

formed in JO146-treated (average size of 4.35 µm) and DMSO-treated (average size 

of 8.66 µm) cells stained with anti-MOMP antibodies (Figure 4.6). Inclusions treated 

with JO146 also appeared hollow and flatter compared to DMSO-treated cells at 24 
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hours PI. Overall, immunocytochemistry and confocal microscopy using both 

Chlamydia HtrA and MOMP antibodies indicate that the chlamydial inclusions did 

not develop after addition of JO146, and were at a much smaller size compared to the 

cells treated with DMSO. 



  

Chapter 4: Roles of CtHtrA during development and stress 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Immunofluorescence of C. trachomatis inclusions using anti- HtrA antibodies after treatment with JO146  

(A) Immunofluorescence using anti-HtrA antibodies after JO146 (100 µM) treatment at 16 h PI. Scale bar (bottom right) indicates 10 μm. (B) Bar 

graph comparing the size of inclusions formed at 20 and 24 hours PI in DMSO- and JO146-treated C. trachomatis-infected HEp2 cells. Data are 

presented as mean ± S.E.M, *** indicates p < 0.001.  
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 Figure 4.6. Immunofluorescence of C. trachomatis inclusions using anti-MOMP antibodies after treatment with JO146 

(A) MOMP immunoflourescence after treatment of C. trachomatis-infected HEp2 cells with 100 µM JO146 at 16 h PI. Scale bar (bottom right) indicates 10 

μm. (B) Bar graph comparing the size of inclusions formed at 20 and 24 hours PI in DMSO- and JO146-treated C. trachomatis-infected HEp2 cells. Data are 

presented as mean ± S.E.M, *** indicates p < 0.001.
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 JO146 treatment does not lead to autophage/lysosome marker 4.3.3

accumulation on the inclusion membrane   

To investigate if the marked decrease in inclusion size is due to host cell's main 

defence pathways, C. trachomatis infected HEp2 cells treated with JO146 were 

stained with anti-LAMP1 and anti-SQSTM1 antibodies. No co-localization between 

the autophage/lysosome markers and the Chlamydia inclusions (green) was observed 

in either treatment (100 µM JO146 or DMSO) at 20 and 24 h PI when JO146 was 

added at 16 h PI (Figure 4.7). If there was co-localization and therefore a potential 

role in the inclusion size decrease, it would have been expected to be seen at 20 h PI 

since at 24 PI, a big difference in inclusion sizes between the two treatments was 

observed.  

 



  

Chapter 4: Roles of CtHtrA during development and stress 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.7. Confocal microscopy images of fixed cultures of C. trachomatis D-infected HEp2 cells using anti-LAMP1and anti-SQSTM1 

antibodies  

Immunofluorescence analysis using LAMP (left) and anti-SQSTM1 (right) (red) antibodies showed no sequestration of LAMP1 and SQSTM1 to C. 

trachomatis inclusions JO146 (100 µM) treatment. Scale bar (bottom right) indicates 10 μm. 
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 JO146 did not reduce viability of HEp2 host cells.  4.3.4

Viability of the host cells was monitored using Live/Dead fixable flow 

cytometry assay to check whether the inhibitor compound (100 µM added at 16 h PI) 

was toxic to the host cells from the time of treatment until the end of the chlamydial 

developmental cycle. Figure 4.8 shows that the histogram marker encompasses 

99.7% of the dead cell control population. Accordingly, this marker was used to 

“gate” the cell populations in each time point for each treatment. Only cells with 

fluorescence intensity falling within the histogram marker were considered dead and 

they were recorded in terms of percentage relative to the parent population.   

Figure 4.9 shows the overlap of histograms of samples for every treatment and 

time point. The cells that were treated with JO146 had a higher percentage (1.74) of 

dead cells compared to the cells treated with DMSO (0.872) at the beginning of 

treatment (16 h PI).  However, DMSO–treated cells had higher percentage of dead 

cells (2.11) than JO146-treated cells at 24 h PI (1.19). These results indicate that 

there was no correlation of the percentage of dead cells between cells treated with 

either JO146 or DMSO at all the time points indicated.  
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Figure 4.8. Histograms of the control samples  

The histograms display relative fluorescence or light scatter intensity on the x-axis 

and the number of events on the y-axis (A). The histogram marker of interest was based on 

the dead cell control population and this gate was applied to the sample populations for each 

time point (B). 
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Figure 4.9. Overlay of histograms for every treatment for the different time points  

Cells were assayed at 16 (A), 18 (B), 20 (C), 22 (D), and 24 (E) h PI.  Dead and live 

control cell populations are represented by filled orange and grey histograms, respectively. 

Percentage values denote the number of necrotic cells in JO146-treated samples in each 

corresponding time point.  

 

A second assay was performed to determine the effect of JO146 on host cell 

viability even up to the late stage of chlamydial developmental cycle. Live, dead, as 

well as mixed live and dead cell populations were included as controls (Figures 

4.10). C. trachomatis-infected HEp2 cells were treated with DMSO or 100 µM 

JO146 at 16 h PI and were assayed at extended time points, namely, 24, 32, 40 and 

44 h PI. Figure 4.11 shows the overlap of histograms of samples for every treatment 

and time point. At 24 h PI, a higher percentage of dead cells was observed in JO146-

treated cells (0.958) compared to DMSO-treated cells (0.352). Eight hours later (32 h 

PI), less percentage of dead cells was observed on JO146-treated cells (0.423) than in 

DMSO-treated cells (0.547). A difference of 2 log in the Mean (FL3 Log) values 

between the dead and live cells, or an overlap of the histogram of samples on the 
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histogram of the dead cell control population was required to readily distinguish loss 

of viability of HEp2 cells. Therefore, based on the results obtained in this study, 

there was no correlation on the percentage of dead cells between each time point and 

for each sample regardless of JO146 treatment.  

 

 

Figure 4.10. Histograms of the control samples for the second cytotoxicity assay to 

determine if JO146 is toxic to HEp-2 cells  

The histograms display relative fluorescence or light scatter intensity on the x-axis 

and the number of events on the y-axis (A). Two peaks corresponding to live and dead cells 

can be observed in the mixed control sample (light green). Live control cell population is 

designated by the blue histogram. The histogram marker of interest was based on the dead 

cell control population (red) and this gate was applied to the sample populations for each 

time point (B). 
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        Figure 4.11. Overlay of histograms for every treatment for the different time 

points 

Dead and live control cell populations are represented by filled red and blue 

histograms, respectively. Mixed live and dead cell population is represented by green 

histogram. Percentage values denote the number of necrotic cells in JO146-treated samples 

in each corresponding time point. 

 

Tables 4.1 and 4.2 show the corresponding number of dead cells, expressed in 

percentage of the parent population for each time point and treatments, as well as the 

corresponding values for each parameter in the control cell populations. It was 
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observed that there was no significant difference in numbers of dead host cells 

between JO146 treated and DMSO controls (Figures 4.9 and 4.11). 

Table 4-1. Number of necrotic cells expressed as percentage of the parent population in 

the time points indicated after JO146 treatment at 16 h PI 

 

Dead cells (% of parent) Mean FL3 Log* 

control dead cell 

population 99.7 565 

live dead cell 

population 1.71 11.6 

time point (h PI) DMSO JO146 DMSO JO146 

16 0.87 1.74 10.40 10.90 

18 0.67 1.06 9.13 9.77 

20 1.78 0.64 12.10 8.37 

22 1.09 1.26 9.34 9.73 

24 2.11 1.19 12.30 11.8 

*Mean (FL3 Log) denotes the mean fluorescence intensity for each sample population. 

 

Table 4-2. Number of necrotic cells expressed as percentage of the parent population in 

the time points indicated after JO146 treatment at 16 h PI 

  Dead cells (% of parent) Mean FL3 Log* 

control dead cell 

population 98.7 134 

live dead cell population 0.35 4.13 

time point (h PI) DMSO JO146 DMSO JO146 

24 0.35 0.96 6.45 7.10 

32 0.55 0.42 7.92 7.41 

40 0.52 0.67 8.18 9.84 

44 0.23 0.75 5.33 8.97 

*Mean (FL3 Log) denotes the mean fluorescence intensity for each sample 

population. 
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 JO146 has a reversible inhibitory effect on C. trachomatis, suggesting a 4.3.5

bacteriostatic effect. 

 

Figure 4.12. Experimental plan to assess the bacteriostatic or bacteriocidal effect of 

JO146 

 

The lethality of JO146 when added at 16 h PI could be a consequence of a 

specific time frame or phase of the chlamydial developmental cycle. Given that 

JO146 at 100 µM could prevent infectious progeny formation at all time points 

tested, a shorter exposure time during the replicative phase of development was 

conducted to understand the maximum treatment duration for JO146 to be lethal. 

Therefore, JO146 was added and subsequently removed from the cultures after 4 and 

8 hours exposure (20 and 24 h PI, respectively). Chlamydial inclusion forming units 

was then determined at 44, 54, and 64 h PI. JO146 treatment was still highly 

effective but not lethal when the compound was washed out after 4 and 8 h treatment 

(20 and 24 h PI respectively) with 1–2 log reduction in the formation of inclusion 

forming units (Fig. 4.13 and 4.14). The loss of infectious progeny when the 

compound was removed 4 and 8 h after addition was partially rescued (∼ 0.5 log) by 

extended culture in the absence of the compound (to 54 and 64 h PI) (Fig. 4.13 and 

4.14). The differences on the number of infectious progeny between cells treated 

with DMSO and 100 µM JO146 when the treatments were removed at both at 20 and 

24 h PI were statistically significant. 
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Figure 4.13. Infectious yield of Chlamydia after JO146 treatments 16 h PI when JO146 

was washed out at 20 h PI  

The cultures where harvested and the number of inclusion forming units was 

determined at 44, 54 and 64 h PI. The mean from three independent experiments are 

represented in the bar graphs and the error bars represent the standard error of the mean (n = 

27). Statistics were conducted using Two-Way ANOVA relative to DMSO controls. **** 

indicates p < 0.0001. IFU ml-1 is indicated on the y-axis. Time point of harvest is indicated 

on the x-axis. 

 

 

 

 

 

 

 

 

 

Figure 4.14. Infectious yield of Chlamydia after JO146 treatments 16 h PI when JO146 

was washed out at 24 h PI  

The cultures where harvested and number of inclusion forming units was determined 

at 44, 54 and 64 h PI. The mean from three independent experiments are represented in the 

bar graphs and the error bars represent the standard error of the mean (n = 27). Statistics 

were conducted using Two-Way ANOVA relative to DMSO controls. **** indicates p < 

0.0001. IFU ml-1 is indicated on the y-axis. Time point of harvest is indicated on the x-axis.  
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 JO146 treatment is lethal during heat stress and recovery from heat stress 4.3.6

for Chlamydia.  

 

Figure 4.15. Experimental plan to use the JO146 inhibitor to determine the role of 

CtHtrA for infectivity of C. trachomatis during heat stress conditions 

 

The impact of JO146 on heat stressed Chlamydia cultures was assessed to 

determine the role of HtrA for heat stress. JO146 was added either, during the heat 

shock and subsequently removed, or during the 4 h of post heat shock recovery and 

subsequently removed, and infectious yield was subsequently determined from the 

cultures after harvest at 44 h PI. It was previously demonstrated that the compound 

needed to be present for greater than 4 hours for complete lethality (Figure 4.3), 

therefore during this experiment, a higher concentration (150 M) was used. 

As shown in Figure 4.16A, the presence of JO146 during heat shock was 

completely lethal at 100 and 150 M. 50 M JO146 treatment during the 4 h heat 

shock also resulted in a marked loss of chlamydial infectious progeny  (>2 log) 

(Figure 4.16A). Some JO146-induced reduction in infectious progeny was also 

observed in the controls which were not heat shocked (Figure 4.16A), and this is 

consistent with the previous observations that JO146 needs to be present throughout 

the replicative phase (not for 4 h only) to be completely lethal as shown in Figure 4.3 

[250].  

JO146 treatment during the first 4 h of recovery from heat shock was also 

completely lethal at higher concentrations (100 M and 150 M), with a minor 

impact on infectious yield observed with 50 M JO146 (Figure 4.16B). There was a 

more noticeable reduction in viability for the heat shocked cultures compared to the 

controls during this experiment (Figure 4.16B). However, in spite of these 

differences it is clear that JO146 treatment both during heat stress and recovery from 
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heat stress was lethal for Chlamydia in spite of the relatively short treatment 

durations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. C. trachomatis infectious yield at 44 h PI after 4 h heat shock with JO146 

treatment (20–24 h PI) or JO146 treatment during recovery from heat shock             

(24–28 h PI) 

(A) The infectious yield after JO146 treatment for 4 h at 20 h PI with and without 

heat shock at 42oC. (B) Infectious yield after JO146 treatment for 4 h during recovery from 

heat shock (24–28 h PI) (n = 27). The concentration of JO146 is indicated by the coloured 

bars, legend to the right of each graph. IFU ml-1 is indicated on the y-axis. The presence or 

absence of heat stress is indicated on the x-axis. * indicates p < 0.05, ****p < 0.0001, ns 

indicates not significant. 
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 JO146 addition to C. trachomatis HEp2 cultures during penicillin 4.3.7

persistence results in a reduced infectious yield after recovery. 

 

Figure 4.17. Experimental conditions used to assess the impact of JO146 addition 

during penicillin persistence 

Previous studies have indicated that HtrA protein levels in Chlamydia are 

increased during penicillin persistence [19, 22], suggesting that the protease may be 

important during this phase. Therefore, the effect of JO146 during, and during 

reversion from, penicillin persistence was tested. Due to the bi-phasic nature of the 

chlamydial developmental cycle, it is not possible to measure the immediate impact 

on infectious progeny production during the replicative phase of growth. Therefore, 

for each of the penicillin persistence laboratory models conducted in this study, the 

infectious progeny yield was assessed once elementary bodies were expected to be 

formed, either at the conclusion of the developmental cycle, or once reversion from 

persistence and development of elementary bodies has occurred. The cultures were 

confirmed to be persistent by detection of loss of infectivity in the persistent cultures 

when control cultures were demonstrated to have infectious elementary bodies (as 

long as formation of infectious progeny was subsequently restored by removal of the 

growth inhibitory factor). The impact of JO146 addition during persistence (when 

aberrant bodies were present) was monitored by adding the compound at 16 h PI 

during persistence (penicillin was added at 4 h PI to induce persistence). Control 

cultures were included and harvested to measure infectious yield and also fixed and 

examined by confocal microscopy at 44 h PI. In the persistent cultures, media was 

changed with fresh media at 30 h PI to remove JO146 and penicillin. These cultures 

were harvested at 68, 78, and 90 h PI (or 38, 48, and 60 h after penicillin removal) to 

allow time for reversion from persistence and elementary body formation (as 

outlined in Figure 4.17). These cultures were tested for infectivity by measuring 
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inclusion forming units and morphology was examined using confocal laser scanning 

microscopy. 

The cultures were firstly confirmed to be persistent at 44 h PI by monitoring 

infectivity and impact of JO146 treatment in the presence and absence of penicillin. 

As shown in Figure 4.18, the cultures treated with penicillin had much smaller 

inclusions compared to the controls at 44 h PI. The inclusions were also much less 

populated with cell shaped bodies consistent with a persistent phenotype (Figure 4.18 

right column penicillin-treated compared to control left column). The increasing 

concentrations of JO146 resulted in a decreased inclusion vacuole size for both the 

penicillin treated and control cultures (Figure 4.19A). The penicillin treated cultures 

were confirmed to be persistent by a lack of infectious EBs at 44 h PI (Figure 4.19B) 

and supported by restoration of infectivity in subsequent experiments.  

The infectious yield during the reversion from persistence from the cultures 

with and without JO146 treatment was determined (at 68, 78, and 90 h PI) when it 

was expected to see recovery to infectious elementary bodies [280]. As expected, and 

consistent with previous observation (Figure 4.3), JO146 was completely lethal on 

the control (non-persistent) culture at 50 and 100 µM, when formation of infectious 

progeny production was measured at 44 h PI (Figure 4.19B) with some recovery of 

infectious progeny observed at the later time points (extended culture conditions, 

Figure 4.20B) (as consistent with previous work from our team). In contrast, JO146 

was not lethal when it was added at the same time point during penicillin induced 

persistence (Figure 4.20A). Cultures were treated with JO146 during persistence then 

rescued from the persistence by media change (30 h PI) to allow formation of EBs 

which could then be measured in the assay. JO146 treatment during the persistence 

phase resulted in a relatively minor loss of detectable inclusion forming units, with 

approximately a 1 log reduction of infectious yield observed at 100 µM JO146 when 

inclusion forming units were able to be detected at 68, 78, and 90 h PI (Figure 

4.20A). The control cultures that were not persistent showed ~2-3 log reductions in 

infectivity with 100 µM JO146 treatment at the extended culture times of 68-90 h PI 

(Figure 4.20B). This observation of reduced effectiveness of JO146 over extended 

culture conditions is consistent with previous observations from our team [250]. 

Differences in the number of infectious progeny between cells treated with DMSO 

and cells treated with 100 µM JO146 was statistically significant for all the time 
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points indicated both in penicillin treated cultures and in control (no penicillin) 

cultures (Figures 4.20A and 4.20B). 

The cultures were monitored by immunofluorescence during the reversion 

period and representative images from 68 h PI are shown in Figure 4.21 (left column 

control, right column penicillin). The penicillin treated cultures had smaller 

inclusions with atypical morphology (inclusions containing less cell-shaped bodies 

likely indicating there are still aberrant bodies present) at 68 h PI, with the inclusions 

generally appearing smaller in the presence of 100 µM JO146 (Figure 4.21, right 

column). The control cultures (no penicillin treatment) also showed a JO146 

concentration dependent reduction of the inclusion sizes (Figure 4.21, left column). 

However, even though the inclusions appeared markedly smaller when recovering 

from penicillin persistence at 68 h PI, there was only ~one log (approximately 1.4 x 

10
4
 IFU ml

-1
 difference between cultures treated with 100 µM JO146 and DMSO) 

reduction in infectious progeny/inclusion forming yield compared to the controls 

(Figure 4.20A). 
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Figure 4.18. Confocal microscopy images of JO146 treated cultures during penicillin 

persistence at 44 h PI  
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The figure shows representative images from confocal laser scanning 

microscopy of cultures fixed at 44 h PI (+PEN: penicillin added, −PEN: no 

penicillin)., 100 Uml
−1 

penicillin was added at 4 h PI. Representative images from 

the control culture are shown in the left column (−PEN). Penicillin treated conditions 

are shown in the right column. JO146 treatment conditions are indicated to the right 

(0, 10, 50, 100 µM, DMSO). The image colours are as follows, green: MOMP (major 

outer membrane protein) is green, blue: cell nucleus (DAPI), and red: β-actin. Scale 

bar (bottom right) indicates 10 µm.  
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Figure 4.19. Inclusion sizes and infectious yield during penicillin persistence at 44 h PI 

with and without JO146 treatment  

The figure shows morphological analysis of cultures during penicillin persistence 

and controls by measuring inclusion sizes. The infectious yield (44 h PI) in the presence or 

absence of 100 Uml
−1

 penicillin (4 h PI) is shown on the graph. (A) Inclusion sizes are 

shown from each condition. Inclusion sizes were measured from independent coverslips, n = 

20. (B) Inclusion forming units with and without penicillin are shown graphically (n = 27). 

Statistics were conducted using Two-Way ANOVA relative to DMSO controls, p < 0.05∗, p 

< 0.01∗∗, p < 0.001***, p < 0.0001****. 
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Figure 4.20. Infectious yield of C. trachomatis after treatment with JO146 during 

penicillin persistence  

The figure shows IFU ml−1 from each culture condition at several time points after 

reversion was commenced (penicillin removal at 30 h PI). Cultures were treated with 

penicillin 100 Uml−1 at 4 h PI, and with JO146 at 16 h PI (concentrations indicated by the 

coloured bars, see key to the right of each graph). Penicillin was removed from the cultures 

at 30 h PI. (A) Infectious yield from penicillin treated and restored cultures. (B) Infectious 

yield from control cultures which did not have penicillin added. Statistics were conducted 

using Two-Way ANOVA relative to DMSO controls, n=27. Data are presented as mean ± 

S.E.M, **** indicates p < 0.0001. 
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Figure 4.21. Confocal microscopy images of C. trachomatis cultures at 68 h PI, or 38 h 

after penicillin reversion commenced  
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Cultures were treated with penicillin 100 Uml−1 (right column) at 4 h PI, and with 

JO146 at 16 h PI (concentrations in µM are indicated to left of the image). Penicillin was 

removed from the cultures at 30 h PI. The image colours are as follows, green: MOMP 

(major outer membrane protein) is green, blue: cell nucleus (DAPI), and red indicates β-

actin. Scale bar (bottom right) indicates 10 μm. 

 

 JO146 addition to C. trachomatis HEp2 cultures during reversion from 4.3.8

penicillin persistence is lethal.  

 

 

 

 

 

Figure 4.22. Experimental plan to determine the impact of JO146 on C. trachomatis 

reversion from persistence 

 

It was previously determined that JO146 addition at 16 h PI resulted in loss of 

infectious progeny when cultures were harvested at the end of the developmental 

cycle (44 h PI) (Figure 4.3), suggesting that JO146 targets RB replication or RB-EB 

formation or both. Therefore, the impact of JO146 during reversion from penicillin 

persistence, which involves transitioning of aberrant bodies to infectious EBs, was 

determined. The mechanism of reversion from penicillin persistence has been 

described to be very asynchronous; with gradual budding of ‘normal’ RBs from the 

aberrant persistent forms in the inclusion over 10 to 20 h after penicillin was 

removed [158]. Penicillin persistent cultures were established by adding penicillin at 

4 h PI and then reversion was commenced by washing and media change at 40 h PI. 

12 h (52 h PI) after reversion was commenced, JO146 was added and formation of 

infectious elementary bodies was monitored at 84, 90 and 100 h PI. 

Firstly, the cultures were confirmed to be persistent at 40 h PI by measuring 

infectious progeny production and examining the morphology of the cultures using 

confocal laser scanning microscopy. As shown in Figure 4.23 the penicillin treated 

cultures were not culturable at 40 h PI (Figure 4.23E) and morphologically the 

inclusions were smaller and appeared to have large cellular forms present inside each 
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inclusion (Figure 4.23B, D). The penicillin persistent cultures were washed to 

remove penicillin to commence reversion at 40 h PI. JO146 was added to these 

cultures 12 h after commencement of reversion (i.e. 52 h PI). Infectious yield was 

then measured over time from the cultures. As shown in Figure 4.24A no infectious 

Chlamydia were detected at 84 h PI from the persistence reversion cultures (44 h 

after penicillin was removed), however at 90 and 100 h PI infectious EBs were 

detected. No chlamydial inclusions were observed at 84 h PI for all the treatments. 

At 90 and 100 h PI, JO146 treatment dramatically reduced the infectious progeny 

production of the Chlamydia. JO146 at 100 µM was completely lethal to the cultures 

undergoing reversion at 90 and 100 h PI (Figure 4.24A). JO146 was still completely 

lethal at 100 h PI when inclusions were recovered in cultures treated with 50 µM 

JO146. In contrast, the cultures that were not penicillin persistent showed only minor 

reductions in infectious progeny production due to the addition of JO146 (Figure 

4.24B). These control cultures were likely either mainly in elementary body form or 

early infection stages when JO146 was added (early or very late developmental 

cycle, or a mix of both), based on the morphological appearance of the inclusions 

and the expected timing of the chlamydial developmental cycle.  

The morphology of the cultures was examined using immunocytochemistry 

and confocal laser scanning microscopy during the reversion from persistence to 

monitor the impact of JO146 on inclusion morphology at 64 and 70 h PI (12 and 18 h 

after JO146 addition). In this case no obvious decrease in the inclusion size relating 

to JO146 treatment was observed (Figure 4.25, second and forth column), and as 

expected, the inclusions from the persistent cultures were much smaller than those in 

the controls (Figure 4.25 controls first and third column). 
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Figure 4.23. Penicillin persistence cultures prior to commencement of reversion were morphologically consistent with persistence  

Cultures were treated with penicillin 100 U ml−1 at 4 h PI. (A) Confocal microscopy image of cultures at 40 h PI in the absence of penicillin (-PEN) 

(B) Confocal microscopy image of cultures at 40 h PI in the presence of penicillin (+PEN). The scale bar on A and B indicates 50 μm. (C) Enlarged area of A: 

confocal microscopy image of cultures at 40 h PI in the absence of penicillin (+PEN). (D) Enlarged area of B: confocal microscopy image of cultures at 40 h 

PI in the presence of penicillin (−PEN). The contrast has been equally adjusted on C, D to improve the visibility of the morphologies present. The scale bar on 

C and D indicates 10 μm. (E) Infectious yield of the corresponding cultures (n = 27). 
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Figure 4.24. Infectious yield when JO146 was added during the reversion from penicillin 

persistence  

Cultures were treated with penicillin 100 Uml−1 at 4 h PI. Penicillin was removed at 40 h PI 

and JO146 treatment was commenced at 52 h PI. (A) JO146 was added 12 h after penicillin 

persistence reversion was commenced (i.e. at 52 h PI). (B) Control cultures that were not persistent 

with JO146 treatment also conducted at 52 h PI. The graphs show the inclusion forming units at 

several time points after reversion from persistence was commenced. Statistics were conducted using 

Two-Way ANOVA relative to DMSO controls, n=27. Data are presented as mean ± S.E.M, * 

indicates p < 0.05, **** p < 0.0001. JO146 concentration is indicated by the coloured bars (legend to 

the right of each graph). 
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 Figure 4.25. Confocal microscopy images of penicillin persistent cultures and controls 

during reversion from persistence at 64 and 70 h PI  

Cultures were treated with penicillin 100 Uml−1 at 4 h PI. Penicillin was removed at 40 h PI 

and JO146 treatment was commenced at 52 h PI. Controls with no penicillin first and third column, 

penicillin conditions second and fourth columns. JO146 concentrations (in µM) are indicated to the 

left of the image. The image colours are as follows, green: MOMP (major outer membrane protein) is 

green, blue: cell nucleus (DAPI), and red: β-actin. Scale bar (bottom right) indicates 10 μm. 
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4.4 DISCUSSION 

The periplasmic chaperone and serine protease HtrA plays important roles in bacterial 

stress responses and protein quality control (reviewed, [243]). The protein conducts diverse 

roles in bacteria from outer membrane protein assembly [247] to stress response and survival 

during stress [281], cleavage of host proteins [9] and intracellular infection survival [282]. 

Concurrent research conducted in our team used a chemical inhibition strategy to establish 

that Chlamydia HtrA (CtHtrA) was essential during the replicative phase of intracellular 

development by using the inhibitor compound, JO146. It was demonstrated that JO146 was 

effective when added at 16 h PI, which was consistent with an effect on the mid-replicative 

phase, but not when added during earlier or later stages of the chlamydial developmental 

cycle. Therefore, the present study aimed to determine the duration of treatment required for 

complete bacterial lethality as well as the mechanism of action of JO146, whether it’s 

bactericidal or bacteriostatic. Given the multi-tasking nature of HtrA already described for 

many other bacteria, the present study also set out to test the hypothesis that CtHtrA is 

essential for heat stress conditions and during persistence lab models.  

The data presented in this study demonstrate that JO146 addition (100 µM) at 16 h PI 

resulted in complete bacterial lethality when cells were harvested from the time of treatment 

up to the end of the chlamydial developmental cycle. While it is known that chlamydial 

developmental cycle is asynchronous, the completion of replication by binary fission is quite 

rapid. Miyairi and co-workers [89] comprehensively characterized the parameters of 

replication and EB formation for a number of serovars and found that for serovar D, 

logarithmic replication occurs from approximately 12–24 h PI with a marked halt of 

replication from approximately 24 h PI onwards [89]. At 18-24 h (time point may vary 

according to Chlamydia species and serovars), RB replication becomes asynchronous with 

some RBs differentiating back to the infectious EB form [189]. EB formation could be 

detected from approximately 20 h PI onwards and gradually increased until approximately 40 

h PI  [89]. Thus, EB formation is highly asynchronous; however, replication of the 

chlamydiae is tightly defined as between 12 and 24 h PI. Therefore, addition of JO146 at the 

replicative phase (16 hours PI) had significantly inhibited RB replication, and may have led 

to subsequent decrease on the formation of infectious EBs at completion of Chlamydia 

developmental cycle. Additionally, as transcriptional activity is maintained and completed at 

16-24 hours PI [90], treatment of C. trachomatis with JO146 at 16 hours PI may have 
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impacted a crucial stage of the developmental cycle that led to reduction in infectious yield 

observed in the present study.  

Furthermore, it was determined that the inhibitory impact of JO146 and the subsequent 

chlamydial death and loss of inclusion morphology appeared to relate directly to the observed 

Chlamydia defects and not a host mediated mechanism as indicated by the absence of co-

localization between the autophagy and lysosome markers, SQSTM1 and LAMP1, and the 

chlamydial inclusions during JO146 treatment. The use of LAMP1 and SQSTM1 antibodies 

monitored the possible involvement of the host cell’s autophagy-lysosome system and 

ubiquitin-proteasome pathway, respectively. Also, since a direct association of p62 with LC3, 

a specific marker for early autophagic vacuole [283, 284] has been previously documented 

[285, 286], the use of SQSTM1 antibodies assessed the early step in the autophagic pathway 

while LAMP1 antibodies monitored the late stages of autophagy. The absence of 

sequestration of chlamydial inclusions with both LAMP1 and SQSTM1 suggests absence of 

fusion with autophagosomes particularly at 20 and 24 h PI, indicating that the lethality of 

JO146 was not mediated by host innate defence or lysosome pathways.  

Further experiments were conducted to determine if the inhibitory effect of the 

compound was mediated by host cell viability. In the present study, although cells from all 

sample populations were suspended in phosphate buffered saline (PBS) for final processing 

using the kit, the slight intermediate staining that can be observed on the samples in the 

second assay (Figure 4.11) could be due to the toxic effect of DMSO, which was used to 

reconstitute the fluorescent reactive dye provided in the kit. DMSO is an amphipatic 

molecule and one of the most commonly used solubilizing agents in in vivo and in vitro 

studies. A number of previous studies have shown the therapeutic as well as the cytotoxic 

effect of DMSO, which includes induction of apoptosis in a dose-dependent manner [287-

289] as well as enhanced penetration of substances across biologic membranes thus its use as 

an aid in efficient penetration of drugs [290, reviewed by 291, 292, reviewed by 293]. The 

low concentrations of DMSO may have enhanced the permeability of the cell membrane thus 

allowing the reactive dye to react with intracellular amines of the cell. This explains the slight 

shift of the histogram of the sample populations towards the dead control population. 

However, a difference of two log values or a complete overlapping of histograms on dead and 

live control cell populations would readily distinguish live and dead cells. From the results 

generated in the study, the sample populations appear to be live at all time points whether 

JO146- or DMSO-treated, indicating that JO146 inhibits chlamydial growth without being 
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toxic to the host cells. This characteristic highlights the potential application of the CtHtrA 

inhibitor as an anti-chlamydial agent. 

The removal of JO146 at 24 h PI (8 h post-administration) showed a 2.5 log reduction 

in infectivity indicating that the most effective phase of inhibition was throughout the 

replicative phase until EB formation. Therefore, these data suggest that JO146 is inhibiting a 

specific function involved in replication that is essential for Chlamydia. Furthermore, the 

inhibitory effect of JO146 appears to be bacteriostatic since recoverable inclusion forming 

units were detected at later time points (44 and 54 h PI), during which, a 1.5 log reduction in 

infectivity was observed.  

The present study also demonstrates that CtHtrA is essential during heat stress and 

recovery from heat stress. The heat stress model is clearly likely to involve extra-cytoplasmic 

protein stress which will require both the protease activity and chaperone activity of CtHtrA. 

JO146 treatment in the presence of heat stress in a time frame (4 h) was completely lethal. 

This is amazingly quick given 4 h is consistent with less than 2 rounds of binary fission for C. 

trachomatis serovar D, which has been identified to take 2.4 h per round of binary fission 

[89]. This suggests that CtHtrA is essential during certain stress conditions and does not 

necessarily relate to replication or binary fission. Heat stress is highly likely to be a strong 

inducer of protein stress and for many bacteria is the main in vitro condition during which 

htrA- or degP- mutants were lethal [281]. Therefore, perhaps it was not surprising that 

CtHtrA was essential even in this relatively short time of heat treatment.   

As demonstrated in this study, it is also clear that CtHtrA is important, either for the 

stress, or restoration of protein biogenesis, during the reversion and recovery to EBs from 

penicillin persistence. Reversion is very asynchronous for this form of persistence. In C. 

trachomatis L2 serovar, which has slightly faster growth kinetics compared to that of the D 

serovar, reversion has been reported to take 10-20 hours after removal of the persistence 

inducing agent [158]. Therefore, in the present study, 52 h PI is the most logical choice to 

target reversion. The mechanism of reversion involves gradual budding of ‘normal’ RBs from 

the aberrant persistent forms [158]. These budded RBs are then thought to undergo 

replication by binary fission prior to conversion to the infectious EB form. Due to the 

asynchronous nature of reversion from persistence, it was not possible to uncouple restoration 

from persistence and the subsequent replication of the restored RBs. Hence, it is likely that 

the impact of JO146 in this experiment was on the replication of recovered RBs, the recovery 

from penicillin persistence to reticulate bodies or both. However, given that infectious 
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progeny were detectable at 50 h, but not at 44 h after reversion from penicillin persistence 

was commenced, it is most likely indicative that the impact of JO146 measured in this 

experiment is largely related to reversion from persistence. The absolute requirement for 

CtHtrA during recovery from penicillin persistence is an exciting finding, and to our 

knowledge is the first identification of an essential protein for this transition. Addition of 

JO146 at 52 h PI on the control, non-persistent cultures resulted to minor reductions in the 

formation of infectious progeny. Upon addition of JO146, these control cultures were either 

in the EB form or early infection stage. Concurrent work to this project demonstrated that 

JO146 was less effective for both of these developmental phases, so these results are 

consistent with what might be expected [250]. It was previously determined that JO146 was 

less effective in reducing infectious progeny production when the compound was added 

either during early or late stages of the developmental cycle. Therefore, these data indicate 

that during reversion from penicillin persistence and recovery of infectivity, JO146 treatment 

is completely lethal for Chlamydia.  

On the other hand, based on the lack of lethality of JO146 when it was added during 

persistence it seems possible that penicillin persistence does not involve a detrimental level of 

extra-cytoplasmic protein stress. It is important to note that there is a possibility of some off-

target impacts of JO146, however, given the marked phenotypes which correspond with very 

specific phases and conditions of chlamydial culture observed here, these impacts are likely 

minor. These data suggests that perhaps penicillin persistence is a strategy to reduce cellular 

and protein stress which may be an explanation for why CtHtrA was found not to be essential 

during penicillin persistence. 

In summary, the data presented here demonstrate that addition of a CtHtrA inhibitor, 

JO146, during the replicative phase of C. trachomatis disrupts the chlamydial developmental 

cycle, resulting in the reduction in inclusion vacuole size, and prevented the development of 

infectious EBs over time without being toxic to the host cells, HEp2. It was also determined 

that JO146 is lethal for chlamydial recovery from penicillin persistence and for heat stress 

conditions. These data supports an essential role for CtHtrA during the replicative phase of 

chlamydial development, and during heat stress and recovery from penicillin persistence. 
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5.1 INTRODUCTION 

Chlamydia (C.) trachomatis is an obligate intracellular Gram-negative 

bacterium that is the leading cause of preventable blindness in developing countries 

[7, 294] and is the most common cause of sexually transmitted bacterial infection in 

developed countries. Serious sequelae of chlamydial infections include pelvic 

inflammatory disease, tubal factor infertility and ectopic pregnancies in women [15-

17]. The chlamydiae have a unique developmental cycle consisting of two distinct 

morphological forms; the elementary body (EB) and the reticulate body (RB). The 

RB replicates by binary fission within a membrane-bound vacuole termed an 

inclusion. During the replicative phase of development (18-24 h PI, depending on the 

serovar), RBs asynchronously differentiate back to the infectious EB form, which 

accumulate in the lumen of the inclusion as the remaining RBs continue to multiply 

[295]. At the late stage of development, the mature EBs are released through lyses of 

the host cell or extrusion of the vacuole [86].  

Due to the organism’s obligate intracellular niche and complex biphasic 

developmental cycle, the field lacked a system for genetic manipulation for a long 

time. However, it was recently established that C. trachomatis genomes are 

amenable to genetic manipulation as demonstrated by naturally occurring 

recombination [296] as well as the application of genetic systems that identify lateral 

gene transfer among chlamydiae in vitro [184, 297]. Previous studies on Chlamydia 

genetics involved the determination of the role of plasmid-encoded components in 

chlamydial pathogenesis and regulation of chromosomal factors. O’Connell and 

Nicks [163] described the isolation of plasmid-deficient derivatives of C. muridarum 

strain Nigg using novobiocin as a curing agent. The plasmid-deficient derivatives 

generated by this method were unable to accumulate glycogen and formed small 

plaques in culture, and this was observed for all plasmid-deficient C. trachomatis 

strains [163]. Song and co-workers [171] described the use of deletion mutagenesis 

and chlamydial transformation to genetically characterize the function of chlamydial 

plasmid open reading frames (ORFs). They identified that the ORF pgp4, a 

transcriptional regulator of multiple chromosomal genes including the glycogen 

synthase, glgA, plays an important role in chlamydial virulence [171]. Kari and co-

workers [176] utilized chemical mutagenesis and a reverse genetic approach to create 

isogenic C. trachomatis mutants. They identified that infectivity of CTD trpB- was 
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not rescued by exogenous indole [176], the substrate used by genital but not ocular 

C. trachomatis serovars to synthesize tryptophan and escape the antimicrobial effect 

of IFN-γ-induced tryptophan starvation [182]. Recently, Bao and co-workers [183] 

were able to isolate a mutant, MCR (MoPn with CF0001 resistance) that is resistant 

to the inhibitor compounds, benzylidene acylhydrazides (CF0001) through continued 

passage of wild type C. muridarum (mouse pneumonitis pathogen, [MoPn]) in the 

presence of the inhibitor. These studies represent highly significant developments in 

Chlamydia genetics and thus the phrase “genetically intractable” no longer applies to 

Chlamydia.  

Small molecule approaches have also been applied to determine specific 

functions of proteins in bacteria. Through the use of Yersinia Type III Secretion 

system (T3SS) inhibitors, it was identified that T3SS activity and chlamydial 

development are interlinked processes. Inhibition of T3SS resulted in stalled RB to 

EB differentiation, disruption of C. pneumoniae developmental cycle, prevention of 

replication of C. pneumoniae and C. trachomatis in in vitro infection models, and 

failure of the inclusion membrane proteins IncA and IncG to localize in the inclusion 

membranes [183, 185-188]. Through the use of small molecule inhibitors of LpxC, 

the enzyme that catalyses the first committed step in the biosynthesis of lipid A, the 

synthesis of lipooligosaccarides (LOS) in C. trachomatis is blocked. In the absence 

of LOS, C. trachomatis remains viable but non-infectious and replicative RBs failed 

to express selected late-stage proteins and transition to EBs [189]. Engström and co-

workers [190] identified the inhibitor compound, 2-pyridone amide KSK120 that 

targets the glucose-6-phosphate (G-6P) metabolism pathway of C. trachomatis. 

Treatment with KSK120 blocked glycogen accumulation, thus, KSK120 may 

represent a class of drugs that can specifically inhibit C. trachomatis infection [190]. 

Our group recently identified a unique inhibitor compound, JO146 which is 

specific for C. trachomatis serine protease, High Temperature Requirement protein 

A (CtHtrA) and is lethal to the organism when added at mid-replicative phase of the 

chlamydial developmental cycle. Genetic studies targeting essential proteins of C. 

trachomatis particularly the CtHtrA may provide knowledge on the potential role of 

this serine protease on chlamydial infection and pathogenesis. HtrA has previously 

been demonstrated to be essential for extra-cytoplasmic bacterial protein folding and 

stress response [19]. Studies have also found that CtHtrA is secreted into the host cell 
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[23, 265], suggesting a role in Chlamydia interactions with host cells. However, the 

specific function of HtrA for chlamydial mid-replicative phase is not well elucidated 

(i.e. the substrates that require HtrA and are critical for mid-replicative phase). Using 

a combination of chemical mutagenesis, selection, and whole genome sequencing 

(WGS), the present study aimed to identify the role of CtHtrA. Chlamydial mutants 

resistant to JO146 were selected and characterized to determine basis of this 

resistance. Whilst a resistant isolate was not derived, unique mutants that were less 

susceptible to JO146 were generated and characterized.  

 

5.2 MATERIALS AND METHODS 

 

 Chlamydia cultures and cells 5.2.1

Chlamydia culture was conducted as described in Materials and Methods 

section 3.3. Briefly, C. trachomatis (serovar D UW-3/Cx) was routinely cultured in 

HEp2 cells in DMEM supplemented with 5% fetal calf serum, 10 µg ml
-1

 

gentamicin, 100 µg ml
-1

 streptomycin sulphate and incubated at 37
o
C, 5% CO2. All 

cultures were conducted at a multiplicity of infection (MOI) of 0.3 unless otherwise 

stated. 

 

 Generation of C. trachomatis mutants using EMS mutagenesis 5.2.2

Generation of C. trachomatis mutants and estimating the rate of mutations 

were performed following the procedure of Kari and co-workers [176] with minor 

modifications. Low-level ethyl methanesulfonate (EMS) was used as a mutagen 

since it has been shown to introduce C-G to T-A transition mutations. Briefly, a 6-

well cell culture plate was seeded with 1.5 x 10
6
 McCoy cells well

-1
 in 3 ml DMEM 

supplemented with 10% FCS, 10 µg ml
-1

 gentamicin and 100 µg ml
-1

 streptomycin. 

After 24 hours, the cells were infected with C. trachomatis D at an MOI of 1.0 by 

centrifugation at 500 × g for 30 minutes at 25
o
C. At 22 h PI, infected host cells were 

exposed for one hour to EMS at 37
o
C. Preliminary experiment using different 

concentrations of EMS namely, 2.0, 3.0 and 4.0 mg ml
-1 

was performed to evaluate 

the right amount of EMS to be used to manage the “percent killing” and mutation 
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frequency. After treatment with EMS, the media was removed and replaced with 

fresh media containing 1 µg ml
-1

 cyclohexemide and the cells were incubated at 

37
o
C, 5% CO2. Untreated (non-mutagenized) C. trachomatis D control (CtDpp) was 

included. The cells were harvested in sucrose phosphate glutamate (SPG) buffer at 

44 h PI. In brief, the media was removed from the wells and replaced with 1 ml    

well
-1

 SPG. The infected monolayers were harvested and stored in aliquots at -80
o
C. 

Viable infectious yield and “percent killing” was determined by re-infecting fresh 

McCoy and HEp2 cells and number of IFUs was determined following the 

procedures previously described. Wild-type C. trachomatis D (UW-3/Cx), 

designated as CtDpp in this study, was a plaque purified, long term laboratory-

passaged strain which has been previously sequenced by the team. CtDpp was 

neither treated with EMS nor passaged in the presence of JO146 and was included as 

a control in all of the experiments for this study.  

The rate of mutation was estimated by determining the frequency of 

rifampicin-resistant (Rif
R
) mutants which emerged as a result of point mutations in β-

subunit of RNA polymerase [181]. To determine the concentration of rifampicin to 

be used for identifying rifampicin resistant mutants, a preliminary experiment using 

different concentrations of rifampicin (0.05 µg ml
-1

, 0.1 µg ml
-1

, 0.3 µg ml
-1

) was 

conducted. This was performed by plaque assay on wild type, laboratory strain of C. 

trachomatis D (UW-3/Cx) as described in Materials and Methods Section 3.6 to 

confirm which concentration of rifampicin was inhibitory to the wild-type strain. 

Plates (6-well) seeded with 1.2 x 10
6
 McCoy cells well

-1
 were infected with a total of 

2 x 10
6 

EBs by centrifugation at 500 × g for 30 minutes at 25
o
C. Rifampicin was 

added to the non-agarose mixture to achieve the desired rifampicin concentration. 

The plates were examined for presence of plaques every day for 14 days. Once the 

concentration of rifampicin (0.1 µg ml
-1

 [176]) for determining mutation frequency 

was established, the plaque assay was again performed as previously described; 

however, this time, 2.0 x 10
6
 EMS-mutagenized C. trachomatis D strains were used 

to infect the monolayers. The number of plaques was noted and the rate of mutation 

was calculated.  

The C. trachomatis genome contains 4.30 x 10
5
 C-G base pairs. Transition of 

five of these C-G pairs results in rifampicin resistance [79, 81, 184, 267-269]. The 
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rate of mutation was estimated using this formula: [(number of plaques observed/2.0 

x 10
6 
EBs) x 4.30 x 10

5
]/5.  

 

 Calculating for percent killing 5.2.3

The percent killing corresponding to each EMS treatment was calculated as 

follows: Percent killing = 100 – [(IFU ml
-1

 in untreated (0 mg ml
-1

 EMS) cultures/ 

IFU ml
-1

 in EMS treated cultures) x 100]
  

 

 Selection and Isolation of JO146 resistant mutants 5.2.4

Four (4) different selection strategies were conducted in an attempt to isolate 

JO146 resistant strains. These selection processes utilized either wild-type or EMS- 

mutated C. trachomatis D (UW-3/Cx). Three of the selection processes employed 

96-well culture plate format to test small pools of mutants or strains that could be 

kept and used for a replica culture format/screening process if needed, while the 

fourth selection process involved continued passage of the chlamydial cells in the 

presence of JO146 in a T25 flask.  

Firstly, a preliminary experiment to determine the dose of the inhibitor 

compound JO146 most compatible with a high throughput experimental design in 

96-well culture plate was performed. The conditions that were varied included host 

cell density, time post-infection when JO146 was added to the culture, and time post-

infection when the cells were harvested in sucrose phosphate glutamate (SPG) buffer. 

The preliminary experiments with varied conditions are outlined in Table 5.1.   
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Table 5-1. Screening methods used to determine the conditions in which JO146 was 

lethal in a 96-well format. 

 

 

 

 

 

 

 

For all experiments, the culture medium was changed at 4 h PI to fresh medium 

containing 1 µg ml
-1

 cycloheximide. The cultures were harvested for each 

experiment by replacing the culture medium with 250 µl fresh, cold SPG and 

dislodging the infected monolayer by vigorously pipetting up and down the material 

from the wells. Formation of infectious elementary bodies was then determined by 

reinfecting fresh HEp2 monolayer as described in section 3.4.  

Three distinct selection processes were attempted to isolate a JO146 resistant 

C. trachomatis clone in 96 well format. Briefly, these were: a two-stage (150-150 µM 

JO146) selection against a library of plaque purified C. trachomatis D (CtDpp) EMS 

mutants in 96 well plate format (Experiment A); a three-stage selection against a 

library of non-mutagenized C. trachomatis in a 96 well plate format that involved 

increasing doses of JO146 over the duration of the experiment (75-75-150 µM 

JO146, Experiment C); a two-stage (75-150 µM JO146) selection against a library of 

plaque purified C. trachomatis D (CtDpp) EMS mutants in 96 well plate format 

(Experiment C).  

The fourth selection protocol utilized flask based cultures involving 26 

continued passages of wild-type C. trachomatis D or a library of EMS mutagenized 

C. trachomatis D in the presence of two-stepped dosing regimen of JO146 

(Experiment D). Table 5.2 briefly summarizes the methods for the selection 

experiments conducted to isolate a JO146 resistant mutant.  
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Table 5-2. The different selection processes utilized in the present study in an attempt 

to isolate a JO146 resistant mutant. JO146 regimen corresponds to the sequential 

rounds of JO146 treatment. 

 

Once the conditions wherein JO146 was lethal and the experiment which was 

sufficiently high throughput were established, the selection experiments (A, B, and 

C) were then performed using either wild type or EMS (2 mg ml
-1

) mutagenized C. 

trachomatis D (UW-3/Cx). A total of 2.0 x 10
6
 EBs well

-1
 were subjected to JO146 

treatment at the start of each selection process. Each of the experiments was 

conducted at MOI of 0.3 (6.67 x 10
3
 EBs well

-1
). Cultures were exposed to two or 

three sequential cultivations each in the presence of JO146 with samples from each 

stage monitored for the formation of infectious progeny and JO146 sensitivity. These 

sequential cultivations were treated with 150-150 µM JO146 for Experiment A, a 

three round (75-75-150 µM JO146) of treatments for Experiment B, 75-150 µM 

JO146 sequential treatments for Experiment C. Controls (wild type C. trachomatis 

D), corresponding to untreated and JO146-treated cells, respectively, were included 

in the assays.  

The other type of selection process performed for this study was generally 

conducted in T25 culture flasks (Experiment D) (Table 5.1). Selection and isolation 

of JO146 resistant C. trachomatis strains was performed following the method of 

Bao and co-workers [183]. HEp2 cells were 90% confluent at the time of initial 

infection with 2.0 x 10
6
 EBs in T75 flasks. Either EMS- mutated or wild type C. 

trachomatis D (UW-3/Cx) strains were used to infect the host cell monolayers. At 16 

h PI, the cells were treated with JO146. The cells were harvested at 48 h PI and 

directly used to reinfect fresh HEp2 monolayers. The concentration of JO146 used 

and the amount of SPG harvest used to reinfect fresh HEp2 monolayers were guided 

by the apparent multiplicity of infection observed in the cultures. The cells were 
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cultivated in the presence of JO146 for 26 passages (Experiment D). In the absence 

of any visible inclusions under the microscope, the culture was harvested and “blind 

passaging” was performed once or twice without JO146 treatment until inclusions 

were observed in the cultures.  

A total of six T25 flasks were utilized for Experiment D. These flasks were 

labelled as 1A, 1B, 2A, 2B, 3A and 3B. Two of the flasks, (1A and 1B) were infected 

with CtDpp EMS mutants, while four (2A, 2B, 3A and 3B) were infected with wild 

type CtDpp. At the end of the 26
th

 passage, the cultures were expanded three times 

without the presence of the inhibitor. The resistance of the mutants against the 

inhibitor was then confirmed by treating the strains with 10, 25, 50, 75, 100 and 125 

µM JO146. Treatment with media only (0 µM JO146) and DMSO were used as 

controls. All JO146 treatments were done in conjunction with wild-type CtDpp 

control which was not passaged in the presence of JO146.  

After confirmation of resistance to JO146, Chlamydia from each of the six 

flasks for Experiment D was plaque purified as described in Materials and Methods 

Section 3.6. For each unique population, three plaques were picked and passaged in 

fresh HEp2 cells to obtain a clonal isolate of the JO146-resistant mutants. These 

mutants were designated according to the initial formats in which they came from, 

for instance, 1A1, 1A2, 1A3 (for the three plaques from format 1A), 1B1, 1B2, and 

1B3 (for the three plaques from format 1B) and so on. The clones were again 

subjected to JO146 treatments (25 µM, 75 µM and 125 µM) to confirm their 

resistance to the inhibitor. The three most resistant clones (1A3, 1B3 and 2A3) 

(Table 1) were selected for downstream processing. These three clones were cultured 

in T75 flasks three times to obtain high titres. Determination of IFU ml
-1

 was then 

assessed using the method previously described (Materials and Methods section 3.4).  

 

 Growth analysis of the JO146 resistant mutants 5.2.5

A growth analysis experiment was conducted to characterise the growth 

kinetics of the isolated mutants. Cultures conducted in 48-well plates were seeded 

with 25,000 HEp2 cells well
-1

. 24 hours after seeding, the cells were infected with 

the JO146 resistant mutants (1A3, 1B3 and 2A3) at an MOI of 0.3. The cells were 

harvested in SPG at 24, 30 and 44 h PI. Quantification of Chlamydia was performed 
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as described in Materials and Methods section 3.4. Cultures for 

immunocytochemistry were conducted on glass coverslips, using the method 

previously described in Materials and Methods section 3.5. The sizes of the 

inclusions were measured using the Leica application suite. 

  

 Determination of the growth of C. trachomatis JO146 resistant mutants 5.2.6

under heat stress 

To determine the growth of the mutants during heat stress, a heat shock 

experiment was performed. Culture plates (48-well) were seeded with 25,000 HEp2 

cells well
-1

. 24 hours after seeding, the host cells were then infected with C. 

trachomatis JO146 resistant mutants at an MOI of 0.3. At 20 h PI, the cells were 

treated with JO146 (0, 50, and 100 µM) or DMSO immediately prior to heat shock at 

42
o
C for 4 hours. At 24 h PI, the compound was removed from the cultures by 

washing with pre-warmed media three times prior to returning the cultures to 37
o
C. 

The cells were harvested in SPG at 44 h PI and Chlamydia quantification was 

performed as described in Materials and Methods section 3.4.  

 Growth of C. trachomatis JO146 resistant mutants during penicillin 5.2.7

persistence 

A penicillin persistence experiment was conducted to check for recovery of the 

clones from penicillin-induced persistence. Briefly, 48-well culture plates were 

seeded with 25,000 HEp2 cells well
-1

. The host cells were infected with the mutants 

at an MOI of 0.3. Penicillin (100 U ml
-1

) was then added to the cultures at 4 h PI. 

Penicillin was removed from the cultures at 30 h PI by three rounds of washes with 

pre-warmed media. The cultures were harvested at 68 and 88 h PI in SPG. A separate 

control culture wherein penicillin was not removed was included. Morphology and 

sizes of the inclusions were examined by immunocytochemistry and confocal 

microscopy as previously described in Materials and Methods section 3.5. 

 

 C. trachomatis genomic DNA extraction 5.2.8

Genomic DNA was extracted from C. trachomatis isolates that were purified 

from cultures as described in Materials and Methods section 3.3 (Chlamydia strain 

propagation). The cell lysates were centrifuged at 18,000 × g for 30 mins at 4
o
C to 
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pellet the Chlamydia. After centrifugation, the supernatant was removed and the cells 

were suspended in 100 µl SPG. 100 µl of lysis buffer (Qiagen, Hilden, Germany) and 

20 µl of 20 mg ml
-1

 proteinase K (Promega, WI, U.S.A.) were added to 100 µl of the 

cell lysate. The cells were incubated at 37
o
C overnight. 1.5 µl of RNAse (Life 

Technologies, Eugene, OR, U.S.A.) was added to the cell lysate and incubated at 

37
o
C for 1 h. The tubes were then cooled down on ice for 3 mins, after which, the 

tubes were centrifuged at 18,000 × g for 1 min. The supernatant was transferred to a 

new 1.5 ml microcentrifuge tube. Equal amount of phenol chloroform isoamyl 

alcohol solution (Sigma-Aldrich, St. Louis, MO, U.S.A.) was added to the nucleic 

acid solution and the tubes were inverted until an emulsion formed. The tubes were 

then centrifuged at 12,000 × g for 5 mins at room temperature. The aqueous phase 

was transferred to a new tube and equal amount of phenol chloroform isoamyl 

alcohol solution was then added and this PCI extraction step was done twice. The 

aqueous phase was then transferred to a new tube and (2.5x the amount of the 

aqueous phase) 100% cold ethanol and (0.1x the amount of the aqueous phase) 3 M 

sodium acetate (NaOAc) and 1 µl glycogen solution (Invitrogen, Eugene, OR, 

U.S.A.) were added to the aqueous phase.  The tubes were stored at -20
o
C overnight. 

The DNA was pelleted by centrifugation at 18,000 × g for 10 minutes at 4
o
C. The 

supernatant was removed and 1 ml 70% ethanol was added. The tubes were 

centrifuged for 5 mins at 18,000 × g at 4
o
C and the ethanol wash was repeated once.  

After the second ethanol wash, ethanol was removed without dislodging the pellet. 

The pellet was dried and then resuspended in 50 ml nuclease-free water. The tubes 

were incubated for 30 mins at 65
o
C to dissolve DNA in the solvent. The total DNA 

was quantified by measuring the optical density with a NanoDrop 

Spectrophotometer. 

An aliquot of the genomic DNA of each strain was run in 0.8% agarose gels in 

TBE (Tris-borate-EDTA; 89 mM Tris (ph 7.6), 89 mM boric acid, 2 mM EDTA) 

buffer at 100 V. The gels were then stained with SYBR
®

 Safe (Invitrogen, Eugene, 

OR, U.S.A.), viewed and photographed using Gel Doc System (Bio-Rad, CA, 

U.S.A.). 
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 Genomic sequence analysis of the clones 5.2.9

Reads (300 bp paired-end) were generated using Illumina's MiSeq platform. 

The reads were trimmed and filtered for a minimum average base quality of 28 

(Phred+33) across a sliding window of 4 bp. The Nesoni (Victorian Bioinformatics 

Consortium) pipeline was used for mapping and SNP and indel calling. Sequencing 

adapters, indexes and primers were trimmed and reads were mapped using Bowtie2 

against the reference Chlamydia trachomatis D (UW-3/Cx) complete genome 

(GenBank accession no. AE001273) and the C. trachomatis D-EC plasmid 

pCTDEC1 (GenBank accession no. CP002053). 

 

5.3 RESULTS 

 C. trachomatis mutants generated by EMS mutagenesis 5.3.1

C. trachomatis mutants were generated by EMS mutagenesis. Three 

concentrations of EMS (0, 2 and 3 mg ml
-1

) were used. Table 5.2 shows the 

Chlamydia IFU ml
-1

 recovered as well as the percent killing that resulted for each of 

the EMS treatments.  

Table 5-3. Infectious progeny recovered and percent killing generated from EMS 

mutagenesis of C. trachomatis D 

 

 

 

aControls without EMS treatment were concurrently conducted and this % killing represents 

the loss relative to control yield. 

 

The ideal EMS concentration to use for the experiments was determined by 

assessing a suitable mutation frequency rate as well as the final yield of culture (% 

killing) to ensure adequate numbers of mutants could be generated to be screened. 

Briefly, 2 x 10
6
 EBs from the EMS library were screened in a plaque formation assay 

in the presence of rifampicin and 21 plaques were formed for the 2 mg ml
-1

 EMS 

library. The C. trachomatis D genome contains 430,636 C-G base pairs [298] and 5 

C-G transitions result in rifampicin resistance. Therefore, the rate of mutation from 
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this library was calculated to be 0.904 mutations per genome [(21/2,000,000) x 

430,636]/5 = 0.904] (88.64% killing) (Table 5.2). 

 

 Isolation of JO146 resistant strains was successful using the T25 flask 5.3.2

format but not the 96-well library format 

The first method of selection conducted to isolate JO146 resistant or less 

susceptible strains utilized a 96-well culture plate format. Results from preliminary 

experiments demonstrated that condition S1A (20,000 Hep2 cells well
-1

, JO146 

added at 16 h PI, SPG harvest at 44 h PI) was completely lethal to wild type C. 

trachomatis D. Based on this condition, three distinct selection experiments were 

conducted in a 96-well format. Serial selection in the presence of JO146 (as 

described in section 5.2.4) was conducted in order to isolate JO146 resistant clones. 

The experiments (A, B, and C as outlined in Materials and Methods) resulted in 

reduction of inclusion forming units (IFU) that were not able to be recovered even 

after subsequent serial passage in the absence of JO146.  

Experiment A was tested for resistant isolates after two rounds of JO146 

selection at 150 µM treatments on both occasions. Wells in which inclusions were 

present (11 out of 32 wells that exhibited formation of IFUs after the first round of 

JO146 selection) were cultured in the presence of a dose series of JO146 and IFU ml
-

1
 determined (Figure 5.1). None of the isolates from this experiment showed a higher 

level of resistance to JO146 compared to C. trachomatis D control (CtDpp) (Figure 

5.1), indicating that the selection was not effective. A similar lack of success resulted 

from approaches in experiments B and C.  
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Figure 5.1. Infectious progeny detected after second round of JO146 treatment for Selection A  

  The names of the strains are indicated on the x-axis and the numbers of infectious progeny (IFU ml
-1

) are indicated on the y-axis. CU 

indicates untreated CtDpp, CJ150 indicates CtDpp treated with 150 µM JO146.
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The attempt to isolate JO146 resistant mutants using the 96-well culture plate 

format (experiments A, B, and C) described in this study was unsuccessful. After 

several rounds of screening for JO146 resistance, no infectious progeny was detected 

in the cultures in the 96-well library format, thereby indicating that the process either 

resulted in the absence of JO146 resistance or less susceptible isolates, or a complete 

loss of any isolates. In contrast, lengthy serial passage of chlamydiae in the presence 

of JO146 (Experiment D) resulted in the generation of truly resistant strains of the 

organism. Six unique pools were used. Two (2) of the pools, (1A and 1B) were 

infected with C. trachomatis D EMS mutants, while four (2A, 2B, 3A and 3B) were 

infected with wild type C. trachomatis D. Four of these cultures (1A, 1B, 2A and 2B) 

were found to be less sensitive to the inhibitor when tested using a dose series after 

26 passages in the presence of JO146 (Figure 5.2). 3B did not grow any inclusions 

after the 26
th

 passage, indicating that the compound had completely inhibited 

chlamydial growth and infectious progeny production for this culture. Resistance of 

the mutants to JO146 were identified through the detection of infectious progeny in 

these cultures even after treatment with 125 µM JO146 (Figure 5.2). No chlamydial 

growth was observed in cultures infected with control C. trachomatis D strain 

(CtDpp) treated with 125 µM JO146 (Figure 5.2). The number of infectious progeny 

in cultures treated with DMSO compared to cultures treated with 50, 75, 100, and 

125 µM JO146 for all the different populations including the CtDpp control were 

statistically significant (p < 0.0001) (Figure 5.3). 
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Figure 5.2. Infectious progeny production after JO146 treatment at 16 h PI after 

continued passage of the cultures in the presence of the inhibitor  

A, Infectious progeny production after the mutants and control CtDpp were treated 

with JO146 at 0 to 125 µM as well as DMSO control; B, Infectious progeny production for 

cultures treated with 100 and 125 µM JO146 and DMSO control showing the comparative 

statistics between the susceptibility of the mutants and the parent strain (CtDpp). The names 

of the strains are indicated on the x-axis and the numbers of infectious progeny (IFU ml-1) 

are indicated on the y-axis. Statistics were conducted using Two-Way ANOVA relative to 

DMSO control. Error bars represent the standard error of the mean (n=27), **** indicates p 

< 0.0001. 

 

The three least susceptible populations to JO146 were then selected. These 

were 1A, 1B and 2A. Chlamydia from these selection protocols were then plaque 

purified and three plaques were picked from each unique protocol and passaged in 

fresh HEp2 cells to obtain nine clones of JO146-resistant mutants. The JO146 



  

Chapter 5: Genetics; JO146 resistant mutants 126 

resistant clones were designated as 1A1, 1A2, 1A3, 1B1, 1B2, 1B3, 2A1, 2A2, and 

2A3. The mutants were subjected to JO146 (25 µM, 75 µM and 125 µM) treatments 

to confirm resistance to the inhibitor.  

It was observed that there were four less susceptible clones as indicated by the 

presence of chlamydial growth even after treatment with 125 µM JO146 (Figure 5.3). 

No infectious progeny was detected in all the other cultures treated with 125 µM 

JO146. The clones with reduced susceptibility to JO146 were 1A3, 1B2, 1B3 and 

2A3 (Figure 5.3). 2A3 had the most reduced susceptibility to the inhibitor, with the 

number of IFU ml
-1

 in the cultures treated with 125 µM JO146 equal to that of the 

cultures treated with 25 µM JO146 for this clone (1.35 x 10
5
 IFU ml

-1
). No infectious 

progeny was detected in CtDpp treated with 125 µM JO146. The number of 

infectious progeny in cultures treated with DMSO compared to cultures treated with 

75 and 125 µM JO146 for all the clones including the CtDpp control were 

statistically significant (p < 0.0001) (Figure 5.3). The top three clones with least 

susceptibility to JO146 and from three distinct selection pools, 1A3, 1B3 and 2A3 

were then selected for phenotypic and genotypic characterization in order to ensure 

that the same clone was not isolated multiple times. 
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Figure 5.3. Yield of infectious elementary bodies (EBs) after treatment with different 

concentrations of JO146 for plaque purified resistant mutants  

Error bars represent the standard error of the mean (n=27). Names of the plaque 

purified strains are indicated on the x-axis and IFU ml
-1

 is indicated on the y-axis. Statistics 

were conducted using Two-Way ANOVA relative to DMSO control. Error bars represent the 

standard error of the mean (n=27), *** indicates p < 0.001. 
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 A higher yield of infectious progeny was observed in mutants.   5.3.3

A growth analysis was performed to assess the generation of infectious 

progeny (Figure 5.4). At 30 h PI, infectious progeny was observed for all the isolates 

with 2A3 having the highest number of IFU ml
-1 

(8.25 x 10
3
 IFU ml

-1 
for 2A3 and 

2.92 x 10
3
 IFU ml

-1
 for wild type, CtDpp control). At the conclusion of the 

developmental cycle (44 h PI), there was approximately 1.5 log increase in the 

number of IFUs for each strain. At this time point, all of the mutant strains generated 

more infectious EBs compared to CtDpp control. It was observed that all the clones 

with less susceptibility to JO146, except for 1A3, had higher number of infectious 

progeny than the wild type strain, CtDpp both at 30 and 44 h PI (Figure 5.4). The 

number of recoverable EBs for both 1B3 and 2A3 was significantly different 

compared to the IFUs observed in CtDpp (p < 0.001) (Figure 5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Yield of infectious elementary bodies (EBs) throughout the late stage of the 

C. trachomatis developmental cycle for the JO146 resistant strains  

The mutant strains are indicated by the coloured bars. The time post-infection (h PI) 

is indicated on the x-axis and IFU ml-1 is indicated on the y-axis. Statistics were conducted 

using Two-Way ANOVA relative to CtDpp control strain. Error bars represent the standard 

error of the mean (n=27), *** indicates p < 0.001. 
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Immunocytochemistry was conducted and analysis revealed that the inclusions 

appeared morphologically the same among the different mutant strains compared to 

the wild type within the same time point, with the inclusions appearing largest at 40 

h PI (Figures 5.5 and 5.6). At 24 h PI, inclusions formed in the cells infected with 

wild type C. trachomatis D (CtDpp) were largest (average inclusion size of 9.39 µm) 

(Figure 5.6). The inclusions greatly increased in size at 40 h PI. Except for 1B3, the 

sizes of inclusions formed in the mutants were approximately equal to the sizes of 

inclusion formed in CtDpp (average inclusion size of 22.53 µm) (Figure 5.6). 
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Figure 5.5. Immunofluorescence using anti-MOMP antibodies at 24, 30 and 40 h PI  

Analysis of the confocal microscopy images indicates that the chlamydial inclusions 

increase in size over time for the JO146-resistant mutants as well as the control, wild-type C. 

trachomatis D (CtDpp). Names of the strains are indicated on the left side of the images and 

corresponding time points are indicated on the top of the panel. Scale bar (bottom right) 

indicates 10 µm. 
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Figure 5.6. Inclusion sizes of JO146 less susceptible strains and wild type C. trachomatis 

D (CtDpp) at 20 and 40 h PI  

Inclusion sizes were measured from independent coverslips, n = 30. Time post-

infection (h PI) is indicated on the x-axis and inclusion size (µm) is indicated on the y-axis. 

Statistics were conducted using Two-Way ANOVA relative to CtDpp control strain. Error 

bars represent the standard error of the mean (n=27). Inclusion sizes of the clones compared 

to CtDpp were not significantly different for both 24 and 40 h PI. 

 

 JO146 was lethal to mutants when added during heat stress 5.3.4

The growth of the mutants treated with JO146 during heat stress was 

determined. Cultures treated with the mutants were exposed to heat stress (42
o
C) for 

four hours immediately after addition of JO146 at 20 h PI. The compound was 

removed at 24 h PI prior to returning the cultures to 37
o
C. Infectious progeny yield 

was subsequently measured at 44 h PI. It was observed that JO146 has a dose-

dependent inhibitory effect on C. trachomatis strains during heat stress. Treatment of 

infected cells with 100 µM JO146 was lethal. Mutant 1A3 had the least number of 

recoverable EBs compared to the other mutant strains (1B3 and 2A3) and CtDpp 

(Figure 5.7) during heat stress condition. There was more than 1 log difference of 

infectious progeny between 1A3 and both 1B3 and 2A3 during heat stress in the 

presence of 50 µM JO146. Statistical analysis revealed that the number of infectious 

progeny observed in cultures treated with 50 and 100 µM JO146 compared to that in 

cultures treated with DMSO control was significantly different for 1B3, 2A3 and 

CtDpp       (p < 0.0001) (Figure 5.7). 



  

Chapter 5: Genetics; JO146 resistant mutants 132 

 

Figure 5.7. Infectious progeny after treatment with JO146 during heat stress             

(20-24 h PI)  

Error bars represent the standard error of the mean (n=27). The name of the strain is 

indicated on the x-axis and the IFU ml-1 is indicated on the y-axis. Statistics were conducted 

using Two-Way ANOVA relative to DMSO control. Error bars represent the standard error 

of the mean (n=27), **** indicates p < 0.0001. 

 

 The mutants did not exhibit impaired recovery of infectious progeny from 5.3.5

penicillin persistence.  

Penicillin persistence was firstly confirmed by cultivating the mutants and wild 

type C. trachomatis D (CtDpp) in the presence of 100 U ml
-1

 penicillin from 4 h PI 

until harvest at 44 h PI. No infectious progeny was detected in control cultures 

wherein penicillin was left in the cultures (data not shown), confirming penicillin-

induced persistence for the clones and wild type CtDpp. Confocal microscopy 

revealed morphologically atypical inclusions in this cultures which were consistent 

with persistence (Figure 5.9). 

Concurrent experimental cultures were grown to assess the recovery of the 

JO146 less susceptible mutants from penicillin persistence. Penicillin (100 U ml
-1

; 

added at 4 h PI) was removed from the cultures at 30 h PI. Growth during reversion 

from penicillin persistence was assessed for all the mutants and the control, CtDpp. 

Figure 5.8 shows that at 68 h PI, the less susceptible mutants, 1A3, 1B3 and 2A3 had 

approximately 1 log more infectious progeny compared to the wild type strain 
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(CtDpp) (2.5 x 10
4
 IFU ml

-1
 for the less susceptible mutants and 2.7 x 10

3
 IFU ml

-1
 

for the control CtDpp). However, this difference in the infectious yield between the 

mutants and the CtDpp control at 68 h PI was not statistically significant. The 

number of IFU ml
-1

 increased at 88 h PI for all the mutants as well as for CtDpp. 

However, the mutants had more EBs compared to the wild-type strain at 88 h PI. The 

numbers of infectious progeny recovered at 88 h PI for all the mutants were 

significantly different (p < 0.0001) compared to the number of infectious progeny 

formed for CtDpp (Figure 5.8). Although all the mutants and the CtDpp control had 

higher infectious yield at 88 h PI (58 h after removal of the penicillin), it was 

observed through confocal microscopy that inclusion morphologies more frequently 

appeared to be atypical (irregularly cell-shaped bodies containing fewer, scattered 

Chlamydia) in mutant clones, characteristic of persistent Chlamydia, than the 

inclusions in CtDpp at this time point (Figure 5.10). 
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Figure 5.8. Infectious yield of C. trachomatis JO146 less susceptible mutants during 

reversion from penicillin persistence  

The figure shows IFU ml-1 from each strain at 68 and 88 h PI after reversion from 

penicillin was commenced (penicillin was removed at 30 h PI). Cultures were treated with 

penicillin 100 U ml-1 at 4 h PI. Penicillin was removed from the cultures at 30 h PI. Statistics 

were conducted using Two-Way ANOVA relative to CtDpp control strain. Error bars 

represent the standard error of the mean (n=27), **** indicates p < 0.0001.  
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Figure 5.9. Confocal microscopy images of JO146 less susceptible mutants and wild 

type C. trachomatis D (CtDpp) cultures at 44 h PI in the presence of penicillin  

The names of the mutants and wild type CtDpp are indicated to the left of the image. 

Scale bar (bottom right) denotes 10 µm.  

 

 

 



  

Chapter 5: Genetics; JO146 resistant mutants 136 

 

 

Figure 5.10. Confocal microscopy images of JO146 less susceptible mutants and wild 

type CtDpp cultures at 68 and 88 h PI after removal of penicillin at 30 h PI  

The names of the mutants and wild type CtDpp are indicated to the left of the image. 

Scale bar (bottom right) denotes 10 µm.  
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 Whole genome sequence analysis of mutants  5.3.6

Genomic DNA from the three mutants was isolated and sent for sequencing 

using a commercial service provider. The DNA concentrations for IA3, 1B3, and 

2A3 were 229.04 ng µl
-1

, 1450.82 ng µl
-1

 and 499.45 ng µl
-1

, respectively. The whole 

genome for the plaque cloned, wild type CtDpp used as a control strain for the EMS 

mutant libraries was previously sequenced. The average depth of coverage across the 

genome for 1A3, 1B3, and 2A3 were 344x, 471x, and 388x, respectively. Read pairs 

that were aligned from each clone to the reference strain C. trachomatis D (UW-

3/Cx) were 1,031,972, 1,386,175, and 1,151,654 for 1A3, 1B3, and 2A3, 

respectively.  

 

 The mutants acquired unique SNPs in acyltransferases genes 5.3.7

Table 5.3 shows a summary of the genomic sequence data for the three mutants 

in comparison with the published reference strain, C. trachomatis D (UW-3/Cx) and 

the laboratory, control strain CtDpp. Genome sequence analysis revealed few single 

nucleotide variations (SNVs) in the three clones and all were unambiguously 

supported by read mapping. All SNVs were substitutions of cytosine and guanine 

bases. No insertion/deletion sites (indels) were observed in the genomes of the 

clones. Interestingly, no substitutions were observed within, or near, the htrA gene. 

EMS-mutagenized clones, 1A3 and 1B3, each had 2 different SNVs relative to 

mutant 2A3 which had the most number of SNVs (eight). Both 1B3 and 2A3 had 

mutations in the gene CT206, which was annotated as an acyltransferase in C. 

trachomatis (L2/434/Bu) (G-to-A substitution at position 232574 for 1B3, and C-to-

T substitution at position 232340 for 2A3) (Table 5.3). 1A3 had no mutations in 

CT206. 1A3 had synonymous mutation at position 952 when mapped against the C. 

trachomatis D-EC plasmid. 2A3 had synonymous mutations (C-to-T transitions) in 

the genes CT390 and CT404, which code for aspC aspartate aminotransferase, and 

SAM dependent methyltransferase respectively (Table 5.3). Clone 2A3 had non-

synonymous C-to-T transition mutations in CT414 (A to V) and CT474 (G to R), 

which were annotated as pmpC putative outer membrane protein C and a 

hypothetical protein, respectively (Table 5.3). Both 1A3 and 2A3 had non-coding 

sequence mutations at positions 611146 and 368480, respectively. 2A3 had a non-

synonymous mutation (A-to-T) at CT664, an adenylate cyclase-like protein (Table 
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5.3). It is noteworthy that all the three clones, 1A3, 1B3, and 2A3, had mutations in 

gene CT776, which encode for acylglycerophosphoethanolamine acyltransferase 

(aas). Each clone had a unique SNV in this gene. Overall, sequence analysis revealed 

that the clones were mutated in two loci namely, CT206 and CT776, which relate to 

fatty acid synthesis. There were different single nucleotide variations (SNVs) in 

these two loci (CT206 and CT776), indicating that they were strongly selected by 

JO146 (Table 5.3). 

Figure 5.12 shows schematic diagrams of the locations of the SNVs in CT206 

and CT776 for clones 1A, 1B3 and 2A3. The SNVs in the two most frequently 

identified loci, CT206 and CT776, were located in unique sites for each of the 

clones. Mutations in CT206 for 1B3 was in codon 275, which is in the C- terminus of 

the protein while for 2A3, the SNV was in position 197 residue of the protein which 

corresponds to the alpha-beta hydrolase (abhydrolase) domain (Figure 5.12). SNVs 

in CT776 were located in semi-conserved (codon 200) and well-conserved (codon 

434) active sites of the AMP-binding domain of the aas locus for clones 1A3 and 

1B3, respectively, while for 2A3, the SNV was not in a conserved site (codon 500) 

(Figure 5.12). Conserved domain means the protein has the same function. The 

SNVs in CT776 for clones 1A3 and 1B3 resulted in changes of amino acids to ones 

with different properties. The G-to-A substitution in codon 200 of gene CT776 for 

1A3 resulted in a change from glycine (G, polar) to glutamic acid (E, acidic) (Figure 

5.12). A C-to-T transition in the 434 residue of the protein resulted in arginine (R, 

basic) to cysteine (C, polar neutral) amino acid change. Although the SNV (codon 

500) in CT776 for 2A3, resulting in serine (S, polar neutral) to asparagine (N, polar 

neutral) change, was not located in a conserved site, its SNV for CT206 resulted in a 

change from glutamine (Q, polar neutral) to a stop codon (Figure 5.12). 
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Table 5-4. Summary of the single nucleotide variations (SNVs) observed in the mutants 1A3, 1B3 and 2A3 in comparison with the published 

reference strain C. trachomatis D (UW-3/Cx) and the laboratory plaque purified C. trachomatis D strain (CtDpp) as well as the C. trachomatis D-EC 

plasmid.  

The bases in green signify the SNVs observed in the mutants. The blue bar (*) denotes a nonsense mutation (i.e. a stop codon). The positions where 

the SNVs were observed, the SNV effects (the resulting amino acid) and their corresponding annotations are listed in the table. 
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Figure 5.11. Schematic diagrams showing the locations of the single nucleotide variations (SNVs) in the genes CT206 (A) and CT776 (B) for clones 

1A3, 1B3, and 2A3.  

The codon number (indicated by the green and violet pointed arrows for CT206 and CT776, respectively) where the SNVs were observed as well as 

the change in amino acids brought about by the SNVs for each of the genes for each clone are indicated in the diagrams. The superfamilies and domains 

wherein the SNVs were observed are also shown. *, stop codon.    
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5.4   DISCUSSION 

It was previously demonstrated (as outlined in Chapter 4) that CtHtrA 

inhibition during mid-replicative phase resulted in significantly smaller inclusion 

vacuole size and loss of infectious progeny production in C. trachomatis. To identify 

and further understand the functions of CtHtrA for chlamydial development, the 

present study aimed to isolate mutants resistant to JO146.  

Two different general selection protocols were conducted to generate and 

isolate C. trachomatis JO146 resistant mutants. The size of the library that would 

need to be screened to identify JO146 resistant mutants was determined based on an 

estimated rate of 1 mutation per genome. The C. trachomatis genome contains 

430,636 G-C base pairs and the present study aimed to accomplish four times 

coverage of the genome, hence the starting library of 2.0 x 10
6
 EBs. The present 

study failed to isolate JO146 resistant or less susceptible strains through the 

utilization of the 96-well library format. Different factors such as host cell density 

and the surface area of the cell culture system might have contributed to the failure to 

isolate resistant mutants using this protocol. 

However, a multiple passage selection process which involved continued 

cultivation of EMS mutated or non-mutated C. trachomatis D in the presence of the 

inhibitor JO146 resulted in the successful selection of mutants. Both EMS 

mutagenized and non-mutagenized stocks of plaque cloned C. trachomatis D (UW-

3/Cx) were used in the selection process. The top three least susceptible clones, 1A3 

and 1B3 (EMS mutagenized) and 2A3 (non-mutagenized), were further 

phenotypically and genotypically characterized. The method of isolating mutants 

resistant to an inhibitor utilized in the present study was similar to that previously 

conducted by Bao and co-workers [183] wherein they were able to isolate C. 

muridarum (mouse pneumonitis pathogen, MoPn) resistant to benzylidene 

acylhydrazides, a novel class of antichlamydials that act by inhibiting the Chlamydia 

T3SS virulence system.  

In the present study, the higher number of recoverable IFUs in the cultures 

infected with the mutants compared to that of the cultures infected with CtDpp at 

both 30 and 44 h PI may be a consequence of the mutation and explains why these 
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clones were less susceptible to JO146. Previous experiments in our laboratory 

determined that JO146 was more effective at a lower multiplicity of infection (MOI) 

[250]. Therefore, it can be speculated that the higher infectious progeny generated by 

the clones made them less sensitive to JO146 inhibition, and that the mutations might 

be indirectly conferring the resistance via this manner. However, surely other loci 

that can enhance growth kinetics would have been selected for if this was the 

mechanism of resistance. As the less susceptible clones were isolated after sequential 

treatments with JO146 under normal growth conditions, it can be hypothesized that 

the continued exposure to the compound likely conferred a positive selective 

pressure on these mutants, particularly on the genes that might be indirectly involved 

in the CtHtrA function such as the acyltransferase genes wherein unique SNPs where 

observed in the clones. The transcript for CtHtrA is first detected at 8 h PI and 

accumulates to its highest levels toward the end of the developmental cycle [90]. The 

findings in the present study signify the possibility that continued cultivation while 

adding JO146 at 16 h PI for every passage may have positively enhanced the cellular 

functions of CtHtrA-related genes and the stability of Chlamydia over time. 

Furthermore, the growth analysis of the three clones demonstrated that none of the 

SNVs observed in the clones affected an essential gene, as revealed by the high 

infectious yield generated in these cultures. In addition, any mutants that were 

resistant to the inhibitor could have been thought to have competitive disadvantage 

over wild-type and other strains during growth in the absence of the compound. 

However, the mutants did not exhibit growth disadvantage as implicated by the 

higher yields of infectious progeny.  

Genomic DNA sequence analysis indicated that as expected, the three mutants 

were genetically unique since they came from different pools. Among the three 

clones, 2A3 had the most number of SNVs. It was particularly striking because 

acquiring eight SNVs in non-EMS mutagenized clone 2A3, after 26 serial 

cultivations in the presence of JO146 corresponds to a high rate of mutation. C. 

trachomatis L2/434/Bu has a rate of mutation per base per replication of 0.0011 (i.e. 

0.11% of the new clones generated after one single replication in a bacterial 

population will carry a mutation) [299]. However, it has been proposed that mutation 

rates in microbial populations can increase physiologically through different ways 

[300]. Ninio [301] suggested that errors of transcription, translation and molecular 
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segregation could lead to production of mutators which would immensely contribute 

to multiple mutations per genome per replication. In the present study, it can be 

speculated that the continuous serial transfer of pool 2A in cultures with JO146, a 

process that selects for, or against certain mutators, may have mediated the bacteria 

that were recently selected for a mutation to be under selective pressure for a second 

mutation, and so on and so forth. This process may explain why 2A3 acquired a high 

number of SNPs compared to other clones after 26 continued cultivations in the 

presence of the inhibitor. However, it was observed that different clones from 

different pools exhibited varying susceptibility to JO146. Non-resistant clones were 

isolated from pools that were resistant to JO146. For instance, none of the clones 

2B1, 2B2 and 2B3 were resistant to JO146 despite the fact that the “parent pool”, 2B, 

was resistant or less susceptible to JO146 at 125 µM. This indicates that after 26 

continued cultivations in the presence of JO146, the pools were heterogeneous (i.e. 

the mutant alleles were not yet evolutionarily “fixed” in the populations).  

Unique single base substitutions were observed in the CT206 gene for both 

1B3 and 2A3. All of the clones had unique SNPs in the gene CT776. Both CT206 

and CT776 encode for acyltransferases. CT206 is annotated as a predicted 

acyltransferase family protein while CT776 is annotated as Acyl-acyl carrier protein 

synthase (Aas). Aas functions as 2-Acylglycerophosphoethanolamine (2-Acyl-GPE) 

acyltransferases in vivo. In E. coli, 2-acyl-GPE acyltransferases and acyl-acyl carrier 

protein (acyl-ACP) synthase, both encoded by aas gene, mediate the acyl-CoA-

independent incorporation of exogenous fatty acids and 2-acyllysophospholipids into 

the cell [302]. Mutation in aas resulted in the inactivation of the two activities, 

leading to lack of exogenous lysophospholipid uptake and acylation [302, 303]. In 

the present study, single base substitutions in the active sites of aas gene, as observed 

for 1A3 and 1B3, as well in the non-active site of aas, in the case for 2A3, did not 

have any negative effects on the growth characteristics of the mutants. This was 

indicated by the high infectious progeny yield during normal development and 

during stress conditions for all the three mutants. The change in the amino acid to 

one with different properties (e.g. basic to polar), brought about by single nucleotide 

changes, may have altered the tertiary structure of the encoded protein. However, it 

can be speculated that these mutations did not change the protein functions of aas but 

rather compensated for the inhibition of CtHtrA functions by JO146, although not 
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affecting CtHtrA per se. HtrA in other bacteria have been found to play essential 

roles in membrane integrity and outer membrane protein biogenesis [304-306].  

It was previously demonstrated that CtHtrA was upregulated during heat stress 

[19] and this project (outlined in Chapter 4) demonstrated that inhibition of CtHtrA 

during heat stress was lethal to C. trachomatis. The number of infectious progeny 

formed after JO146 treatment during heat stress indicated that isolate 1A3 had a 

lesser number of recoverable EBs compared to the other mutants, 1B3 and 2A3. Both 

1B3 and 2A3 had mutations in the gene CT206. The absence of mutation in gene 

CT206 for 1A3 can be hypothesized to have led to more binding capacity of JO146 

to CtHtrA. This may have resulted to the increased susceptibility of 1A3 to heat 

stress in the presence of JO146. Therefore, it can be speculated that changes in 

CT206 might have allowed Chlamydia to survive heat stress in the presence of 

JO146, as observed for clones 1B3 and 2A3. The key function of HtrA proteins is 

heat stress response, most likely for the proteolytic degradation of damaged or 

misfolded proteins that are likely to form aggregates during this stress condition. 

Mutation in E. coli degP, a homologue of HtrA, led to the absence of growth at 

elevated temperatures [307], suggesting that HtrA is essential for heat stress 

response. Furthermore, cthtrA heterologously complemented the lethal high 

temperature phenotype of E. coli htrA- [19]. CT206 might be one of the loci involved 

in heat stress functions for CtHtrA. Although CT206 was annotated as an 

acyltransferase in C. trachomatis L2, conserved domain analysis suggests hydrolase, 

lipase, peptidase and esterase functions. The hydrolase, lipase, and peptidase 

functions of CT206 may facilitate the proper hydrolysis of lipids in the membrane, as 

well as the proteolytic cleavage and proper protein folding of OMPs when 

Chlamydia is challenged by heat stress. Previous investigation in this project 

(outlined in Chapter 4) has determined that addition of JO146 during heat stress for 4 

hours led to more than 2 log less infectious progeny. In the present study, treatment 

with 50 µM JO146 during heat stress for the mutants except for strain 1A3, led to 

less than 1 log reduction in the number of infectious progeny compared to DMSO 

control cultures, indicating that even during heat stress these mutants were less 

susceptible to JO146. This is interesting as the selection process was conducted 

during normal development, not during heat stress, indicating important functions for 

chlamydial development especially during the replicative phase.  
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Assessment of the production of infectious progeny during recovery from 

penicillin persistence demonstrated that the mutant clones produced a higher yield of 

EBs than wild type CtDpp. CtHtrA levels are upregulated during penicillin 

persistence but not during IFN-γ persistence [19, 21, 22]. Previous experiments 

(outlined in Chapter 4) for this project demonstrated that addition of JO146 during 

reversion from penicillin persistence was lethal to Chlamydia. The control cultures 

(treated with 0 µM JO146, media only) for this experiment had a lower number of 

recoverable EBs (1.71 x 10
4
 IFU ml

-1
) for 100 h PI or 60 h after removal of penicillin 

from the cultures compared to the mutant strains analysed in the present study. The 

mutants 1A3, 1B3 and 2A3 had ∼10
5
 IFU ml

-1
 (1.69 x 10

5
 IFU ml

-1
 for 1A3) 

recovered EBs at 88 h PI or 58 h after removal of penicillin from the cultures, 

indicating that the mutants have a higher number of infectious progeny during 

reversion from penicillin persistence than wild type.  

Persistence is hypothesized to provide Chlamydia with a survival mechanism 

during adverse conditions such as iron limitation, amino acid deprivation, immune 

pressure, co-infection with other intracellular pathogens, and the presence of 

antibiotics such as penicillin [160, 271-273]. Penicillin typically acts by binding to 

penicillin-binding proteins (PBPs), blocking the synthesis of peptidoglycan (PG) 

[150, 151]. Although the mechanism is poorly understood, C. trachomatis persistent 

infection induces reactive synovial arthritis to a limited number of patients [308]. 

CT776, which codes for 2-Acyl-GPE acyltransferase, was identified to be one of C. 

trachomatis genes orthologous to the genes upregulated during persistence in 

Mycobacterium tuberculosis [308]. CT776 was expressed generally the same levels 

in the patient synovial biopsy fluid sample as the in vitro monocyte model of 

persistence [308]. In the present study, CT776 and another acyltransferase protein, 

CT206, were found to be mutated in the clones. All of the three clones, 1A3, 1B3 

and 2A3 had mutations in CT776, however, despite these mutations, they recovered 

more infectious yield than the wild type CtDpp during recovery from penicillin 

persistence.  

Acyltransferases transfer acyl thioesters to a variety of different substrates 

[309]. The long-chain-length hydrophobic acyl residues, one of the compounds 

transferred by acyltransferases, play important, versatile roles in a suite of biological 

processes, such as building the hydrophobic layers of biological membranes, 
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modification of protein properties, as well as acting as membrane anchors [309]. 

Acyltransferases are also involved in the metabolism of fatty acids. C. trachomatis 

encodes all the genes that are important for bacterial type II fatty acid synthesis (FAS 

II) and for the synthesis of phospholipids that are the main component of bacterial 

membranes namely, phosphatidylethanolamine (PE), phosphatidylglycerol 

(abbreviated in the present study as PTG) and cardiolipin (CL) [310]. Yao and co-

workers [311] identified that during RB replication, the genes that are required for 

FAS II, a process that depends on Fab1 (enoyl-acyl carrier protein reductase), were 

induced while CL genes were upregulated during RB to EB differentiation phase. 

FAS II was essential for the replication of C. trachomatis and inhibition of CtFab1 

blocks C. trachomatis replication [311]. Recovery from penicillin persistence 

involves replication of active RBs after they asynchronously revert back from 

aberrant bodies (ABs) [136]. In the present study, mutations in the acyltransferases 

CT206 and CT776 in the clones 1A3, 1B3 and 2A3, may have positively, rather than 

negatively, enhanced these genes’ pivotal functions for the lipid metabolism and 

membrane biogenesis of RBs that were replicating during penicillin persistence 

reversion. Although 2A3 had a null mutation for CT776, the absence of this gene’s 

function can be speculated to be compensated by the presence of a beneficial 

mutation in gene CT206 for this mutant. For all the mutants, the high number of RBs 

in turn, led to higher number of infectious EBs observed for the clones during 

recovery from penicillin persistence. It is noteworthy that these clones generated 

high infectious yield during normal development. Therefore, it is highly likely that 

their ability to recover more infectious progeny during normal growth condition 

which would have been brought about by beneficial mutations in CT776, conferred 

them an advantage over the wild type CtDpp even during recovery from penicillin 

persistence. 

Confocal microscopy revealed that the inclusions appeared atypical from all 

the resistant mutants as well as the control wild type CtDpp. It was observed through 

confocal microscopy that inclusions of the mutant clones appeared to contain 

aberrant reticulate bodies, characteristic of persistent Chlamydia, than the inclusions 

in CtDpp at 88 h PI (58 h after removal of the penicillin) although all of these strains 

had higher yields of infectious EBs at this time.  
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In conclusion, the present study demonstrated that mutations in CT206 and 

CT776 loci yielded mutants that were capable of generating high infectious progeny 

yield during normal development, heat stress in the presence of JO146 as well as 

during recovery from penicillin persistence. The isolated mutants that were less 

susceptible to JO146 had specific phenotypes that may be associated with alterations 

in acyltranseferase genes that may have resulted in cell membrane integrity 

especially during conditions that were detrimental to the organism such as heat stress 

and penicillin persistence. The less susceptible clones had higher recoverable EBs 

during the late stages of the chlamydial developmental cycle, indicating that the 

specific mutations observed through sequence analysis, particularly the gene CT776, 

might have enhanced the growth kinetics of the clones. Furthermore, the clones were 

less susceptible to the CtHtrA inhibitor even during heat stress and were 

demonstrated to have higher yields of infectious progeny compared to wild-type C. 

trachomatis D (CtDpp) during reversion from penicillin persistence. Comparative 

analysis of genomic sequences between the clones and the wild-type CtDpp 

identified that acyltransferases CT206 and CT776 could be indirectly involved in 

membrane protein biogenesis function of CtHtrA. Mutations in these two genes 

could have led to downstream effect on CtHtrA, outer membrane assembly, or lipid 

biosynthesis. It is highly likely that these mutations were compensating for the 

inhibition of CtHtrA by JO146, rather than directly impacting CtHtrA. It can be that 

base substitutions in these two loci, particularly CT776 as it was present in all the 

clones, were somehow responsible for the resistance phenotype of the mutants.  

Although a truly resistant variant was not generated in the present study, the 

isolation of mutants that were less susceptible to JO146 signifies a challenging feat to 

Chlamydia, which for a long period of time has been thought to be genetically 

unamenable. In summary, phenotypic characterization of the mutants with reduced 

susceptibility to JO146 demonstrated no significant growth defect and higher 

recovery of infectious particles during stress conditions compared to wild-type 

CtDpp. These data indicate that microevolutionary acquisition of mutations in the 

genes involved in fatty acid synthesis, CT206 and CT776 might have conferred 

better growth kinetics and higher infectious yield during normal growth conditions as 

well as during stress conditions compared to wild type CtDpp. All of the three clones 

had mutations in CT776, indicating that CT776 may have been the major target site 
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of mutation in the clones during serial passages in vitro in the presence of JO146. 

CT776 has also been previously demonstrated to be involved in the recycling of 

phosphoethanolamine, a major component of the bacterial membrane, during 

lipoprotein turnover [311]. Therefore, CT776 may have bacterial membrane 

biogenesis/maintenance functions that are highly related to the functions of CtHtrA 

especially during heat stress and recovery from penicillin persistence. 
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6.1 INTRODUCTION 

 

Chlamydia trachomatis is an obligate intracellular bacterial pathogen and is 

the most commonly reported bacterial sexually transmitted pathogen worldwide. 

In the United States, over 1.4 million cases of C. trachomatis infection were 

reported in 2012, the highest number of cases ever reported to CDC for any 

condition [38]. Due to the asymptomatic nature of the disease [1-3], many 

infections are neither diagnosed, nor treated and therefore the actual burden of 

disease is likely underestimated. C. trachomatis can have serious sequelae 

including pelvic inflammatory disease, infertility and ectopic pregnancy as well as 

chlamydial conjunctivitis and pneumonia in neonates passing through the birth 

canal of an infected woman [18].  

Currently, the recommended first line of treatment for uncomplicated genital 

C. trachomatis infections is a single 1.0 g oral dose of the macrolide antibiotic 

azithromycin [71]. However, a number of recently published studies challenge the 

efficacy of azithromycin therapy for chlamydial infections [75-78, 312]. Batteiger 

and co-workers [78] conducted a cohort study among adolescent women and used 

a classification algorithm to characterize treatment outcomes among the study 

subjects after directly observed azithromycin treatment. Among women with 

paired episodes of chlamydial infections, 8% were probable treatment failures. A 

partner treatment study conducted by Golden and co-workers [312] reported that 

8% (22 of 289 originally treated for Chlamydia) of cases treated reported no 

sexual intercourse after treatment and were classified as treatment failures. These 

studies suggest the possible future need for new anti-chlamydial therapies.  

The C. trachomatis developmental cycle consists of an infectious 

extracellular form called the elementary body (EB) and the intracellular 

replicative form termed the reticulate body (RB) that divides by binary fission 

prior to converting back to EBs that can initiate further rounds of infection 

(reviewed [85]). In the search for new treatment options for infectious diseases, 

small molecule approaches have been previously described for many bacteria 

[183, 262, 313, 314]. Through the use of Yersinia type three secretion inhibitor, 

Wolf and co-workers [188] identified that the chlamydial type III secretion system 

plays an important role in the progression of C. trachomatis developmental cycle 
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and could be a therapeutic target. Our group identified a serine protease inhibitor, 

JO146, specific for the C. trachomatis High Temperature Requirement A 

(CtHtrA) [19, 250, 254, 257]. JO146 was lethal to C. trachomatis D (UW-3/Cx) 

when added at the mid-replicative stage of the chlamydial developmental cycle 

[250]. The addition of JO146 was lethal during reversion or recovery from 

penicillin persistence and during heat stress [315]. In enteropathogenic organisms 

such as Escherichia coli, Campylobacter jejuni, and Shigella flexneri, HtrA was 

exported and cleaved E-cadherin on host cells disrupting the gut epithelial barrier 

[10]. HtrA contributes to the virulence of Clostridium difficile [316]. Therefore, 

HtrA is a key virulence factor for many pathogens and could be a good target for 

development of new therapeutics.   

Laboratory strains of C. trachomatis that are commonly used for biological 

experiments may not reflect the isolates currently infecting men and women 

[317]. Differences in genome dynamics, and virulence attributes and infectivity 

[210, 299, 318] may result in varying sensitivities to JO146 between recent 

clinical isolates and the type strains of C. trachomatis used for investigations to 

date. Therefore, the present study aimed to validate that CtHtrA is a clinically 

relevant target for potential future therapeutic development by testing the efficacy 

of the inhibitor JO146 against recent clinical isolates from women.  

 

 

6.2 MATERIALS AND METHODS 

 

 Clinical isolates, Chlamydia culture and J0146 treatment conditions 6.2.1

Six C. trachomatis clinical isolates were obtained and cultured from 

separate women enrolled in the Australian Chlamydia Treatment Study (ACTS) 

[319] (The Alfred Human Research Ethics Approval number 223/12). The isolates 

were designated as: 1-017(13) (serovar K), 1-079(1) (serovar G), 1-019(1) 

(serovar D), 1-048(1) (serovar E), 1-028(1) (serovar E), and 1-020(1) (serovar D). 

The isolates were cultured in McCoy B cells grown in Dulbecco’s minimal 

essential medium (DMEM, Life Technologies, Eugene, OR, U.S.A.) 
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supplemented with 5% fetal calf serum (Lonza), 10 µg ml
-1

 gentamicin 

(Invitrogen, Eugene, OR, U.S.A), 100 µg ml
-1

 streptomycin sulphate (Sigma-

Aldrich, St. Louis, MO, U.S.A.), incubated at 37
o
C, 5% CO2. 

The impact of JO146 on Chlamydia was determined in McCoy B cells 

infected at a multiplicity of infection (MOI) of 0.3 by centrifugation for 30 

minutes at 500 × g at 28
o
C. At 16 hours post infection (h PI), the cells were 

treated with JO146 (0, 10, 50 and 100 µM) and DMSO (solvent) control (all 

experiments were done in triplicate, on at least two separate occasions, with one 

representative occasion shown). At the completion of experiment (44 h PI unless 

otherwise stated) Chlamydia were harvested into storage medium (sucrose 

phosphate glutamate (SPG): 10 mM sodium phosphate, 250 mM sucrose, and 5 

mM L-glutamine for subsequent determination of infectious yield (IFU ml
-1 

as 

described in Materials and Methods section 3.4).  

The bacteriostatic or bactericidal effect or duration of treatment required for 

JO146 effect was determined by removal of the compound from the cultures after 

8 h treatment. At 16 h PI C. trachomatis cultures were treated with either 0 µM 

(media only), 100 µM JO146, or DMSO. At 24 h PI (i.e. 8 hours after treatment) 

treatments were removed by three sequential washes with pre-warmed media and 

the cultures continued until harvest into SPG media at 44 and 68 h PI.  

Inclusion forming units (IFU ml
-1

) were determined by subsequent passage 

culture on McCoy B cells and enumerated through immunocytochemistry and 

confocal microscopy as described in Materials and Methods section 3.4.  

 

 Confocal microscopy  6.2.2

McCoy B cells infected with C. trachomatis cultured on coverslips were 

used for confocal microscopy. At nominated time points the cells were fixed and 

immunocytochemistry conducted as previously described in Materials and 

Methods section 3.5. Confocal images were obtained using an Olympus FV1200 

confocal laser scanning microscope (FluoView
®

 FV1200, Olympus Corporation, 

Japan). Sizes of 30 independent inclusions for each treatment and time point were 

measured manually through the use of NIS-Elements Basic Research 3.2 software.  
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 Western blot  6.2.3

Cultures of T25 flasks of McCoy B cells infected with C. trachomatis were 

harvested for western blot analysis of the major outer membrane protein (MOMP) 

and host β-actin after JO146 treatment at 16 h PI and harvested at 24 h PI. 

Western blots were conducted as previously described [22]. Briefly, cells were 

lysed with SDS PAGE buffer (50 Mm Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 

1% β-mercaptoethanol, 12.5 mM EDTA, 0.02% bromophenol blue), followed by 

electrophoresis and immunoblotting using a standard protocol. The blots were 

probed with sheep anti-C. muridarum MOMP (Southern Biotech, Alabama, 

U.S.A.), followed by rabbit anti-sheep-BIOT (Southern Biotech, Alabama, 

U.S.A.), then streptavidin-HRP conjugates (Southern Biotech, Alabama, U.S.A.). 

Duplicate blots were probed with anti β-actin polyclonal antibody (Abcam, 

Australia) followed by an anti-rabbit secondary antibody conjugated to HRP 

(Southern Biotech, Alabama, U.S.A). The reaction was developed with Pierce 

ECL Western Blotting Substrate (Thermo Scientific, Australia).  

 

 Statistical analysis 6.2.4

Statistical analysis of all results was performed using PRISM (GraphPad 

Software Inc., V7.0). Statistical significance was defined as p < 0.05. Statistical 

tests used and number of samples are indicated with each figure. 

 

 

6.3   RESULTS 

 

 HtrA inhibition using JO146 during McCoy B culture of chlamydial 6.3.1

clinical isolates prevents chlamydial inclusion vacuole size development 

Our previous work using HEp-2 cells and C. trachomatis D (UW-3/Cx) 

demonstrated that the inclusions decreased in size and were lost from the host 

cells (Chapter 4) [250]. Therefore, the present study examined the morphology of 

the McCoy B cultures of the clinical isolates at 20, 24, and 40 h PI after JO146 

treatment (16 h PI) using immunocytochemistry and confocal laser scanning 
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microscopy. JO146 treatment resulted in smaller inclusion vacuole sizes than the 

DMSO treated control cultures (Figure 6.1). Inclusions were visible up to 40 h PI 

in all cultures after JO146 treatment and there were no visible differences in the 

intensity of staining or appearance of the chlamydial cells inside the inclusions at 

any time point compared to DMSO controls (Figure 6.1), only that the size of the 

inclusions did not increase to the same size as controls.   

Inclusions sizes were measured to quantify these observations. This 

difference in inclusion size was apparent at 24 h PI although only four clinical 

isolates (1-079(1), 1-079(13), 1-019(1), and 1-028(1)) showed statistically 

significant differences (p < 0.01) in the size of inclusions compared to DMSO 

control at this time point (Figure 6.2). At 40 h PI, Chlamydia inclusions in the 

presence of JO146 were smaller than those formed in the control (DMSO-treated 

cells) in all clinical isolates as well as for the C. trachomatis D (UW-3/Cx) a 

laboratory isolate (p < 0.0001) (Figure 6.2).  
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Figure 6.1. Confocal microscopy images of C. trachomatis clinical isolates treated 

with JO146 or DMSO at 16 h PI and examined at 20, 24, and 40 h PI  

Representative images of control (DMSO treated) cultures are shown on the left 

panel while representative images of cultures treated with JO146 are shown on the right 

for each time point (time points indicated above figure) (strain identity indicated to left of 

the figure). The image colours are as follows, green; MOMP (major outer membrane 

protein); blue: host cell nucleus (stained by DAPI); red: β actin (stained by phalloidin 

594). Scale bar (bottom left) indicates 10 µm.  
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Figure 6.2. Inclusion sizes at 20, 24 and 40 h PI for DMSO and JO146 treated 

isolates of C. trachomatis grown in McCoy B cells are shown in the graphs  

DMSO and 100 µM JO146 treatments are shown in blue and green columns, 

respectively. Each isolate is shown in a separate graph: A. 1-017(13), B. 1-079(1), C. 1-

028(1), D. 1-048(1), E. 1-020(1), F. 1-019(1), G. C. trachomatis D (UW-3/Cx). Statistical 

analysis was conducted using Two-Way ANOVA with Bonferroni’s multiple comparison 

tests. The bar colours represent treatment conditions; blue: DMSO, and green: 100 M 
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JO146. Data are presented as mean ± S.E.M (n=30), ** indicates p < 0.01, ****p < 

0.0001.  

 

 JO146 treatment during mid-replicative phase of chlamydial 6.3.2

development in McCoy B cells leads to loss of infectious progeny for 

clinical isolates 

The effect of 16 h PI JO146 treatment on the development of infectious 

progeny was tested. No infectious progeny (44 h PI) were observed for all clinical 

isolates treated with 50 and 100 µM JO146 except for isolate 1-017(13) (Figure 

6.3). For isolate 1-017(13) treatment with 50 µM JO146 resulted in approximately 

1 log less infectious yield compared to DMSO and media controls (p < 0.001) and 

100 µM was lethal as consistent with the other clinical isolates. Treatment of the 

type strain C. trachomatis D with 50 and 100 µM JO146 both resulted in ~1.5 log 

less infectious progeny compared to that observed in the DMSO control (p < 

0.0001) (Figure 6.3).  

The reduction in infectious progeny and reduced inclusion sizes (Figure 6.2) 

should correlate with a decrease in the detection of chlamydial protein. A western 

blot to detect levels of MOMP at 24 h PI, 8 h after JO146 treatment at 16 h PI, 

shows a clear reduction on MOMP levels compared to matched DMSO controls 

and relative to the host protein -actin (Figure 6.4). 
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The bars are in colours (as indicated on the right) to represent the different 

concentrations of JO146. The identity of each of the isolates is indicated on the x-

axis and the IFU ml-1 are indicated on the y-axis in log scale. Statistical analysis 

was conducted using Two-Way ANOVA with a post hoc Bonferroni multiple 

comparison test relative to the DMSO control. Error bars represent the standard 

error of the mean (n=27) (non-logarithmic data), *** indicates p < 0.001, ****p < 

0.0001. # indicates no detectable inclusion forming units. 

 

 

 

 

 

Figure 6.4  

JO146 or DMSO were added at 16 h PI and cells were harvested at 24 h PI 

(i.e. 8 hours after treatment). Treatments are indicated above each lane at the top 

of each isolate name. “+” denotes treatment with JO146 and “-“ denotes treatment 

with DMSO control. Laboratory strain C. trachomatis D (UW-3/Cx) (CtD) was 

included as a control strain. The size of relevant molecular weight markers are 

indicated to the right of the figure and the western blot identity (i.e. MOMP or β-

actin) are indicated to the left.  

Figure 6.3. Inclusion forming units after treatment with JO146 at 16 h PI for each of the 

clinical isolate and control CtD 

Figure 6.4. Western blot for MOMP in cell lysates of JO146-treated and DMSO-treated C. 

trachomatis clinical isolates in McCoy B cells. 
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 JO146 requires long treatment times to be effective against C. 6.3.3

trachomatis in McCoy B cultures 

In order to determine if JO146 activity against chlamydial clinical isolates is 

effective with a short duration of treatment, a reduced time of treatment with 

JO146 was conducted. Removal of JO146 from the cultures at 24 h PI (8 h after 

addition) resulted in recovery of infectious progeny at 44 and 68 h PI in all 

clinical isolates (Figure 6.5) in contrast to complete bacterial lethality when the 

compound was left in the cultures (Figure 6.3). In C. trachomatis clinical isolates 

1-028(1) and 1-019(1), there were fewer infectious EBs in cells treated with 100 

µM JO146 compared to the cells treated with 0 µM JO146 (media only) and 

DMSO controls either at 44 or 68 h PI (Figure 6.5). A non-significant increase 

was observed in the number of infectious progeny at 68 h PI compared to 44 h PI 

with 100 M JO146 for isolates 1-017(13), 1-079(1), 1-048(1) and 1-020(1) 

(Figure 6.5). Overall, an 8 h JO146 treatment of the cultures resulted in a minor 

loss of infectious progeny compared to when the compound was left in the 

cultures until the end of the developmental cycle (Figure 6.3), suggesting that in 

McCoy B cultures there is a need for longer treatment duration for efficacy.   
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Conditions are represented by the coloured bars on the right (red: media only (0 

µM JO146), blue: DMSO, green: 100 µM JO146). Each isolate is shown in a separate 

graph: A. 1-017(13), B. 1-079(1), C. 1-028(1), D. 1-048(1), E. 1-020(1), F. 1-019(1), G. 

C. trachomatis D (UW-3/Cx). The IFU ml-1 is indicated on the y-axis and the two time 

points (44 and 68 h PI) are indicated on the x-axis. Statistical analysis was conducted 

using Two-Way ANOVA with a post hoc Bonferroni multiple comparison test relative to 

the DMSO control. The error bars represent the standard error of the mean (n=27) (error 

bars are for the non-logarithmic scale), ****p < 0.0001.  

Figure 6.5. Inclusion forming units ml-1 at 44 and 68 h PI after JO146 addition 

at 16 h PI and removal after 8 h (at 24 h PI). 
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6.4 DISCUSSION 

 

The present study determined if the previous observations of a critical 

function for CtHtrA during chlamydial replicative phase was also relevant for 

recent clinical isolates of C. trachomatis. The addition of JO146 during mid-

replicative phase was completely lethal if the compound was left in the cultures 

until the completion of the developmental cycle, providing preliminary supporting 

that JO146 is effective against clinical isolates. These experiments were 

conducted in McCoy B cells. This was consistent with other previously reported 

studies on C. trachomatis clinical isolates that all mainly used McCoy B cells 

(mouse fibroblasts) as host cells [320-322] due to difficulty in cultivating the 

isolates. As the effect of JO146 on Chlamydia grown on McCoy B cells has not 

been extensively studied, C. trachomatis D was included as a control in all 

experiments.  

It had already been demonstrated that treatment of HEp2 cultures with the 

CtHtrA inhibitor JO146 resulted in diminishing chlamydial inclusion size, 

eventual loss of the inclusions, and loss of infectious progeny without being toxic 

to the host cells [250]. CtHtrA was found to be essential for the reversion and 

recovery to viability from penicillin persistence and during heat stress [299]. The 

critical role that CtHtrA plays during the replicative phase of the chlamydial 

developmental cycle was also demonstrated to be conserved among other C. 

trachomatis strains and other Chlamydia species such as C. pecorum, C. suis, and 

C. caviae [256]. HtrA has also been found to have a pivotal contribution to 

pathogenesis of other bacterial infections. Mutation in the htrA gene in Bacillus 

anthracis resulted in increased sensitivity to stress-related conditions such as 

reactive oxygen species, as well as heat and osmotic stress [278] and htrA2 

mutants in Mycobacterium tuberculosis were attenuated in mice [323].  

The data presented here demonstrated that treatment with JO146 at mid-

replicative phase resulted in chlamydial inclusions failing to increase in size and 

loss of infectious progeny for recent clinical isolates of C. trachomatis in McCoy 

B cells. The lack of lethality of 100 µM JO146 on type strain C. trachomatis D 

grown in McCoy B cells contrasts the previous result in HEp2 cells, in which 

complete bacterial lethality for this same strain was observed. These results 
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suggest that there could be differences in the pharmacokinetics of JO146 between 

mouse fibroblast (McCoy B) and human epithelial (HEp2) cell lines or in the 

chlamydial susceptibility during growth in these different cell lines. Previous 

studies have demonstrated different pharmacokinetics and bioactivity of drugs 

such as erythromycin in different mammalian cell lines [324, 325].  

In the present study, the chlamydial inclusions were not completely lost 

from the host cells after JO146 treatment (in contrast to complete inclusion loss 

previously observed in HEp2 cells), however these inclusions did not contain 

infectious progeny (Figures 6.1 and 6.3) [250]. Infectious progeny (with 

comparatively minor loss compared to controls) were observed for all strains 

tested when the cultures were treated with JO146 for 8 h at the replicative phase 

whereas there was lethality when the inhibitor was left in the cultures until the end 

of the developmental cycle. This result indicates that the inhibitory effect of 

JO146 was reversible by removal of the compound from the cultures and may be 

bacteriostatic, or may require longer than 8 h treatment to be effective in McCoy 

B cells. The data presented here are not adequate to fully conclude the process by 

which JO146 has a lethal effect, or as measured here a loss of infectious progeny. 

In some models the inclusions are lost from the cells, although the mechanism 

does not appear to involve the lysosome or autophagy [22]. Here in McCoy B 

cells the inclusions failed to increase in size and did not contain infectious 

progeny. This difference in the underlying process leading to loss of infectious 

progeny could be explained by several reasons; in these fibroblast-like cells 

perhaps the dosing was reduced due to cellular processes or once the Chlamydia 

in the inclusion have been inhibited by the JO146 treatment in HEp2 a distinct 

host process than that of these fibroblasts was able to target the vacuoles.  

The growth curves of these isolates have not been completed in full, but we 

do know from previous work in the team that maximal effectiveness of JO146 

required dosing at mid-replicative phase, however, the impact did result in loss of 

infectious progeny. Although, previous growth curves analysis of different C. 

trachomatis strains show relatively minor differences in the timing of the 

replicative phase [89], hence we suspect the duration and timing of treatment in 

these experiments is within the replicative phase. Shorter exposure time to the 

compound were much less effective (Figure 6.5), with limited differences when 
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extended recovery times were permitted. This suggests that even though 

inclusions were present these cannot be rescued by extended growth (Figure 6.5). 

Nonetheless it is clear that CtHtrA is a valid possible target should future 

therapeutics need to be developed against Chlamydia, based on the effectiveness 

against these clinical isolates.  

The subtle differences in JO146 efficacy observed between the isolates and 

the type strain C. trachomatis D is not able to be explained by differences in 

CtHtrA amino acid sequence. The CtHtrA sequence is highly conserved with at 

most 4 amino acids different in the 647 amino acid sequence across the published 

C. trachomatis genomes to date. The C. trachomatis genomes cluster into three 

predominant clades (LGV, T1, T2) [280]. The CtHtrA sequences that we have 

determined so far from our clinical isolates are consistent with the T2 clade (1-

017(13), 1-017(1), 1-028(1), 1-048(1) (sequences will be published elsewhere). 

The amino acid variation is not near the residues that form active site where 

JO146 binds to the protein and is not likely to explain the variation. 

In summary, this preliminary study supports that JO146 is effective against 

recent clinical isolates of C. trachomatis. The data could indicate the compound 

acts by a bacteriostatic mechanism of activity in McCoy B cells and is lethal when 

added mid-replicative phase and maintained until the conclusion of developmental 

cycle. Alternatively, the data may indicate that extended exposure throughout the 

developmental cycle in McCoy B cells is needed for the maximum impact of 

JO146. Together, our study indicates that in vitro application of an inhibitor 

compound that targets CtHtrA during the replicative phase of recent clinical 

isolates of C. trachomatis is lethal. CtHtrA therefore, could be a potential target 

for future drug development for C. trachomatis and that CtHtrA inhibition should 

be further investigated using additional cell lines and clinical isolates.

 

 



  

Chapter 7: General Discussion 166 

 General Discussion Chapter 7:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Chapter 7: General Discussion 167 

In the present study, a critical role of Chlamydia trachomatis High 

Temperature Requirement protein A (CtHtrA) for the replicative phase of the 

developmental cycle, for heat stress, and recovery from penicillin induced 

persistence were demonstrated using a chemical inhibitor, JO146. Genome 

sequence analysis of mutants with less susceptibility to JO146 identified that two 

genes, which code for acyltransferases, acquired single nucleotide variants 

(SNVs), indicating that these genes might be involved in CtHtrA function. JO146 

was also found to be effective against currently circulating clinical isolates of C. 

trachomatis representing different serovars.  

In the present study, addition of the CtHtrA-specific inhibitor, JO146, at 16 

h PI (mid-replicative phase) completely inhibited the formation of infectious EBs 

as demonstrated by the complete loss of infectious yield when the cells were 

examined at the end of the chlamydial developmental cycle. This data indicated 

that the compound significantly inhibited RB replication. Treatment with JO146 

at mid-replicative phase also led to loss of chlamydial cellular morphology and 

reduction in inclusion vacuole size when JO146-treated cells were examined for 

Chlamydia HtrA and major outer membrane protein (MOMP). The inclusions 

formed in JO146-treated cells were significantly smaller than the inclusions 

formed in the control, DMSO-treated cultures. These effects occurred without 

inducing measurable host cell cytotoxicity and were not mediated by host cell 

autophagy pathways. There was no significant difference in the number of dead 

cells between JO146-treated and DMSO-treated HEp2 cells. There was no 

sequestration between autophagy and lysosome markers, SQSTM1 and LAMP1 

and the Chlamydia inclusions during JO146 treatment, indicating that the 

inhibitory effect of JO146 was not mediated by the host defence system or 

lysosome pathways. The lethality of JO146 was only partially reversible by 

removal of the compound, possibly indicating a bacteriostatic mechanism. The 

removal of the compound eight hours after it was administered led to recovery of 

infectious progeny at later time points compared to longer duration treatments, 

indicating that the most effective phase of inhibition was throughout the 

replicative phase until EB formation.  

The complex developmental cycle and obligate intracellular lifestyle of 

chlamydiae has impeded efforts to establish a genetic manipulation system for the 
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organism for a long time. Chemical biology approaches such as the use of small 

molecule inhibitors are a strategy used for the investigation of the 

pathophysiology of bacteria and other organisms. The use of small molecule 

inhibitors that target specific virulence factors has been reported previously for 

many bacteria. Small molecule inhibitors designated as INP0010 and INP0400, a 

class of acylated hydrazones which were initially shown to inhibit Yersinia 

pseudotuberculosis T3SS  [185], were also found to block Chlamydia T3SS 

mainly due to the homology between T3SS of Yersinia and Chlamydia.  INP0010 

and INP0400 inhibited C. pneumoniae developmental cycle and prevented 

replication of C. pneumoniae and C. trachomatis in ex vivo infection models 

respectively, thereby indicating an important role for T3SS in the chlamydial 

developmental cycle [186, 187]. INP0400 inhibition varied depending on the time 

of compound addition. Treatment of C. trachomatis cultures with INP0400 at 

mid-replicative phase blocked homotypic vesicular fusion, whilst adding the 

compound during the late-phase of the chlamydial developmental led to a marked 

decrease in infectious progeny production [187]. Therefore, it can be deduced that 

T3SS activity and the chlamydial development are interlinked processes and 

inhibition of T3SS resulted in stalled RB to EB differentiation [183, 188]. The 

inhibitor compound, 2-pyridone amide KSK120 that targets the glucose-6-

phosphate (G-6P) metabolism pathway of C. trachomatis blocked glycogen 

accumulation in C. trachomatis [190]. Small molecule approaches have also been 

employed to determine the role of lipooligosaccharides (LOS) in C. trachomatis. 

Through the use of small molecule inhibitors of LpxC, the enzyme that catalyses 

the first committed step in the biosynthesis of lipid A, the synthesis of 

lipooligosaccarides (LOS) in C. trachomatis was blocked [189]. In the absence of 

LOS, C. trachomatis remained viable but non-infectious and replicative RBs 

failed to express selected late-stage proteins and transition to EBs [189]. 

The present study utilized the inhibitor, JO146, which was found to be 

specific to C. trachomatis and lethal to the organism when added at mid-

replicative stage of the developmental cycle, to characterize and identify the role 

of CtHtrA in chlamydial development. HtrA in other bacterial pathogens have 

been found to be vital in host cell interaction through specific mechanisms. HtrA 

chaperone activity, which may be involved in folding of outer membrane 
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adhesins, facilitated the binding of Campylobacter jejuni to both epithelial cells 

and macrophages [8]. It is also well established that HtrA is important for survival 

of most bacteria during stress because HtrA degrades and prevents accumulation 

of misfolded periplasmic proteins during stress [241, 326, 327]. In E. coli, three 

periplasmic chaperones, DegP, Skp and SurA have a role in the proper folding and 

insertion of proteins into the outer membrane [247]. The major protease, DegP, a 

homologue of HtrA, is responsible for the degradation of misfolded envelope 

proteins especially at high temperature and is important for the rapid turnover of 

abnormal and normal (i.e. native and functional) proteins [241, 281]. Disruption 

of these processes causes growth defects and eventual cellular death due to 

prevention of proteolytic modifications to produce mature, specific proteins and 

failure to destroy potentially harmful polypeptide aggregates. In this respect, HtrA 

exhibits a rather indirect but very crucial effect for bacterial viability. Mutation in 

degP(htrA) and surA had bactericidal effect for E. coli, mainly due to loss of 

chaperone activity as the lethal phenotype can be complemented by degP lacking 

protease activity [328]. The role of Skp and DegP was amplified in the absence of 

SurA [329]. DegP/Skp function in one pathway whilst SurA acts on a different, 

parallel pathway [328] and DegP/Skp function to rescue off-pathway 

intermediates that would have accumulated in the absence of SurA [329, 330]. 

HtrA has also been described to be a secreted virulence factor in many 

bacteria. HtrA cleaves the ectodomain of the cell adhesion protein E-cadherin 

during infection with Helicobacter pylori [9, 10], an important pathogen that 

colonizes the gastric epithelium. The same HtrA-mediated E-cadherin cleavage 

mechanism was subsequently detected in other enteropathogenic organisms such 

as Escherichia coli, Shigella flexneri, and Campylobacter jejuni [10, 331]. HtrA 

plays an important role in S. flexneri as it was found that DegP, a homologue of 

HtrA, assembles the major virulence factor, IcsA on the bacterial outer membrane 

[247]. Purdy and co-workers [306] demonstrated that S. flexneri degP mutant 

SM1100 formed smaller plaques than those formed in the wild-type and failed to 

localize IcsA to the bacterial pole, a process required for actin polymerization into 

actin “tails”, resulting in failure of the SM1100 bacteria to spread within and 

between epithelial cells. IcsA is a member of the autotransporter family of outer 

membrane proteins [332]. IcsA is thought to be transported across the inner 
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membrane in a Sec-dependent mechanism and translocates itself across the outer 

membrane [248, 333]. The chaperone activity of DegP may be involved in the 

efficient delivery of IcsA to the bacterial surface by facilitating the proper folding 

of IcsA in the periplasm or the rapid transport of IcsA to the outer membrane 

[306]. HtrA has also been implicated to play crucial roles for the virulence of 

other bacterial pathogens, including Salmonella enterica serovar Typhimurium, 

Streptococcus pneumoniae, Legionella pneumophila, and Listeria monocytogenes 

[11-13, 282]. 

The present study clearly indicated that CtHtrA is important for growth and 

development of C. trachomatis. A number of chaperones and proteases have been 

previously demonstrated to be important for virulence and stress resistance in a 

variety of bacteria [334]. CtHtrA has been previously demonstrated to be 

important for bacterial protein folding and stress response [19]. However, the role 

of CtHtrA for infection and its potential role in the chlamydial developmental 

cycle are poorly understood.  

The role of HtrA in the replication of bacteria has been previously 

described. DegP in E. coli strain called adherent and invasive E. coli (AIEC) 

isolated from patients with Crohn’s disease was important for the intracellular 

replication of the bacterium within J774-1A macrophages [335]. The LF82 –

ΔhtrA isogenic mutant showed absence of bacterial replication at 24 h PI and 

exhibited small inclusions similar to those observed at 1 h PI. Complementation 

of LF82 –ΔhtrA with a cloned htrA gene led to restoration of the replication of the 

bacterium similar to that of wild type LF82 [335]. LF82 –ΔhtrA was also found to 

be sensitive to oxidative stress and this may explain why LF82 –ΔhtrA mutant was 

unable to replicate within macrophages and evade killing by phagosomes [335].  

During phagocytosis, bacteria are taken up by phagosomes, and fusion of 

the phagosomes with lysosomes involves an oxygen-dependent mechanism that 

subsequently produces H2O2 and reactive oxygen species. However, this increased 

susceptibility to oxidative stress was not observed in non-pathogenic E. coli 

harbouring a mutation in the htrA gene [336] suggesting differences in the 

regulation of the htrA gene between non-pathogenic and pathogenic strains of E. 

coli. HtrA was also found to be important for Legionella pneumophila 

intracellular replication within mammalian macrophages and alveolar epithelial 
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cells and for intrapulmonary replication in A/J mice, yet dispensable for the 

intracellular infection of protozoa such as Acanthamoeba polyphaga [282]. 

Overall, infection with some facultative intracellular bacteria such as Yersinia is 

initiated by macrophage phagocytosis, to which the bacteria respond by 

expression of several stress response proteins, such as HtrA, which can be induced 

by heat stress and oxidative stress, as in the case of the pathogenic E. coli strain, 

LF82. Therefore, HtrA clearly has essential roles for infection and subsequent 

intracellular replication of a number of pathogens. 

Concurrent work in the team has identified that CHtrA has a conserved 

critical function during the replicative phase [256]. HtrA inhibition with JO146 

resulted in dramatic loss of infectious progeny in a number of Chlamydia sp. 

capable of infecting a wide variety of hosts: (C. trachomatis: human, C. suis: pig, 

C. pecorum: cattle/sheep, and C. caviae: guinea pig) [256]. This signifies that 

HtrA is a good target for antibacterial therapeutics not only for C. trachomatis but 

also for the aforementioned species of Chlamydia and other bacterial pathogens.  

The present study clearly demonstrated that inhibition of CtHtrA using the 

specific inhibitor, JO146, during the replicative phase led to disruption of the 

developmental cycle of C. trachomatis D (UW-3/Cx). The current study has also 

provided evidence for the important role of CtHtrA during detrimental conditions 

such as heat stress and penicillin-induced persistence. Selection and genome 

sequence analysis of mutants with less susceptibility to JO146 suggested that 

CtHtrA function is important for membrane maintenance and outer membrane 

protein biogenesis as mutations were identified in two genes that code for fatty 

acid acyltransferases, one of which is in involved in outer membrane recycling 

and the other one with unknown function.  

Under stressful growth conditions imposed by immunological responses, 

iron limitation, amino acid deprivation, co-infection with other intracellular 

pathogens and the presence of antibiotics [137, 138, 144, 271], the developmental 

cycle is disrupted and chlamydiae enter a viable but non-culturable phase called 

persistence [137, 153, 160, 270], resulting in a long-term relationship with the 

infected host [138]. Persistence favours chronic chlamydial infections which are 

proposed to be a possible mechanism that results in  sequelae such as infertility 

[146]. It has also been reported that penicillin-induced persistent Chlamydia are 
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phenotypically resistant to azithromycin [274]. An exciting and one of the major 

findings in the present study was the key role that CtHtrA plays in penicillin 

persistence laboratory models. It was previously reported that CtHtrA levels were 

up-regulated during penicillin persistence but down-regulated during IFNγ-

induced persistence [19, 21, 22]. The present study demonstrated that treatment 

with JO146 during penicillin persistence resulted in reduction in levels of 

infectious progeny, and JO146 treatment during recovery from penicillin 

persistence was lethal to Chlamydia. These data indicate a functional role for 

CtHtrA during reversion from penicillin persistence and recovery to infectivity. 

The lack of bacterial lethality when JO146 was added during penicillin persistence 

suggests that penicillin persistence may not involve a high level of extra-

cytoplasmic protein stress. Although the morphological changes appear similar 

regardless of the persistence-inducing agent, transcriptomic and proteomic 

analysis of persistent Chlamydia revealed different transcriptional profiles 

associated with the persistence-stimulating growth factor. Therefore, penicillin 

persistence may be a defence strategy of bacteria to escape cellular protein stress, 

and does not always initiate CtHtrA functions which may explain why CtHtrA 

was not found to be important during this stress condition.  

Penicillin is a β-lactam antibiotic that acts by blocking peptidoglycan (PG) 

biosynthesis. In Chlamydia, PG synthesis occurs during the early stages of EB to 

RB transition [21, 155], suggesting that PG is crucial for RB replication, stability 

of the cell envelope, and provides an anchor to outer membrane proteins (OMPs). 

Penicillin persistence inhibits RB replication and PG biosynthesis, possibly 

compromising the stability of the PG-anchored OMPs. It can be proposed that the 

loss of PG-OMP crosslinks leads to disruption of outer membrane stability and 

leakage of membrane and periplasmic proteins as described in other bacteria [337-

340]. Due to the lethality of JO146 when added during recovery from penicillin 

persistence as observed in the present study, it can be deduced that CtHtrA may be 

essential for restoration of outer membrane integrity and stability of PG-OMP 

during recovery from penicillin persistence and subsequent reversion of aberrant 

RBs to infectious EBs.  

The bacterial envelope, being in direct contact with the external milieu, is 

the initial target of various stresses that may change envelope components. These 
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stresses include heat stress, cold stress, oxidative stress, pH change, 

overexpression of OMPs, exposure to ethanol and detergents, and pathogenesis 

[334]. Bacteria employ multiple stress signalling systems to respond to these 

stimuli that challenge the integrity of cell envelope. One of the factors that trigger 

cellular imbalances is oxidative stress, to which the bacteria respond by inducing 

the genes encoding antioxidant enzymes and mechanisms to repair oxidative 

damage to cellular components [341]. HtrA was found to be vital for the 

pathogenesis and survival in oxidative stress for Salmonella typhimurium [246, 

342]. S. typhimurium htrA mutants were highly sensitive to killing by reactive 

oxygen species (ROS) and exhibited diminished capacity to survive and/or 

replicate within macrophages [246, 342, 343]. In E. coli, accumulation of specific 

OMPs within the periplasm triggers a series of events called regulated 

intramembrane proteolysis (RIP) that leads to the degradation of the inner 

membrane protein, RseA [344-346]. This is initiated by DegS, a member of the 

HtrA family of proteases, which cleaves RseA that normally binds and prevents 

the regulatory activity of σ
E
. 

.  

The sigmaE
 
(σ

E
)

 
is the extra-cytoplasmic function (ECF) factor which 

controls the expression of genes that encode proteins in the extra-cytoplasmic 

localisation that are involved in the folding of polypeptides, such as proteases and 

stress response. Walsh
 
[345] demonstrated that peptides ending with OMP-like C-

terminal sequences bind to the PDZ domain of DegS thereby activating cleavage 

of RseA by DegS, and subsequent release of σ
E
 into

 
the cytoplasm and induction 

of σ
E
-dependent transcription. The SigmaE (σ

E
), together with other transduction 

pathways, namely, the phage shock protein (Psp) pathways, Cpx (conjugated 

plasmid expression), and Bae (bacterial adaptive response [347]) pathways 

constitute the main elements of the extracytoplasmic stress response in E. coli 

[334]. 

HtrA (DegP) is also a member of the Cpx regulon in E. coli, which controls 

the expression of proteins activated in response to certain envelope stress 

conditions [334]. In E. coli, Cpx is a two-component signal transduction system 

composed of a sensor histidine kinase (CpxA) and a cytoplasmic response 

regulator (CpxR) [348]. [348]. The Cpx is activated by a number of external 

disturbances such as pH changes and altered membrane composition. One of the 
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mechanisms employed by the Cpx system in combatting extra-cytoplasmic 

protein stress that challenges the integrity of the bacterial cell envelope is by 

upregulating DegP synthesis [349-352]. Therefore, both the Cpx and σ
E
 pathways 

are activated by the expression of misfolded protein and protein aggregates in the 

envelope, and upon perceiving these environmental cues, these two envelope 

stress responses induce the increased synthesis of DegP [353]. It is therefore 

tempting to speculate that in Chlamydia, CtHtrA proteolytic activity facilitates the 

removal of damaged proteins during reversion from penicillin-induced persistence 

when the integrity of the cell envelope is compromised. To our knowledge, this is 

the first experiment that demonstrated the essential role that CtHtrA plays during 

such conditions that would have otherwise been unfavourable to the bacterium.  

It is commonly reported that HtrA is required for bacterial survival under 

high temperature, hence the name of the protein. CtHtrA has been found to be 

upregulated during heat stress while expression of the major outer membrane 

protein (MOMP) decreased under the same condition [19]. HtrA (DegP) is 

essential for survival at temperature above 42
o
C for E. coli [354] and the lethal 

phenotype brought about by a E. coli htrA- can be heterologously complemented 

and protected by cthtrA against the lethal effects of heat stress [19]. During high 

temperature and other stress conditions, aggregation of the misfolded proteins can 

rapidly compromise the bacterial metabolic balance and is harmful to the 

organism. The present study demonstrated that addition of JO146 immediately 

prior to, and during, heat stress was lethal to Chlamydia.  

Most bacteria respond to elevated temperatures by transiently upregulating 

the synthesis of a conserved set of heat shock proteins (HSPs). The most widely 

studied genes and proteins that are upregulated in response to heat shock in 

bacteria are the chaperones, HSP60, encoded by the gene groEL [355], and 

HSP70, encoded by the dnaK gene [356]. The molecular mechanisms underlying 

heat stress response had been extensively studied in E. coli. The heat shock 

response in E. coli is mediated by the alternative sigma factor, σ
H
 (σ

32
) that acts as 

a transcriptional regulator [357-359]. The bacterium monitors the free pools of 

cytoplasmic chaperones DnaK and DnaJ, which in the presence of heat shock, 

interacts with denatured proteins. During normal conditions, DnaK and DnaJ form 

a stable complex with ơ
32

 in vitro, however, in the presence of heat shock, these 
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chaperones, by sequestering to the denatured proteins, allow σ
32

 to associate with 

RNA polymerase and activate transcription of heat shock promoters [360]. DegP 

(HtrA), another protein that is upregulated in E. coli during growth at elevated 

temperature, encodes a periplasmic protease. Like most HSPs, the synthesis of 

degP is regulated at the transcriptional level, however, this induction is not 

mediated by σ
32

 but by a homologous promoter to one of the promoters of the σ
H 

- 

encoding gene rpoH [307], the P3 promoter which is recognized by σ
E
 [307]. 

Therefore, the role of HtrA as a heat stress protein is indispensable, most likely 

for the proteolytic degradation of damaged or misfolded proteins that accumulate 

during heat stress. The present study indicated that JO146 was effective in 

inhibiting chlamydial growth and viability when the compound was added at mid-

replicative phase, which relates to the stage wherein RBs are asynchronously 

replicating and/or differentiating back to infectious EBs. Previous reports 

identified that prolonged exposure to heat shock (42
o
C) stagnates Chlamydia in 

the RB stage [20], while the present study demonstrated that JO146 treatment in 

the presence at 42
o
C for a short period of time (4 h) was lethal to Chlamydia. 

These findings indicate that CtHtrA is vital during detrimental conditions such as 

heat stress and does not necessarily relate to replication or binary fission.  

To gain further insights into the potential pathways targeted by JO146, 

which may therefore be involved in CtHtrA function, C. trachomatis mutants that 

are resistant to the inhibitor were aimed to be isolated. Although a resistant mutant 

was not derived, unique mutants that were less susceptible to JO146 were 

generated and characterized phenotypically. The inability to isolate highly JO146-

resistant mutants despite extensive efforts and the utilization of different screening 

formats suggests the possibility that interplay between multiple gene defects is 

required for resistance. Isolation of JO146 resistant mutants using the 96-well 

library format with two to three sequential rounds of compound treatment was 

unsuccessful. However, serial cultivation of wild-type and EMS-mutagenized C. 

trachomatis D in the presence of JO146 in T25 flasks resulted in isolation of 

mutants with reduced susceptibility to the compound. The use of different 

protocols and the resulting isolation, or lack thereof, of mutants with resistance to 

JO146 indicated that different factors such host cell density, the surface area of 

the cell culture system as well as the concentration of JO146 contributed to the 
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success or failure of isolating these mutants. After growing EMS-mutagenized and 

non-mutagenized C. trachomatis in the presence of JO146, the genomes of three 

plaque purified mutants with less susceptibility were sequenced and analysed. The 

isolation of mutants that were less susceptible to JO146 is an exciting feat for 

Chlamydia genetics. Chlamydia has been intractable to routine genetic 

manipulation due to its complex, obligate intracellular developmental cycle. 

However, several major advances in the study of Chlamydia genetics have been 

recently reported. Many of these genetic approaches have centred on construction 

of mutants through chemical mutagenesis [176, 180], C. trachomatis 

transformation and recombination studies as demonstrated by horizontal gene 

transfer with antibiotic resistant mutants [184, 296, 297], as well as analysis of 

naturally-occurring variants. Major breakthroughs in Chlamydia genetics also 

involved the determination of the role of C. trachomatis plasmid and plasmid-

encoded components to virulence [163, 171]. These abovementioned studies, 

together with the present study, which utilized chemical mutagenesis coupled with 

whole genome sequencing to determine the specific genes that might be involved 

in CtHtrA function, indicate that genetic capabilities for Chlamydia continue to 

develop and expand.   

Whole genome sequencing of the mutants and comparative sequence 

analysis with our laboratory wild-type C. trachomatis D provided knowledge 

about which genes contribute to the basis of the lesser susceptibility phenotype. 

Single nucleotide variants (SNVs) were present in the genes CT776 and CT206 

which code for 2-acylglycerophosphoethanolamine (2-Acyl-GPE) acyltransferase 

and a predicted acyltransferase protein, respectively. All of the clones had 

mutations in gene CT776 although mutant 2A3 had a null mutation and thus the 

normal function of the gene could be completely lacking. Two of the three 

mutants had unique mutations in CT206. The clones that had mutations in CT206 

recovered more infectious progeny during heat stress in the presence of JO146. 

Therefore, it can be speculated that changes in CT206 might have enabled 

Chlamydia to survive heat stress in the presence of JO146. The null mutation in 

CT776 for mutant 2A3 might have been compensated by the presence of 

nucleotide changes in CT206. It is therefore likely that single base substitutions in 

the genes CT206 and CT776 might have conferred beneficial mutations for these 
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clones as demonstrated by the high infectious yield during normal development 

and during heat stress in the presence of JO146 compared to the wild-type strain. 

These mutants were generated by continued cultivation in the presence of JO146 

for a total of 26 passages. JO146 was a selective inhibitor towards CtHtrA, and 

CT206 and CT776, which code for acyltransferases, were the two most frequently 

identified loci in the generation of mutants with reduced susceptibility to JO146, 

suggesting that these two genes were strongly affected by continuous JO146 

treatment.  

Acyltransferases play pivotal functions in the metabolism of fatty acids. C. 

trachomatis encodes fatty acid synthesis (FAS II) genes that are required for the 

synthesis of phosphoethanolamine, phosphatidylglycerol and cardiolipin which 

constitute the main components of the bacterial membrane. FAS II is involved in 

the generation of 3-hydroxy fatty acids for lipopolysaccharide (LPS) synthesis in 

Gram-negative bacteria [361] and in Chlamydia, it was found to be essential for 

RB replication [311]. Lipid A (endotoxin), the hydrophobic moiety of LPS makes 

up the outer monolayer of the outer membrane of Gram-negative bacteria [362, 

363]. The biosynthesis of lipid A is catalysed by the enzyme LpxC. Inhibition of 

LpxC led to downstream effect of blocking lipooligosaccharides (LOS), which in 

turn prevented Chlamydia from generating infectious EBs [189]. Therefore, the 

function of FAS II in Chlamydia would be to provide 3-hydroxy fatty acids for 

LOS synthesis, and that the acyltransferase CT776 (2-acyl-GPE acyltransferase) 

was essential for recycling PE during lipoprotein turnover [311]. Thus, CT776 

may have bacterial membrane anabolic/membrane maintenance and outer 

membrane protein biogenesis functions that are highly associated to the essential 

role of CtHtrA especially during stress conditions.  

It was demonstrated in the present study that JO146 was effective in 

inhibiting CtHtrA functions in currently circulating C. trachomatis clinical 

isolates representing different serovars. Treatment with the CtHtrA inhibitor 

JO146 had the same significant and reproducible detrimental effect on C. 

trachomatis clinical isolates with that observed on C. trachomatis laboratory 

strain. C. trachomatis infections are typically resolved by treatment with 

antibiotics that are able to be absorbed by the lipophilic plasma membrane to 

reach the RBs [146]. The drugs of choice for chlamydial infections include 
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cyclines (doxycycline and tetracycline), quinolones (ofloxacin and levoflaxin), 

and macrolides (erythromycin and azithromycin) [146]. Although these regimens 

were thought to be both safe and efficacious [72-74], recurrent exacerbating 

infections are reported. Treatment failure with azithromycin, the most commonly 

used drug for uncomplicated chlamydial infections, has also been reported [75-77, 

312, 364]. Batteiger and co-workers [78] conducted a longitudinal cohort study 

among adolescent women and identified that 8% of women with paired episodes 

of chlamydial infections were probable treatment failures. A partner treatment 

study conducted by Golden and co-workers [312] demonstrated that 8% of 

originally treated cases had chlamydial infections after follow up despite denials 

of re-exposure, and were classified as treatment failures. There is likely to be a 

future need for development of new anti-chlamydial therapeutics. In the present 

study, treatment with the CtHtrA inhibitor, JO146, was effective against currently 

circulating clinical isolates of C. trachomatis, indicating that CtHtrA is a 

virulence factor that can be targeted by anti-chlamydial drugs. In addition, 

inhibition of CtHtrA in the mid-replicative phase wherein RBs are asynchronously 

actively replicating and reverting back to infectious EBs is a good developmental 

phase to inhibit chlamydial growth since this is the stage in which RBs are 

metabolically active and thus most susceptible to treatment. Direct examination of 

cultures treated with JO146 by immunocytochemistry and confocal microscopy 

indicated that the decrease in inclusion size and the lack of recoverable EBs did 

not reflect a deficiency in accumulated RBs to retransform back to EBs but was 

instead due to inhibition of growth. It can therefore be proposed that the effect of 

JO146 on chlamydial development and CtHtrA function was probably not via 

induction of characterized persistent state of growth. This finding is of particular 

relevance because a good inhibition strategy would mean that the compound or 

drug does not induce the Chlamydia to enter into persistence, a condition which 

results in a lasting association between the pathogen and its host.  

As laboratory strains may not reflect the strains currently infecting men and 

women, C. trachomatis clinical isolates have been used to assess the in vitro 

antibacterial properties of different inhibitors of Chlamydia virulence factors. One 

of these inhibitors whose potency was tested against clinical isolates of C. 

trachomatis was Iclaprim. Iclaprim, a novel dihydrofolate reductase (DHFR) 
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inhibitors, act through inhibition of thymidylate synthase and therefore nucleic 

acid synthesis [365]. When tested on C. trachomatis clinical endocervical isolates, 

Iclaprim exhibited anti-chlamydial activity comparable to those of both 

azithromycin and levoflaxin [365]. Clinical isolates of C. trachomatis have also 

been used to test the in vitro activity of different antibiotics such as 

clarithromycin, azithromycin, roxithromycin, erythromycin, doxycycline and 

tetracycline [322]. The in vitro anti-chlamydial property of the macrolides was 

found to be better than that of the tetracycline’s [322]. Clinical strains have also 

been used to study horizontal gene transfer conferring resistance to different 

antibiotics among different Chlamydia species [297]. It was identified that 

resistance to tetracycline can be transferred to recent clinical isolates of C. 

trachomatis, raising public health concerns regarding human pathogens acquiring 

resistance to tetracycline [297].  

Experiments for the present study used McCoy B cells as consistent with 

previous studies on clinical isolates of C. trachomatis that all mainly used this cell 

line. For the present study, the clinical isolates did not grow well in HEp2 cells, a 

human epithelial cell line, but thrived in McCoy B cells. There are no 

explanations in the literature why C. trachomatis clinical isolates grow better in 

the mouse macrophage cell line, McCoy B cells, even though previous studies on 

C. trachomatis clinical isolates used this cell line [320-322]. However, it can be 

speculated that infection of the human epithelial cell line, HEp2, with recent 

clinical isolates of C. trachomatis might have triggered the production of host 

defence factors against the Chlamydia which could explain the inability of C. 

trachomatis clinical isolates to grow in HEp2 as observed in the present study.  

Overall, the data presented in this study could be interpreted to the 

conclusion that CtHtrA inhibition through JO146 treatment is lethal to C. 

trachomatis due to the various functions that CtHtrA plays in the different stages 

of the chlamydial developmental cycle. Previous studies utilizing biochemical, 

transcriptomic, proteomic, antibody labelling and cytosolic localization analyses 

revealed that CtHtrA is present in the envelope and has been found in the lumen 

of inclusions, surface of EBs and cytosol of the infected cells [19, 254, 257, 265]. 

Furthermore, the chaperone activity of CtHtrA potentially mediates the outer 

membrane assembly of extracytoplasmic proteins including the polymorphic 
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membrane proteins (Pmps). C. trachomatis Pmps have been implicated to increase 

genital tract inflammation and may play a role in virulence [366], denoting that 

CtHtrA has essential roles for the pathogenicity of Chlamydia and may serve as a 

substrate for other virulence factors of the bacterium. CtHtrA is expressed 

throughout much of the developmental cycle [19] with up-regulation during the 

replicative phase (8–24 h PI). The high expression of CtHtrA can be due to the 

fact that hydrolysis of penicillin-binding proteins and other PG factors during this 

phase result in the instability and increased permeability of the outer membrane. 

As a molecular chaperone that recognizes and interacts with the surface-exposed 

hydrophobic residues in non-native proteins, CtHtrA is likely to regulate protein 

homeostasis in extracytosolic compartments by degrading misfolded or unstable, 

non-functional proteins in the replicative phase, allowing RB replication to ensue. 

Significant findings that emerged from the present study were the loss of 

chlamydial inclusion morphology, diminishing inclusion size, and complete loss 

of infectious progeny production when the CtHtrA inhibitor was added to the 

cultures at mid-replicative phase of the developmental cycle.  

 

7.1 CONCLUSION 

 

The findings presented in this study support our hypothesis that CtHtrA is 

essential for C. trachomatis viability in human cell culture models. CtHtrA is also 

critical for the viability of C. trachomatis especially during heat stress and during 

penicillin persistence recovery. This study has therefore provided evidence that 

JO146 inhibits C. trachomatis development and CtHtrA activity and presents a 

model in which progression of the C. trachomatis developmental cycle requires a 

fully functional CtHtrA. Whole genome sequence analysis of mutants that were 

less susceptible to JO146 indicated that two loci, CT776 and CT206, which code 

for 2-Acyl-GPE acyltransferase and a predicted acyltransferase protein, 

respectively, acquired single base substitutions for all the mutants. This data 

signify that these two acyltransferases were mainly targeted by JO146 and may be 

indirectly involved in CtHtrA functions. An increasing number of studies question 

the reliability of azithromycin therapy and there are no currently available 
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vaccines for C. trachomatis infections and infection does not provide immunity 

against reinfection. Therefore, there is likely to be a need for development of new 

anti-chlamydial drugs. Results generated in the present study strongly support the 

concept that CtHtrA is a good target for drug development and may form a basis 

for developing a new class of anti-chlamydial agents.   

 

7.2 FUTURE DIRECTIONS 

 

There are a range of approaches that could be used to further understand the 

functions of CtHtrA. C. trachomatis infects a diverse portion of the female 

reproductive tract including the endocervix [367] and the endometrium [368] and 

can also ascend and infect the upper genital tract including the fallopian tube 

[140]. Therefore, the next logical approach would be to test the compound, JO146 

on C. trachomatis grown in primary human cell culture models of Chlamydia 

infection such as the fallopian tube, endometrium, and endocervix  [369, 370]. 

The inhibitory effect of JO146 on Chlamydia grown in human immune cell lines 

such as primary human monocyte-derived macrophages can also be investigated. 

The absorption capacity of JO146 might be different in these cell lines than in 

HEp2 and McCoy B cells which were mainly used in the present study. The 

effects of JO146 on these primary human cells would more closely emulate the 

inhibitory action of the compound in vivo compared to using HEp2 and McCoy B 

cells. Additional experiments can also be performed to further understand the 

functions of CtHtrA. Transcriptome analysis on an in vitro model of CtHtrA 

inhibition would help identify expressed genes, targeted transcripts and 

transcriptional changes in C. trachomatis upon treatment with JO146 particularly 

at the mid-replicative phase.  

The mutants generated in the present study may serve as useful model 

organisms for investigation of the function and regulation of proteins affected by 

the SNVs and how these proteins mediate reduced susceptibility to JO146. 

Transmission electron microscopy can also be performed to determine if the 

mutations alter the cellular membrane morphology of the mutants. Since interplay 

between multiple gene defects might be required for resistance, recombination 
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between the less susceptible strains might lead to isolation and characterization of 

a JO146 truly resistant C. trachomatis variant that can further be studied for the 

specific roles of CtHtrA particularly for chlamydial development during normal as 

well as during stress conditions. Complementation of the mutants with CT776 and 

CT206 and determination of the resulting JO146 binding capacity of the 

complemented strains expressing these two genes, in comparison to their mutant 

forms clearly deserves further study. Identifying expression profiles through 

Western blot analysis of HtrA and MOMP as well as that of acyltransferases 

CT776 and CT206, in relation to host cell β-actin of cultures treated with the 

mutants can shed light on the impact of these mutations on these chlamydial 

proteins. Real-time (rt) or quantitative PCR (qPCR) can also be performed to 

determine the doubling time of Chlamydia DNA for these mutants. The two loci, 

CT776 and CT206, which are both involved in fatty acid synthesis, were clearly 

targeted by JO146 since the three mutants had unique base substitutions in these 

genes. Therefore, the roles of the genes mutated in the clones can be further 

confirmed by fatty acid metabolomics. Additionally, transcriptome profiling of 

these mutants will determine the expression of CT776 and CT206 throughout the 

chlamydial developmental cycle which can therefore be associated with the 

replicative phase impact of JO146. Loss-of-function mutations in CT776 and 

CT206 and determining the phenotypic effect on Chlamydia would help 

determine the specific functions of these genes particularly in the chlamydial 

developmental cycle during normal and stress conditions. Identifying the other 

genes that might be upregulated when htrA is compromised is also a good avenue 

for further research. 

One of the limitations of this study is the solubility of the compound 

JO146. Biochemical and structural alterations of the compound are currently 

underway in partnership with collaborators to make the compound more soluble at 

higher concentrations. Concurrent experiments from the group also identified that 

JO146 effectivity is modulated by the type of host (epithelial such as Hep-2 and 

mouse fibroblasts such as McCoy cells) and the host cell density. Understanding 

the pharmacokinetics (absorption, distribution, metabolism and excretion) [371] 

of JO146 will further elucidate the mechanisms responsible for the differences of 

JO146 effectivity in different cell lines. Transcriptional profiles of different host 
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cell lines mostly used in Chlamydia culture studies will also elucidate the different 

sensitivities of the organism to anti-chlamydial compounds such as JO146. This 

technique would shed knowledge on the expression profiles of different host 

enzymes that are involved in the compound’s bioavailability and whether these 

enzymes could be concomitantly affected by the use of other drugs. The resulting 

metabolites that may be contributing to the pharmacological action of the 

compound also deserves further study (i.e. metabolite profiling). 

In addition, an attractive feature of JO146 and its derivatives that would 

need to be explored is its inhibition capacity against members of the vaginal 

microbiome such as the lactobacilli. The low pH resulting from fermentation of 

carbohydrates to lactic acid by Lactobacillus bacteria is toxic to many pathogenic 

microbes. Current anti-chlamydials also kill lactobacilli, resulting in yeast 

vaginitis [372]. Therefore, potential, alternative anti-chlamydial treatment 

strategies may include inhibitor compounds that target specific virulence factors 

without disrupting the normal bacterial flora. An example of a compound that 

kills a sexually transmitted pathogen but does not disturb the normal vaginal 

microflora of women is chlorhexidine which is a biguanide broad-spectrum 

disinfectant that eradicates Gram-positive and Gram-negative bacteria and has 

been used in skin and mouth washes and as a preservative in some vaginal 

lubricants [373]. Rabe and Hillier [373] demonstrated that chlorhexidine may be 

an appropriate microbicide against Neisseria gonorrhoea but not for the 

protozoan, Trichomonas vaginalis, and was more effective at a higher pH and in 

the absence of blood. Shubair and co-workers [374] identified that chlorhexidine 

gluconate (CHG) did not affect the normal microflora of the vagina which 

consists of aerobic bacteria such as Lactobacillus spp., Gardnerella vaginalis, and 

Staphylococcus epidermidis and anerobic bacteria such as Bacteroides spp. The 

same bacterial composition was observed 30 days after treatment as the pre-

treatment flora [374]. This finding was corroborated by the study of Patton and 

co-workers [375] who demonstrated that CHG had only small effects on the 

vaginal microflora of pig-tailed macaques, which was remarkably similar to that 

of humans, compared to the spermicidal contraceptive, benzalkonium chloride 

(BZK). Likewise, development of novel anti-chlamydial compound that does not 
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affect the normal vaginal microflora is of utmost consideration and warrants 

further investigation. 

This project demonstrated an essential role of CtHtrA for the replicative 

phase of chlamydial development. CtHtrA inhibition during the replicative phase 

resulted in decreased inclusion vacuole size and prevented the formation of 

infectious progeny. This study also demonstrated that CtHtrA is essential for heat 

stress during mid-replicative phase. CtHtrA was important for recovery from 

penicillin persistence. This is the first time that an essential protein for this phase 

has been uncovered. Phenotypic and genotypic characterization of mutants that 

were less susceptible to JO146 demonstrated that the genes CT776 and CT206, 

which both code for acyltransferases genes that are involved in cell envelope 

integrity, signify that these two loci are targeted by JO146. Single base 

substitutions in these genes conferred beneficial mutation for these mutants as 

indicated by the high infectious progeny yield during normal development, heat 

stress in the presence of JO146 as well as during recovery from penicillin 

persistence compared to wild-type C. trachomatis D. The genes CT776 and 

CT206 may therefore have an indirect contribution to the membrane biogenesis or 

maintenance functions of CtHtrA. This is the first report that unveils the specific 

chlamydial genes that might have downstream effect on CtHtrA functions. JO146 

was also effective against currently circulating C. trachomatis clinical isolates 

representing different serovars. Therefore, CtHrA inhibition through the use of the 

compound, JO146 provides proof of concept that this strategy can be further 

applied in the future development of new anti-chlamydial drugs. 
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