

KNOWLEDGE DISCOVERY FROM TREE

DATABASES USING BALANCED OPTIMAL

SEARCH

Israt Jahan Chowdhury

Bachelor of Science (Hons.) in Engineering

Bangladesh University of Engineering and Technology

(BUET), 2009

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

(PhD)

School of Electrical Engineering and Computer Science

Science and Engineering Faculty

Queensland University of Technology

2016

Keywords

Trees, Rooted Unordered Trees, Free Trees, Root Node, Sibling Order, Ancestor-

descendant Relationship, Tree Traversing Algorithm, Canonical Form, Adjacency

Matrix, Optimisation, Frequent Subtree Mining, Induced Subtree, Embedded

Subtree, Isomorphism, Candidate Generation, Tree Structure Guided Enumeration

Tree, Enumeration Operations, Support, Frequency Counting, Tree Matching, Pair-

wise Similarity Measure, Similarity Metric, Computational Complexity, Accuracy,

Clustering, Bill of Materials (BOMs), Web Log Data (CSLOGS).

Knowledge Discovery from Tree Databases using Balanced Optimal Search i

Abstract

Various domains such as Web, XML, Bioinformatics, Computer Networks and

Manufacturing commonly represent their data in tree structures. Trees have become a

formal means of studying link-based structures present in these domains. The tree

structured data can appear in many forms such as rooted labelled ordered trees,

unordered trees and free trees due to enforced structural constraints. The structural

flexibility of unordered tree data allows extracting additional interesting information

with practical significance, but at the same time, enforces complexities like

exponential increase of runtime and memory usage.

An important problem in the knowledge discovery of labelled unordered trees

is to find frequently occurring subtrees, thus facilitating data understanding. Another

important problem is pairwise tree matching–a fundamental core operation of many

data manipulation tasks such as clustering, data integration, and data querying. This

thesis proposes efficient methods for solving these two problems. The main

contributions of this thesis are three-fold.

An efficient tree representation serves as a basic block for further tree

manipulation. Firstly, the Balanced-Optimal-Search (BOS) traversal, a novel

traversing algorithm for trees, which can define an optimal order for any rooted

labelled trees, is introduced. Utilising this optimal order, canonical forms, named

Balanced Optimal Canonical Forms (BOCFs) for labelled rooted unordered trees and

free trees are defined. BOCF uniquely represents a rooted unordered tree or a free

tree, which helps deal with isomorphic trees in tree processing. Two matrix

representations of unordered trees are proposed—Augmented Adjacency Matrix

(AAM) and Extended Augmented Adjacency Matrix (EAAM); these will capture

more structural information than the traditional adjacency matrix. These matrix

representations ensure the unique identity of an unordered tree (one-to-one mapping).

Secondly, a tree matching algorithm is proposed for measuring similarity

between rooted unordered tree pairs with two variations, one based on the AAM

representation and another on the EAAM representation. This algorithm ensures

faster similarity computation by comparing the matrices using a cosine similarity

ii Knowledge Discovery from Tree Databases using Balanced Optimal Search

measure without compromising the accuracy. The similarity information can be

embedded further in a clustering algorithm for grouping the tree datasets.

Thirdly, based on the BOCFs, frequent tree mining algorithms are developed

that can effectively deal with the isomorphism problem–a pressing issue in frequent

subtree mining. The Balanced Optimal Search Tree minER algorithm (BOSTER)

proposes a tree structure guided scheme-based enumeration to generate only valid

candidate subtrees for mining frequent induced unordered subtrees. The Balanced

optimal search Embedded SubTree mining algorithm (BEST) generates candidate

subtrees through the tree structure guided scheme-based enumeration approach with

modified enumerate operation to find frequent embedded unordered trees. The

Frequent Free Subtree algorithm (FreeS) mines all frequent free induced subtrees

using the tree structure guided scheme-based enumeration approach subject to

constraint on supporting the generation of candidate trees in the canonical form of

free trees.

Empirical analysis for the tree matching algorithm shows that the runtime

reduces drastically without compromising the accuracy of output. The baseline

algorithms show exponential complexity after reaching a tree size in the range of

60~65 nodes while the proposed method yields the runtime of less than a second.

The performance of each frequent subtree mining algorithm is also evaluated using

extensive empirical analysis and is compared with the state-of-the-art algorithms

using both synthetic and real life data. In general, the runtime and memory usage of

each algorithm has reduced a few orders of magnitude than the benchmarks without

missing any frequent subtree.

This thesis contributes towards the process of knowledge discovery from tree

databases by focusing on alleviating the hurdles of existing tree representation

methods. The BOS-based representation plays an important role in significantly

improving the scalability performance of tree matching and frequent subtree mining

algorithms.

Knowledge Discovery from Tree Databases using Balanced Optimal Search iii

Dedication

To my parents Md. Nazmul Hossain Chowdhury and Chowdhury Khaleda

Akter, my husband Dr. Md Nayim Kabir, my sister Dr. Fatama Akter Chowdhury,

my parents in law Md Humayun Kabir and Farida Yeasmin, as well as to my other

family members.

iv Knowledge Discovery from Tree Databases using Balanced Optimal Search

Table of Contents

Keywords .. i

Abstract .. ii

Dedication ... iv

Table of Contents .. v

List of Figures ... viii

List of Tables .. x

List of Publications ... xi

List of Abbreviations ... xii

Statement of Contribution of Co-Authors for ... xv

Thesis by Published Paper .. xv

Statement of Original Authorship .. xvii

Acknowledgements ... xviii

Chapter 1: Introduction .. 1

1.1 Background ... 1

1.2 Motivation .. 4

1.3 Research Objectives and Goals .. 9

1.4 Research Questions ... 10

1.5 Research Contributions ... 11

1.6 Account of Research Publications .. 14

1.7 High Level Overview ... 15

1.8 Research Significance ... 19

1.9 Thesis Outline ... 20

Chapter 2: Literature Review and Background ... 23

2.1 Tree Structured Data Source ... 24
2.1.1 XML (eXtensible Markup Language) .. 25
2.1.2 Web log data ... 26
2.1.3 Bill of Material (BOM) .. 26
2.1.4 Glycan .. 28

2.2 Basic Tree Concepts ... 29
2.2.1 Types of trees ... 31
2.2.2 Types of subtrees .. 31

2.3 Tree Representation .. 33
2.3.1 Tree Traversal ... 34
2.3.2 Canonical Form .. 36
2.3.3 Canonical Representation for Unordered and Free Trees 37
2.3.4 Adjacency List and Adjacency Matrix ... 40

2.4 Tree Matching ... 42
2.4.1 Tree Edit Distance based Methods ... 44

Knowledge Discovery from Tree Databases using Balanced Optimal Search v

2.4.2 Other Methods ... 46

2.5 Frequent Pattern Mining .. 48
2.5.1 Candidate Generation Step .. 49
2.5.2 Frequency Counting Step ... 53
2.5.3 Algorithms for Mining Frequent Rooted Unordered and Free Trees 54

2.6 Concluding Remarks .. 59

Chapter 3: Tree Representation and Data Structure 63

3.1 The Balance Optimal Search (BOS) Algorithm ... 64
3.1.1 Simple Assembly Line Balancing (SALB) Problem ... 65
3.1.2 The BOS Traversal .. 65

3.2 Adjacency Matrix ... 67
3.2.1 Augmented Adjacency Matrix ... 68
3.2.2 Extended Augmented Adjacency Matrix ... 69

3.3 Canonical Forms for Labelled Rooted Unordered Trees ... 70
3.3.1 The Balanced Optimal Canonical Form (BOCF) .. 70

3.4 Canonical Forms for Labelled Free Trees .. 72
3.4.1 Balanced Optimal Canonical Form of Free Trees ... 72

3.5 Other Data Structures ... 73
3.5.1 Dictionary .. 74
3.5.2 Occurrence List .. 75

3.6 Chapter Summary .. 75

Chapter 4: Tree Matching ... 77

4.1 An overview of the clustering process ... 78

4.2 A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data
Model ... 79

4.3 Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search
Traversal Algorithm ... 79

4.4 Identifying Product Families Using Data Mining Techniques in Manufacturing
Paradigm ... 80

Paper 1: A Novel Method for Finding Similarities between Unordered Trees
Using Matrix Data Model .. 81

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-
Optimal-Search Traversal Algorithm .. 95

Paper 3: Identifying Product Families Using Data Mining Techniques in
Manufacturing Paradigm .. 133

Chapter 5: Frequent Subtree Mining ... 153

5.1 BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees154
5.1.1 BOSTER Handling Isomorphism .. 155

5.2 BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees156

5.3 FreeS: A Fast Algorithm to Discover Frequent Free Subtrees Using a Novel Canonical
Form .. 157

Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered
Induced Subtrees .. 159

vi Knowledge Discovery from Tree Databases using Balanced Optimal Search

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered
Embedded Subtrees ... 175

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered
Embedded Subtrees ... 195

Chapter 6: Conclusions ... 217

6.1 Summary of Contributions ... 217

6.2 Summary of Findings ... 219

6.3 Future Works .. 222

Bibliography ... 225

Knowledge Discovery from Tree Databases using Balanced Optimal Search vii

List of Figures

[The List of Figures can be created automatically and updated with the F9 key – refer to Thesis PAM.]

Figure 1.1: Architecture of knowledge discovery [5, 9] .. 2

Figure 1.2: Example of a simple Web site and a fragment of Web usage
patterns ... 3

Figure 1.3: Example of a subtree query system using a heterogeneous
collection of documents. Here the dotted lines are showing the exact
matching between a query tree (a) and the available documents (b) 5

Figure 1.4: A research map to provide the high level overview of the thesis 17

Figure 2.1: Related research areas and coverage of literature review 23

Figure 2.2: Tree modelling from XML data [72] ... 25

Figure 2.3: Example of Web log data in tree format [11] .. 26

Figure 2.4: Tree modelling from BOM data (Collected from SAS Bill of
Material Processing) .. 27

Figure 2.5: A sample glycan structure ... 28

Figure 2.6: Hierarchical relationships amongst tree nodes .. 30

Figure 2.7: Examples of induced and embedded subtrees (b) for a tree, T (a) 32

Figure 2.8: Examples of the depth-first search (a), and the breadth-first search
(b). The dotted arrow lines show the traversing directions 34

Figure 2.9: The Depth-first search (a), and the Breadth-first search (b)
traversing orders for the same example tree of Figure 2.8, but with a
different sibling order ... 35

Figure 2.10: Example of isomorphic trees ... 38

Figure 2.11: Adjacency matrix representation using BFS and DFS order 41

Figure 2.12: An overview of various tree matching approaches 43

Figure 2.13: Overview of various frequent pattern mining approaches 50

Figure 2.14: An example of valid and invalid subtree, considering the
underlying information of the sample database while mining frequent
induced subtrees ... 52

Figure 2.15: Isomorphism issue during candidate generation step of mining
frequent unordered tree using enumeration tree [49] 53

Figure 3.1: The simple assembly line balancing problem, (a) replicates an
assembly line, (b) represents an optimal sequence of tasks on various
machines ... 65

Figure 3.2: The BOS traversing order of the given tree is va-vb-vd-vc-ve. The
arrow is directing the sequence of steps that traversing process is
carried out and the highlighted nodes are showing the list of nodes that
have traversed .. 66

viii Knowledge Discovery from Tree Databases using Balanced Optimal Search

Figure 3.3: Augmented adjacency matrix .. 68

Figure 3.4: An example of four rooted ordered tree variations of the same
rooted unordered tree ... 71

Figure 3.5: Process of finding canonical form for a free tree 73

Figure 3.6: An illustration of dictionary generation for a tree where each cell in
the dictionary has a tuple as: {label, level, fan-out, weight, link} 74

Figure 4.1: A generic tree data clustering framework .. 78

Figure 5.1: Runtime in presence of isomorphism .. 156

Knowledge Discovery from Tree Databases using Balanced Optimal Search ix

List of Tables

[The List of Tables can be created automatically and updated with the F9 key – refer to Thesis PAM.]

Table 1.1: List of peer reviewed papers forming chapter in this thesis 14

Table 1.2: A detailed sketch of the major contributions made in the thesis 18

Table 2.1: The example of various tree data domains .. 24

Table 2.2: Time complexity of various tree edit distance-based methods, here
O = ordered tree and U = unordered tree, adopted from [42] 45

Table 2.3: A general classification of the available frequent subtree mining
algorithms for rooted unordered and free trees .. 55

Table 5.1: A general overview of the proposed frequent subtree mining
algorithms ... 153

x Knowledge Discovery from Tree Databases using Balanced Optimal Search

List of Publications

Chowdhury, Israt J. & Nayak, Richi (2013) A novel method for finding

similarities between unordered trees using matrix data model. Lecture Notes in

Computer Science: The 14th International Conference on Web Information Systems

Engineering – WISE 2013, LNAI 8180, pp. 421-430. (Will form part of Chapter 4)

Chowdhury, Israt J. & Nayak, Richi (2014) Identifying product families

using data mining techniques in manufacturing paradigm. In Nayak, Richi, Li, Xue,

Liu, Lin, Ong, Kok-Leong, Zhao, Yanchang, & Kennedy, Paul (Eds.) Australasian

Data Mining Conference (AusDM), 2014, Brisbane, Australia (Will form part of

Chapter 4)

Chowdhury, Israt J. & Nayak, Richi (2014) BOSTER: an efficient algorithm

for mining frequent unordered induced subtrees. Lecture Notes in Computer Science:

The 15th International Conference on Web Information Systems Engineering – WISE

2014, LNAI 8786, pp. 146-155 (Will form part of Chapter 5)

Chowdhury, Israt Jahan & Nayak, Richi (2014) BEST: an efficient algorithm

for mining frequent unordered embedded subtrees. Lecture Notes in Computer

Science: The 13th Pacific Rim International Conference on Artificial Intelligence–

PRICAI 2014, LNAI 8862, pp. 459-471 (Will form part of Chapter 5)

Chowdhury, Israt J. & Nayak, Richi (2015) FreeS: Fast Algorithm to

Discover Frequent Free Subtrees Using a Novel Canonical Form. Lecture Notes in

Computer Science: The 16th International Conference on Web Information Systems

Engineering – WISE 2015, LNAI 9418, pp. 123–137 (Will form part of Chapter 5)

Chowdhury, Israt J. & Nayak, Richi, “Measuring Similarity between

Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm”,

Knowledge and Information Systems, KAIS (Under Review) (Will form part of

Chapter 4)

Knowledge Discovery from Tree Databases using Balanced Optimal Search xi

List of Abbreviations

AAM Augmented Adjacency Matrix

BOS Balanced Optimal Search

BFS Breadth-first Search

BOCF Balanced Optimal Canonical Form

BFCF Breadth-first Canonical Form

BOM Bill of Material

BOSTER Balanced Optimal Search Tree Miner

BEST Balanced Optimal Search Embedded Subtree Miner

BPM Business Process Management

B Breadth

CF Canonical Form

CE CliqueEdit

DFS Depth-first Search

DFCF Depth-first Canonical Form

D Depth

DCE DpCliqueEdit

EAAM Extended Augmented Adjacency Matrix

FreeS Frequent Free Subtree

FP False Positive

FN False Negative

F FScore

GT Group Technology

GBOM Generic Bill of Material

HBT HybridTreeMiner

LOGML Log Markup Language

NMI Normalised Mutual Information

OR Operations Research

OL Occurrence List

PTAS Polynomial Time Approximation Scheme

P Precision

xii Knowledge Discovery from Tree Databases using Balanced Optimal Search

R Recall

RHS Right Hand Side

SALB Simple Assembly Line Balancing

SNA Social Network Analysis

TSM Tensor Space Model

TP True Positive

UB Upper Bound

UCE UwCliqueEdit

VSM Vector Space Model

XML eXtensible Markup Language

Knowledge Discovery from Tree Databases using Balanced Optimal Search xiii

xiv Knowledge Discovery from Tree Databases using Balanced Optimal Search

Statement of Contribution of Co-Authors for

Thesis by Published Paper

The following is the format for the required declaration provided at the start of
any thesis chapter which includes a co-authored publication.

The authors listed below have certified* that:

1. They meet the criteria for authorship in that they have participated in the

conception, execution, or interpretation, of at least that part of the publication in
their field of expertise;

2. They take public responsibility for their part of the publication, except for the
responsible author who accepts overall responsibility for the publication;

3. There are no other authors of the publication according to these criteria;
4. potential conflicts of interest have been disclosed to (a) granting bodies, (b) the

editor or publisher of journals or other publications, and (c) the head of the
responsible academic unit, and

5. They agree to the use of the publication in the student’s thesis and its publication

on the QUT ePrints database consistent with any limitations set by publisher
requirements.

In the case of this thesis, Chapter 4 and Chapter 5 are formed based on the
publications. The publication title that are used in the thesis chapters are detailed in
the list of publications with their statuses:

Contributor Statement of contribution*

Israt Jahan Chowdhury
Developed the methods, wrote the manuscripts, conducted
experimental design and implementation, carried out
experiments, and data analysis.

Signature

Date:15/09/2015

A/Prof Richi Nayak

Supervised in ideation phase for developing the methods,
aided the experimental design, data analysis and manuscript
writing.

Principal Supervisor Confirmation

I have sighted email or other correspondence from all Co-authors confirming their
certifying authorship.

A/Prof Richi Nayak_ ____15/09/2015__
Name Signature Date

Knowledge Discovery from Tree Databases using Balanced Optimal Search xv

QUT Verified Signature

QUT Verified
Signature

xvi Knowledge Discovery from Tree Databases using Balanced Optimal Search

Statement of Original Authorship

The work contained in this thesis has not been previously submitted to meet

requirements for an award at this or any other higher education institution. To the

best of my knowledge and belief, the thesis contains no material previously

published or written by another person except where due reference is made.

Signature:

Date: _02/01/2016

Knowledge Discovery from Tree Databases using Balanced Optimal Search xvii

QUT Verified Signature

Acknowledgements

I like to start the acknowledgement list by expressing my gratitude towards the

Almighty, the Lord of everything.

My PhD journey in Queensland University of Technology (QUT) would never

be possible without the immense support and guidance of various personalities. At

first, I gratefully acknowledge the financial support provided by QUT (QUT PRA)

during my whole candidature to make the carried research a success. My foremost

gratitude goes towards my principle supervisor Associate Professor Richi Nayak for

the continuous support, motivation and technical contribution throughout my

candidature. She really knows how to nurture a young researcher like me. The time

spent working with my principal supervisor has greatly shaped my professional

identity and effectively made me the researcher I am today. I also like to express my

gratitude towards associate supervisor Dr. Azharul Karim for his support throughout

my PhD journey.

I am thankful for my fellow research mates from data science discipline for

their support in creating a productive research environment. My special thanks to Dr.

Sangeetha Kutty and Paul Westall for always giving valuable advice and time to help

me when I was in need. Also I want to name some of my friends Ifa, Jun, Daniel,

Gavin and Reza for supporting me in many circumstances. Special gratitude goes to

QUT High Performance Computing (HPC) team, (especially Adam) for their support

while trouble shooting any problem with HPC service.

Further, I acknowledge the staff members from EECS school especially Ms.

Ellainne Steele, Ms. Joanne Reaves and Ms. Jo Kelly for their administrative support

in managing travel applications and so on. Finally I like to thank all academic and

non-academic staff for the support given to me in a countless number of ways.

I want to express my appreciations towards Bangladesh University of

Engineering and Technology (BUET) for giving me high quality education which

gave me a solid background of knowledge for perusing higher study.

My husband for his love, support and patience, who not only stayed beside me

as a shelter but also worked as a mentor in various phases of my PhD journey.

xviii Knowledge Discovery from Tree Databases using Balanced Optimal Search

Furthermore, I can’t express enough how much grateful I am to my family for their

unconditional love in every possible aspects of my life.

Last, but by no means the least, I pay my respect to the valiant freedom

fighters, 3 million martyrs for their sacrifices and 200 thousand women for

sacrificing their innocence during the liberation war of Bangladesh—my motherland.

Through their supreme sacrifices Bangladesh earned her desired victory.

Knowledge Discovery from Tree Databases using Balanced Optimal Search xix

Chapter 1: Introduction

Chapter 1 provides an introduction to the field of knowledge discovery from

tree databases and describes the motivation behind the research. Following on from

this, specific research questions are presented to address the research aims and guide

the investigation through certain objectives. Given a separate list of research

contributions, a high level overview of the thesis is shown through a relational map,

which illustrates how the research progress has been carried out through linking the

contributions. This is a thesis by publication, where the peer reviewed publications

are directly used as chapters in comprising the greater part of the thesis. Details of

the publications are provided, along with a brief summary of how each paper

contributes to the thesis. A comprehensive introduction (i.e., preamble) of each paper

is presented at the start of each chapter.

1.1 BACKGROUND

Knowledge discovery is a nontrivial process for extracting implicit, unknown

and potentially useful information like patterns, rules, constraints, regularities and

various relationships from a large set of data [1, 2]. Some other terms like data

mining, data archaeology, data dredging, and data analytics have been used

interchangeably in various reports, and have a similar or slightly different meaning.

A general architecture of the knowledge discovery process is provided in Figure 1.1,

where it can be seen that the journey of this process starts from the relevant data in

databases and ends by extracting interesting knowledge and high level information as

it passes through several stages. This process is considered as a rich and authentic

way to generate and confirm knowledge, and therefore, has been recognised as a key

research topic by many researchers from database systems, artificial intelligence,

knowledge-based systems, knowledge acquisition and machine learning [3-5].

Moreover, an increasing interest has developed in the fields of business analysis,

marketing management and industrial companies, where knowledge discovery is

treated as an important area, which can potentially create opportunities for major

revenues [6-8].

Introduction 1

Figure 1.1: Architecture of knowledge discovery [5, 9]

In this era, the popularity of knowledge discovery has risen with the explosive

growth in data, due to an easy access of internet and advanced storage capacity.

Now, the knowledge discovery is no longer a random process but it has become a

necessity for gaining insights and extracting information from the vast amount of

data. Besides its enormous volume, data has become more complex in structure, with

many interconnections and hierarchical dependencies [10, 11]. There is a need for

developing new techniques that can deal with intricacy and volume of data to

advance the current progress in the area of semi-structured data [10-15].

Trees are one of the most common data with complex structures [11, 12, 15-

17]. Tree data have strong representational and expressive power for naturally

capturing topological and relational characteristics embedded within a dataset. Tree

structures therefore have become the de-facto standard for representing information

with hierarchical dependencies [11, 18]. The dominance of tree data is noticeable in

various applications, such as, XML and Weblogs in Web intelligence [19, 20]; DNA

and Glycan in bioinformatics [21, 22]; Bill of Material (BOM) documents in

manufacturing [23, 24]; and Phylogenetic trees in evolutionary science [25, 26].

2 Introduction

Figure 1.2: Example of a simple Web site and a fragment of Web usage patterns

Tree data can appear in several forms such as free tree, rooted unordered tree

and rooted ordered tree, based on how nodes are represented in a tree. A rooted

ordered tree preserves specific left-to-right order among the sibling nodes, whereas, a

rooted unordered tree does not have any fixed order among the nodes except the

ancestor-descendant order/relations. A free tree is unordered as well as unrooted, i.e.,

no root node is specified and has no sibling order. All these trees are usually found as

labelled in real-life application, where the labels are attached to their nodes and

edges (the formal definitions of all of these terms such as sibling, ancestor, and

descendant nodes are provided in Chapter 2).

Introduction 3

Ordered trees are well-studied in the area of knowledge discovery. On the

contrary, the area of unordered and free tree mining has been understudied due to the

complexities involved with the flexible structures. Therefore, knowledge discovery

from unordered and free tree databases has become of interest and is the focus in this

thesis. This thesis presents novel methods for representing rooted unordered and free

trees that are utilised to propose novel frequent subtree mining and tree matching

algorithms. These algorithms discover knowledge in the forms of frequent patterns

and similarity information by ensuring less processing complexity.

1.2 MOTIVATION

With computing storage getting cheaper, heterogeneous data sources are rising.

A tree model, especially of unordered nature, is robust to the data inconsistency and

irregularity that a heterogeneous data source usually possesses [27, 28].

Consequently, it becomes enticing to use unordered tree structure models to

represent this type of data. Moreover the progression of Web technology causes swift

changes in online information that is better portrayed through an unordered tree

model [29-31]. The common tree data (e.g., XML, Weblog\ Log Markup Language)

for representing and exchanging information are treated as unordered in various

database applications as a more reliable information transfer in comparison to the

form of ordered trees [29, 32]. The following two examples are used to show the

superiority of unordered tree models in data representation compared to their

counterpart, ordered trees.

Figure 1.2, presents a simplified structure of a Web site that sells movies and

books. The Web content is represented through LOGML, which is a Web log

representation in XML template [33]. The LOGML documents can be modelled as

trees. Each node in the tree corresponds to a Web page in the Web site. The

interactions with the Web site are illustrated through user sessions following the Web

site structure where the sample trees show the visit of Web pages from left to right.

An interesting and useful information for site managers will be knowing how many

times a set of Web pages (in the sub-tree form) have been accessed under the home

Web page. This information can be useful in improving the site design. In this

scenario, the order in which the set of Web pages were visited is irrelevant. The only

information of interest is the set of Web pages, not the ones that are visited in the

same order. Imposing the order may treat a frequently visited set of Web pages as

4 Introduction

non-frequent. For a given threshold in a frequent subtree mining process, only the

Web pages that are visited in the same order will be extracted as frequent if the trees

are considered as ordered. The same set of Webpages, browsed through different

sessions in different order, will not be treated as the same during the process of

ordered subtree mining. Hence, in order to extract the frequent subtrees, trees should

be represented as unordered. For example, in Figure 1.2, the ‘Books’ and ‘Order

Info’ Web pages were accessed in both user sessions 1 and 2, but in different order.

This user behaviour should be shown as frequent information regardless of the

visiting order.

Figure 1.3: Example of a subtree query system using a heterogeneous collection of
documents. Here the dotted lines are showing the exact matching between a query

tree (a) and the available documents (b)

Consider a heterogeneous collection of documents (Figure 1.3(b)) that are

modelled as trees. Quite often, these documents contain the same information with

different structures (i.e., different order among sibling nodes). Modelling these

documents as unordered trees is more appropriate for similarity computation, since a

user will not be aware of document structures. As output, all matching subtrees

containing the same information will be retrieved without considering the difference

in the sibling node orders. Suppose these trees are organised in a database and a

query system is designed to get useful information. The user may have partial

knowledge of the data structure and specifies a query that meets his/her information

need (Figure 1.3(a)). Due to the enforcement of ordering, only the Document 1 will

be returned, despite the fact that Documents 2 also matched the user’s information

need (only the sibling nodes are reversed in Document 2). Now, if the sibling order is

not used as a grouping criterion in the system, then the query subtree would be

Introduction 5

treated as unordered and both the documents would be retrieved. The latter result

would be more favourable.

The omnipresence of unordered tree data in various applications has sparked

interest from the data mining community [23, 32, 34-38]. Discovered information

that is manifested in structures with rich semantics can portray many inherent

relationships and finding them is significant [27, 35, 39-41]. Learning knowledge

from unordered trees includes abstracting useful pattern information, finding

similarity information and finding many other relationships embedded within the

repository. But extracting knowledge from the data with increased granularity, such

as unordered trees, possesses additional processing complexity which cannot be dealt

with by simple tree mining techniques. Discovering this knowledge would require

developing specialised methods such as similarity measures, frequent pattern mining,

and clustering. Compared to the fruitful achievements in ordered tree mining, the

field of unordered tree mining yet requires more maturity and in-depth study.

Unordered tree mining requires new algorithms to be developed that can deal with

the underlying structural flexibility and uncertainty.

Similarity measure methods like tree edit distance, alignment distance, and tree

inclusion have been successfully used for comparing various tree data [42-44].

However, these standard edit distance-based methods do not produce desirable

results when applied on unordered tree data [42, 45, 46]. Research has shown that

when computing the symmetric difference between unordered trees, overstating and

double counting problems often arise that result in less accurate measures [23].

Nodes with distinctive parents are counted more than once in various calculations. A

variety of methods based on tree edit string operations have been proposed to solve

the unordered tree similarity measure problem, but the majority of these methods

have provided an intractable solution [42, 45, 47, 48].

Frequent pattern mining is a popular method to discover knowledge from tree-

structured data in the form of subtrees. It is a basic step for performing association

mining; this is a commonly used data mining technique for finding the association

between data entities that can potentially reveal novel and useful relationships. The

knowledge driven by frequent pattern mining also has some other important

applications such as in database indexing and access method design, classification,

clustering, and query system [49-52]. Mining frequent subtrees is non-trivial since it

6 Introduction

contains hierarchical relationships among the data entities through rich semantics. A

subtree mining problem becomes more complex in dealing with unordered and free

trees due to the flexibility in structural constraints. For an unordered tree, the

subtrees that only differ in permutations of the ordering of siblings are to be

considered the same. This causes the “repeated exploration” problem that will result

in the generation of a huge number of candidates, where subtrees with similar

structure will be included. This eventually creates the “repeated counting” problem

[38, 49, 53]. This problem is referred to as an “isomorphism problem” in the

literature and the frequency counting step often needs subtree isomorphism checking,

which is computationally hard, even known as an NP-complete problem in graph

mining algorithms [54]. Exponential candidate generation is another problem

wherein a lot of candidate trees, including invalid subtrees, are generated during

enumeration [27, 55]. Moreover, it is hard to find a good growth strategy during

enumeration. Most of the frequent pattern mining algorithms for the unordered tree

type are computationally expensive in terms of both memory usage and run time

because of these challenges [11, 12, 49]. Some work has been done to overcome the

challenges, but this field still requires improvisation to make the methods efficient

and scalable.

The challenges in various tasks of knowledge discovery are in general

associated with the structural complexity of tree data [56]. An increasing structural

complexity in tree data involves a higher processing cost in various tree manipulation

algorithms [11, 42]. Hence, for rooted unordered trees, the knowledge discovery

tasks are computationally harder than those of the ordered trees, and also for the free

tree, the processing is harder than that of the rooted unordered tree [57-59]. When a

tree structure becomes less constrained; it poses additional complexities during

processing. If the complex structure of trees can be represented in a way that will

ease the processing, the computational intricacy involved in manipulating algorithms

can be resolved. Moreover, it is also evident that for developing an algorithm to

process any data, one of the essential parts is data representation, and representation

has a close relation with the efficiency and scalability of an algorithm [56, 60, 61].

Because of having complex semantics and additional hierarchical information

embedded in a tree structure, the efficient encoding of all tree information often

requires more memory. Sometimes, the representation does not even reflect the

Introduction 7

fundamental properties of a tree, especially when the tree is unordered, which may

affect the accuracy performance of an algorithm.

 For example, the traditional Breadth First Search (BFS) and Depth First

Search (DFS) traversal algorithms [62] are largely used for encoding trees during

various tree manipulating algorithms. The BFS and DFS algorithms traverse a tree

either following the breadth wise or the depth wise direction, where the sibling node

are visited from left to right order. Using the traversing order, the tree is encoded.

For unordered trees, the order among sibling is not important; therefore similar

unordered trees may have different structures varied in sibling orders. The structural

dependant traversing strategy of BFS or DFS will provide a different traversing order

for each tree, and will result in different encoding for similar unordered trees. This

encoding has direct relation with other tree representation methods like canonical

form and adjacency matrix, which eventually causes pressing issues such as

scalability and accuracy in knowledge discovery methods. Therefore, it is essential to

utilise an appropriate data representation scheme for unordered trees.

All of these issues appear more intensely during the processing of free tree

since they have a root node as well as no ordered sibling nodes. Mining free tree

databases has significant importance in the area of knowledge discovery as

modelling trees as free trees offers richer expressivity and a good compromise

between graphs and sequences. A graph is a richer representation of tree data, but

mining graph data is known as very hard problem in the literature [12]. Sequential

mining does not have processing issues but sequences fail to express structural

characteristic inherent in the data. Therefore free tree mining often gets priority over

graph data mining and sequential mining [54, 63, 64].

This dissertation will explore the mining tasks from a database of labelled

unordered trees, with an emphasis on tree similarity measure and frequent subtree

mining methods. Firstly, it looks into the scope of using a novel representation for

both rooted unordered and free trees that will efficiently capture the embedded

relationships and dependencies. It is assumed that this will lead towards achieving

less manipulating cost during knowledge processing. The concept of optimisation is

utilised to overcome the existing barriers in representation methods. Secondly, it

works on the similarity measure method of trees by using the new data

representations as well as by utilising the frequent pattern information. Thirdly, it

8 Introduction

focuses on frequent pattern mining to alleviate the existing research problems by

incorporating the new tree representation as well as by improvising the candidate

enumeration and frequency counting steps. Besides using new representation, an

optimised enumeration approach has been explored for generating candidate trees

that will only generate valid subtrees without hampering the completeness property

(i.e., will not miss any candidate patterns). All the proposed works and findings are

evaluated with state-of-the-art methods using multiple datasets with diverse

characteristics.

1.3 RESEARCH OBJECTIVES AND GOALS

The objective of this research is to provide efficient and scalable methods for

discovering knowledge from databases of labelled unordered trees. To achieve this

objective, the research emphasises tree representation, as it is usually a mandatory

step in tree manipulation methods. For knowledge discovery, the research focuses on

two important tree mining problems, tree matching and frequent subtree mining.

This research is guided by the following goals to achieve the above mentioned

objectives:

− Utilising an optimisation technique for representing unordered tree data in

a structure independent manner since it represents more complex and less

constrained structures. Based on this representation, the canonical form

and matrix form representations can be developed that will allow more

appropriate encoding and efficient manipulation of rooted unordered trees

and free trees.

− Proposing a tree matching algorithm that will provide tractable solution to

the similarity measure problem of unordered trees. This algorithm should

avoid complex mapping between unordered tree pairs by using an

appropriate data model. This similarity measure should ensure fast

computation without compromising accuracy.

− Developing fast and effective frequent subtree (e.g., induced and

embedded) mining algorithms by using the introduced canonical form that

will ensure efficient indexing of rooted unordered and free trees during

frequency counting and candidate generation steps. In order to make the

frequent subtree mining algorithms computationally efficient an optimal

Introduction 9

and non-redundant candidate enumeration technique needs to be

developed. Also, the frequency counting step needs to be explored to boost

its performance.

1.4 RESEARCH QUESTIONS

This research is structured to answer the following research questions:

1. How can the labelled unordered tree be represented in a more appropriate

and efficient manner?

a. Can the existing traversal techniques (Breadth-first Search and Depth-

first Search) encode the unordered trees without breaching their structural

flexibility?

b. Can an optimisation technique be utilised for representing unordered

trees?

c. Can an unordered tree be represented through the traditional adjacency

matrix?

d. Which canonisation will ensure unique identity of both unordered and

free trees regardless of the structural flexibility?

2. What is the appropriate method for addressing the tree matching problem

from a database of labelled unordered trees?

a. Is a better accuracy and scalability possible with the proposed method in

comparison to the tree edit distance-based methods?

b. Can representation play a role in reducing the computation complexity of

the unordered tree matching algorithm?

e. Can the knowledge of frequent subtrees be helpful in finding similarity

between trees pairs?

3. How can the frequent subtree mining algorithms be designed for mining

frequent rooted unordered and free subtrees through ensuring less run time

and memory usage?

a. Can a canonical form provide unique identity of unordered trees in the

presence of isomorphism and automorphism?

10 Introduction

b. How can the candidate generation be restricted without hampering the

completeness property?

c. How can an enumeration approach be optimised by generating only the

valid candidate trees?

d. What is a more suitable approach for executing the frequency counting?

1.5 RESEARCH CONTRIBUTIONS

This thesis has developed the following contributions in the field of knowledge

discovery from the databases of labelled unordered trees:

− A novel tree traversal algorithm, named as Balanced Optimal Search

(BOS), is proposed by reducing the tree traversal problem to the SALB

(Simple Assembly Line Balancing) problem, a well-known optimisation

problem in Operations Research (OR) paradigm [65]. An optimisation

model is formulated for solving the traversing problem, which consists of

feasibility constraints and an objective function for minimising the

computation time of traversal. BOS traversal gives an optimal traversing

sequence for a rooted unordered tree without relying on a fixed left-to-

right order among sibling nodes, unlike existing traversal algorithms [62].

In order to enhance the effectiveness of frequent subtree mining

algorithms, new canonical forms called Balanced Optimal Canonical

Forms (BOCF) are proposed based on BOS traversal for effectively

representing rooted unordered trees and free trees.

− A new data structure-based tree matching algorithm for unordered trees is

introduced. The traditional adjacency matrix representation of trees uses a

BFS or DFS traversal driven encoding in its construction. BFS and DFS

traverse a tree following breadth- and depth- wise movements respectively.

Their encodings preserve the structural flexibilities such as sibling order

variations. Even if the unordered trees are similar they have different

encodings because of the different sibling orders. This leads to having

different matrix representations for similar unordered trees. Instead of a

structure dependent traversal strategy, the BOS traversal is used to provide

optimal encoding of trees that are independent to the structural variations.

By using this encoding and additional tree structural information, an

Introduction 11

approximate numerical matrix representation called Augmented Adjacency

Matrix (AAM) is presented, which ensures similar matrix representations

for similar trees. Finally, the vector cosine similarity metric is modified to

make it compatible with matrix computation for calculating the similarity

between tree pairs. The similarity information is further used in clustering

to show an application of this method. Necessary empirical analysis has

been conducted to establish the findings.

− Another new data structure-based tree matching algorithm is proposed,

which is utilising not only the tree information but also the database

specific knowledge for measuring similarities between unordered trees. By

applying the frequent pattern mining algorithm, the common structures

present in a database can be discovered, which often aids in understanding

a database, especially a new one [24, 49]. Using additional information, in

the form of frequent structural dependencies like parent-child, for

representing a tree, will emphasise the characteristics of the database

during finding similarities between its trees. In this work, a novel

Extended Augmented Adjacency Matrix (EAAM) representation is

introduced, that consists of the frequent subtree information of a particular

database along with other important information of an individual tree. The

EAAM representation also uses BOS encoding to ensure unique identity of

a rooted unordered tree. The unordered trees represented in EAAM are

compared to calculate the similarity between a tree pair, and used as a

clustering input to group the trees of a database. This work is empirically

evaluated against relevant benchmarking works.

− An efficient Balanced Optimal Search Tree minER (BOSTER) algorithm

is developed to mine frequent induced unordered subtrees from a database

of labelled rooted unordered trees. BOCF is used to generate candidate

subtrees using a tree structure guided scheme based- enumeration

approach. Representing the rooted unordered trees has been always an

issue due to the flexible order among sibling nodes which causes the

isomorphism problem. It is important to represent trees uniquely during

candidate generation to ensure accurate frequency counting through

correct indexing. BOCF handles the isomorphism and automorphism

12 Introduction

problems efficiently. Exponential candidate generation is another pressing

problem in frequent unordered tree mining that BOSTER mitigates using

the tree structure guided scheme-based enumeration by generating the

valid candidate subtrees only. A catching technique is used to boost-up the

frequency counting step. BOSTER is evaluated and compared against

relevant benchmark algorithms.

− Another important frequent mining algorithm, Balanced optimal search

Embedded SubTree miner (BEST) that finds the set of frequent embedded

unordered subtrees from a database of labelled rooted unordered trees is

proposed. Mining embedded subtrees can be seen as a generalisation task

of mining induced subtrees that mines interesting relational information

inherent within deeply embedded data objects in the tree database. It is a

more difficult problem than induced subtree mining as it requires

examining several levels within a tree to identify an embedded subtree.

Both the extension and join operations are defined using a level constraint

to enumerate only the valid candidate subtrees. BEST is compared with

several benchmarks using both real and synthetic datasets.

− The problem of mining frequent free subtrees in a database of labelled free

trees is considered and a fast algorithm called FreeS (Frequent Free

Subtree) is proposed. Free trees can be considered as a good compromise

between graph and sequence data, and as a stepping stone towards solving

the graph mining problem [66]. The BOCF canonical form of free trees

requires an additional step for normalising the root node. Using this BOCF

of free trees, a tree structure guided scheme based enumeration approach is

introduced that avoids generating false positive in the candidate generation

step, one of the key issues in frequent pattern mining. A lemma is proved

that satisfies the conditions to grow the enumeration tree using extension

and join operations using the proposed canonical form of free trees. FreeS

is compared with several benchmarks using both real and synthetic

datasets.

Introduction 13

1.6 ACCOUNT OF RESEARCH PUBLICATIONS

This is a thesis by publication, and the body of the thesis is comprised of peer-

reviewed journal and conference papers. Each paper listed in Table 1.1 is either

published, accepted, or submitted for review. In this table, the thesis chapter number

is also mentioned where the full paper has appeared.

Publications Details of papers included in thesis

− Paper- 1 (TRA)

{Citations: 3}

{Chapter 4}

− Chowdhury, Israt J. & Nayak, Richi (2013) A novel method for

finding similarities between unordered trees using matrix data

model. Lecture Notes in Computer Science: WISE 2013, 8180,

pp. 421-430

− Paper- 2

{Chapter 4}

− Chowdhury, Israt J. & Nayak, Richi, “Measuring Similarity

between Unordered Trees with the Balanced-Optimal-Search

Traversal Algorithm”, Knowledge and Information Systems

(Under Review)

− Paper- 3 (TRB)

{Chapter 4}

− Chowdhury, Israt J. & Nayak, Richi (2014) Identifying product

families using data mining techniques in manufacturing

paradigm. In Nayak, Richi, Li, Xue, Liu, Lin, Ong, Kok-Leong,

Zhao, Yanchang, & Kennedy, Paul (Eds.) Australasian Data

Mining Conference (AusDM), Australia

− Paper- 4 (TRA)

{Citations: 2

Chapter 5}

− Chowdhury, Israt J. & Nayak, Richi (2014) BOSTER: an

efficient algorithm for mining frequent unordered induced

subtrees. Lecture Notes in Computer Science: WISE 2014,

8786, pp. 146-155

− Paper- 5 (TRB)

{Citations: 1

Chapter 5}

− Chowdhury, Israt Jahan & Nayak, Richi (2014) BEST: an

efficient algorithm for mining frequent unordered embedded

subtrees. Lecture Notes in Computer Science: PRICAI 2014,

8862, pp. 459-471

− Paper- 6 (TRA)

{Chapter 5}

− Chowdhury, Israt J. & Nayak, Richi (2015) FreeS: Fast

Algorithm to Discover Frequent Free Subtrees Using a Novel

Canonical Form. Lecture Notes in Computer Science: WISE

2015, 9418, pp. 123–137

Table 1.1: List of peer reviewed papers forming chapter in this thesis

14 Introduction

STATEMENT OF THE CONTRIBUTION

All of the published papers that are included in this thesis are co-authored by

the PhD candidate, Israt Jahan Chowdhury and the candidate’s principle supervisor,

Associate Professor Richi Nayak. Apart from that no one else has contributed in

these published papers. Both authors have agreed to use these publications as a part

of this thesis.

1.7 HIGH LEVEL OVERVIEW

The aim of this section is to present a high level overview of all the

contributions made in the thesis and show how they fit together. A novel tree

traversing scheme based on optimisation and the novel tree representations using this

scheme are developed to facilitate the effective knowledge discovery from labelled

unordered tree databases. A tree matching algorithm is developed based on the new

matrix form. Novel frequent pattern mining algorithms are developed using the

proposed representation and a new enumeration approach with specific growth rules.

The matrix representation is further extended utilising the results of frequent pattern

mining algorithms to incorporate more domain specific insights into similarity

calculation. The similarity measure results are evaluated through a clustering

algorithm. A map of the contributions of this thesis is presented in Figure 1.4. Each

arrow indicates that the following contribution is built upon the results in the

previous contribution.

The backbone of this thesis is the novel Balanced Optimal Search (BOS)

traversal algorithm, which is proposed by reducing the tree traversal problem to the

Simple Assembly Line Balancing (SALB) problem – an optimisation problem from

an Operations Research (OR) paradigm. The BOS traversal derives an optimal

encoding of an unordered tree that ensures a total unique order for all available

similar unordered trees in a database. A novel tree representation named as Balance

Optimal Canonical Form (BOCF) is defined using BOS traversal, which can

represent a rooted unordered tree uniquely. The BOCF is extended to define

canonical form for representing free trees.

Introduction 15

The optimal BOS encoding is further used to overcome the limitations of

traditional adjacency matrix representations of unordered trees. This optimal order

gives birth to a novel adjacency matrix representation called Augmented Adjacency

Matrix (AAM), which allows capturing more tree information in matrix form by

including adjacency information, level information and weight along with BOS

encoding. The AAM facilitates comparing tree pairs with using the cosine similarity

metric adopted for matrix. The proposed tree similarity measure method is found

efficient and scalable in comparison to the traditional tree similarity measure

methods based on empirical analysis. The tree edit distance problem is commonly

used for finding similarity between unordered trees is known to be computationally

hard (no known tractable solution without restricting tree parameters), whereas the

proposed AAM based similarity measure method offers a radical reduction in the

computational complexity without an accuracy compromise. The result of this

method is further used as input to a clustering algorithm — an important application

of this contribution.

Another matrix representation of unordered tree, Extended Augmented

Adjacency Matrix (EAAM) is defined by incorporating the knowledge of frequent

subtrees of a database in the basic AAM construction. This provides a domain

specific insight of tree data as the frequent pattern mining allows initial analysis of

an unexplored database. The EAAM is used for calculating similarity between tree

pairs and used as input to a clustering algorithm. All of these results are evaluated

and compared with relevant benchmark methods.

The BOCF representation of a rooted unordered tree is used to propose two

scalable frequent pattern mining algorithms, BOSTER and BEST for unordered trees

that can mine frequent induced and embedded subtrees respectively. BOCF resolves

the isomorphism and automorphism problems quite naturally. Hence, the processing

time is reduced by skipping an additional isomorphism checking test unlike the state-

of-the art methods. Moreover, a tree structure guided scheme- based enumeration is

used that alleviates generation of the false positive candidates and boosts the

frequency counting step. The enumeration process consists of two operations, BOCF

extension and BOCF join, that are defined according to the proposed canonical form

and enumeration approach. Growth rules are specified in these algorithms for

restricting the number of potential nodes for having an extension in enumeration

16 Introduction

process. The algorithm for mining induced subtrees can be considered as a

generalised algorithm for mining embedded subtrees. An additional level constraint

is introduced while mining embedded subtrees to make the corresponding algorithm

scalable. Both the algorithms are evaluated using the relevant and state-of-the-art

algorithms from the literature. Empirical analysis shows the superior performance of

the proposed algorithms over the benchmarking algorithms. These algorithms are

found computationally efficient in term of both memory and runtime in comparison

to the state-of-the-art algorithm.

Figure 1.4: A research map to provide the high level overview of the thesis

Introduction 17

Research
Phase Phase 1 Phase 2 Phase 3

Research
Activity

Tree Representation and Data
Structure Tree Matching Frequent Subtree Mining

Research
Question Q 1 Q 2 Q 3

Corresponding
Chapters Chapter 3 Chapter 4 Chapter 5

Contributions BOS BOCF Adjacency
Matrices

AAM-
based

Method

EAAM
- based
Method

BOSTER BEST FreeS

Corresponding
Papers

Paper
1, 2

Paper
4, 5, 6

Paper 1, 2,
3

Paper
1, 2 Paper 3 Paper 4 Paper

5
Paper

6

BOS Traversal

Reduction
from SALB to
Tree Traversal

The
Optimisation

Model
Formulation

Pseudocode of the Algorithm Properties of BOS along with
complexity analysis

Paper 2 (Sub-
section 3.1 &
3.2)

Paper 2 (Sub-
section 3.3) Paper 2 (Sub-section 3.3) Paper 2 (Sub-section 3.3)

Balance Optimal Search Canonical Forms (BOCFs)

BOCF for Rooted Unordered Tree (definition and
properties)

BOCF for Free Tree (definition and
properties)

Paper 4 (Sub-section 3.1); Paper 5 (Sub-section
3.2) Paper 6 (Sub-section 3.1)

Adjacency Matrices

AAM definition AAM Properties EAAM definition

Paper 1 (Sub-
section 2.2); Paper
2 (Sub-section 4.2)

Paper 2 (Sub-section
4.2) Paper 3 (Sub-section 4.3)

Table 1.2: A detailed sketch of the major contributions made in the thesis

The BOCF representation of rooted unordered trees is used to define canonical

form of free trees by using tree normalisation. A scalable algorithm, FreeS for

mining frequent free trees is then proposed. This algorithm uses additional conditions

for enumerating free candidate trees with the support of tree structure scheme;

accordingly the FreeS-extension and FreeS-join operations for growing the

enumeration tree are defined. Evaluation is done by comparing it with relevant state-

18 Introduction

of-the-art methods. It provides an improved result by a few orders of magnitude for

the computational complexity. Currently, this algorithm works on a database of

labelled free trees and can be considered as a first step towards mining frequent

subgraphs in the future.

From the above discussion it is ascertained that the research carried out in this

thesis has three major phases. In the first phase, the BOS traversal is proposed. Based

on BOS traversal, some novel tree representation methods – BOCF canonical forms

and adjacency matrices – are introduced. In the second phase, tree matching

algorithms are developed and in the third phase, frequent subtree mining algorithms

are proposed. Table 1.2 shows the corresponding references in this thesis where the

necessary descriptions of the proposed methods under each research phase has been

made.

1.8 RESEARCH SIGNIFICANCE

This thesis advances the field of knowledge discovery from tree databases with

a focus on alleviating the hurdles of existing tree representation methods. The BOS

based representation plays an important role in significantly improving the scalability

performance of frequent subtree mining and tree matching algorithms. The area of

unordered tree mining is under researched; this makes the significance of this

research unquestionable.

The research carried out in this thesis has practical significance, since all of

these contributions have a relationship with many real life applications.

− The research focus is on mining unordered and free trees, which are often

used in modelling various common and popular domain data such as

Weblog, XML, BOM, Glycan and many more. This is an era of “big data”,

where data are coming from many sources and are stored in a common

platform for future manipulation for knowledge discovery. Data coming

from various sources are likely to have inconsistency, where unordered

tree modelling is more suitable to support the overall knowledge discovery

process. In general, the findings in this area of research are going to

benefit various domains, which are currently lacking in the process of

discovering knowledge from such less constrained and complex data

models.

Introduction 19

− The balance optimal traversal search based representations (i.e., BOS

encoding and BOCFs) can ensure one-to-one mapping of unordered and

free trees regardless of the presence of isomorphic trees in a database. This

will greatly benefit the indexing of a database of trees. Finding frequently

occurring subtrees can also help the database indexing system. Moreover,

knowledge in the form of frequent subtrees improves a user’s

understanding about a data source. The frequent subtree mining algorithm

also serves as the first step in classifying and clustering tree-structured

data.

− The frequent free tree mining algorithm can be helpful in solving some

graph and network data problems, which are a very common data format

in social network and business intelligence systems.

− The similarity information of a tree database may facilitate building a

query system. This similarity information can feed to a clustering

algorithm for grouping trees without any class information. Based on

similarity measures, a nearest-neighbour classification, data integration

and data cleaning methods can be built upon.

− The proposed methods of knowledge discovery focus on scalability and

less complex processing which will be beneficial for processing big data.

1.9 THESIS OUTLINE

A detailed introduction of the thesis topic is provided in Chapter 1 with

specific research questions and objectives. A brief relational map of contributions is

added to provide a clear idea of research tasks. Since the thesis is presented as a

thesis by publication, the reader may notice some repetition of materials between

published articles. Each article should be self-contained and therefore, has been

published with relevant material for completeness. In this way, a reader does not

have to refer to several different references to get the whole picture for the results

presented. Therefore, the author’s suggestion to the reader is to skip the repeated

parts unless otherwise you have not read them already. The outline of other chapters

is given below:

20 Introduction

Outline of Chapter 2

A concise review of existing peer-reviewed literature and the necessary

prerequisites to understand the thesis contents are presented in Chapter 2. Critical

studies on existing literature are performed based on the research questions and

objectives. These studies mainly present a review of the literature on tree

representation, tree similarity measure for unordered tree pairs, and frequent subtree

mining, especially the mining of frequent rooted unordered and free subtrees.

Outline of Chapter 3

After the initial literature review, the research questions and objectives are

addressed gradually. This chapter mainly focuses on tree representation, which is a

primary contribution in this thesis. The novel tree traversal approach, canonical

forms and matrix representations are introduced briefly as the attached subsequent

publications include the details of these concepts. Although the technical detail of

each of the representations is discussed under the published articles with the

corresponding algorithms, Chapter 3 is presented as a hub for other contributing

chapters to increase the thesis readability and to avoid abrupt discussion.

Outline of Chapter 4

Chapter 4 presents the detailed contribution on tree matching algorithms based

on Paper 1, Paper 2 and Paper 3. Paper 1 is published in a Tier A conference, which

includes preliminary information on the BOS traversal approach and AAM

representation. Paper 2 details the overall BOS traversal algorithm, including

mathematical modelling and heuristics. It includes the detailed empirical analysis of

the tree matching algorithm. This is currently under review in a high impact factor

journal. Paper 3 has been published in a popular Tier B conference, and utilises the

tree matching algorithm with the EAAM matrix representation. Before presenting the

paper’s contents, a preamble is added to explain its contents.

Outline of Chapter 5

Chapter 5 is formed from Paper 4, Paper 5 and Paper 6 and describes the

contributions to frequent subtree mining from the databases of trees and free trees.

Paper 4 was published in a Tier A conference, and explains the algorithm of mining

frequent rooted unordered induced subtrees. Paper 5 is published in a well-known

Introduction 21

Tier B conference that describes the algorithm of mining frequent rooted unordered

embedded subtrees. Paper 6 is accepted in a Tier A conference that is about the

algorithm of mining frequent free subtrees. Before presenting the paper contents, a

preamble is included to explain the context of these papers in the thesis.

Outline of Chapter 6

Chapter 6 summarises the outcomes obtained from the research work in

Chapters 3, 4 and 5. The significant research findings are specified, and also

mentioned are how these findings have answered the considered research questions.

Finally, recommendations for future research directions are suggested.

22 Introduction

Chapter 2: Literature Review and
Background

This section will give a review of the tree structured data and various tree

mining techniques. The background of labelled unordered trees with basic tree

concepts and tree mining terminologies is detailed first. The methods of tree

representation are discussed next, guiding the discussion on two major data mining

tasks tree matching and frequent subtree mining. This research is focused on

unordered and free trees; therefore the state-of-the-art research of these types of trees

will mostly be discussed here. Moreover, the limitations of various tree mining

methods will be highlighted to support the research hypothesis of this thesis. Figure

2.1 outlines the main areas to which this thesis is related. It provides the relationships

between various fields of tree mining research, as viewed in this thesis. The middle

area, where clustering is shown as a common part, is a real life application, which

can be fitted to both of tree matching and frequent subtree mining algorithms.

Clustering is briefly discussed under the preamble of Chapter 4.

Tree Structured Data Source

Tree
Representation

Tree
Representation

Clustering
Tree Matching

Frequent
Subtree Mining

Figure 2.1: Related research areas and coverage of literature review

Literature Review and Background 23

2.1 TREE STRUCTURED DATA SOURCE

Semi-structured data can portray the two-dimensional relationships among data

entities that are manifested through structural relationships among entities. Hence,

the analysis of semi-structured data objects can often reveal valuable information

[11]. Trees are the most common data format used to represent semi-structured data

[12, 19, 67]. Due to the usefulness of semi-structured data, the research field of tree

mining has gained a considerable amount of interest in applications such as XML

document management, Web intelligence, Bioinformatics, Manufacturing and

Product Design [38, 49, 68]. This section presents some of the significant domains

that use tree data to express their domain information. Data originated from some of

these domains have been used in this thesis for evaluating the designed methods.

Table 2.1 provides a summary of these domains.

DOMAINS EXAMPLE OF DATA BRIEF DESCRIPTION

Internet/

Intranet
XML or HTML

Quite often the online information is stored and

exchanged in HTML or XML format. These data on

Internet / Intranet can be represented as trees [67].

Web

Intelligence
Web log

The Web log data represented with tree format, can

provide useful insight on user behaviour [20, 38].

Production or

Manufacturing

Industry

Bill of Material (BOM)

[69]

Similarity information among Bill of Materials

(BOMs) of various products can help in accelerating

the design phase of a new product. Based on the

similarity, often BOM of an existing product is

reused and modified to design a new product. A

BOM document can naturally be depicted as rooted

unordered tree [23, 24].

Bioinformatics

RNA secondary

structures, Phylogenetic

trees, Glycan, etc.

RNA structures represented as trees can be compared

for finding important information of a newly

sequenced RNA based on the common topological

patterns of a known RNA [25, 70]. This is useful for

obtaining some important clues about the function of

the RNA.

Table 2.1: The example of various tree data domains

24 Literature Review and Background

2.1.1 XML (eXtensible Markup Language)

XML (eXtensible Markup Language) is a markup language defined by the

World Wide Web Consortium (W3C) that consists of a set of rules for encoding

documents [71]. XML is advantageous in comparison to other markup languages like

Hypertext Markup Language (HTML), because it describes the content in a way that

is readable to both human and machine. Moreover, XML allows for user-defined tags

that makes it more flexible than HTML. XML data is application and platform

independent. Figure 2.2(a) shows a simple example of an XML document.

An XML document can be naturally represented as a tree [67]. For deriving a

tree structure from an XML document various XML parsers (e.g., Document Object

Model (DOM) and, the Simple API for XML (SAX)) are used which treat the

element in an XML document as a node in a tree representation. To show the

hierarchical relationships between elements, tree branches are used. For instance a

tree-based model for the XML document in Figure 2.2(a) can be derived as the one

shown in Figure 2.2(b). These trees are often modelled as unordered [29, 41] as

there is no order in appearances of multiple instances. The unordered representation

also assists in dealing with the irregularities and inconsistency that may present in an

ill-formed XML document due to it originating from heterogeneous sources.

Figure 2.2: Tree modelling from XML data [72]

Literature Review and Background 25

index.php/csse

issue search information index about login user

archive authors titles readers authors librarians register

LOGML

(a) (b)

index.php/csse
index.php/csse/issue/archive
index.php/csse/search/authors
index.php/csse/search/titles
index.php/csse/information/readers
index.php/csse/information/authors
index.php/csse/information/librarians

Figure 2.3: Example of Web log data in tree format [11]

2.1.2 Web log data

Web log data contains information on Web users’ browsing behaviour during a

visit to a Web site. Analysis of user browsing behaviour can result in obtaining user

browsing patterns and frequent usage paths [73, 74]. These useful insights inform

site managers for improvement of the site as well as creation of business

opportunities.

Recent research advancement in Web mining encourages a more complex

structural representation of Web log data, which will allow the capturing of deep

information on structure of the site and navigational patterns. A popular

representation language of Web log data is LOGML [33, 75], which uses XML

templates to detail the user activities. LOGML data can easily be represented as trees

where the set of requested Web pages refer to the tree nodes and the traversed

hyperlinks in a Web log file refer to the edges or links between tree nodes.

An example of tree representation of Web log data in LOGML format is shown

in Figure 2.3. From the sequence of logs in Figure 2.3(a), the ‘index.php/csse’ is

considered as the home page which leads to the tree representation as shown in

Figure 2.3(b). The unordered tree representation of Web log data allows finding

more detailed insights of a Web domain [38], as discussed in Chapter 1.

2.1.3 Bill of Material (BOM)

Bill of Material (BOM) is a common data type used in various engineering

domains such as mechanical, civil or infrastructure, electrical and electronic. It is a

structured or hierarchical portrayal of an end product comprising information about

26 Literature Review and Background

part or components, raw materials, quantity and manufacturing instructions [76].

BOM data is usually produced in tabular form that represents the overall description

of particular product manufacturing. By considering the parent and part name, the

BOM data can be easily represented as a tree, whereby the underlying product will

be the root node and the tree model will maintains the parent-child relationship by

using the level information, parent and part name [23, 77]. For BOM data only the

ancestral or parent-child relationship is significant; the order among the parts under

the same parent is unimportant. That is why the unordered tree modelling of BOM

data will result in meaningful analysis.

(a)

(b)

Figure 2.4: Tree modelling from BOM data (Collected from SAS Bill of Material
Processing1)

1
http://support.sas.com/documentation/cdl/en/orbomug/63972/HTML/default/viewer.htm#orbomug_bo
m_sect002.htm#orbomug.bom.gs3_

Literature Review and Background 27

Figure 2.4 gives an example of a raw BOM data and its corresponding tree

modelling. This is the Bill of Material of a product named table lamp, ‘LA01. The

table in Figure 2.4(a) contains the information on various parts of the lamp, such as

part level positions, parent name, part name, quantity per parent, quantity per

product, etc. For building a tree only the red marked information is used, which

includes the level information, the parent item and the part number of the component

under each parent item. If a component is used in more than one parent item, it

appears in multiple records. For example, the part number '1400' is used in

both ‘B100’ and ‘1500’; this item occurs in records identified by the values 6 and 10

in Figure 2.4(b).

2.1.4 Glycan

In bioinformatics, after DNA and proteins, the third major class of

biomolecules is carbohydrate sugar chains knows as glycans [78]. Glycan carries

important genomic information, and is extremely vital in functioning multicellular

organisms. Gaining insight from this data structure has practical significance. The

general structure of glycan is very complex and contains many branching

monosaccharides, starting from a single monosaccharide, which allows it be

represented through a rooted tree structure. Since siblings do not have order

precedence, Glycan is a good example of real-life rooted unordered tree data.

Researchers have treated glycans as rooted unordered trees and have applied tree

mining techniques for discovering useful knowledge from them [21, 40, 79]. In

Figure 2.5, a sample glycan structure is shown; similar examples can be found in the

KEGG database [80], one of the famous repositories for glycan data.

Figure 2.5: A sample glycan structure

28 Literature Review and Background

Discussion: The omnipresence of trees is noticeable in various domains such as web

intelligence, bioinformatics, production process and many others. Quite often,

treating these data as rooted unordered trees allows the discovery of more useful

knowledge and insights. Some of these data are naturally structured as rooted

unordered trees (i.e. Glycan, BOM) and treating these domain data as rooted ordered

trees will violate the fundamental properties embedded in their structure. On the

other hand, some of the domain data are preferred to be modelled as rooted

unordered trees (i.e. Web log data, XML) for supporting some specific applications,

such as in some applications; it is preferable to regard input trees as unordered trees

to allow more flexible matching. Hence, modelling these data as rooted ordered trees

may cause the loss of some interesting patterns and information because of enforcing

the grouping constraint. In fact, any data that exhibits a hierarchical relationship can

be represented as trees, and can further be analysed through various tree mining

techniques for insight in the domain. Moreover, patterns in the forms of sub-trees are

found to be more descriptive and informative than itemsets or sequence patterns [11].

So, developing methods for mining tree data has great value and conducting research

in the area of rooted unordered trees is essential, as this field is still in need of

developing some efficient methods.

2.2 BASIC TREE CONCEPTS

Tree data is an interesting compromise between the structural representation

such as graphs, and the linear representation such as vectors and matrixes. This can

be considered as a natural representation of rules and hypotheses which expresses

hierarchical dependencies with implicitly defined semantics [81].

The following definitions are adopted from [82-84], which are the necessary

basics of a tree structure data and its various formalisations.

A labelled tree can be formally denoted as T = (V, E, L, Ø), where (1) the set of

nodes is V(T) = {v0, v1, v2, …, vn}, v0 = root, (2) the set of edges is E, defined as E =

{(vi, vj) | vi, vj ∈ V} = {e1, e2, …, en}; (3) L is the set of node labels and (4) Ø is a

labelling function that maps nodes to the set of labels and a label can be shared

among many nodes, Ø : V → L. This thesis does not consider any edge label in

formalising a tree structured data.

Literature Review and Background 29

A tree has a distinguished root node v0, and for any other node vi, there is a

unique path from v0 to vi. A tree contains no cycle. A cycle is a path in which the first

and the last node of the path are the same.

A path is a sequence of consecutive edges between two nodes in the tree. The

length of this path is defined by the number of edges. Each node vi of a tree has a

unique path from its position to root v0. The size of a tree denoted as |T| is the total

number of nodes present in tree T.

A tree structure poses several hierarchical relationships - parent-child,

ancestor-descendant and sibling relationships - among its nodes, as shown in Figure

2.6.

The parent of vi (and vi ≠ v0), is the adjacent node of vi in that unique path to v0.

The ancestors of vi, are all the other nodes in that unique path except vi itself.

The children of vi is the immediate follower nodes of vi, the number of the

children is also known as fan-out, denoted by fi.

The descendants of vi are the list of all follower nodes of vi.

Sibling nodes share the same parent, so a sibling relationship exists between

nodes that originate from the same parent node.

Definition 2.1 (Depth, Height, Level): For node vi, the length of the unique

path is called the depth of that node in tree T, denoted by d(T, vi). The height h(vi) of

a node vi in a tree is the longest path from that node to a leaf. The height H(T) of a

tree is the height of root h(v0). The level of a node vi in a tree T is, Lv(T, vi) = H(T) -

d(T, vi).

According to this definition, the root node of a tree is positioned at the highest

level.

Ancestor -
Descendant

Parent -
Child

Parent -
Child

A

CB

D ESiblings F

Figure 2.6: Hierarchical relationships amongst tree nodes

30 Literature Review and Background

Definition 2.2 (Tree Isomorphism) Let two trees denoted by T1 = (V1, E1, L1)

and T2 = (V2, E2, L2) respectively. A tree isomorphism is a bijective function f: V1 →

V2 satisfying

(1) L1 (V1) = L2 (f(V1)) for all nodes vi ∈ V1

(2) for each edge e1 = (vi, vj) ∈ E1, there exists an edge e2 = (f(vi), f(vj)) ∈ E2

If a bijective mapping exists between the set of nodes of two trees T1 and T2,

which preserves and reflects the tree structures, then these trees are isomorphic to

each other, denoted as T1≅T2. The automorphism corresponds to isomorphism of a

tree to itself.

2.2.1 Types of trees

There are many types of trees. Based on the topology, three types of trees are

listed below:

Definition 2.3 (Free Tree) A free tree is connected, acyclic and undirected

whose edges have no direction. Therefore, it has no designated root node.

Definition 2.4 (Rooted Unordered Tree) A rooted unordered tree is connected,

acyclic and directed, which has a distinguished root node from which all other nodes

can be reached. A root node does not have any incoming edge. For a rooted

unordered tree, there is no predefined or fixed left-to-right order among siblings;

only ancestor-descendant and parent-child order are defined.

Definition 2.5 (Rooted Ordered Tree) A rooted ordered tree is connected,

acyclic and directed and also has a designated root node. In this tree type, the

predefined order among siblings exists along with ancestor-descendant/ parent-child

relations.

This research emphasises using rooted unordered trees and free trees for

mining useful information from them, but the rooted ordered tree type is also

discussed to provide a general tree type concept.

2.2.2 Types of subtrees

Subtrees play an important role in tree mining. They are a portion of a tree data

structure that can be considered as a tree itself. Formally, the tree T´ with node set V´

Literature Review and Background 31

and edge set E´ is a subtree of a rooted tree T with node set V and edge set E iff (1) V'

⊆ V, (2) E' ⊆ E, (3) the labelling of V' and E' is preserved in T' according to T. There

are different types of subtrees that are also well known for their wide usage in

various tree mining algorithms, but the following discussion is provided based on the

research focus of this thesis.

Definition 2.6 (Induced Subtree) For a rooted labelled tree T with node set V

and edge set E, a tree T' with node set V' and edge set E' is called an induced subtree

of T iff (1) V' ⊆ V, (2) E' ⊆ E, (3) the labelling of V' is preserved in T' according to T,

and (4) (v1, v2) ∈ E' if and only if v1 is a parent of v2 in T. In other words, the induced

subtree T' is a subtree that keeps the parent-child relationship among the vertices of

the tree, T. In the case of defining it for a rooted ordered tree, on top of the above

mentioned conditions, the left-to-right ordering among the siblings in T' should also

be preserved.

Definition 2.7 (Embedded Subtree) For a rooted labelled tree T with node set V

and edge set E, a tree T' with node set V' and edge set E' is called an embedded

subtree of T iff (1) V' ⊆ V (2) the labelling of V' is preserved in T' according to T (3)

(v1, v2) ∈ E' where v1 is the parent of v2 in T' only if v1 is an ancestor of v2 in T and

the set of ancestors of (v2 ∈ V') ∩ the set of ancestors of (v2 ∈ V)) ≠ φ. In simple

words, an embedded subtree T´ preserves an ancestor-descendant relationship among

the nodes of the tree, T. If it is an ordered embedded subtree, besides other

conditions, the left-to-right ordering among the siblings in T' should also be

preserved. Examples of induced and embedded subtrees for a tree T are given in

Figure 2.7.

Subtrees

Induced Embeddeda

b c

d e f g h

c

g h

b

d e

a

d e f

a

g h

Tree, T

(a) (b)

a

e g

Figure 2.7: Examples of induced and embedded subtrees (b) for a tree, T (a)

32 Literature Review and Background

Discussion: From the above discussion, it is certain that all induced subtrees are

embedded subtrees but vice-versa is not true. Embedded subtrees can be considered

as a generalised form of induced subtrees. Based on a tree type, properties of the

trees can be defined. For example, the order among siblings does not need to be

preserved for an unordered tree. Trees with the different permutation among siblings’

order will still be considered the same. This property leads to the concept of

isomorphic trees. According to the nature of desired information, different subtrees

need to be mined. If the parent-child relationships are the main focus in the tree data,

induced subtree mining should be performed. Mining of embedded subtrees would

result in undesired outcomes in those situations. For example, if one is interested in

characterising a particular disease then induced subtrees are essential to mine, due to

the fact that some features of the dataset may have a similar set of values, and it is

necessary to indicate which value belongs to which particular feature. On the other

hand, if the captured relationships are to be generalised to those of ancestor-

descendant nodes in the trees, then the focus should be shifted towards mining

embedded subtrees that allow detection of information embedded deeply within the

tree structure. In summary, both induced and embedded subtrees carry important

information and hence, proposing algorithms to mine these subtrees is significant.

2.3 TREE REPRESENTATION

Semi-structured data, as known as tree data, has no fixed schema or class. It is

implicit, irregular, nested and heterogeneous [85] which makes it more complex to

be mined in comparison to the flat-representation data [86]. Mining tree structured

data requires a rigorous pre-processing to get it prepared for further processing or

manipulation. The data should be cleaned, transformed, and formatted before using it

as input to a data mining task [87]. The pre-processing step takes a lot of time, but it

is essential for discovering meaningful information. This thesis focuses on efficient

representation of the tree data in order to apply mining techniques directly. This

section covers the state-of-the-art methods of tree representation. Some of the most

popular tree representations, such as canonical form, adjacency list and adjacency

matrix that have been used in the algorithms of frequent subtree mining and tree

matching, are discussed below.

Literature Review and Background 33

2.3.1 Tree Traversal

Tree traversal refers to the approach of visiting all nodes of a tree in a

systematic way [62, 83]. This allows the tree structured data to be represented as list

data in order to facilitate knowledge discovery. Two basic traversal schemes for

ordered trees are preorder and postorder traversals [83]. In a left-to-right preorder

traversal, the root of a tree is visited first, and then the subtrees rooted at its children

are visited recursively from left to right. (The children are visited from right to left

recursively in a right-to-left preorder traversal)

On the other hand, in a left-to-right postorder traversal, before visiting root

node, first all of the subtrees rooted at its children are visited recursively from left to

right. (In a right-to-left postorder traversal, these children are visited from right to

left recursively.) In the literature often the left-to-right preorder or postorder is

simply referred to as preorder or postorder [83, 88].

In tree mining algorithms mainly preorder traversal are used to encode trees.

Depth-First Search (DFS) and Breadth-First Search traversals [83] are the most

popular pre-order schemes, which have been widely used in encoding both ordered

and unordered trees [89, 90]. According to [62], these traversals can be defined as

follows:

Definition 2.8 (Depth-First Search) Depth-First Search (DFS) is a preorder

traversal that visits tree nodes following its depth.

In Figure 2.8 (a) the traversal order using DFS traversal for the given tree will

be A-B-A-C-B-C-C-B-A.

A

B C

A C B

C

B A

A

B C

A C B

C

B A

Breadth-first search
(b)

Depth-first search
(a)

Figure 2.8: Examples of the depth-first search (a), and the breadth-first search (b).
The dotted arrow lines show the traversing directions

34 Literature Review and Background

A

C BC

Depth-first search
(a)

B A A C B

A

C BC

Breadth-first search
(b)

B A A C B

Figure 2.9: The Depth-first search (a), and the Breadth-first search (b) traversing
orders for the same example tree of Figure 2.8, but with a different sibling order

Definition 2.9 (Breadth-First Search) Breadth-First Search (BFS) is a preorder

traversal that visits the tree nodes following breadth or “level by level” after the root

traversal; all its children are processed next, then all of their children, etc. down to

the bottom level.

For the given tree in Figure 2.8(b), BFS traversal of nodes will be in this order:

A-B-C-C-A-C-B-B-A.

Being left-to-right preorder traversal in both DFS and BFS schemes, the tree

nodes are visited iteratively from left-to-right order following depth and breadth

respectively. Both DFS and BFS are used widely to encode ordered and unordered

trees. The traversing order of a tree should be unique so that it can be used to encode

a tree distinctively. It is considered as a first step to define a canonical form of the

tree. In order to maintain an accurate tree indexing in various tree mining algorithms,

the traversing order and encoding play an important role.

Discussion: From the above description, it is clearly understandable that both the

DFS and BFS traversal visit the sibling nodes by preserving an order from left-to-

right, which implicitly forces the properties of an ordered tree. Using the BFS and

DFS traversing orders for encoding ordered trees will not raise any issue, however,

for unordered trees these two schemes encode two similar unordered trees (only

varied in sibling order) differently, which causes various issues like isomorphism in

frequent mining and false similarity measure in tree matching. The example tree in

Figure 2.9 is the same tree as Figure 2.8 with the only difference of position of

Literature Review and Background 35

sibling nodes. For an unordered tree, the position of sibling nodes can be exchanged

and the trees with varied sibling orders will still be considered the same. The DFS

and BFS orders for the trees in Figure 2.9(a) and (b) are A-C-B-A-C-B-A-C-B and

A-C-C-B-B-A-A-C-B respectively, which are different orders than those listed

before for the example tree in Figure 2.8. Since these are the same unordered trees,

their encodings should be the same, but the DFS and BFS traversal orders will lead

different encodings for them due to enforcing the left-to-right order. During tree

manipulation, these trees will be treated differently and may result in incorrect

answers. This prompts the need for developing an alternative traversing approach as

well as an unordered tree encoding scheme without relying on the left-to-right sibling

order.

2.3.2 Canonical Form

The canonical form (CF) of an entity (or tree) is a representative form that can

consistently represent many equivalent variations of that entity into one standard [83,

90]. It can be considered as a bijective mapping function that maps a tree along with

all of its equivalent variant trees in a database into a unique identity, which ensures

efficient processing of many tree mining algorithms.

In the literature, various canonical forms for representing trees have been

proposed [63, 90-92]. A canonical representation is normally referred to as string

encoding, which is a compact and memory efficient way of representing the tree data

[83, 90]. Besides, the string encoding provides an efficient data access mechanism.

Often, canonical form and canonical form string encoding are used interchangeably.

To build a canonical form, the nodes of a tree are stored in the string encoding

following a traversing order. Based on the DFS or BFS traversing order, the state-of-

the-art canonical forms can be classified as follows.

Depth-first Canonical Form (DFCF) String Encoding

 The DFCF string encoding utilises the DFS order of a tree. It is usually built

by adding the label of the tree nodes in a depth-first order with a special backtrack

symbol that is not in the label alphabet. The backtrack symbol is used whenever, in

accordance with the traversing order, the encoding needs to come back from a child

node to its parent node. Different backtrack symbols such as ‘$’, ‘/’, ‘↑’ or -1 have

36 Literature Review and Background

been used by researchers [70, 90, 93, 94]. Another symbol “#” is commonly used to

indicate the end of the string encoding. All of these special symbols should not be in

the node labels set. The DFCF using ‘$’ for backtrack for the example tree in Figure

2.8(a) would be ABACB$$CCBA$$. Asai et. al. [92] and Nijssen & Kok [91]

independently defined a similar string encoding for rooted ordered trees using depth

sequences, where they explicitly store the depth of each node within the tree. For

example, the depth sequence for the tree used in the previous examples will be

“(0;A); (1;B); (2;A); (2;C); (2;D); (1;C); (1;C); (2;B); (2;A)” or equivalently

“0A1B2A2C2D1C1C2B2A”.

Breadth-first Canonical Form (BFCF) String Encoding

The BFCF string encoding is obtained by storing the label of each node in

accordance with the BFS traversing order, level by level. Additional symbols “$” and

“#” are added that should not be in the label alphabet. “$” is used to separate the

families of siblings and “#” is used to indicate the end of the string encoding. The

breath-first encoding for the previous example in Figure 2.8(b) will be

“ABCCACB$$BA#”.

The BFCF representations have been also utilised by many researchers,

especially in various frequent subtree mining algorithms [49].

2.3.3 Canonical Representation for Unordered and Free Trees

Canonical Representation for Rooted Labelled Unordered Tree

Defining the canonical form for unordered trees is not as simple as for the

ordered trees. For an unordered tree, many possible ordered tree variations are

available. All of these ordered trees will actually map the same unordered tree,

therefore they should be treated as the same unordered tree for doing further

manipulation like frequent subtree mining or clustering. Therefore, the canonical

form of unordered trees should be defined in a way that will ensure unique identity to

all of its isomorphic trees.

Figure 2.10 shows the example of a group of isomorphic trees which hold an

exact bijective map to each other and preserve the same tree structure. These trees

Literature Review and Background 37

represent the same unordered tree. The concept of the presence of isomorphic trees in

a database is known as isomorphism [62, 82].

A

C BC

 (a)

B A A C B

A

B CC

 (b)

B AA C B

A

B CC

A BA B C

 (c)

Figure 2.10: Example of isomorphic trees

To deal with this representational issue of unordered trees, many researchers

proposed to choose a representative of the isomorphic trees and then use the

canonical form of the representative tree for all isomorphic trees [49, 92, 95]. To

describe this canonical form, the breadth-first canonical string (BFCS) is used here;

the encoding proposed by Chi et al. is used as an example [90, 96]. First all possible

rooted ordered trees and the corresponding breadth-first string encodings are

obtained by assigning different orders among the sibling nodes. Then, according to

the lexicographic order, the minimum breadth-first strings of the ordered trees is

defined as the breadth-first canonical form of the rooted unordered tree. Consider the

example in Figure 2.10, where for three different rooted ordered trees, the breadth-

first string encodings are:

(a) “ACCBBA$$ACB#”,

(b) “ABCCACB$$BA#”,

(c) “ABCCABC$AB#”.

According to the minimum lexicographic order, the BFCF string encoding

“ABCCABC$AB#” will become the canonical form of these trees and other

isomorphic trees.

Any of the breadth-first search and depth-first search-driven preorder scheme

can be used to define the canonical form of an unordered tree in similar manner. Chi

et al [90] defined a depth-first search canonical form (DFCF) of unordered trees. In

another work, Chi et al have defined the canonical form based on breadth-first search

order [96]. Asai et al. [92], Nijssen & Kok [91] and Zaki [70] also proposed similar

38 Literature Review and Background

canonical form in their works. Hadzic et al. also utilised similar canonical forms in

[97, 98]. The most recent contribution to encoding process of unordered tree is found

in [53], which also used the preorder to encode the tree nodes.

Canonical Representation for Free Trees

A free tree is unrooted and unordered in nature, which make its representation

even harder than the rooted unordered tree, as it can possibly be represented in

multiple ways due to having different choices for the root. To define a canonical

form for a free tree, the root node is defined uniquely at first by repeatedly removing

the leaf node at a time along with its incident edge until one or two nodes remain [54,

63, 64, 96]. If a single node remains then the free tree is called centred, whereas if

two nodes remain then the free tree is called bicentred [10]. A free tree is either

centred or bicentred.

Ruckert et al. [54], Nijssen et al. [66], and Chi et al. [63, 96] have shown for a

centred free tree, the centre can be designated as the root, and the tree becomes a

rooted unordered tree. The canonical form for the rooted unordered tree then can be

used to define the canonical form of the transformed tree (centred free tree). If a free

tree is bicentred, the tree can be imagined as two pieces of a free trees, each of which

is rooted in one of the bicentres, and therefore a canonical string can be obtained by

comparing the string encodings of two subtrees based on the lexicographic order [54,

96].

Discussion: From the above description, it can be ascertained that the canonical

forms of trees have been developed based on the BFS and DFS traversal approaches.

For the rooted ordered trees, there is no issue in the CF representation due to the

order dependency. An ordered tree cannot have any other variations or isomorphic

trees. A BFCF or DFCF string encoding can represent an ordered tree identically.

However, for unordered trees this is not true. An unordered tree can have several

isomorphic trees. Researchers have proposed various solutions to choose a

representative isomorphic tree and use its CF for all. However these processes

depend upon costly operation such as sorting. A method is yet to be proposed that

ensures a unique identity of a rooted unordered tree without performing an expensive

operation to find the lexicographically minimum BFCF or DFCF string encodings

Literature Review and Background 39

from the available ordered variations of an unordered tree. The same applies to free

trees, since the CF of a free tree uses the CF of a rooted unordered tree as its

canonical form after deciding the root node. For a bicentred free tree, if an approach

can be proposed to define the root node or to make it centred then again the sorting

can be avoided to define the CF of a bicentred free tree.

In general, the majority of tree mining algorithms (e.g., frequent subtree

mining) use a canonical form for representing trees and then processing to obtain

patterns. A novel breakthrough in tree representation will save the cost of the overall

process.

2.3.4 Adjacency List and Adjacency Matrix

Adjacency List and Adjacency Matrix are two common forms of tree

representation for pairwise comparison. Generally, an Adjacency List representation

of a tree consists of each node along with its collection of adjacent nodes and edges.

This basic idea may vary, depending upon how the association between a node and

its adjacent collection is detailed [62]. On the other hand, an Adjacency Matrix used

a matrix form to represent the adjacency information of each node of a tree. From

this representation, it can be understood which nodes of a tree are adjacent to which

other nodes.

The adjacency list is more space efficient than the adjacency matrix, but can be

cumbersome when a tree node has lots of adjacent edges. Usually, when the data is

sparse, then an adjacency list is preferred over adjacency matrix, but it is vice versa

when the data is dense. An adjacency matrix allows fast computation in case of

checking or comparing trees; more specifically, when it is needed to check whether

two nodes are adjacent to each other or not. An adjacency matrix can be even used as

canonical form while doing frequent pattern mining [99, 100], but due to the compact

size, the string encoding representation has become popular, since the frequent

mining process includes some complex steps like frequency counting and candidate

generation. The adjacency matrix representation can be considered useful for finding

approximate similarity scores between trees. Therefore, the adjacency matrix

representation can be considered as more appropriate for the tree mining tasks in

which the similarity calculation is required.

40 Literature Review and Background

BFS
A-C-B-E-D-F

(b)

A

BC

E D

A

CB

D E

BFS
A-B-C-D-E-F

(a)

A B C D E

C

E

D

A

B

0

0

0

0

0

1 1

1 10 0

0

0

0

0

0 0 0

0 0 0 0

0 0 0

A C B E D

B

D

E

A

C

0

0

0

0

0

1 1

0 00 0

0

0

0

0

0 1 1

0 0 0 0

0 0 0

F F

F

0

0

0

0

1

F 0 00 0 0 0 F 0 00 0 0 0

F

0

0

0

0

1

DFS
A-B-D-F-E-C

(c) (d)

DFS
A-C-B-E-D-F

A B D F E

D

E

F

A

B

0

0

0

0

0

1 0

0 10 1

0

0

0

0

0 1 0

0 0 0 0

0 0 0

A C B E D

B

D

E

A

C

0

0

0

0

0

1 1

0 00 0

0

0

0

0

0 1 1

0 0 0 0

0 0 0

C 0 00 0 0 00

C

0

1

0

0

0

F 0 00 0 0 0000

F

0

0

0

0

1

A

BC

E D

F

A

CB

D E

F

Figure 2.11: Adjacency matrix representation using BFS and DFS order

Discussion: The traditional adjacency matrix representation has some issues, since it

uses a pre-order traversal for encoding the tree nodes and then populates the

adjacency information in a matrix form, therefore the same issues highlighted for

traversing unordered trees also held true during the node encoding of the adjacency

Literature Review and Background 41

matrix. It is well understood now that an unordered tree can form many ordered

variations, but during the knowledge discovery process, all these variations should

correspond to the same unordered tree. The representation of all these ordered tree

variations should be the same. Adjacency matrix representation uses a pre-order to

arrange the rows and column which contains the adjacency information. The usual

practice is to use either a depth-first search or breadth-first search traversal to get that

pre-order. Since both DFS and BFS preserve a left-to-right order among sibling

nodes, the adjacency matrix is not unique for all variations of an unordered tree. To

elaborate on this, consider the example in Figure 2.11 where, two trees (a) and (b)

are two ordered variations of the same unordered tree due to the variations in sibling

nodes only. The BFS orders are different: for (a) “ABCDEF” and for (b)

“ACBEDF”, which eventually build two different adjacency matrices for the same

unordered tree. Similar results are obtained while using DFS orders for constructing

adjacency matrices as shown in Figure 2.11(c) and (d).

Other limitations of Adjacency matrix representation exist. Semantic

information of nodes in the tree cannot be represented in an adjacency matrix.

Moreover, for a tree structure, an adjacency matrix just shows the relationship of

parent-child. The information of ancestor-child cannot be represented. It cannot

precisely depict the difference of positions of different nodes. Value 1 is used to

merely indicate that there is a link between two nodes; it is not able to distinguish

different situations. For example, the level importance of a node is not equal, which

it fails to express. This representation can be improved by inserting the ancestor-

descendant relation; the information about existence of a node, etc. This thesis

proposes an improvised adjacency matrix that includes more hierarchical and

semantic information.

2.4 TREE MATCHING

Tree matching is fundamental to the core operation of many data manipulation

tasks such as clustering analysis, nearest-neighbour classification, data integration,

data cleansing and data querying [60, 81, 101]. The tree matching problem refers to

the problem of finding a similarity (or distance) score between tree pairs by means of

some comparison [60]. The concept of similarity or distance can be expressed using

a distance function (dist). Let a tree database Tdb contains trees {Ti, Tj, Tk}. dist: Tdb ×

Tdb →R+ be a mapping function that defines a distance between each pair of trees of a

42 Literature Review and Background

database. For example, the similarity between trees Ti and Tj can be expressed by

dist(Ti, Tj), which will give a distance or similarity score between these two trees.

This distance function is treated as distance metric if it satisfies the following

conditions:

1. dist(Ti, Tj) ≥ 0 (non-negativity)

2. dist(Ti, Tj) = 0 iff Ti = Tj (coincidence axiom)

3. dist(Ti, Tj) = dist(Tj, Ti) (symmetry)

4. dist(Ti, Tk) ≤ dist(Ti, Tj) + dist(Tj, Tk) (triangle inequality)

A myriad of tree mining methods have been developed for finding similarity

between tree pairs. The majority of them are applicable for ordered trees, and very

few are available for unordered trees due to the complexities involved with

unordered tree processing [42]. These methods are developed based on nodes, paths,

subtree representations, higher order model and many more [42, 102, 103]. Amongst

these varieties, the tree edit distance is the most widely used method for tree

matching. Some other methods are also available based on level similarity, frequent

pattern, matrix computation, etc. This section mainly details the available methods

for unordered tree matching, including their pros and cons in general. The discussion

on various tree matching algorithms spans across two major areas: the tree edit

distance-based methods; and the other methods not using an edit distance operation.

The tree edit distance methods use string representation and other methods use a non-

string representation such as vector, matrix, and tensor etc. Figure 2.12 provides an

overview of the tree matching approaches used for unordered tree comparison.

Tree
Alignment

Vector
Space

Model-based

Tree
Inclusion

Tensor
Space

Model-based

Adjacency
Matrix-
based

Clique-
based

Tree Edit
Distance Methods

Other
Methods

Path-based

Tree Matching

Figure 2.12: An overview of various tree matching approaches

Literature Review and Background 43

2.4.1 Tree Edit Distance based Methods

Amongst these method varieties, tree edit distance is the most widely used for

tree matching [42, 104, 105]. Tree edit distance methods utilises the string

representation of trees and, for the strings of characters; a particular syntax of string

is used in many programming languages to represent regular expression. Researchers

found the string edit operation-based tree edit distance methods convenient.

Moreover, for ordered trees, the string representation usually consumes less memory

[42, 106]. This method measures the distance between two trees by the minimum

cost to transform one tree into another tree by applying a sequence of edit operations,

which are constrained to be metric, such as deletion, insertion and substitution of

nodes. The tree alignment distance problem is a special case of the tree editing

problem, which can be considered as a restricted edit distance where all insertions

must be performed before any deletions [42]. It only uses insertion and deletion as

edit string operations. The tree inclusion problem is another special case of the tree

edit distance problem, which only uses deletion as an edit string operation to

calculate the distance [42]. Ti is included in Tj iff deleting nodes from Tj gives Ti. In

clique based approach, a tree edit distance is reduced to a clique problem, and then a

clique solver is used to solve the problem. [107, 108].

Many tree matching algorithms have been developed based on these problems.

For an ordered tree, the edit distance-based algorithms are known to exhibit O(n2)

complexity [109, 110] (where n is the maximum size of the two input trees), whereas

for an unordered tree, the tree edit distance problem is found NP-hard [42, 48, 111].

The tree edit distance and the alignment problems for unordered trees have even been

shown as MAX SNP-hard in literature [45, 47].

To avoid this computational intractability, researchers have developed

algorithms constrained to conditions such as tree size and other tree properties;

however they result in compromising on accuracy [42]. Akutsu et al [112] introduced

an algorithm under fixed parameters, which exhibited improved complexity of

O(2.62k.poly(n)) (where k is the maximum allowed edit distance), however, it

performs poorly for comparing non-similar trees. Horesh et al. [113] developed an

A* algorithm which can efficiently compare unordered trees of moderate size but

only under the unit cost distance (i.e., the cost of each edit operation is 1).

44 Literature Review and Background

Variant Type Time Reference

Tree edit distance
General O O(n3) [114]
General O O(n2) [109, 110]
General U Max SNP-hard [45, 47]
Constrained O O(|Ti||Tj|) [115]
Constrained (bounded height, h) U O(h) [116]
Less-constrained O O(|Ti||Tj|Ii

3Ij
3 (Ii+Ij)) [104]

Less-constrained U Max SNP-hard [104]
Unit-cost O O(u2min(|Ti|, |Tj|) min(Li, Lj)) [117]

Unit-cost U O(2.62k⋅poly(n)) [112]

Bounded degree trees U O((1 + Ɛ) |Ti|+|Tj|), for any fixed Ɛ > 0 [118]
1-degree O O(|Ti||Tj|) [119]

Tree alignment distance
General O O(|Ti||Tj|(Ii+Ij)2) [43]
General U Max SNP-hard [43, 45]

Tree inclusion
General O O(|Ti||Tj|) [120]
General O O(|∑Ti||Tj|+ mTi,Tj D2) [121]
General O O(Li|Tj|) [122]
General U NP-hard [44, 123]

Clique-based

General U Not defined/ calculated [40, 124]

Others (Pattern Matching)
Tree contraction pattern-based U NP complete [125, 126]

Largest common subtree
(constrained)

U Polynomial [112]

Table 2.2: Time complexity of various tree edit distance-based methods, here O =
ordered tree and U = unordered tree, adopted from [42]

In most recent times, some methods have been developed by reducing the tree

edit distance problem to a clique problem [40, 79, 108, 124]. For example, Fukagawa

et al [40] proposed a method of computing maximum clique, in which an instance of

tree edit distance is directly transformed into an instance of the maximum vertex

weighted clique problem, and then it is solved using a clique solver [127]. This

method can work efficiently on moderate sized trees, but it will be slow for the large

sized trees. This method is further improved with using dynamic programming that

repeatedly solves instances of the maximum vertex weighted clique problem as

subproblems [124]. However, this method still suffers from high complexity for large

tree structures with many leaves. Some similar reductions [128, 129] and methods of

variants of the tree edit distance problem [107] have been proposed, however none of

Literature Review and Background 45

them exactly solves the formal tree edit distance problem for unordered trees. Some

of the available tree edit distance-based methods may work efficiently for some

particular tree shapes (i.e., by constraining height, size, etc.) but will degenerate for

others by arising unpredictable, even infeasible runtime [46, 110, 116].

Apart from the tree edit distance, some other string representation based tree

matching methods are proposed using pattern matching [102], maximum agreement

subtree [26, 130], smallest common super tree and largest common subtree [131],

tree contraction pattern [125, 126]. Unfortunately, these methods also provide

unfavourable results for unordered trees by exhibiting high computational

complexity [42]. In Table 2.2, some of the available tree edit distance based

algorithms for both ordered and unordered trees are listed including their

complexities.

2.4.2 Other Methods

Due to the high complexity involved in tree edit distance methods, researchers

have attempted to calculate the approximate similarity score between tree pairs using

the similarity function on Vector Space Model (VSM), Adjacency Matrix (AM) and

Tensor Space Model (TSM) of tree representation. Trees represented as VSM can be

compared using distance measures such as Cosine, Euclidean, Manhattan, Jaccard,

Dice, etc. [127, 132]. A comprehensive survey on various distance measures can be

found in [133]. Though these methods have reported as computationally efficient,

VSM representation has its own limitations. It is a feature vector that contains

information about tree content only, the structural detail in a tree such as hierarchical

relationships cannot be captured through this representation.

In response to this need, researchers have developed methods based on AM

representation for doing the tree computation. Romanowski et al. [23] proposed a

method for matching unordered trees by employing the minimum weighted

symmetric difference metric. Authors in [77] attempted to calculate the similarity

between unordered trees by considering the shape or geometrical structure, where a

Orthogonal Procrustes method was used to calculate the similarity score. But again,

the AM representation also has some limitation; it only contains the adjacency

information of nodes, whereas for representing tree structure, some other pieces of

information like ancestor-descendant relationship, fan-out and level are also required,

46 Literature Review and Background

especially when these equivalent representations of trees are going to be used further

for calculating the similarity score between tree pairs.

Recently, the TSM representation is used that can capture both the tree content

and structure information for tree matching, however, it faces high computational

complexity due to high dimensionality and sparsity [134]. Another family of

algorithms (path-based method) uses the level similarity concept by counting the

common nodes in the corresponding levels of two trees where each level has

different weight assigned. These methods fail to preserve the child-parent

relationship among tree nodes [51, 72, 135-137], which is an important

differentiating factor for trees. Besides, these methods have been proposed for

ordered trees only.

Discussion: Much research has been conducted in the area of ordered trees, but the

methods for unordered tree matching are still underway due to immense

computational complexities. Many important problems in the research fields of

genetics, bioinformatics and web intelligence emphasise the need for developing

efficient methods of manipulating unordered trees [21, 29]. The nature of an

unordered tree mining problem is harder than that of an ordered tree due to its less

constrained structure, which results in complex tree mapping.

The structure of a tree plays an important role in differentiating the data;

therefore, the dependencies inherent in a structure need to be captured efficiently.

The representation format of a tree heavily affects the performance and complexity

of the algorithm [46, 138]. Due to having a less constrained expression of

hierarchical dependencies, the representation of an unordered tree for further

manipulation is trickier and challenging. Apparently the lack of efficient equivalent

representation raises the complexity in tree mapping as well as increasing the

computational complexity of executing tree manipulation algorithms [42].

Researchers have tried to solve the tree matching problem using tree edit

distance and have built polynomial algorithms for ordered trees. Unfortunately, for

unordered trees, the tree edit distance problem have been shown as NP-complete,

even MAX SNP-hard, which means unless P = NP there is no polynomial time

approximation scheme [45, 47], therefore no tractable solution is available following

this approach. Because of the high complexity yielded by tree edit distance-based

Literature Review and Background 47

methods, measuring similarities of unordered trees is still an open problem. In

comparison to tree edit distance-based algorithms, the other methods that use vector

and matrix comparisons seem to be more promising as they allow faster computation

than the edit string operations. However, the majority of these methods have

proposed solutions for ordered tree matching only.

This thesis conjectures that an efficient equivalent representation of the exact

tree structure may propose the effective solution. In comparison to the rooted ordered

trees, the unordered tree representation is way more challenging and the existing

representation methods are lacking in efficient representation due to their structure or

order dependent scheme. This causes an accuracy issue in tree matching with the

presence of isomorphic trees. If the representation problem can be solved then, in

comparison to the edit string-based method, the other methods may find a faster

solution.

In this thesis only the database of rooted unordered trees is considered for

addressing the tree matching problem. Since a free tree is very similar to graph data,

it is usually discussed under the main stream of graph matching [12, 139], which is

another vast area of research, therefore no separate study on free tree matching is

carried out here.

2.5 FREQUENT PATTERN MINING

With explosive growth in structured data that presses the need for insight

information, frequent pattern mining has generated much interest in the data mining

community. It is a basic step in association mining [3, 11, 140] and a pre-requisite in

many other data mining tasks such as sequence mining [85-87, 141]; multi-

dimensional patterns [83, 107]; maximal pattern mining [36, 142]; emerging pattern

mining [110]; clustering [111, 130, 132] and classification [50]. Generally the

problem of frequent pattern (or, subtree) mining can be stated as identifying the

common patterns based on a user-specified support which is called minimum

support, denoted by (min_sup). The terms “frequent pattern mining”, “frequent tree

mining” and “frequent subtree mining” are interchangeably used in this thesis.

Formally the frequent subtree mining problem can be defined as:

Given a tree database Tdb = {T1,T2, ...,Tn}, find a list of frequent subtrees S =

{t1, t2, . . . , tr}, such that for every tr ∈ S, support(tr) >= min_sup, where support(tr)

48 Literature Review and Background

is the percentage of Trees in Tdb that contain tr. The support definition may vary,

which is discussed later.

Mining frequent patterns is significant and the overall process requires several

non-trivial steps. Candidate generation and frequency counting are two main steps in

a frequent pattern mining algorithm, which are in general very expensive in terms of

memory and time [49, 143]. Because of the complex nature of the frequent pattern

mining problem, many efforts have been made to propose different approaches for

solving this problem. The available works in the literature on frequent pattern mining

can be classified based on several factors as shown in Figure 2.13. Most of them will

be covered in the following discussion but with a stronger focus on the unordered

and free tree mining algorithms.

Most of the frequent tree mining algorithms (including the proposed one in this

thesis) adopt the basic ideas from frequent itemset mining algorithms which mainly

consist of two steps:

− Candidate generation step

− Frequency counting step

2.5.1 Candidate Generation Step

This step generates candidate trees so that their frequencies can be analysed

and a list of frequent patterns can be generated. Given a database, all trees are

represented in their canonical form such as BFCF, DFCF, adjacency matrix or

adjacency list [90, 96, 144, 145]. The candidate generation step can be performed

using various algorithms such as the apriori algorithm [140], vertical mining

algorithm [49], hybrid or combination of apriori and vertical mining [96], and many

others. The vertical mining algorithms have recently become popular due to their

relatively small memory footprint as compared to apriori algorithms – the most

widely used algorithm for candidate generation step in frequent subtree mining.

In vertical mining algorithms, the concept of an enumeration tree is used. All

of the candidate trees will be generated into this tree following a traversal strategy,

which can be breadth-first, depth-first, or a combination of the two. In the breadth-

first search approach, the search for an appropriate candidate is performed level-

wise. First, all size 1 trees are generated and counted, which are basically frequent

Literature Review and Background 49

labels; then from the frequent 1 trees, candidate 2 trees are constructed and verified

to be frequent and the process continues. In the depth-first search, the enumeration

tree is traversed following depth. In this case, first from a single frequent 1 tree, all

possible candidate trees will be generated and validated; then it will start processing

another frequent 1 tree. The third approach is to use a combination of depth-first

search and breadth-first search traversal, which means that the candidate trees will be

generated following both breadth and depth.

Em
be

dd
ed

Frequent Pattern MiningFrequent Pattern Mining

Tree Types
Subtree Types

Canonical Forms

Frequency Counting

Enumeration
Operation\ Strategy

BFS Traversal

DFS Traversal

Combination

of BFS & DFS

Structure-guided

In
du

ce
d

Maximal

Closed

R
oo

te
d

U
no

rd
er

ed
Free

Join

E
xt

en
si

on

Hash Table

Ba
se

d
on

 P
ru

ni
ng

B
as

ed
 o

n
Su

pp
or

t

BFS StringDFS String

Adjacency Matrix

Adjacency List

Roo
ted

 O
rd

ere
d

Occurrence list

Exte
nsio

n

& Jo
in

Enumeration Tree

Candidate
Generation

Apriori Algorithm

Hybrid

Vertical Mining
Algorithm

(Enumeration
Tree)

Sco
pe l

ist

Figure 2.13: Overview of various frequent pattern mining approaches

The BFS traversal requires more space since at each enumeration the generated

subtree would not have the final frequency count yet, whereas, the DFS traversal is

space efficient, even for processing a long pattern, because every enumeration will

compute a frequency count of each generated subtree completely [38, 49].

Depending upon the type of enumeration process, various operations or strategies

can be adopted to grow the enumeration tree by generating candidates. These are:

− Enumeration by Extension

− Enumeration by Join

− Structure Guided Enumeration

50 Literature Review and Background

The extension approach, also known as right-most-path extension, is a

commonly used technique for growing the enumeration tree for both ordered and

unordered trees. For any type of subtree, the right-most path extension method is

reported to be complete and non-redundant (i.e., all valid candidates are enumerated

at most once) [38, 91]. By following the extension operation, adding a frequent label

at the right most path of the existing frequent K-tree will generate a new candidate

K+1-tree. Usually this operation is used in DFS traversal or vertical mining.

The join operation, also referred as the guided extension process, is mainly

used in the enumeration tree where a combination of BFS and DFS traversal is

employed [38, 70, 96, 100]. When the cardinality of the node label is very high,

using an only extension operation can be exhaustive and inefficient. Given frequent

K-trees, candidate K+1-trees are formed by joining a pair of K-trees that have a

common K - 1 prefix (node along with tree structure). The BFS traversal and the

combined DFS and BFS traversal usually adopt this operation for their candidate

generation.

Both extension and join operations result in a huge number of candidates and

not all of them are valid or, frequent. Therefore, to reduce the number of candidates

generation, the apriori heuristic [140] has been applied, i.e., “if length K pattern is

not frequent in the database, its length (K + 1) super-pattern will not be frequent”. As

the process generates a lot of candidates and then requires adopting a full pruning

process, the overall complexity of the step to enumerate and generate candidates is

very high. An improved candidate enumeration technique is desirable and will be

considered as an important contribution in this research field.

An idea of utilising a structural model for efficient enumeration proposed in

[91, 146, 147], suggests generating only valid candidates by guiding the candidate

generation process using the available information on XML Schema. The candidates

that confirm the available schema are only considered valid. This idea can be utilised

by considering the tree structured data information as the guidance scheme. In Figure

2.14, an example is given for the task of mining frequently occurring rooted induced

unordered subtrees. Now based on the underlying structure (e.g., available

hierarchical relationships, leaf node, root node etc.) of the database, the candidate

generation is guided for obtaining only the valid subtrees. Here, the valid subtrees are

only those that confirm their existence according to the tree structure scheme of the

Literature Review and Background 51

considered database. By following this enumeration technique, a large amount of

memory and time can be saved, as it will allow skipping the record of invalid

subtrees, which are not going to be frequent anyway and therefore, are needed to be

pruned in between the process. Besides, this approach can complement the join

approach by overcoming its existing limitation, i.e., avoiding generation of invalid

subtrees. Depending upon the tree representation process, this scheme information

will vary.

Figure 2.14: An example of valid and invalid subtree, considering the underlying
information of the sample database while mining frequent induced subtrees

Besides the above mentioned enumeration process to find out the frequent

subtrees, another technique is also reported in the literature, which can obtain

frequent subtrees without candidate generation. This is called pattern growth [148],

based on FP-tree [149]. A pattern-growth approach does not perform level-by-level

candidate enumeration; rather, it works by constructing a compact database utilising

the FP-tree structure, which is an extended prefix-tree structure for storing

compressed and significant information about frequent patterns. Although the FP-

tree based method avoids costly and repeated database scans by giving a compact

representation of a large database, it comes with its own limitations. This process can

end up having a lot of projected databases in accordance to each of the frequent

prefix substructures, which causes huge expense because of the recursion process to

reach the different node and FP-growth [5, 150]. Apart from this common problem,

another problem with mining frequent unordered trees is that the FP-tree can’t avoid

the expensive task of sorting canonical forms to avoid the isomorphism. The

projected database can also become large and as well, the number of pseudo

projection steps can be bigger in comparison to that of the ordered trees, which

causes thrashing of memory.

52 Literature Review and Background

In general, the excessive candidate generation, large memory foot print,

memory thrashing issue, and costly I/O processing are the shortcomings of the

candidate generation step [143, 151].

2.5.2 Frequency Counting Step

In this step, the occurrences or frequencies of candidate trees are counted to

calculate their supports to determine if they are frequent, whilst the infrequent ones

have to be pruned. This step needs to be very efficient since the number of

candidates to be counted can be huge.

A conventional approach is direct checking, which generally uses a hash-tree

data structure to count the frequency [140]. For each generated candidate, its

frequency is increased by one if it exists in the transaction; FP-tree based frequent

mining techniques also use conceptually similar hast-tree to count the frequency.

Another widely used approach is the occurrence list-based approach, which

associates an occurrence list with each candidate subtree [38, 90, 146]. A vertical

representation is used to store a list of Ids of the transactions that support the

candidate subtree; therefore by simply checking the size of the occurrence list one

can determine whether the corresponding candidate subtree is frequent or not. In the

literature, this approach is found faster than direct checking [38, 90]. Another scope

list-based frequency counting approach is also proposed by the researchers which is

also computationally effective [70].

Figure 2.15: Isomorphism issue during candidate generation step of mining frequent
unordered tree using enumeration tree [49]

Literature Review and Background 53

Removing the infrequent subtrees or pruning is also a part of the frequency

counting step. Based on the pruning techniques, a frequency counting step can give

varied performance. The two most common pruning techniques are full pruning and

opportunistic pruning [11, 49, 70]. Full pruning is time consuming, but will confirm

the completeness, whereas opportunistic pruning can be beneficial when a dataset

contains long patterns and can afford to miss out some of the frequent patterns.

Different support definitions are also found to be used for determining the

frequent trees. The most commonly used one is a conventional support which is

sometime referred to as transaction-based support [5]. The transaction-based support

count of a subtree is defined as the total number of transactions that contain it; here a

transaction is referring to a tree. Most of the existing subtree mining algorithms use

this support definition [49]. On the contrary, occurrence-match or weighted support

count of a subtree is defined as the total number of occurrences of that subtree in all

of the transactions [70, 146]. Occurrence-match support can produce pseudo-frequent

subtrees; a detailed discussion about this is provided in [55, 97, 98].

2.5.3 Algorithms for Mining Frequent Rooted Unordered and Free Trees

Generally, mining unordered subtrees is a more difficult problem than mining

ordered subtrees. For mining ordered trees, only the ordered subtrees need to be

enumerated, whereas for mining unordered subtrees one additional checking is

required in candidate generation to avoid the isomorphism problem [70]. This extra

computation is essential to determine which subtrees are isomorphic to each other.

Otherwise, the many isomorphic trees will be generated, which makes the candidate

generation process redundant and eventually leads toward counting incorrect

frequency. In Figure 2.15, an example is shown, where the enumeration tree is

generating candidate trees for a rooted unordered tree, and the red rectangles are used

to show some of the isomorphic trees that should not be generated more than once as

a candidate. Because these are the same subtrees, a checking mechanism is required

for avoiding such generation, which is an expensive sorting or ordering process of

canonical forms. The success of a frequent mining algorithm for unordered subtrees

largely depends on efficient enumeration and canonical form transformations [98] as

well as on avoiding expensive canonical sorting [142]. This thesis works toward

54 Literature Review and Background

achieving such goals. In Table 2.3, the list of available algorithms for mining rooted

unordered and free trees are classified, based on their types and mining approaches.

Algorithm Type Mining Approach Algorithms

Tree Type

Rooted Unordered
Tree

uFreqt, Unot, RootedTreeMiner, HybridTreeMiner,
CMTreeMiner, UNI3, UITree, SLEUTH, TDU, U3,
Treefinder

Free Tree Chi’s FreeTreeMiner, HybridTreeMiner, Rückert’s
FreeTreeMiner, F3TM

Subtree Types
Induced Subtree

uFreqt, Unot, RootedTreeMiner, HybridTreeMiner,
CMTreeMiner, UNI3, UITree, Chi’s FreeTreeMiner,
HybridTreeMiner, Rückert’s FreeTreeMiner, F3TM

Embedded Subtree SLEUTH, TDU, U3, Treefinder

Canonical Form
(Pre-order based
String
Representation)

DFS traversal uFreqt, Unot, SLEUTH, UNI3, U3, UITree, Chi’s
FreeTreeMiner, Rückert’s FreeTreeMiner

BFS traversal RootedTreeMiner, HybridTreeMiner, Rückert’s
FreeTreeMiner

DFS or, BFS
traversals F3TM

Enumeration Tree

BFS traversal RootedTreeMiner, Rückert’s FreeTreeMiner

DFS traversal uFreqt, Unot, RootedTreeMiner, F3TM

Combination of BFS
& DFS traversals PathJoin, HybridTreeMiner

Structure Guided UNI3, U3

Enumeration
Operation

Extension uFreqt, Unot, RootedTreeMiner, F3TM

Join PathJoin, Rückert’s FreeTreeMiner, Chi’s
FreeTreeMiner

Extension & Join HybridTreeMiner, SLEUTH, UITree

Frequency
Counting

Occurrence List uFreqt, Unot, PathJoin, RootedTreeMiner,

Based on Pruning F3TM, Chi’s FreeTreeMiner

Scope list SLEUTH

Table 2.3: A general classification of the available frequent subtree mining
algorithms for rooted unordered and free trees

Algorithm for Mining Rooted Unordered Induced Subtrees

For finding unordered frequent tree patterns, most of the proposed algorithms

use a canonical form and extend only candidates that are in the canonical form. A

sorted pre-order string canonical form that can be obtained in linear time was first

Literature Review and Background 55

defined by [94] and the frequent subtree mining algorithm was developed

accordingly. A few more similar canonical representations based on either depth-first

traversal or breadth-first traversal have been defined [90-92, 96]. But, all these

canonical forms need an additional isomorphism test for avoiding the redundancy

problem during the frequency counting step, which results in more run time for

processing the frequent subtree mining algorithm.

To deal with the computational complexity, some researchers played with the

varied frequency counting approaches to improve the algorithmic efficiency. Asai et

al. [92] proposed an algorithm, uNot that mines induced unordered subtrees by using

a reverse search technique for incremental computation of unordered subtree

occurrences. Another algorithm Ufreqt, proposed by Nijssen & Kok [91] is designed

to mine induced subtrees based on a bottom-up strategy for determining the

frequency. Both the uNot and Ufreqt algorithms use the concept of an occurrence

list-based frequency count. In UITree algorithm [53], the authors use an early

termination or early pruning technique for boosting up the algorithm performance

while mining frequent induced subtrees.

Variations are also found in the candidate generation step, such as the Chi et al.

proposed [90] RootedTreeMiner, which is a vertical mining algorithm and

conceptually a re-implementation of uNot. Later, as an extension to their previous

work, the authors proposed the HybridTreeMiner [96] algorithm that can

systematically enumerates all induced subtrees; it uses a hybrid concept for candidate

generation that utilises both the apriori and vertical mining algorithm. PathJoin [152]

assumes that children of every node are labelled identically and finds maximal

patterns using vertical mining algorithm-based candidate generation that utilises only

a join operation to grow. Another algorithm, UNI3 [98] was proposed for mining

unordered induced subtrees and for candidate generation; it uses structure guided

enumeration that is associated with a right path extension operation to grow the

enumeration tree, but this algorithm is designed for working on a database of labelled

ordered trees. Recently, another algorithm was proposed based on a compression tree

sequence but it is designed for mining frequent condensed subtree (i.e., maximal

induced subtree) mining [15]. Some other similar works are also found in the

literature, based on condensed representation of unordered trees [18, 28, 150].

56 Literature Review and Background

HybridTreeMiner [96] and UNI3 [98] have been used in benchmarking the

proposed BOSTER algorithm. The process of growing the enumeration tree in

HybridTreeMiner is similar to BOSTER, but it is not structure guided. Whereas,

UNI3 uses the structure guided enumeration tree but only utilising extension

operation to grow it. Similar to BOSTER, both the HybridTreeMiner and UNI3 use

the canonical form for storing the trees. Moreover, HybridTreeMiner is the most

widely used method for benchmarking and UNI3 is a recent method.

Algorithm for Mining Rooted Unordered Embedded Subtrees

The majority of the existing unordered subtree mining methods work with

induced subtrees and very few are available for mining unordered embedded

subtrees. SLEUTH [70] was one of the first techniques to mine frequent embedded

unordered subtrees and used a scope-list join via the descendant and cousin tests for

growing the enumeration tree. Chehreghani et al. [142] developed the TDU

algorithm to mine unordered embedded subtrees, which was reported as a faster

algorithm because of avoiding isomorphism checking, but it only mines maximal

subtrees, which are subsets of the all frequent embedded subtrees that SLEUTH

discovers. Hadzic et al. also proposed an algorithm, U3 [97], based on the structure

guided enumeration to mine frequent unordered embedded subtrees from a database

of labelled ordered trees. Another algorithm for mining frequent embedded

unordered subtrees is Treefinder [153], which uses an Inductive Logic Programming

approach for mining, but this process does not guarantee completeness (can miss

many frequent subtrees), especially at a lower support. Besides these approaches,

another apriori based frequent mining algorithm FRESTM is proposed which has

used a restricted tree edit distance technique to detect restrictedly rooted unordered

embedded subtrees [36]. Since, the tree edit distance problem is already known for

exhibiting high complexity for an unordered tree, the overall performance of this

algorithm can be affected. Moreover, this algorithm yields low recall in comparison

to other algorithms and misses some patterns, which is not desirable in many cases.

Another algorithm, EvoMiner, is proposed, where the phylogenetic tree is considered

as a rooted unordered embedded subtree but with some restricted properties;

therefore, it is not exactly solving the general embedded subtree mining problem

[37].

Literature Review and Background 57

For comparing the proposed work – BEST [58] for frequent rooted unordered

embedded subtree mining – U3 [97] and SLEUTH [70] are used as benchmarks in

this thesis. U3 uses a structure guided enumeration similar to BEST, although BEST

utilises different tree information for guiding the candidate generation. SLEUTH is

commonly used benchmarking algorithm as well as it adopts the extension and join

concepts for candidate generation. Moreover, both of these U3 and SLEUTH utilise

the canonical form based representation. So it facilitates testing of BEST for

performing against the existing canonical form based works.

Algorithm for Mining Free Subtrees

Compared to mining rooted unordered trees, mining free trees is more

complex, since it has no root node specified. Many possible variations of the same

free tree can exist, which need to be reduced during candidate enumeration. Because

of the complexities involved, only a handful of free tree mining algorithms are

available in the literature. Chi et al. have presented an apriori-like algorithm

FreeTreeMiner [90] which uses apriori based algorithm for candidate generation.

Then for reducing the memory usage, another algorithm, HybridTreeMiner, is used

based on a combination of apriori and vertical mining algorithms for candidate

generation [96]. Both of these algorithms are designed for working on databases of

labelled free trees. Rückert et al. [54] and Zhao et al. [64] have proposed algorithms

for mining frequent free trees from a graph database. These algorithms generate large

number of false positives (i.e., invalid candidate subtrees) during enumeration, which

need to be pruned in the frequency counting step. This results in high processing

time. Moreover, the necessity of performing isomorphism checking to avoid

redundant candidate tree and false frequency counting causes additional

computational complexity.

For the benchmarking purpose, FreeTreeMiner [90] and HybridTreeMiner [96]

algorithms are used due to their good performance record as well as for the relevancy

with the proposed work, FreeS. HybridTreeMiner uses both the extension and join

operations to grow the enumeration tree, as well as it uses the occurrence list-based

frequency counting method. Both of them use canonical form for representing trees.

They come closest to FreeS in terms of the algorithmic design and enable a fair

comparison.

58 Literature Review and Background

Discussion: Mining frequent unordered trees and mining free trees are advantageous

in many cases over mining frequent ordered trees; however, in comparison to ordered

tree mining these two fields require more maturity. Frequent ordered tree mining

methods already face high computation and memory expense issues; for unordered

and free trees the complexity turns even higher. Although some works have been

done to mine frequent rooted unordered and free subtrees, the exponential candidate

generation with redundancy and the isomorphism issue are there. The available

algorithms lack a systematic enumeration process as well as an efficient frequency

counting process. It is also critical to determine a good growth strategy, as there can

be many possible ways to extend a candidate subtree due to not having the sibling

order constraint. Therefore, an optimal enumeration strategy for a tree-structured

pattern is highly sought after. There should be algorithms for mining both induced

and embedded unordered trees, because each of them has different applications and

needs. Besides, during mining frequent free subtrees, the whole candidate generation

process becomes trickier. The confirmation of candidate generation in canonical

form of free tree requirement is essential, which demands additional care. Since the

free trees are more flexible than rooted unordered trees, the number of isomorphic

trees can be huge. Clearly the frequent free tree mining process requires an efficient

canonical form as well as candidate enumeration approach, which are missing in the

existing state-of-the-art algorithms.

2.6 CONCLUDING REMARKS

Undoubtedly, mining frequent subtrees and finding tree similarity information

as a course of knowledge discovery are significant. Any data mining task for

unordered (both rooted and unrooted) tree databases faces additional challenges over

the ordered tree databases, due to the flexibility of data representation; however, the

need for developing techniques of knowledge discovery from unordered tree

databases is inevitable.

From the literature review, it can be noticed that the representation of

unordered or free trees is not as straight-forward as ordered trees because of its less

constrained structure. The existing representation methods (i.e., tree traversal,

canonical string representation, and adjacency matrix) lack in dealing with the

isomorphism and automorphism problems, which are the most pressing issues in

unordered (both rooted and unrooted) tree representation. The field of unordered

Literature Review and Background 59

trees calls for a novel representation that can overcome this issue. It would be

beneficial if the canonical form for both rooted unordered trees and free trees can be

proposed, which will help in avoiding the isomorphism/automorphism checking step

during candidate generation. Moreover, the present enumeration processes are found

to be memory and time inefficient. An optimal enumeration approach is therefore

needed to accelerate the unordered tree mining process which can resolve the

exponential candidate generation issue. The technique to boost up the traditional

frequent counting approaches should also be explored.

Besides mining induced unordered subtrees, embedded subtrees also need to be

mined, since they carry additional information that is interesting to some of the

significant applications. Compared to induced unordered subtrees, not too many

algorithms are available for mining embedded unordered subtrees, due to the

complex nature of this problem. Serious attention should be directed to this topic.

Similarly, the field of frequent free tree mining lacks efficient algorithms despite its

importance in various domains. The canonical representation of a free tree faces

additional challenge due to the fact of being unrooted, which also makes the

enumeration process in free tree mining challenging.

For tree matching, most of the available methods provide unfavourable results

in terms of time and space complexities for unordered trees. Most of string-edit

based matching problem exhibit NP-hard complexities; some of them are even Max

SNP-hard. Apart from tree edit distance based methods, some other approaches seem

to be promising but yet require improvisation, especially in choosing the right data

structure. Instead of using string representation for comparing trees, matrix-based

representation can be considered for facilitating fast computation of similarity

metrics. However, it is essential to investigate whether the available similarity

metrics will support this representation while differentiating the trees.

In summary, the following research gaps can be highlighted after reviewing the

literature:

− Lack of current tree representation methods including tree traversing,

canonical form and adjacency matrix for rooted unordered and free trees.

− Lack of efficient and scalable tree matching algorithms for unordered

trees.

60 Literature Review and Background

− Lack of efficient frequent rooted unordered induced and embedded subtree

mining algorithms.

− Lack of efficient frequent free subtree mining algorithms.

All the important achievements of the considered works to date have been

highlighted, while some of the problems that remain outstanding are pointed out and

will be addressed in this thesis. In particular, a number of development needs is

evident:

− An efficient tree traversal approach that will encode all ordered variations

of an unordered tree uniquely.

− An efficient tree representation, i.e., canonical form, adjacency matrix,

which will resolve the isomorphism issue of unordered trees and will also

capture some other important tree information.

− A faster and memory efficient tree matching approach for unordered tree

that can resolve the current complexity issues.

− An optimal and measurable enumeration strategy for a tree-structured

pattern that improves on the enumeration operations

Despite the present research progress in the field of tree mining, the persistent

limitations in unordered and free tree mining algorithms are hard to be overlooked.

The majority of the algorithms developed for unordered trees exhibit high

complexity. Though restricting tree properties allows achieving polynomial

algorithms, this raises the issues of non-completeness and compromising accuracy.

Apparently the lack of efficient equivalent representations raises the complexity in

tree mapping, which results in higher complexity in further tree manipulation.

Conducting research in this direction to resolve the highlighted limitations is

significant and much needed.

Literature Review and Background 61

Chapter 3: Tree Representation and Data
Structure

Tree structured data has become ubiquitous because of its capability to portray

widely available information hierarchically. Much popular domain data (e.g., XML,

Weblog, BOM, etc.) can simply be considered as a manifestation of tree structured

data [19-21, 23, 24]. In previous chapters, it is noted that the problem of knowledge

discovery from databases of unordered trees which are less constrained in structure is

compelling and useful. This thesis will concentrate on developing mining techniques

from databases of rooted unordered and free trees. Mining these tree types is

challenging as highlighted in the literature review especially for the tasks of frequent

subtree mining and tree matching. The current state-of-the-art algorithms are lacking

in achieving optimal processing, which promotes the development of new efficient

and scalable techniques.

Representation is a fundamental and essential component for conducting

efficient manipulation of tree structured data [154]. The previous chapter detailed the

different representation techniques utilised in the existing frequent subtree mining

and tree matching algorithms. From that discussion, it is clear that the existing

representation techniques are deficit in appropriate encoding of rooted unordered and

free trees, which apparently hampers the efficiency performance of mining methods.

An improved tree representation technique should be able to improve the

performance of mining algorithms by offering appropriate encoding and optimal

processing.

This chapter summarises the contribution of this thesis in the area of tree

representation and shows how the different representation techniques are related and

developed. It will help to link with the other contributions in the thesis since these

representations are discussed in detail while presenting the corresponding method.

 The process of tree representation is not just concerned with how the actual

subtree is modelled and represented in memory; it is also concerned with how the

complex computation and data manipulation tasks can be performed efficiently and

effectively. The tree representation methods are developed, focusing on the static

Tree Representation and Data Structure 63

aspects of trees. The static aspect refers to the typical data representation, which

demands improvisation according to the literature review. Whereas the dynamic

aspects refer to data operations used in designing the algorithm mechanisms; this is

covered to some extent in this thesis.

The chapter starts with the proposed tree traversal algorithm BOS that provides

an optimal encoding of the tree [39, 155]. A description of the data structures,

canonical forms and adjacency matrix, which are utilised to ensure efficient

processing of the proposed tree mining algorithms [39, 57-59, 155, 156], is included

in subsequent sections. Other data structures that amplify the performance of the

proposed algorithms - such as dictionary and occurrence list - are presented next.

This chapter includes only the essential introductory material on the proposed

representation forms, and puts them all together in a single chapter to give an

overview. As discussed in Table 1.2, the full detail of BOS will appear in Chapter 4,

adjacency matrices in Chapter 4 and canonical forms in Chapter 5 in the form of

published papers.

3.1 THE BALANCE OPTIMAL SEARCH (BOS) ALGORITHM

The existing schemes for traversing trees provide different encodings for the

variations of the same rooted unordered tree, which cause problems in tree mining

algorithms (as discussed in Sub-section 2.3.1). A new tree traversal algorithm, named

as Balance Optimal Search (BOS), is proposed based on the concept of optimisation

[39] (detailed description can be found in Chapter 4 as outlined in Table 1.2). Due to

having the order-independent scheme, the new traversal algorithm encodes all

variations of the same rooted unordered tree identically.

To propose the BOS traversal algorithm, the tree traversal problem is reduced

to the Simple Assembly Line Balancing (SALB) problem, which is a well-studied

optimisation problem in the Operations Research (OR) paradigm [65, 157]. SALB is

a combinatorial optimisation problem that chooses an optimal path for a network by

avoiding the exhaustive search. In the literature, SALB has been used to solve

networks in manufacturing problems that are represented by a predecessor digraph,

i.e., a graph holding all properties of an unordered tree [65, 158]. This thesis

conjectures that SALB can propose an optimal path for visiting an unordered tree

like a network if the tree traversal problem is reduced to a SALB problem.

64 Tree Representation and Data Structure

1

3

5

4

62

7
3 5

8

3

6

5

7

(a)

1 3 2 5 6 4 7

(b)

Figure 3.1: The simple assembly line balancing problem, (a) replicates an assembly
line, (b) represents an optimal sequence of tasks on various machines

3.1.1 Simple Assembly Line Balancing (SALB) Problem

In manufacturing, the SALB problem is used to minimise the cost of

production by balancing an assembly line [65, 157]. An assembly line is a sequence

of linearly ordered stations where each station performs several machine tasks

repeatedly during each cycle of the assembly line. The cycle of an assembly line is

fixed; therefore each station must complete all the tasks in a way that the whole

product can be delivered within the cycle time to avoid any delay. It becomes

essential to identify the best possible sequence of tasks that will balance an assembly

line. The solution of the SALB problem should conform to achieve an optimal

sequence of tasks in the assembly line by ensuring minimum delay.

In Figure 3.1(a) an assembly line is shown using a predecessor digraph where

the nodes are representing various tasks performed by different machines and the

numerical values outside the nodes stand for the task time required for each machine.

The tasks cannot be assigned to the station arbitrarily because of the sequencing

requirement. This sequence constraint can be considered similar to the concept of

ancestral constraint, which poses a partial order among the set of tasks. Hence a task

can only be completed after completion of all of its predecessor tasks. In Figure

3.1(b) the optimal sequence of the completion of tasks is shown in accordance to the

assembly line in Figure 3.1(a).

3.1.2 The BOS Traversal

In the proposed method an assembly line is a metaphor for an unordered tree

which maps the parameters of assembly line to the parameters of a tree (e.g., tasks as

Tree Representation and Data Structure 65

tree nodes). Therefore the tree traversal problem can be reduced to the SALB

problem and the mathematical model of the optimisation problem can be developed

accordingly. This model is formulated with an objective function of minimising the

computational cost of the overall traversal process. The other constraints are set by

following the basic properties of a tree structure and restrictions as per tree traversal.

By solving this model, an optimal sequence of tree nodes can be found, where if a

tree is traversed, the minimum computational cost can be ensured. It is in the same

line as the SALB problem that obtains the optimal sequence of performing tasks with

an objective function of minimising delays.

Figure 3.2: The BOS traversing order of the given tree is va-vb-vd-vc-ve. The arrow is
directing the sequence of steps that traversing process is carried out and the

highlighted nodes are showing the list of nodes that have traversed

The technical details of obtaining the optimal traversal sequence are provided

in Chapter 4. A simple example is given in Figure 3.2 to show how the BOS traversal

will encode a rooted tree. A rooted unordered tree is provided in Figure 3.2(a), where

each node is associated with a numerical value. These numerical values are referred

to as weights in this thesis. A weight is calculated by counting the number of

appearances of a node under its parent node; the detail of this definition is provided

in Chapter 4 and 5. Following BOS traversal, first the root node va will be traversed,

therefore, its immediate followers or child nodes vb and vc will become eligible to

traverse next. In the case of having multiple eligible nodes, the node that has highest

weight will be chosen for traversing next. For this example, both the eligible nodes

have same weight, but vb is chosen as it has the maximum fan-out. After traversing

66 Tree Representation and Data Structure

vb, its child nodes vd and ve become eligible along with vc. vd is chosen next because

of having maximum weight. Following this the final traversing order will be va-vb-vd-

vc-ve.

The BOS traversal can encode an unordered tree effectively since its working

approach is structure independent and it does not consider the sibling constraint. It is

based on optimality and a variation of the unordered tree, due to swapping the order

between siblings, will be treated equally during the optimisation modelling. In the

SALB problem, the tasks that are initiated from the same immediate predecessor do

not have any specific order in execution and hence changing the order of these tasks

does not change the optimal point [65]. BOS ensures a unique traversing order as

well as a unique encoding for a rooted unordered tree (and all its variations) which

the other traversal approaches fail to provide. Using this uniqueness of BOS order,

effective adjacency matrix and canonical form can be derived which may take the

performance of tree mining algorithms to the higher level of efficiency.

The BOS traversal can also be used to traverse a free tree. A free tree is also

unordered therefore the order independent traversing strategy of BOS is suitable for

its encoding too. BOS is designed to work for a rooted tree; hence after identifying

the root node of a free tree, the BOS traversal can be applied to it. Paper 6 shows the

proof and lemma that BOS can be used to define the canonical form of free trees

[59].

3.2 ADJACENCY MATRIX

Representing unordered trees is challenging than the ordered tree, due to the

less constrained structure. Among various methods, a commonly used tree

representation is a matrix that allows for simplifying computation of tree mining

algorithms [62]. Adjacency matrix is a popular matrix representation of trees [159]

that depends on the encoding scheme. For the same unordered tree T, there can be

|T|! different adjacency matrices using different permutations of the set of nodes

[160]. It is not possible to get a unique adjacency matrix representation for the

variations of the same unordered tree using any of the DFS and BFS traversal based

encoding, as these encodings rely on sibling order. Moreover the traditional

adjacency matrix only shows the adjacency information among the nodes, whereas

trees have other important information that can be portrayed in their representation.

Tree Representation and Data Structure 67

a

d e

0

4 4

5

(a)

3rd level

2nd level

1st level

(b)

2

1

0

0

0

0 0

1

1

0 0

0 0

0

2/3+4

1/2+5

2/3+4

1

0 1 0 0

1/3

0

1/3

1/2+2

a b c ed

a

b

c

d

e

cb

Figure 3.3: Augmented adjacency matrix

In this thesis, a new Augmented Adjacency Matrix (AAM) using the BOS

encoding is proposed, which has the ability to encode an ordered variation of the

same unordered tree identically. AAM includes additional level information and

weight information of nodes, which ensure rich portrayal of a tree structure.

3.2.1 Augmented Adjacency Matrix

This is a square matrix representation of a rooted unordered tree that utilises

the BOS encoding, node level and node weight information of a tree to represent the

cell values [39, 155].

Encoding information: The BOS order encoding is derived using the balanced

optimal search traversing algorithm, which is unique for an unordered tree and its

variations. The root node becomes the first row and column to be represented in the

matrix and the other nodes are arranged in accordance to BOS order.

Level information: The level information in a tree represents the ancestor-

descendant relationships of the nodes. This structural information is important for

finding similarity between trees. The level information is generated from the node

level based on their hierarchical relationships, which is explained in Chapter 4.

Weight information: The nodes in a tree carry a weight displaying how

frequently the node occurs under its parent node. Besides including the node weight,

an additional weight value of 1 is added to each diagonal cell of the adjacency matrix

to represent the existence of a corresponding node on that tree.

In Figure 3.3, an example of AAM representation is shown. The level of the

tree nodes are shown according to their position. The BOS order of the given tree

68 Tree Representation and Data Structure

Figure 3.3(a) is va-vb-vd-vc-ve and the nodes are arranged accordingly. The diagonal

cells are populated with a weight value 1 to confirm the node existence. The other or

off-diagonal non-zero values of the cells are a summation of level information and

weight information. The weight information is coming straight from the number of

occurrences of a node under its parent node. If for a cell the respective nodes have a

parent-child relation, then the weight value is added (the node relation should be read

from row to column) into it and if the nodes have an ancestor-descendant relation

then the level information will be added with the weight. The AAM resolves the

issue of having different matrix representation for the isomorphic unordered trees.

The incorporation of additional implicit information in tree representation allows

more accuracy in tree matching, which is reported later in Chapter 4.

3.2.2 Extended Augmented Adjacency Matrix

Extended Augmented Adjacency Matrix (EAAM) is an extension of AAM that

includes the frequent subtree information for imaging a tree [156]. By incorporating

sub-tree information, EAAM includes a much richer structural relationship

importance, in addition to ancestor relationship, in tree representation. Due to its use

of BOS encoding, it ensures unique identity of a rooted unordered tree.

Frequent mining algorithms provide information on frequent structural

dependencies like parent-child and siblings in a particular database. They provide the

list of frequent sub-trees that, in turn, detail the most occurred parent-child or

ancestor-descendant and sibling relations. A data structure such as an unordered tree

has a vast flexibility; characterising the structural relationships based on frequent

occurrence will aid in the global similarity calculation. Adding the frequent

substructure as a representational component can be advantageous for tree structure

processing like similarity measures. This is the inspiration behind proposing this new

adjacency matrix.

Structural relationship importance weight: Based on the result of the frequent

subtree mining algorithm, the structural relationships are characterised and the

weights are defined accordingly. If a subtree is frequent then the inherent parent-

child relation is considered as mandatory. Once all the mandatory parent-child or

ancestor-descendant relationships are identified, the remaining relationships are

Tree Representation and Data Structure 69

classified as optional. During the EAAM representation, a weighted value of 1 and 0

are used to represent the mandatory and optional relationship respectively.

In the previous AAM representation, the off-diagonal non-zero entry of a cell

is either level information or the summation of level information and node weight,

but in EAAM the structural relationship importance weight will be also added based

on the frequent information of the corresponding nodes. This representation is

incorporated in the proposed tree matching algorithm, which is found useful and

accurate in finding similarities between trees, as reported in Chapter 4.

3.3 CANONICAL FORMS FOR LABELLED ROOTED UNORDERED
TREES

A key problem of mining unordered trees is the representation issue. Several

ordered variations of an unordered tree are possible and during representation these

multiple ordered trees should be mapped to one canonical form of an unordered tree.

These trees vary in the order of sibling nodes only; the information contained within

the structures is essentially the same. An example is given in Figure 3.4, where the

four ordered trees are same if the sibling constraint is relaxed. Since the unordered

tree can have many isomorphic trees as well as it can have automorphism, the

canonical form representation becomes challenging.

This thesis presents a new Balanced Optimal Canonical Form (BOCF), which

is proposed following the balance optimal search (BOS) traversing order. The BOCF

ensures representing all isomorphic ordered variations of an unordered tree with a

single canonical form.

3.3.1 The Balanced Optimal Canonical Form (BOCF)

BOCF is defined using the order of optimal search traversing [57, 58]. It is a

string representation of a tree that records the label of each node along with its

weight following the BOS order. This string representation includes four unique

symbols, +1, -1, +2 and -2, to represent the breadthwise movement from sibling to

sibling and depth-wise movement from a child to its parent. The symbols +1 and -1

are used for depth-forward and depth-backward travel respectively. The symbols +2

and -2 are used for breadth-forward and breadth-backward travel respectively. It is

assumed that the alphabet of node labels includes none of these symbols.

70 Tree Representation and Data Structure

Figure 3.4: An example of four rooted ordered tree variations of the same rooted

unordered tree

An Example: The balance optimal search (BOS) traversing order is va-vb-vd-vc-ve for

all four trees in Figure 3.4. This order is unique for all the variations of a tree

relaxing the sibling constraint. If each tree given in Figure 3.4 is treated as rooted

ordered, the BOCF string encoding will be:

(a) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, +2, 2ve”;

(b) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, -2, 2ve”;

(c) “0va, +1, 4vb, +1, 5vd, -1, -2, 4vc, +2, +1, +2, 2ve”;

(d) “0va, +1, 4vb, +1, 5vd, -1, -2, 4vc, +2, +1, -2, 2ve”.

It can be noted that these BOCFs only vary in terms of breadth movement

which shows that sibling order is preserved. If a tree is treated as unordered, the

order of siblings is ignored and only the breadthwise movement from the existing

rightmost sibling node is permitted. The BOCF string encodings for the trees, viewed

as unordered, given in Figure 3.4 will be:

(a) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, +2, 2ve”;

(b) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, +2, 2ve”;

(c) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, +2, 2ve”;

(d) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, +2, 2ve”.

It can now be noted that all of these trees have the same BOCF string encoding

which supports that they are variations of the same unordered tree. This encoding

will provide great benefit to unordered tree mining methods where the counting or

matching of the same trees is required. In the existing algorithms [96, 97], the

expensive process of finding a representative canonical form for mapping the

isomorphic unordered trees can be avoided if the BOCF string encoding is used.

BOCF string encoding provides an improved unordered tree representation in

Tree Representation and Data Structure 71

comparison to their preorder traversal based canonical forms (e.g., BFCF and DFCF)

because it is not only memory efficient but it also allows avoiding the expensive

sorting process for choosing a representative canonical form.

3.4 CANONICAL FORMS FOR LABELLED FREE TREES

Generally, defining canonical form for free tree is more challenging than the

rooted unordered trees. The main challenge is that there could be more possible ways

to represent a free tree than that of a rooted tree because of having no defined root

node and no direction among sibling nodes. Therefore the chance of having

isomorphic trees in a database of free trees is very high. This necessitates of having a

systemic approach for representing a free tree. A proper representation can ensure

accurate indexing for further processing and knowledge discovery. In frequent

pattern mining algorithms, defining a canonical form for free trees is required to

identify the common patterns among free trees. This thesis proposes an efficient

canonical form for free trees by extending the above mentioned BOCF for unordered

trees to represent free trees.

3.4.1 Balanced Optimal Canonical Form of Free Trees

If the root node of a free tree can be uniquely defined, then the balanced

optimal search order can be used to define its canonical form. In this thesis, the

canonical form for free tree is defined by following a two-step process [59]. These

steps are:

− Normalisation

− Canonical String Encoding

First, a free tree is normalised into the rooted unordered tree by fixing a root

node and then the canonical form as well as the canonical string is defined. For

normalising a free tree, first all of its leaf nodes along with their incident edges are

removed at a time until a single node or two adjacent nodes are left. The free tree

with a single remaining node is called a central tree and, with a pair of remaining

nodes is called a bicentral tree [96]. In a central tree, the remaining single node

becomes the root of the free tree. In a bicentral tree, the node with minimum

lexicographically ordered label is chosen as the root node. After the normalisation

72 Tree Representation and Data Structure

step, a free tree is converted to a rooted unordered tree, and the BOCF for the rooted

unordered tree can now be used to encode it.

Figure 3.5: Process of finding canonical form for a free tree

An Example: Consider the free tree in Figure 3.5(a), during the step of

normalisation, the tree is found bicentral for which node va is defined as the root

node since this node has the minimum lexicographic label. After defining the root

node, the BOCF of rooted unordered tree definition is followed to provide the

canonical string encoding of this tree as follows:

“0va, +1, 2vb, +2, 2va, -2, +1, 2vc, -1, +2, +2, 1vb, +1, 1va, +2, 1vc, +2, 1va, -2, -

2, +1, 1vc, -1, +2, +1, 1vd”.

All of these proposed canonical forms have been implemented in the proposed

corresponding frequent subtree mining algorithms. In Chapter 5, the algorithm

details are provided with the results of empirical analysis, which proves the

efficiency of these canonical forms by showing the superior performance over the

state-of-the-art algorithms, even in the presence of isomorphism.

3.5 OTHER DATA STRUCTURES

During data operation, the choice of data structures becomes an important

factor. For example, in the frequent subtree mining algorithm, both the candidate

generation and frequency counting steps require a data operation that should be space

Tree Representation and Data Structure 73

efficient with fast access, since the efficiency of the frequent subtree mining

algorithm is measured by how well the candidate generation and frequency counting

steps are performed. Besides the above mentioned representations of trees, two more

supporting data structures are introduced in this thesis that will help in fast execution

of the proposed frequent subtree mining algorithms [57-59]. One of them is a

dictionary structure that works as a look-up structure to reduce the local subtrees that

are generated during the candidate generation process into the integer hyperlink form

[148]. Another one is an occurrence list that allows efficient frequency counting by

reducing search space. This discussion of effective data structure will help the reader

to understand the mechanical details of the proposed frequent subtree mining

algorithms in Chapter 5.

3.5.1 Dictionary

The dictionary is a horizontal representation of tree data that captures the inherent

hierarchical relationships in it. This structure has been used in various frequent

subtree mining algorithms [98, 148]. In a similar manner, a dictionary is presented as

a global structure where an array object is used to store the information. Therefore,

accessing any information out of this structure ensures less memory expense and can

be performed in O(1) time. In the dictionary, the index of each cell refers to the

position of each node in the original tree following the BOS traversing order and

each cell stores the information such as label, level, fan-out, weight and a link to the

pre-order position of the parent node (for the root node, it is equal to -1). Thus, each

cell in the dictionary will contain a tuple of {label, level, fan-out, weight, link} (as

shown in Figure 3.6).

1

2

2

a

bd

c

0

[1] [2] [3] [4]

a, 3, 2, 0,-1 b, 2, 0, 2, 0 d, 2, 1, 1, 0 c, 1, 0, 2 ,2

BOS Traversing order
is a-b-d-c

and the corresponding
encoding is 1-2-3-4

Figure 3.6: An illustration of dictionary generation for a tree where each cell in the
dictionary has a tuple as: {label, level, fan-out, weight, link}

74 Tree Representation and Data Structure

It can be determined from observing the cells in this dictionary that a node is a

leaf node if its fan-out is equal to zero and a node is a root node if its weight is 0. The

level information can be utilised to determine whether a node is a descendant node or

child node by checking level difference. The level information encodes the

hierarchical notion of tree structures.

3.5.2 Occurrence List

To ease the frequency counting step of frequent subtree mining algorithms, a

vertical data structure based on the concept called occurrence list [90, 96, 98] is

utilised in this thesis.

The Occurrence List (OL) based vertical structure for a rooted unordered tree

can be described as a list of each occurrences of that tree in the database. Later by

simply calculating the size of OL vertically (column wise), the frequent subtree can

be identified, since the frequency count of each subtree is equal to the OL size. The

main advantage of using the OL is that the frequency count does not need to be

updated separately in addition to inserting the occurrence in OL, which is needed

anyway for the candidate generation process, and the size of OL can be determined at

almost no cost.

The OL of tree tv represented in its BOCF can be considered in a form as (ID;

v1; …; vk) where ids of the transactions containing tv in the database are indicating

using ID and v1; …; vk indicate the mapping between the indices of nodes in tv and

those in the transaction. Whether tv is frequent can be checked using its occurrence

list, because the total number of elements in OL with distinct ID will be same as the

support of tv.

3.6 CHAPTER SUMMARY

The focus of this chapter is to concisely present the proposed representations

and effective data structures which are part of the proposed tree mining algorithms

discussed in later chapters. This chapter first introduced novel data representations

based on optimal tree traversal that address the limitations of the state-of-the-art

representations, which are all order oriented. A brief discussion is added on effective

data structures that have been used in the proposed frequent subtree mining

algorithms to ease the overall data processing cost and speed. An insight into these

Tree Representation and Data Structure 75

tree representations and data structure is essential to understand the interaction

between these components and the proposed algorithms.

Since several tree representations are available in the literature, Chapter 2

presented the rationale behind proposing the new tree representations. The existing

representations lack the capacity of dealing with the problem of isomorphism and

automorphism associated with the rooted unordered and free trees. To address this

problem, a novel tree traversal algorithm is proposed that provides a unique

traversing order for the isomorphic unordered trees. Two adjacency matrices are

introduced, which offer better portrayal of structural relations existing in rooted

unordered trees than the traditional adjacency matrix. Two canonical representations

are proposed that can effectively handle the isomorphism problem in unordered and

free trees representations. All of these representations contribute greatly in the

proposed tree matching and frequent subtree mining algorithms that are discussed in

Chapter 4 and 5 respectively. These representations can be considered as backbone

and a reason for improved performance of these algorithms.

In the last section of this chapter, the dynamic aspects of a tree representation

are covered, which include the data structures responsible for effective processing of

the designed algorithms. These data structures are mainly adopted to implement the

frequent subtree mining algorithms, since these kinds of algorithms are very

expensive to execute. The concepts of dictionary and occurrence list are introduced

here, which alleviate the effort of the candidate generation and frequency counting

steps in the proposed frequent subtree algorithms.

76 Tree Representation and Data Structure

Chapter 4: Tree Matching

Chapter 4 focuses on tree matching – an important contribution of this thesis. A

tree matching algorithm is proposed for measuring similarity between unordered tree

pairs. This algorithm yields significantly less computational complexity than the

traditional tree edit distance-based methods. Instead of using edit string operation,

this algorithm adopts a matrix comparison approach using a novel equivalent matrix

representation for trees. The first and second papers utilise the novel Augmented

Adjacency Matrix (AAM) for tree matching, whereas the third paper utilises the

novel Extended Augmented Adjacency Matrix (EAAM) representation.

This chapter is organised based on three papers that introduce the proposed tree

matching algorithm. It follows the sequence of Papers 1 and 2 that describe the novel

balance optimal search (BOS) traversal algorithm with technical detail and

experiments. They also include the AAM-based tree similarity measure algorithm.

Paper 1 is a published conference article whereas Paper 2 is a comprehensive under-

review journal article. In the journal paper, the proposed tree matching algorithm is

extended to do clustering. By using the similarity information, the trees can be

clustered. Paper 3 introduces the tree matching algorithm with the EAAM

representation that utilises the frequent subtree information for measuring similarity.

It also shows an implementation of a clustering algorithm using the driven similarity

information from the proposed tree matching algorithm.

Each paper is presented in its original form; a brief overview of each method is

provided along with some of materials that were excluded from the papers due to

space restrictions enforced by the publishers. Following on from this introduction a

brief description about the clustering process is provided, which aims to give an

insight into how the existing clustering algorithms can benefit from the knowledge

discovered from other algorithms, such as frequent subtree mining and tree matching.

In this thesis, clustering is only shown as a real life application of the proposed tree

matching algorithms.

Tree Matching 77

4.1 AN OVERVIEW OF THE CLUSTERING PROCESS

Tree data can be clustered using the pairwise similarity information derived by

a tree matching algorithm. The tree matching algorithm finds the similarity

information between trees that can be used in grouping them. The frequent

substructure mining algorithm finds the commonality among the database of trees in

the form of frequent subtrees that can be used in clustering trees [161, 162]. Figure

4.1 presents a generic framework for clustering, which helps to understand how tree

representation, tree matching, frequent subtree mining and clustering can be

integrated in the same framework. After representing trees in a suitable format, tree

matching and frequent subtree mining algorithms can be implemented. Clustering is

an unsupervised data mining task that does grouping of the data based on their

similarity, which can be derived through a tree matching or frequent subtree mining

algorithm. Tree matching can be carried out using the frequent pattern information

and for finding a frequent subtree, tree matching can also be used. In the literature, it

is shown that based on the frequently occurred subtrees, rules can be derived to

calculate similarities between trees [50] and, tree matching algorithms like tree edit

distance can also be used to restrict the candidate generation step in the task of

mining frequent embedded subtrees [36]. Hence, these methods have some measures

of interdependency.

Figure 4.1: A generic tree data clustering framework

78 Tree Matching

The success of a tree clustering algorithm largely depends on the representation

and the similarity measure steps. Consequently, clustering can be seen as the end

product or application of a similarity measure method. By evaluating clustering

performance, the performances of tree matching and subtree mining algorithms can

be evaluated.

Many established algorithms for tree clustering are available in the literature

[12, 163]. Among them, one of the most widely used is partitional clustering. Any

similarity matrix that is derived from a tree matching algorithm can be fed to a

partitional clustering algorithm, i.e., k-way clustering [164] for getting the clustering

results. The level-wise similarity-based clustering is also reported [72, 137]. A lot of

clustering algorithms have used the matrix similarity [23, 77, 165]. Some clustering

algorithms are proposed using frequent substructure extraction [162, 166]. So, a

conclusion can be drawn by saying that the improvisation of tree matching and a

frequent subtree mining algorithm can guarantee a better clustering output. The

thesis objective is not to compare and critique the existing clustering methods. This

discussion is only added as the clustering process is carried out in Papers 2 and 3

using the finding from the proposed tree matching algorithms, and thus the readers

are given an overview of the available applications of the proposed methods.

4.2 A NOVEL METHOD FOR FINDING SIMILARITIES BETWEEN
UNORDERED TREES USING MATRIX DATA MODEL

This paper contains the preliminary study results of the AAM representation-

based pair wise tree matching algorithm for unordered trees. The initial concept of

balanced optimal search traversal is introduced in this paper to explain the idea of

augmented adjacency matrix construction. The promising results of this algorithm

have been generated based on two real life data sets, Bill of Material (BOM) [23] and

glycan data [80]. Both of these data can naturally be depicted as a rooted unordered

tree.

4.3 MEASURING SIMILARITY BETWEEN UNORDERED TREES WITH
THE BALANCED-OPTIMAL-SEARCH TRAVERSAL ALGORITHM

The promising results from Paper 1 encouraged the authors to conduct deep

study on the BOS traversal algorithm and on the AAM representation. This paper

details the mathematical modelling of BOS traversal as well as the performance

Tree Matching 79

evaluation in comparison to other traversal approaches. Important properties of BOS

traversal and AAM representations are described in detail. Extensive experiments

with more data sets have been reported to prove the efficiency of the proposed tree

matching algorithm. Experimental study shows that the introduced tree matching

algorithm ensures less computational expense in comparison to the recent tree edit

distance based algorithms. The AAM representation ensures better accuracy

performance in comparison to the traditional adjacency matrix. All of these results

are obtained by using real life datasets. Further, this algorithm is extended to do

clustering to show an application of the tree matching algorithm.

4.4 IDENTIFYING PRODUCT FAMILIES USING DATA MINING
TECHNIQUES IN MANUFACTURING PARADIGM

This paper introduces the tree matching algorithm using the EAAM

representation. The AAM representation and, hence the tree matching algorithm,

only consider the tree specific information for quantizing similarity between trees. It

would be interesting to check whether incorporating database specific information

can provide an advantage in similarity measures. For obtaining initial insight of a

database, frequent subtree information is found helpful [49]. Therefore, in EAAM

representation of trees, a new weight based on the frequently occurred parent-child

relations for the considered database is added and trees in EAAM forms are

compared. The result of this similarity measure algorithm has been found useful in

clustering trees.

Since the idea of this work is to use database-specific knowledge in finding

similarities, therefore the whole contribution is presented, focusing on a particular

domain data. The bill of material, which can be depicted as a rooted unordered tree,

is used for conducting the experiments. BOM is an important domain data in the

manufacturing paradigm and finding similarity between BOMs is essential in various

applications. One of them is to accelerate the product design and planning for

launching a new product in the market. However, the proposed method can be

implemented in any domain as long as the domain data can be modelled as rooted

unordered trees.

NB: The reader may be found the published paper a bit different than the version

of the paper added in this thesis. This is done to correct some confusing wordings,

which does not change any core concept of the work.

80 Tree Matching

Paper 1: A Novel Method for Finding
Similarities between Unordered
Trees Using Matrix Data Model

Israt Jahan Chowdhury* and Richi Nayak*

*School of Electrical Engineering and Computer Science, Queensland

University of Technology, GPO BOX 2434, Brisbane, Australia

PUBLISHED IN: Lecture Note in Computer Science: Web Information

Systems Engineering – WISE 2013, 8180, pp. 421-430

Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model 81

Abstract2: Trees are capable of portraying the semi-structured data which is

common in web domain. Finding similarities between trees is mandatory for several

applications that deal with semi-structured data. Existing similarity methods examine

a pair of trees by comparing through nodes and paths of two trees, and find the

similarity between them. However, these methods provide unfavourable results for

unordered tree data and the tree matching problem has found NP-hard or MAX-SNP

hard. In this paper, we present a novel method that encodes a tree with an optimal

traversing approach first, and then, utilises it to model the tree with its equivalent

matrix representation for finding similarity between unordered trees efficiently.

Empirical analysis shows that the proposed method is able to achieve high accuracy

even on the large data sets.

Keywords: Semi-structured Data, Unordered Tree, Similarity Measure, Matrix

Representation.

1. INTRODUCTION

The Web domain consists of heterogeneous data in various forms such as

HTML, XML, image, videos and text. Some of these data are naturally represented

as tree data structures. Comparing the tree-structured data is important as it enable

searching for interesting information among the abundant data efficiently. Many

researchers confirm the significance of unordered tree data representation and their

comparisons [46, 109]. An unordered tree does not have left-to-right fixed order

among siblings node and only preserves the ancestor-descendant or parent-child

relationship. Especially in the Web domain where the data source is heterogeneous,

the unordered tree representation gives more freedom for flexible matching and

concise representation.

A large number of tree mining methods have been developed for finding

similarities [42]. Majority of them are for ordered trees and very few are available for

unordered trees due to the complexities involved with the unordered tree processing.

Existing similarity methods examine a pair of trees by comparing through nodes and

paths of two trees, and aggregate the similarity between them [167]. Some similarity

2 X. Lin et al. (Eds.): WISE 2013, Part 1, LNAI 8180, pp. 421–430, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model 83

measure methods use tree level information by considering their common nodes in

the corresponding levels and giving different weight in different levels, but it fails to

reserve the child-parent relationship among tree nodes [51]. Higher order models

such as Tensor Space Model (TSM) have also been used for representing tree data

and finding similarities, though these techniques suffer from high dimensionality as

well as complexity problems [134]. Tree edit distance methods are also commonly

used in measuring similarity between the tree data. These methods measure the

distance between two trees in terms of minimum cost to transform one tree into

another tree by applying edit operations such as deletion, insertion and substitution

[42]. The edit distance computing algorithms for ordered tree data are known to

exhibit O(n3) complexity, where n is the maximum number of nodes in two input

trees [114]. The tree-edit distance problem for unordered trees is NP-hard [45, 47]. A

few methods have been developed by reducing the tree edit distance problem to the

maximum clique problem [40, 124] or proposing variants of the tree edit distance

problem [129]. However, they still suffer from high complexity for large unordered

tree structure [40]. Other examples of unordered tree matching methods are tree

pattern matching [102], maximum agreement subtree [168], largest common subtree

[131], and smallest common supertree. These methods also suffer from the

complexity problem. In summary, existing methods provide unfavorable results for

unordered tree data and result in yielding high complexity.

We propose a novel idea of representing the trees with matrix data structure

using tree encoding, and then comparing two matrix structures using efficient cosine

similarity measure. An optimal traversing adapting a well-known optimisation

problem called “Simple Assembly Line Balancing” is used to provide tree encoding

for unordered tree data. A matrix based representation called “Augmented Adjacency

Matrix” is proposed to represent the tree data based on the encoding information.

The empirical analysis shows that the proposed method performs well with high

accuracy and outperforms benchmarking methods for the large size data. The

proposed method is able to achieve O(n2) complexity due to its incorporation of

matrix data for comparison. This is remarkable as the existing similarity methods for

unordered trees mostly give intractable solutions through exhibiting high

computational complexity [45, 47].

84 Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model

Figure 1: The simple assembly line balancing problem, first diagram replicates an

assembly line (a), second one representing optimal sequence of operations on various

machines (b)

Figure 2: Optimal tree traversal

2. THE PROPOSED SIMILARITY MEASURE METHOD

The proposed unordered tree similarity method includes three steps. Firstly, the

tree data is encoded with an optimal traversing approach. Secondly, an equivalent

matrix representation is obtained for each tree structure utilizing the tree encoding

with other tree information. Thirdly, cosine similarity measure is used to calculate

the similarity between two matrices representing unordered trees.

2.1 Step 1: Tree encoding using an optimal traversal approach

Tree Traversal: A tree traversal is a systematic approach of visiting each node once

in a tree by following certain strategy and returns a list containing the node sequence

Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model 85

traversed along the way. The depth-first search (DFS) and breadth-first search (BFS)

are two commonly used traversing algorithms that rely on the fixed ordering among

sibling nodes. A DFS algorithm starts from root node and explores each branch as far

as possible before backtracking. They can be classified as pre-order, in-order and

post-order, based on the sequence of visiting nodes on right or left order. A BFS

algorithm, also known as level order traversal algorithm, starts visiting a tree from its

root node and then follows a strategy for traversing other nodes in the order of their

level from left to right [83]. These strategies are able to represent ordered trees

efficiently; however, they face challenges when applied for unordered tree traversal

as there is no fixed order among sibling nodes. To our best knowledge, these are the

only two strategies that have been used for representing and canonisation of

unordered trees [90].

Optimal Tree Traversal: In this paper we introduce an optimal tree traversal

method for representing unordered tree. This method is inspired by a well-known

optimisation problem known as “Simple Assembly Line Balancing” from the

“Operation Research” paradigm [65]. In manufacturing, the line balancing problem

is used to minimise the cost of production by balancing the machine sequences of an

assembly line based on their operating time and finds the optimal sequence that will

support minimum operation or cycle time. Figure 1(a) illustrates a scenario where the

nodes are representing various machines in an assembly line and the numerical

values outside the nodes stand for the operation time requiring for each machine

(Figure 1(b)) shows the optimal sequence of completion tasks according to the

assembly line problem. In the proposed method we metaphor the assembly line as the

unordered tree; a machine as a tree node; and the optimal sequence as the optimal

tree traversal. The weight of a node is calculated by counting the number of

occurrences of each node under its parent node. The traversal process begins at the

root node. The children nodes are visited only after their parent nodes are visited.

This is done to ensure that the ancestral ordering constraint is preserved. The

objective of the traversal approach is to minimise the overall traversal time and

return an optimal node sequence for the unordered tree.

Problem Definition: Let tree T = (V, E) be an unordered labeled tree where V = (v0,

v1, …, vn) denotes the set of nodes that presumes a partial order 𝜌𝜌 due to the ancestral

86 Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model

relation (i.e., i 𝜌𝜌 j → i > j where i and j are node indices and i is ancestor of j). If

function tr: T→T* that passes over the tree, listing all nodes that met along the way,

then it is called tree traversal. T* is n-dimensional vector, representing the list of

nodes in the order of traversal according to the specified traversal strategy, (v0, vi, …,

vn) = V ∈ T*, where, v0 is the root node. By using the working principle of line

balancing problem, we define the general traversal function to an optimisation

problem for achieving the optimal node traversal sequence. Let the set of nodes V =

(v0, v1, …, vn), traversed in a sequence by using the line balancing principle, be called

the optimal tree traversal if the traversal function tr does not violate the ancestry

relationship given by the unordered tree and ensures minimum computational cost as

well as traversal time.

Tree Encoding: After receiving the optimal sequence for traversing all tree nodes,

each node will be encoded according to its order in this sequence. For instance, in

Figure 2, the traversal will start from the root node Va and the optimal sequence is va-

vc-ve-vb-vf-vd. The encoded values for the nodes in the tree will be 1-2-3-4-5-6 for va-

vc-ve-vb-vf-vd respectively.

2.2 Step 2: Tree Modeling with the Augmented Adjacency Matrix
Representation
Adjacency matrix has been used for representing trees and graphs by modeling

the adjacency information regarding parent-child relationship [88]. Let the adjacency

matrix A model the tree T (V, E) as followings.

,true, ()

false, otherwise
i j

ij
v v E T

A
∈

= 


 (1)

A tree data is a hierarchical representation that includes the inherent implicit

relationships and semantics of various nodes. The traditional adjacency matrix fails

to represent the label information, level information, encoding information, and

ancestry relationships. To overcome these limitations the following Augmented

Adjacency matrix is proposed to model tree data more accurately.

Augmented Adjacency Matrix: This is a square matrix that utilises the level,

encoding and weight information of a tree to represent the cell values.

Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model 87

Encoding Information: By using the optimal traversing sequence, we obtain the

encoding values of the tree nodes according to the order they are visited. The root

node becomes the first row and column to be represented in the matrix and the other

nodes are arranged in the optimal order achieved by the optimal traversal. This

encoding value also integrates with the level value between two nodes.

Level Information: The level information in a tree represents the ancestry

relationships of the nodes. This structural information is important for finding

similarity between trees [51]. The nodes appearing high on tree carry more influence

than nodes appearing near the leaf nodes. Consequently, the level assignment is

bottom-up; the lowest leaf node is assigned the level 1 and the higher value is

assigned to the root node level. The following rules are applied to assign a value to

two nodes, vi and vj, incorporating the level information.

1. If an ancestor-descendant relationship exists between two nodes vi and vj,

where vi is the ancestor of vj, or if the encoding value of vi is less than the

encoding value of vj then the level value of cell Cij is: ()
()

j

i

level v
level v

. The

function level outputs the level value of a node.

2. If an ancestral relationship does not exists between two nodes vi and vj, or

if the encoding value of vi is greater than the encoding value of vj then the

level value for cell Cij will be 0.

Weight Information: In this method, nodes carry a weight displaying how

frequently the node occurs under its parent node. The node weight is added to the

corresponding level value. Additionally, a value of 1 is added to each diagonal cell of

the adjacency matrix to represent the existence of corresponding node on that tree.

We illustrate the process of modelling the tree with the augmented adjacency

matrix and populating the matrix values. Figure 3 illustrates the traditional adjacency

matrix and the augmented adjacency matrix for a given tree. The example tree has

three levels, and the root node level is considered as the highest one. The encoding

value of nodes is received from Figure 3 by using the optimal traversal. The traversal

sequence is va-vc-ve-vb-vf-vd and the encoding values for these nodes are 1-2-3-4-5-6

respectively. The level information of corresponding nodes is calculated, and the

88 Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model

node weights are added to the level values. For instance, consider the calculation of

the cell value, C23, showing the relation between va-vc. The encoding value of va = 1

which is less than the encoding value of vc = 2 that means va is ancestor of vc.

According to rule 1, the level value of C23 is () 2
() 3

j

i

level V
level V

= . The weight of vc is 4. The

final cell value will be 2/3+4. The rest of the cell values are being calculated in the

same way.

root

43

5 2

Va

Vb

Vd

Vc

Ve

(a)

3rd level

2nd level

1st level

Va (1)

Vc (2)

Vb (4)

Ve (3)

Vf (5)

0

0

0

0

0 0

0

0

0 0

0 0

0

1

1

1

10

0 0 0 0

0

0

0

Traditional Adjacency Matrix (b)

Augmented Adjacency Matrix (c)

1 Vf

0

0

0

1

0

Vd (6) 0 0 00 0 0

1

0

0

0

0 0

1

1

0 0

0 0

0

2/3+4

1/2+5

2/3+3

1

0 1 0 0

1/3

0

1/3 1/3

0

0

0

0 0 00 0 1

1/2+2

1/2+1

Va(1) Vc(2) Vb(4) Vf(5)Ve(3) Vd(6)

Va (1)

Vc (2)

Vb (4)

Ve (3)

Vf (5)

Vd (6)

Va(1) Vc(2) Vb(4) Vf(5)Ve(3) Vd(6)

Figure 3: Augmented adjacency matrix

2.3 Step 3: Measuring Similarity
Let A' and B' represent Augmented Adjacency Matrices of the corresponding

trees. If the two trees differ in size, extra columns and rows with zero elements are

added to the smaller matrix for making the size of both matrixes equal. A matrix can

be considered as a n×n dimensional vector. The value of each cell of a matrix is a

dimension of the vector, starting from the first row to the end row; the n×n

dimensional vector is represented. Similarity between two matrices can be calculated

by using cosine similarity. Table 1 illustrates the similarity process.

It is expected to achieve a polynomial time complexity with the proposed

method detailed in Table 1. The method consists of three steps. The complexity of

Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model 89

the first step is O(n2), same as the line balancing optimisation problem. The

complexity of the second step is known to be O(n2) for modelling the adjacency

matrix based on tree encoding information. The final step comprises cosine similarity

calculation, too small to count in; consequently it can be ignored during complexity

analysis. The overall complexity is O(n2) where n is the maximum number of nodes

in the input trees pair.

Algorithm : Measuring Similarity

Input: Unordered trees Ta and Tb

Output: Measurement similarity between tree pair

1. Model the tree Ta with the Augmented Adjacency Matrix A';
2. Model the tree Tb with the Augmented Adjacency Matrix B';
3. if |B'|>|A'| then

Add (|B'| ─ |A'|) rows and columns of zeros at the right end and bottom of the
matrix A';

else
Add (|A'| ─ |B'|) rows and columns of zeros at the right end and bottom of the
matrix B';

end if
4. Calculate similarity between two trees using

1 1

2 2

1 1 1 1

' '

' '
(', ')

n n

xy xy
x y

n n n n

xy xy
x y x y

A B

A B
Cos A B = =

= = = =

∑ ∑
=

∑ ∑ ∑ ∑

Table 1: The proposed similarity measure algorithm

3. EXPERIMENTAL RESULTS

The proposed similarity measure method is evaluated on two datasets including

the Bill of Material (BOM) data that has the similar structure as XML documents

[23] and the Glycan structures obtained from the KEGG/Glycan database [80]. The

proposed method is implemented on Matlab and experiments are performed on a PC

with RAM size 8.00 GB and a processor Intel Core i7.

Performance on the BOM Data: The BOM data set consists of 404 sample BOMs

with 50,000 nodes and 12,000 unique nodes. The dataset includes trees with

maximum and minimum depth of 8 and 4 respectively, whereas the maximum and

minimum breadth is 10 and 6 respectively. The well-known evaluation metrics such

90 Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model

as precision, recall, F-score and AUC are calculated. To calculate these measures,

positive and negative samples were needed. For this purpose, a tree pair in the data

set is regarded as positive if the distance score is smaller than a given threshold.

Otherwise it is regarded as negative. The threshold value is determined empirically.

Figure 4(a) and (b) show the performance of the matrices with varied threshold

values. As expected, data in Figure 4(a) shows that with the increase in threshold,

matching accuracy is improved yielding the best matches showing increase in

precision; however it reduces the number of matches resulting the fall in recall.

Considering the trade-off between precision and recall, the proposed method

produces the best result when the threshold is set in the range between 0.6~0.65

(Figure 4(a)). For thresholds below the value of 0.3, AUC score is less than 0.5,

indicating the random classification (Figure 4(b)). The threshold value that is higher

than 0.5 gives a good quality solution yielding higher AUC.

 (a) (b)

 (c)

Figure 4: Evaluation metrics with varied thresholds (a, b) and scalability test (c)

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.6

0.7

0.8

0.9

1

Threshold

Pr
ec

is
io

n,
 R

ec
al

l,
F-

Sc
or

e

0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Threshold

AU
C

sc
or

e

Precision
Recall
F-Score

20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

% of Data Usage

C
P

U
 T

im
e

(s
e

c)
 a

nd
 M

em
or

y
U

sa
g

e
(M

B
)

CPU Time
Memory Usage

Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model 91

Total #
nodes

Clique
Edit

UwClique
Edit

DpClique

Edit-A

DpClique

Edit-B

DpClique

Edit-C

DpClique

Edit-D

DpClique

Edit-E

Proposed
Method

55~59 1.987 0.433 8.968 0.108 0.088 0.086 0.096 0.374

60~64 2.746 4.949 1.78 0.167 0.163 0.149 0.177 0.47

65~69 64.29 9.303 39.46 0.381 0.364 0.328 0.357 1.513

70~74 58.69 0.099 1.337 0.545 0.436 0.463 0.501 1.517

75~79 2.441 0.918 4.051 0.953 0.752 0.754 0.781 1.547

80~84 7.150 6.570 44.63 2.516 2.268 1.620 1.653 1.55

85~89 237.7 28.03 21.11 3.205 3.205 2.413 2.490 1.641

90~94 303.2 1211 1710 38.81 26.30 8.165 9.475 1.761

Average 84.78 157.66 228.92 5.84 1.75 1.75 1.94 1.29

Table 2: Average CPU time (sec) per glycan pair is shown for each case. Bold text

indicates the best results for each case and the highlighted cell indicates the worst

results for each case

We performed a scalability test by varying the BOM data set of different size

reporting the CPU time and memory usage. Figure 4(c) reveals that the method is

able to provide the O(n2) complexity, confirming the theoretical complexity analysis.

The memory usage does not change with the increased data size, as the proposed

method just needs to keep a pair of trees in the memory at a time.

Performance on the Glycan Structures: We used the Glycan data for comparing

scalability of the proposed method with the state-of-the-art similarity measure

methods such as CliqueEdit, UwCliqueEdit, and DpCliqueEdit [124]. It is to be

noted that none of these available methods empirically analysis their accuracy. They

conduct the CPU time analysis to show the complexity. We compare our proposed

method based on CPU time with these methods. For analysis, tree pairs are selected

randomly from the data set with a specified range of the total number of nodes (i.e.,

sum of the numbers of nodes in two trees) and the average CPU time per pair is

measured.

Results in Table 2 show that our proposed method performs well for almost all

sizes of trees. Although the proposed method does not give best result for the smaller

tree node sizes, between the ranges of 55~59 and 75~79, but several other methods

perform worse than our method. After reaching the range 80~84, our method

outperforms others due to the use of optimal traversal. Overall the average

92 Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model

performance of all subsets of datasets (the last row) indicates that our method

outperforms all methods, some with very large margin. The CliqueEdit,

UwCliqueEdit, and DpCliqueEdit [124] methods implement several heuristics to cut

the CPU expense, but provides no results about accuracy of the matching process.

We provide the accuracy test for our proposed method on the BOM dataset. Results

ascertain that the proposed method is able to achieve high accuracy and polynomial

complexity.

4. CONCLUSION

The unordered tree data represents information inherent in many domains

naturally. This presses the need of developing an efficient method of measuring

similarity between trees especially when we are living in the big data era. This paper

proposes an efficient method of measuring similarity between unordered trees. The

proposed method introduces an augmented adjacency matrix structure for modeling

the tree data. The matrix representation enables efficient computation of pair of trees

for finding similarity. An optimal traversal of the tree is obtained using a line of

balance optimisation problem. The encoding values of the nodes with this optimal

traversal are utilised in representing the tree with the matrix structure.

Empirical analysis shows that the proposed method is able to achieve improved

complexity in comparison to existing methods even for large datasets. Results also

showed that an improved complexity is achieved with high accuracy. The proposed

method is able to achieve polynomial complexity whereas the existing methods for

calculating similarity amongst unordered trees suffer from the high computational

complexity.

Our future plan is to work on the detail of the optimal traversal approach to

improve the overall performance. We plan to apply heuristics to improve the

scalability further. We also plan to do more experiments to analyze effectiveness and

versatility of the proposed method.

Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model 93

Paper 2: Measuring Similarity between
Unordered Trees with the
Balanced-Optimal-Search
Traversal Algorithm

Israt Jahan Chowdhury* and Richi Nayak*

*School of Electrical Engineering and Computer Science, Queensland

University of Technology, GPO BOX 2434, Brisbane, Australia

UNDER REVIEW IN: Journal of Knowledge and Information Systems

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm95

Abstract: Calculating similarity between trees is an elementary task in many

applications. Tree edit distance is a commonly used method for performing this task.

However, for unordered trees, this problem is known to be intractable, i.e., NP-hard

and MAX SNP-hard. Apparently, the challenges in such manipulation come from the

complex mapping inherent in unordered tree structures. This paper introduces an

encoding scheme for unordered trees using a novel tree traversal algorithm that is

proposed by reducing the traversal problem to a simple assembly line balancing

problem - a well-known optimisation problem in the operations research paradigm.

By minimising traversing cost, this algorithm achieves an optimal traversal path of

an unordered tree and allows a new encoding embedded matrix representation of the

unordered tree data. We propose a similarity measure based on this representation.

Empirical analysis shows that the proposed method requires significantly less

computational time than the baseline methods, without compromising the accuracy

of output.

Keywords: Unordered tree, Optimisation, Tree traversal, Matrix

representation, Similarity measure.

1. INTRODUCTION

Due to the unique capability of portraying topological and relational

characteristics, the dominance of tree structured data presentation can be seen in a

diverse range of real-life applications. Typical examples of tree structured data are

XML data and weblogs in web intelligence; DNA and glycan data in bioinformatics;

bill of material (BOM) documents in manufacturing; phylogenetic trees in

evolutionary science and many others [33, 168, 169]. Tree matching is fundamental

to the core operation of many data manipulation tasks such as clustering analysis,

nearest-neighbour classification, data integration, data cleansing and data querying

[60, 81].

Much research in this area concentrates on the ordered type of trees (i.e., trees

in which the left-to-right order among siblings is fixed). However, important

problems in the research fields of genetics, bioinformatics and web intelligence

emphasise the need for developing efficient methods of manipulating unordered

trees. For example, (i) in genealogical studies, various genetic diseases need to be

diagnosed based upon the pattern of ancestry trees that are unordered; (ii) in

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm97

bioinformatics representing glycan structures as unordered trees will ease the way of

knowledge mining [21]; (iii) in the manufacturing industry, BOM documents can be

depicted as rooted unordered trees [23]; (iv) in evolutionary science, the unordered

tree data is used for finding the set of species that have a common ancestor for

modelling their evolution [113]; and (v) in the web domain, the generated semi-

structured data is mostly represented as unordered trees in order to capture the

common patterns and irregularities [29].

The structure of a tree plays an important role in differentiating the data. The

dependencies inherent in a structure need to be captured efficiently for data

manipulation [46]. The expression of hierarchical dependencies in unordered trees is

different (i.e., less constrained) from the ordered trees, which means there is a

demand for an efficient data representation for capturing them. Apparently the lack

of efficient equivalent representation raises the complexity in tree mapping as well as

increasing the computational complexity of executing tree manipulation algorithms.

A variety of methods based on nodes, paths, number of cliques, and subtree

representations have been proposed to solve the unordered tree matching problem

[42, 102, 167]. However, the majority of these methods have shown this problem to

be NP-complete, even MAX SNP-hard, which means unless P = NP there is no

polynomial time approximation scheme for this problem [45, 47]. Because of the

high complexity yielded by existing methods, measuring similarities of unordered

trees is still an open problem.

To address this challenge, we developed a new representation based similarity

measure method for unordered trees. Using the optimisation theory, we developed a

novel tree traversal algorithm called Balanced-Optimal-Search (BOS) that encodes

unordered trees by ensuring an optimal traversing order. The idea is to reduce the

traversing problem to the Simple Assembly Line Balancing (SALB) problem - a

well-studied optimisation problem in operations research [65, 157]. An optimisation

model is formulated for solving the traversing problem, which consists of feasibility

constraints and an objective function for minimising the computation time of

traversal. The solution of this formulation leads towards an optimal traversal order as

well as an efficient encoding of the unordered tree. An approximate numerical matrix

representation called Augmented Adjacency Matrix (AAM) is then presented by

embedding this encoding along with other tree structural information for the tree

98Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

data. Finally, we modified the vector cosine similarity metric to make it compatible

with matrix computation for calculating similarity between a tree pair.

The proposed method is evaluated using several real life datasets and

benchmarked against several recent methods [79, 124] for finding similarities

between unordered trees. Empirical analysis shows that the proposed method

significantly reduces the computation time, even for datasets that include large trees.

The proposed method gives only O(n2) complexity, which is an achievement, as the

existing methods show the problem of finding similarity between unordered trees as

intractable. In this paper, an application of our proposed similarity measure to

clustering is also presented with the accuracy analysis.

Summarising, the contributions of our paper are as follows:

1. Introduced a novel tree traversal algorithm BOS by reducing traversal

problem to the SALB optimisation problem. By minimising computation

cost of traversing, BOS gives an optimal traversing sequence without

relying on a fixed left-to-right order among siblings, unlike existing

traversal algorithms.

2. Developed a method with polynomial complexity that is comprised of a

new matrix representation AAM and uses a modified cosine similarity

metric for quick matrix pair comparison.

The rest of the paper is organised as follows. In Section 2 we provide the back-

ground and an overview of the related work. Section 3 presents the proposed

traversal algorithm BOS with its complexity analysis. Section 4 details the proposed

method for finding similarity. We report experimental results and a clustering

application of this similarity measure in Section 5. Finally, we conclude our work in

Section 6.

2. BACKGROUND AND RELATED WORK

Unless otherwise stated, all trees we consider in the paper are rooted labelled

and unordered.

2.1 Preliminary and Notations

A rooted labelled unordered tree has a unique root node and preserves the

ancestor-descendant or parent-child relationships among nodes. All nodes are

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm99

labelled in the tree. Unlike ordered trees, there is no fixed left-to-right order or any

other order among siblings. Let T = (V, E, L) be a rooted labeled unordered tree,

where V(T), E(T), L(T) denote the set of nodes, edges and node labels (In this thesis,

we do not consider the edge label) that are constructed as

V(T) = {v0, v1, v2, …, v|T|}, v0 = root, |T| = Tree size (Total of tree nodes),

E(T) = {(vi, vj) | vi, vj ∈ V} = {e1, e2, e3, …, e|T|},

L(T) = {lab0, lab1, lab2, …, lab|T| | Φ: V → L }, Φ = mapping function.

Each node vi has a unique path from its position to root v0. The parent of vi (and

vi ≠ v0), denoted as Pvi, is the adjacent node of vi in that unique path to v0. The

ancestors of vi, denoted as Avi, are all the other nodes in that unique path except vi

itself. The children of vi are the immediate follower nodes of vi, the number of the

children is also known as fan-out, denoted by fi. The descendants of vi are the list of

all follower nodes of vi, denoted as Dvi.

The ancestral constraint (constanc) poses a partial order 𝜌𝜌 among the nodes of

an unordered tree. The ‘≺’ symbol represents ‘precedes’, e.g., if vi is ancestor of vj

then this relation is denoted by vi ≺ vj. It is defined as:

constanc = {vi 𝜌𝜌 vj iff vi ≺ vj, vi ∈ Avj, vj ∈ Dvi}

A distinctive fundamental property between ordered and unordered trees is the

sibling constraint that can be presented as

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = {vj τ vk ≇ vk τ vj iff Pvj = vi = Pvk, vj ≠ vk}

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = {vj τ vk ≅ vk τ vj iff Pvj = vi = Pvk, vj ≠ vk}

where τ denotes an order between two sibling nodes (i.e. left-to-right). We can

assume that changing the position of sibling nodes vj and vk of an unordered tree

from left to right will not change any fundamental structure of that tree. In this

paper, n denotes the number of nodes in a larger input tree, n = max{|T1|, |T2|} where

T1 and T2 are input trees.

2.2 Unordered Tree Matching

Although the focus of this paper is not arguing against the ordered tree

matching, this section highlights the superiority of using unordered tree matching in

data manipulation. A substantial difference between ordered and unordered tree

100Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

matching is that the order of sibling nodes can be exchanged in unordered trees, and

trees with those nodes can still be considered matched. This flexibility makes

unordered tree matching advantageous from various aspects. In the era of big data,

the existence of diverse data sources is increasing, and analysing inconsistent and

overlapping data becomes challenging. Unordered tree matching can provide

accurate insight of data even in the presence of inconsistency or irregularity. Let us

consider the following examples.

Image Movie Book Journal

Place Title Year Place Year YearTitleYear Place Writer Writer Place

Image Movie Book Journal

Place Title Year Place Year YearTitleYear Place Writer Writer Place

(a)

(b)

Figure 1: Possible mappings considering ordered trees (a) and considering unordered

trees (b)

In a query system when searching for an element person with the sub elements first

name and last name (possibly with specific values), ordered matching would give

less relevance to the cases in which the order of these nodes, first name and last

name, is reversed. However, in reality, changing the order of first and last names

usually does not make any difference. The way to solve this problem is to consider

the query subtree as unordered, in which only the ancestral constraint is preserved

and the sibling order is ignored. The query can be posed and answered without being

concerned about the sibling order.

In a heterogeneous domain comparison between documents that are part of different

sources is challenging. The documents may portray the same information, but, in

different structural order. Consider Figure 1 that shows a fragment of heterogeneous

data that contain four tree structures. Considering these trees as ordered gives the

possible mapping among nodes based on structural similarity as shown in Figure 1(a)

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm101

that derives higher similarity between “Movie” and “Book” due to the sibling

constraint. The matching between nodes is done by keeping the order of sibling

nodes under the root node in consideration. In reality, “Journal” and “Book” should

have higher similarity and so does “Image” and “Movie”. In this case, only

unordered representation (as shown in Figure 1(b)) allows necessary mapping and

results in accurate and flexible matching as desired.

2.3 Unordered Tree Representation

Similarity computation is known as the dual problem of distance computation,

hence these two terms (i.e. similarity and distance) have often been used

interchangeably [60]. Trees are complex in structure and any kind of manipulations

using the tree structure format is a non-trivial task [11]. To enable efficient

computation, trees are often represented as vector or matrix forms. In the vector or

matrix representation of trees, the nodes are encoded with a traversal algorithm. Tree

traversing is a systematic approach of visiting each node in the tree only once. This

process returns a list containing the node sequence traversed along the way as the

output. Traversal approaches adopting the breadth-first-search (BFS) and depth-first-

search (DFS) have been used extensively for encoding both ordered and unordered

trees [62].

Figure 2 shows an example of two trees (Figure 2(a) & Figure 2(c)) of identical

properties except the varied order between sibling nodes (dotted rectangles) and their

DFS and BFS encodings accordingly. It is clearly visible that both DFS and BFS

traversals visit the sibling nodes by preserving an order from left-to-right, which

supports the properties of being an ordered tree. However, for an unordered tree

these two schemes encode two similar unordered trees (only varied by sibling order)

differently, which may result in calculating a false distance measure. The example in

Figure 2 shows the distinct encodings for tree 1 (Figure 2(a) & Figure 2(b)) and tree

2 (Figure 2(c) & Figure 2(d)) provided by both DFS and BFS traversals, which is

desirable for ordered tree representation. For unordered tree representation the

encoding should be the same, but the DFS and BFS traversals encode them

differently, which creates the need for developing an alternative unordered tree

encoding scheme without relying on left-to-right sibling order.

102Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

Figure 2: DFS & BFS traversal (dotted arrows indicate the traversing direction)

2.4 Related Works

A myriad of tree mining methods have been developed for finding similarities

between tree pairs. The majority of them are applicable for ordered trees, and very

few are available for unordered trees due to the complexities involved with

unordered tree processing. Among various similarity methods, the most commonly

used method is tree edit distance [42]. It measures the distance between two trees by

the minimum cost required to transform one tree into another through several edit

operations such as deletion, insertion and substitution. The complexity of edit

distance problem for ordered tree data is O(n3), whereas the edit distance problem for

unordered tree is NP-hard [48]. Furthermore, the problem was shown as MAX SNP-

hard [45, 47].

To overcome the complexity problem, researchers have developed algorithms

constrained to conditions such as tree size and other tree properties; however they

result in compromising on accuracy. Akutsu et al [112] introduced an algorithm

under fixed parameters, which exhibited improved complexity of O(2.62k.poly(n)),

however, it performs poorly when comparing non-similar trees. A few methods have

been developed by reducing the tree edit distance problem to a clique problem [108].

For example, Fukagawa et al [40] proposed a method of computing maximum clique

in which an instance of tree edit distance is directly transformed into an instance of

the maximum vertex weighted clique problem, and then it is solved using a clique

solver [170]. This method can work efficiently on moderate sized trees, but it will be

slow for the large sized trees. This method is further improved with using dynamic

programming that repeatedly solves instances of the maximum vertex weighted

clique problem as subproblems [124]. However, this method still suffers from high

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm103

complexity for large tree structures. Some similar reductions [128, 129] and methods

of variants of the tree edit distance problem [107] have been proposed, however none

of them exactly solves the formal tree edit distance problem for unordered trees.

Apart from tree edit distance, other examples of unordered tree matching

methods are tree pattern matching [102], maximum agreement subtree [168],

smallest common supertree and largest common subtree [131]. Most of these

methods suffer from high complexity problem. An efficient method for computing

tree similarity has been proposed using tree level information by counting the

common nodes in the corresponding levels of two trees and giving different weights

for different levels, but this fails to preserve the child-parent relationship among tree

nodes [72]. Higher order models such as the Tensor Space Model (TSM) have also

been used for representing tree data and finding similarities, though these techniques

suffer from a high dimensionality problem [134].

In summary, existing methods provide unfavourable results for unordered tree

data and result in yielding high computational complexity. Different from these

methods, we propose a novel optimisation based traversal technique that allows an

efficient and equivalent matrix representation of the tree. To our best knowledge this

is the only method that uses optimisation for representing unordered tree data in

order to calculate similarity. The optimisation technique allows us to achieve the

polynomial time complexity and the representation from tree to matrix facilitates fast

computation.

3. THE BALANCED-OPTIMAL-SEARCH (BOS) ALGORITHM

We reduce the tree traversal problem to the optimisation problem inherited

from the “Operations Research” paradigm called simple assembly line balancing

(SALB) [65, 157], and propose a new order independent traversal algorithm. SALB

is a combinatorial optimisation problem that chooses an optimal path for a network

by avoiding exhaustive searching. In literature, SALB has been used to solve

networks in manufacturing problems that are represented by a predecessor digraph,

i.e., a graph holding all properties of unordered trees. We conjecture that SALB can

propose an optimal path for an unordered tree-like network. The tree traversal

problem can be treated as an assignment problem as approached in SALB. This

motivates us to reduce the unordered tree traversal problem to the SALB problem.

104Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

3.1 Simple Assembly Line Balancing (SALB) Problem

We first define the preliminaries of SALB. In the manufacturing domain, an

assembly line is a sequence of p linearly ordered stations that are linked by a

conveyor belt. A station performs the same set of tasks repeatedly during each cycle

of the assembly line. The set of tasks J, processed by p stations within one cycle time

c, is fixed. The time required to complete a task is termed as the process time t. The

sum of the process time of all tasks assigned to a station is called the work content of

that station. Since a cycle time is c, the set of tasks is available to a station for only c

time units. Therefore, the work content of a station should not exceed c in order to let

the line operate smoothly with no delays. The tasks cannot be assigned to the station

arbitrarily because of the sequencing requirement. These factors, called as

precedence relation, define a partial order on the set of tasks.

The objective of SALB is to find an optimal balance of the assembly line in

such a way that the total slack (i.e. the sum of the idle times of all the stations along

the line) is minimum. For a fixed cycle time, this can be attained by minimising the

number of stations. If the tasks can be grouped such that all the work contents are

exactly equal, the line will have a perfect balance. The aim of the SALB optimal

model becomes finding the minimum number of stations that can complete a

sequence of tasks with the minimum delay. The solution yields the optimal sequence

of these stations.

Let a predecessor digraph G = (J, A) with nodes J and edges A define a

partially ordered set of tasks J = { j1, j2, …, jz}. If the set of tasks J are assigned to

station Sk, k ∈ {1, 2, …, p}, where p ≤ z then the SALB problem can be defined as

follows:

Definition 1 (The SALB Problem) Assignment br: the set of tasks J = {j1, j2, …, ju,

jw,…, jz} (1 ≤ u < w ≤ p) to p ordered set of stations {S1, S2, …, Sp} is balanced, if the

following conditions are held.

1. Assignment br does not violate the partial order given by predecessor

digraph G = (J, A), i.e., inclusion (a, b) ∈ A implies that task ja is assigned

to a station Sk and task jb is assigned to Sl such that, 1 ≤ k ≤ l ≤ p.

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm105

2. Cycle time c is not violated for station Sk, i.e., sum of the processing time

of all the tasks assigned to a station should be within cycle time c.

3. Assignment br assigns all tasks to a minimum possible number of stations

p for the fixed cycle time c.

3.2 Reduction of the Tree Traversal Problem to SALB

Traversing a tree involves iterating over all nodes in the tree following a

traversal strategy. We first give the basic definition of the tree traversal problem and

then define the Balanced-Optimal-Search (BOS) traversal approach and its

associated properties.

Definition 2 (Tree Traversal) Tree traversal is a function tr: T→T* that iterates over

the tree, listing all nodes that are met along the way. T* is a n-dimensional vector,

representing the list of nodes in the order of traversal according to the traversal

strategy, (v0, v1, …, v|T|) = V ∈ T*. Let I = (i0, i1, …, i|T|) be the set of iterations

required to traverse a tree. Under each iteration a tree node will be traversed.

Definition 3 (BOS Traversal) BOS traversal is an order independent traversal that

adopts optimisation as a strategy for traversing all nodes of a tree.

Definition 4 (Equivalent Nodes): Two nodes vi and vj are called equivalent nodes,

denoted by vi ≅ vj; if they have the same label (labi = labj & labi, labj ∈ L), they are

originated from the same labelled parent node (Pvi = Pvj), and they have the same

labelled child nodes.

Figure 3: A fraction of an unordered tree (a) in which the dotted rectangles show the

equivalent nodes (assuming that node vq has the same labelled child node) (b) Using

weighted nodes, a condensed tree representation

106Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

Definition 5 (Weight of a Node): Weight of a node vi (vi ≠ v0), is defined as the total

number of its equivalent nodes.

A condensed representation of tree is possible by applying the Definition 4 and

5. For instance, Figure 3(b) shows the condensed tree with weights obtained by

collapsing equivalent nodes.

According to the properties of unordered trees we have lemma 1.

Lemma 1: Weight of the root node v0 is always zero, w0 = 0. For each node vi ∈ V (vi

≠ v0), the weight wi (wi ≠ w0) should always have a minimum value of one.

PROOF:

1. According to tree structure schema, no equivalent nodes of a root node are

possible as the parent and ancestors are undefined for a root node. The

weight of a root will always be zero (In the rest of the paper for displaying

tree structure the zero root weight is omitted).

2. Each node vi (vi ≠ v0) of a tree T should have at least one equivalent node

otherwise vi does not exist in the tree. Hence the minimum weight of the

node is one, wi = 1. For node vi, wi > 1 if the node has more than one

equivalent nodes.

Definition 6 (Candidate Node): Node vi is called the candidate node if all of its

ancestor nodes have been traversed and it is yet to be traversed. A candidate node is

considered eligible for traversing in the next iteration. There can be multiple

candidate nodes available for traversing in the next iteration. The set of candidate

nodes is denoted by Vcan = {vi,... ,vj} where {Pvi,… ,Pvj} are labelled as traversed.

The weight and fan-out for a set of candidate nodes are denoted as wcan and fcan.

Mapping: Using the metaphor of assembly line for an unordered tree, we explain the

mapping process. A tree node can be considered as a task in the assembly line. The

node weight is equivalent to the processing task time. The rationale is, as the weight

can generate from the accumulation of several equivalent nodes, often a node (i.e.,

with weight greater than one) is not just a single node but rather, a multiple number

of similar nodes. Therefore, we treat weight as an equivalent term of processing time,

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm107

which allows us to assume that a higher weighted node will require more time to

traverse than a lower weighted node. An iteration involved in traversing a tree node

can be considered a station for a task completion. The objective of the SALB optimal

model for tree traversal is visiting all nodes of the tree within the minimum possible

traversing time. Each iteration involved in traversal yields a different execution time,

due to the variations in sorting and storing time of nodes, i.e., there exists a different

candidate node set at each iteration. Some nodes must be deferred after applying the

heuristics and stored for later visits. The overall traversal time is equivalent to the

total iteration time. Minimising the total iteration time will minimise the total

traversal time.

Lemma 2: A BOS traversal neither violates the ancestral constraint nor allows the

sibling constraint during traversing an unordered tree. If vi ≺ vj then node vi is

traversed in iteration ia and node vj is traversed in iteration ib, such that 1 ≤ a ≤ b ≤

|T|.

PROOF: In the SALB problem, the precedence relationship is strictly followed for a

task assignment (i.e. before assigning a task its immediate predecessor task must be

processed); therefore a BOS traversal also follows the ancestral constraint by

confirming that a node is visited only after traversing its parent node. On the other

hand the sibling constraint can be proved by saying that BOS uses optimisation for

completing traversal where no left-to-right order among sibling nodes is kept, which

means this traversal process does not keep the sibling constraint for encoding an

unordered tree.

Lemma 3: For each iteration of BOS traversal, the upper bound of computation time

is the maximum value of node weight for the tree.

PROOF: It can be proved by using the second condition of the SALB definition. For

reducing the traversal problem to SALB, weight of a node is regarded as the traversal

time of the corresponding node. Therefore, the node weight under each iteration

should be within the maximum weight of the considered tree.

Lemma 4: BOS traversal ensures the complete enumeration i.e. all nodes will be

visited for traversing a tree.

108Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

PROOF: The SALB problem is aimed at processing all tasks along the assembly

line. For reduction, we consider tree nodes as tasks. Hence the BOS traversal aims to

visit all nodes of a tree and ensures the complete enumeration.

3.3 The Optimisation Model Formulation

This section details the optimisation modelling of the BOS traversal. For

simplicity of modelling, only i is used for representing the i-th node denoted as vi,

likewise for iterations. xij is introduced as the decision variables for this mathematical

model; xij is 1 if node i is traversed at iteration j, otherwise it is 0. Let cj be the

traversing time needed to complete iteration j. Based on these variables, the

mathematical model is formulated as follows:

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑧𝑧 = ∑ ∑ 𝑐𝑐𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖
|𝑇𝑇|
𝑗𝑗=1𝑖𝑖∈𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 (1)

 Subject to ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1|𝑇𝑇|
𝑗𝑗=1 ∀𝑖𝑖 ∈ 𝑉𝑉 (2)

 ∑ 𝑤𝑤𝑖𝑖
|𝑇𝑇|
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑗𝑗 ∈ 𝐼𝐼 (3)

 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ ∑ 𝑥𝑥ℎ𝑖𝑖𝑘𝑘
𝑗𝑗=1 𝑘𝑘 ∈ 𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝑖𝑖 ∈ 𝑉𝑉 𝑎𝑎𝑎𝑎𝑎𝑎 ∀ℎ ∈ 𝐴𝐴𝐴𝐴𝑖𝑖 (4)

 𝑥𝑥𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 {0,1} ∀𝑖𝑖 ∈ 𝑉𝑉 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝑗𝑗 ∈ 𝐼𝐼 (5)

Eq (1) represents the objective function and Eqs (2) to (5) represent constraints

of the model. Eq (2), the occurrence constraint, guarantees that each node is assigned

to an iteration, consequently, all the nodes are traversed in the whole process. Eq (3),

the upper bound constraint, guarantees that the time required for an iteration is at

most the pre-specified upper bound time. Eq (4), the ancestral constraint, preserves

the topological sequencing, which is required for a tree to be an unordered tree. If xik

= 1, i.e., if node i is traversed under iteration k, then the RHS of (4) must assume a

positive value (for each ancestor h of i), i.e., each ancestor h is traversed before

traversing of node i starts. If on the other hand, xik = 0, i.e., if node i is not traversed

under iteration k, then the RHS of (4) may not be positive, i.e., ancestor h of i may or

may not be traversed at the first k iteration. Eq (5), the non-divisibility constraint,

guarantees that each variable assumes only a value of 0 or 1, thus a node cannot be

split among two or more iterations.

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm109

Solving this model by standard optimisation techniques for finding an optimal

solution is not a realistic choice as it will yield high complexity like NP hard [65,

171]. To cope with this complexity, we propose to apply two heuristics based on

priority rules to restrict the enumeration process of the tree, which guarantees an

approximate solution closer to true optimum. Consequently, it gives only polynomial

time complexity. These heuristics are applied in the order given. Heuristic-1 assists

in identifying a potential node during the traversal process. However, if many

potential nodes are found, heuristic-2 is applied to breaking the tie among equivalent

nodes.

Heuristic-1 Using this heuristic, the node for traversing next can be prioritised from

the set of candidate nodes. We explain the steps and definitions necessary for the

application of heuristic 1 as follows.

Candidate Node Generation: At the beginning of the traversing algorithm, the

whole tree is scanned for finding the upper bound of an iteration time, denoted by

UB. The maximum possible value of UB is the highest weight of the tree nodes. This

is considered as the initial limit of UB. For each next iteration, the value of UB is

updated by subtracting the weight of the recent traversed node from the initial value

of UB. If the updated value of UB is found negative or less than a candidate node

weight, the initial limit is set as UB of that iteration. The set of candidate nodes is

formed by the following:

Node vi → Vcan iff vi ∈ V & vi ≠ v0 & vi is not labelled as traversed & Pvi is

labelled as traversed. Now, any node vi ∈ Vcan will be deferred for traversing in the

next iteration iff wi ≥ UB.

Prioritising a Candidate Node: After sorting the candidate nodes, the next node for

traversing will be prioritised based on the following condition:

For3 Vcan = {vi, vj, …} with {wi, wj, …} ≤ UB, vi will be selected for traversing

iff
max

{ , ,...}i j iw w w→∫

3 In this thesis,
max
∫ and

min
∫ respectively are referring the maximum and minimum value of a set.

110Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

Figure 4: An example of implementing heuristics 1 and 2

In the case of multiple potential nodes, heuristic 2 is applied to rank the

traversing order.

Heuristic-2 For Vcan = {vi, vj, …} where {wi, wj, …} ≤ UB, if the number of

maximum weighted nodes > 1 then the traversing order will be ranked based on the

nodes with the largest number of child nodes or highest fan-out. Two nodes {vi, vj}∈

Vcan where wi = wj then vi will be chosen for traversed iff fi > fj.

Heuristic-3 For Vcan = {vi, vj, …} with {wi, wj, …} ≤ UB, if multiple nodes exist with

maximum weight and children count, the minimum lexicographically ordered label

will be used to prioritise their traversing. Two nodes {vi, vj} ∈ Vcan where wi = wj and

fi = fj, then vi will be chosen for traversal due to having minimum lexicographical

label.

An Example: In Figure 4 we consider the same tree from Figure 3, where

numerical values alongside the nodes present their corresponding weights. For the

first iteration the upper bound, UB is 2. After labelling root node v0 as traversed,

nodes Vcan = {vm, vi, vk} because their parent node v0, is labelled as traversed and

none of them have been traversed yet (Figure 4(a); dotted rectangle). Moreover, all

of their weights are ≤ UB. Following heuristic 1, vk is chosen and traversed next as wk

> {wm, wi}. For the next iteration, the updated value of UB becomes 0, therefore, the

current UB is set as the initial value, 2. For this iteration, Vcan = {vm, vi} (Figure 4(b);

dotted rectangle). Since wm = wi, heuristic-2 will be applied and node vm will be

chosen as fm > fi.

So, the BOS traversal is not keeping any left-to-right order among siblings

while traversing a tree, which leads us to claim that the representation issue incurred

by the previous DFS and BFS traversals has been resolved

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm111

Algorithm Time Complexity: Algorithm 1 (Figure 5) provides the pseudo

code of the BOS algorithm. We discuss the complexity of this algorithm using the

following lemma.

Algorithm 1: BOS Traversal

Input: Unordered tree, T(V); V = {v0, v1, v2, …, v|T|}; w = {w1, w2, …, w|T| }

Output: Optimal node traversal sequence return as vector ℝ|T| = (r1, r2, …, r|T|)

1. ℝ|T| ← { };
2. r1 ← v0;
3. Label v0 as traversed;
4. for each x = 2 to |T| do
5. construct Vcan using definition of candidate node;
6. Traverse (Vcan, wcan, fcan, UB) = rx;
7. Update (UB, wcan);
8. end for
9. return ℝ|T|;

Functions

Traverse (Vcan, wcan, fcan, UB)
1. for all y ∈ Vcan

2. if wy > UB
3. Vcan ← Vcan \ vy;
4. end
5. end

6. if
max

count(({ , ,...})) 1i j canw w w∈ =∫ then

7. r ← vi ← corresponding node of
max

({ , ,...})i j can iw w w w∈ →∫ ;

8. else

9. sort (fan-out) ← corresponding nodes of
max

({ , ,...})i j canw w w∈∫ ;

10. if
max

count(({ , ,...})) 1i j canf f f∈ =∫

11. r ← vi ← corresponding node of
max

({ , ,...})i j can if f f f∈ →∫ ;

12. else
13. r ← vi ← corresponding node that has lexicographically minimum label;
14. end
15. end
16. Label vi as traversed;

112Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

Update (UB, wcan)

1. UB ← UB – Weight of the recent traversed node;

2. if UB = 0 then

3. UB ←
max

(, ,...)i Tj ww w∫ ;

4. else UB <
min

({ , ,...})i j canw w w∈∫

5. UB ←
max

(, ,...)i Tj ww w∫ ;

6. else

7. continue

end

Figure 5: High level pseudocode of the BOS algorithm

Lemma 5: The BOS traversing algorithm has time complexity O(|T| log |T|), where

|T| is the number of nodes the tree has.

PROOF: Implementing any of the heuristics of BOS traversal for sorting nodes will

give a possible time complexity of O(|T| log |T|). Assuming there are |Tj| nodes in

iteration j of the tree traversal, it will give O(|Tj| log |Tj|) complexity to sort these

nodes. The total complexity after considering all possible iterations for traversing the

whole tree (i.e., all j iteration) is log ()j j
j
O T T∑ , which is O(|T| log |T|).

4. PAIR-WISE SIMILARITY COMPUTATION WITH BOS TRAVERSAL

We propose a method for finding the similarity between unordered tree pairs

by using the BOS traversal algorithm. The BOS traversal algorithm provides us the

encoding of tree nodes. Using the tree node encoding and incorporating the tree

structure information, we introduce an Augmented Adjacency Matrix (AAM) that

provides accurate representation of tree structured data. A cosine similarity measure

is then used to calculate the similarity between unordered tree pairs represented as

AAMs. This method consists of the following steps:

1. Generate the BOS encoding sequence of each tree in the dataset.

2. Construct an equivalent augmented adjacency matrix for each tree.

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm113

3. Measure pair-wise similarity using cosine similarity.

4.1 Step1: Encoding the tree nodes using BOS traversal algorithm

Definition 7 (BOS Encoding): BOS encoding of a tree T labels the nodes with their

position in the BOS traversal sequence order.

Let node vi be traversed next after root node v0 in tree T using the BOS

traversal. If the position of vi is changed with its sibling node, it would still be

traversed at position 2. The BOS traversal does not necessarily give a sequence by

following a left or right order, so the position would follow BOS order rather than its

position in the tree. The BOS encoding ensures a distinct identity to a tree node

regardless of its position in the tree.

Example Continues: Consider the tree from Figure 4, using BOS traversal the

traversing sequence will be v0-vk-vm-vq-vp-vi, thus following definition 7 the encoded

values of the nodes, v0, vk, vm, vq, vp and vi become 1, 2, 3, 4, 5 and 6 respectively.

4.2 Step 2: Constructing augmented adjacency matrix

Trees or graph structures have been widely represented as matrices for

simplifying computation of tree or graph mining algorithms [62]. Using other

representation such as the list of edges or the adjacency list can be cumbersome if

there are many edges in a tree. the adjacency matrix is the most commonly used

matrix representation of a tree [159].

Definition 8 (Adjacency Matrix): For tree T = (V, E), the adjacency matrix A ∈ R|T|×|T|

= [aij] is a binary matrix, where 0 < j ≤ i ≤ |T|.

&1
0

i j
ij

if an edge exist between v v
a

otherwise


= 


 (6)

The adjacency matrix representation of a tree directly depends on the encoding

scheme. There can be |T|! different adjacency matrices of a tree, T using different

permutations of the set of nodes [160]. Therefore, it is not possible to get a unique

adjacency matrix representation for the same unordered tree using any of the DFS

and BFS traversal based encoding, as their encodings rely on siblings order. We

overcome this shortcoming of adjacency matrix representation by using the BOS

114Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

encoding. A BOS encoding-driven adjacency matrix will ensure unique identity of a

same unordered tree by giving a total order among all adjacency matrices.

A major problem with an adjacency matrix representation is that it only

encodes the adjacent links in a tree, whereas, a tree structure contains other

information such as implicit relationships (i.e. ancestor-descendent and parent-child),

level information, weights and so on. To overcome these limitations, we propose a

new matrix representation AAM.

Definition 9 (Augmented Adjacency Matrix): Consider tree T = (V, E), where nodes

are encoded using the order driven by BOS traversal. The augmented adjacency

matrix A' of T, with respect to this ordering of the nodes, is |T| × |T| matrix where

each diagonal entry of 1 is referring the entry of a node and each off-diagonal non-

zero entry is referred to as entry of adjacent node or descendent node of the entered

node in the corresponding diagonal. The off-diagonal non-zero entry is either level

information or the summation of level information and node weight. Since node

weight is carrying the quantity information of a node under its parent therefore only

those off-diagonal entries include the weight value for which the corresponding

nodes are adjacent.

Populating values in AAM: For entry of each node, value 1 is inserted into the

diagonally positioned element of AAM, which represents the existence of the

corresponding node on that tree. To capture the structural information more

accurately, the off-diagonal non-zero values are added in AAM. These values give

the information regarding ancestor-descendant and parent-child relationship of the

corresponding diagonal node entry. They have two components. The first

component, level information, is incorporated to show the ancestor-descendant or

parent-child relationships. The second component, weight value, is added to include

the number of descendent or child nodes under the ancestor or parent node.

Level information is calculated using the level of each node in a tree. We

define two rules for incorporating level information in populating a'ij:

1. If an ancestor-descendant or parent-child relationship exists between two vi

and vj, the level information of element a'ij of that matrix is calculated as

(,)
(,)

j

i

Lv T v
Lv T v

.

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm115

2. If no such relationship exists between two nodes vi and vj, then the level

information of element a'ij is 0.

The (i, j)th entry, a'ij of the augmented adjacency matrix A' ∈ R|T|×|T|, where 0 < j

≤ i ≤ |T|, can be formulated as:

where Lv(T, vi) is denoted the level of node vi in tree T.

Figure 6: Augmented adjacency matrix (AAM)

Example Continues: Figure 6 presents the equivalent AAM representation of the

tree. It shows the level of each node as the way it is considered in constructing AAM.

The root node of a tree is positioned at the highest level and rest of the node levels

are specified accordingly. Let’s calculate the value of cell12. An ancestral relation

exists between v0 and vk. Hence, following the first rule, the level information of

cell12 is 2/3, where 2 and 3 are the level value of v0 and vk respectively. After adding

the weight of vk, the final value of cell12 becomes 2/3+ 2.

The AAM presentation provides a unique identity to its equivalent unordered

tree, which can be efficiently used in pair-wise similarity computation. The definition

and description of AAM give us the following lemma:

116Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

Lemma 6: The AAM is a canonical matrix representation of an unordered tree.

PROOF: Following the BOS traversing order, tree nodes are encoded and the row

and columns of an AAM are arranged. This order is unique for a distinct unordered

tree. Whatever permutation is carried out within the nodes of a tree as long as the

structure and content of trees are same, the AAM will remain the same.

Consequently, this new matrix form can be considered as canonical matrix

representation of its corresponding unordered tree.

Algorithm 2: Constructing Augmented Adjacency Matrix

Input: Unordered trees T; {v0, v1, v2, …, v|T|}, {w0, w1, w2, …, w|T|} and Lv(T, V)

Output: Augmented Adjacency Matrices A´ of T.

1. Construct initial adjacency matrix A'∈ ℝ|T|× |T| using the BOS traversing order;
2. for each p ∈ |T|
3. for each q ∈ |T|
4. if vp = Pvq then

5. apq ←
(,)
(,)

q

p

Lv T v
Lv T v

;

6. apq ← apq + wq;
7. else if vp ∈ Avq then

8. apq ←
(,)
(,)

q

p

Lv T v
Lv T v

;

9. else if vp = vq then
10. apq = 1;
11. else
12. apq = 0;
13. end if
14. end for
15. end for

Figure 7: High level pseudocode of the AAM constructing algorithm

4.3 Step 3: Measuring Similarity

Cosine similarity is computed with two AAMs to find similarity between a tree

pair. Cosine similarity is designed to be applied on vectors, whereas AAM is a

matrix format, a modification is needed.

Definition 10 (Cosine Similarity Measure for Matrices): Let A' and B' be two

augmented adjacency matrices of trees T1 and T2 respectively. If the sizes of the two

trees are not same, additional columns and rows with zero elements are added to the

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm117

smaller matrix for making the size of both matrices equal. These two square matrices

can be considered as two |T|×|T| (where |T| = 1 2

max

(,)T T∫) dimensional vectors. The

value of each element of a matrix can be seen as a dimension of the vector. Starting

from the first row to the end row, a |T|×|T| dimensional vector is found and the cosine

matrix similarity between trees T1 and T2, denoted by SCos (T1, T2) is:

𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 (𝑇𝑇1,𝑇𝑇2) = cos(𝐴𝐴′,𝐵𝐵′) =
∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥𝑛𝑛

𝑦𝑦=1
𝑛𝑛
𝑥𝑥=1 𝐵𝐵′𝑥𝑥𝑥𝑥

�∑ ∑ 𝐴𝐴𝑥𝑥𝑥𝑥
′2𝑛𝑛

𝑦𝑦=1
𝑛𝑛
𝑥𝑥=1 �∑ ∑ 𝐵𝐵′𝑥𝑥𝑥𝑥

2𝑛𝑛
𝑦𝑦=1

𝑛𝑛
𝑥𝑥=1

 (6)

Algorithm 2 (Figure 7) and Algorithm 3 (Figure 8) show the process of

constructing an augmented adjacency matrix and the final similarity score

computation using pseudo codes. The complexity of the overall pair-wise similarity

measure method can be calculated as follows:

Algorithm 3: Similarity Computation

Input: T1 and T2 in form of A' and B'; their AAM representations respectively

Output: Similarity value SCos (T1, T2)

1. if |T1| > | T2| then
2. Add rows and columns of zero to B' to equalise the size of two matrices;
3. else
4. Add rows and columns of zero to A' to equalise the size of two matrices;
5. end if
6. Calculate SCos (T1, T2) using equation 6;

Figure 8: High level pseudocode of the AAM constructing algorithm

Complexity Analysis: The overall similarity measure calculation results in a

polynomial-bounded algorithm. The proposed method consists of three steps: (1)

BOS encoding of each tree of a pair; (2) AAM Construction of each tree of a pair;

and (3) Similarity calculation. The complexity of generating BOS encoding is

exactly the same as BOS traversal, which is O(|T| log |T|) as detailed in subsection

3.3. For a tree pair (T1, T2) the maximum possible complexity for this step will be

O(n log n), where n = max {|T1|, |T2|}. The complexity of AAM construction is

known to be O(|T|2) based on the adjacency matrix construction complexity,

therefore, the overall complexity of constructing AAM for a tree pair in Step 2 will

be O(n2). Again, the complexity of the final step (i.e., similarity computation) is

118Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

O(n2), because of the computing dot product for every pair of row vectors. So, the

final complexity of the proposed pair-wise similarity measure method is O(n2).

5. EXPERIMENTAL RESULTS

In this section we describe the experimental results of our proposed method.

Several real life datasets are used for comparing the performance of the proposed

method against the relevant baseline methods. The detailed description of the

datasets, evaluation criteria, benchmarking methods and the experimental set-up are

included below.

5.1 Datasets

We have used two real-life datasets of diverse characteristics (as shown in

Table 1) in our experiments. The first data set consists of Bill of Material or BOM

documents collected from the manufacturing domain [23]. BOM is a hierarchical

portrayal of an end product comprising useful information regarding parts or

components, raw materials, quantity and manufacturing process. A BOM document

can naturally be depicted as an unordered tree [23]. The second dataset is CSLOGS

that consists of Log Markup Language (LOGML), a compact way of structurally

expressing the contents of the web log file information using XML [38]. Each user

session extracted from the log file is expressed as a tree containing both structure and

content information. Both of these datasets are labelled and have been used by

researchers [23, 124] in similar experiments.

DB No of
Trees

Total
Nodes

Unique
Nodes

Max
D

Min
D

Max
B

Min
B

Avg
D

Avg
B

BOM 404 50,000 12,000 8 4 10 6 7 4
CSLOGS 59,691 716,263 13,209 25 3 28 2 10 6

Table 1: Summary of used datasets

5.2 Evaluation Criteria

Precision (P), Recall (R) and FScore (F) are calculated to measure the accuracy

of the proposed tree matching algorithm in the following manner:

1

1

()
j

j
j

j
j j

j

TP
Precision P

TP FP
=

=

=
+

∑
∑

 (7)

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm119

1

1

()
j

j
j

j
j j

j

TP
Recall R

TP FN
=

=

=
+

∑
∑

 (8)

1 1

1 1

1 1

1 1

2

()

j j
j j

j j
j j

j j j j
j j

j j
j j

j j
j j

j j j j
j j

TP TP

TP FP TP FN
FScore F

TP TP

TP FP TP FN

= =

= =

= =

= =

× ×
+ +

=

+
+ +

∑ ∑
∑ ∑
∑ ∑

∑ ∑

 (9)

Where, TP, FP, and FN denote true positive, false positive and false negative

respectively. A tree pair matching in the dataset is regarded as positive if the

similarity score is greater than a given similarity threshold, γ; otherwise it is regarded

as negative. The value of γ is tuned before accuracy analysis.

A second evaluation metric, NMI is used [172] to evaluate our clustering

experimental results alongside FScore.

The computational complexity is checked by computing CPU expense or run

time and the sensitivity analysis is conducted by tuning various tree parameters like

breadth, depth and size to check the effect in performance.

5.3 Experiment Design and Benchmarks

We have used three sets of experiments. Firstly, we evaluate the proposed

method with its variants created by changing one of the three steps included in the

method: (1) changing BOS encoding to other preorder traversal (e.g. BFS or DFS)

driven encoding; (2) using a different matrix representation (e.g. Adjacency Matrix);

and (3) using a different similarity metric (e.g. Dise coefficient, Euclidean, Jaccard

coefficient). When changing one component, all other components were kept exactly

the same.

Secondly, we compare the proposed method against relevant baseline methods:

CliqueEdit [112], UwCliqueEdit [79], and DpCliqueEdit [124]. These methods

employ the commonly used similarity measure, tree edit distance [42]. To the best of

our knowledge, the considered baselines are recent methods for precisely computing

the unordered tree edit distance. CliqueEdit reduces a tree edit distance problem to a

maximum vertex weighted clique problem, and an off-the-shelf maximum clique

solver was used for getting the solution afterward. Further, in UwCliqueEdit, the

120Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

maximum vertex weighted clique problem was reduced to maximum clique problem

to improve the performance [79]. Later in the DpCliqueEdit method, a dynamic

programming approach was combined with the clique-based method [112] and some

other heuristics were used to reduce the computation time and labelled as

DpCliqueEdit-A, DpCliqueEdit-B, DpCliqueEdit-C and DpCliqueEdit-D [124].

Lastly, we evaluate the performance of the similarity measure through its

application in clustering. The similarity matrix illustrating pair-wise comparison

between all pairs of trees is determined by the proposed method, and clustering is

performed using this matrix. All experiments have been conducted on a 2.8GHz Intel

Core i7 PC with 8GB main memory running the windows operating system. All

algorithms are implemented in MATLAB R2013b.

5.4 Results: Comparison with Variants

5.4.1 Effect of Encoding Schemes

To have a meaningful comparison between various encoding schemes, we have

tuned the similarity threshold, γ for all methods. The results of the first row in Figure

9 validate that over BOM data, all methods achieve stable performance when γ ∈

[0.7, 1] and the last row shows that the stability is achieved when γ ∈ [0.5, 1] over

CSLOGS. These different value ranges of γ admit the presence of a high percentage

of homogeneous trees in BOM data and trees with large structural difference in

CSLOGS data (Table 1).

For comparing various schemes we set the similarity threshold as γ = 0.7 and γ = 0.6

for BOM and CSLOGS data respectively. If we check the results from Figure 10,

encoding using the BOS traversal ensures better results in every aspect when

compared to other traversal based encodings. The BOS traversal achieves higher

recall and a fair value of precision. Precision is often referred to as the predictive

power of an algorithm, whereas recall assesses the effectiveness of an algorithm on a

single class. The results demonstrate that BOS traversal has good predictive power

with high efficiency. The other schemes often treat similar unordered trees

differently due to considering left-to-right sibling order, therefore the efficiency of

these schemes are not as high as BOS.

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm121

Both BFS and DFS traversals have O(n) complexity, however the presence of

adjacency matrix construction in all of these methods exhibits the same

computational complexity, O(n2). Therefore, the run time comparison is skipped.

Figure 9: Precision (P), Recall (R) and FScore (F) curves with respect to γ over

BOM and CSLOGS data

Figure 10: Performance of various traversal encodings over BOM and CSLOGS data

5.4.2 Matrix Representation

To check the effect of AAM in our overall similarity measure, we have

considered a variant comprised of AM with BOS-driven encoding. The threshold

values are tuned in a same way as before and set as γ = 0.7 and γ = 0.6 for BOM and

CSLOGS data respectively (Figure 11).

0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

P

0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

R

0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

F
0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

γ

P

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

γ

R

0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

γ
F

BOS Encoding
BFS Encoding
DFS Encoding

BOS Encoding
BFS Encoding
DFS Encoding

BOM Dataset

CSLOGS Dataset

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BOM data

Precision Recall FScore
1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CSLOGS Data

Precision Recall FScore

BOS Encoding

BFS Encoding

DFS Encoding

122Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

Figure 11: Precision (P), Recall (R) and FScore (F) curves with respect to γ over

BOM and CSLOGS data

Figure 12: Performance of AAM and AM representations over BOM and CSLOGS

data

Figure 12 shows the precision, recall and FScores for the BOM and CSLOGS

data. It is evident that the AAM representation yields a better performance than the

AM representation. The recall value of AM is just as high as AAM, as both of them

are using BOS-driven encoding, which ensures the unique identity of each distinctive

unordered tree, therefore all relevant examples are being retrieved in both cases.

The accuracy of a similarity measure method largely depends on how the

intermittent steps are capturing the information of input objects that are being

0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ
P

0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

R

0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

F

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

γ

P

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

γ

R

0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

γ

F

AAM
AM

AAM
AM

BOM Dataset

CSLOGS Dataset

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BOM data

Precision Recall FScore
1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CSLOGS Data

Precision Recall FScore

AAM
AM

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm123

compared. AAM captures extra important features for representing a tree, and

therefore it is able to outperform the basic AM representation.

5.4.3 Performance with Other Similarity Metrics

Several similarity metrics are available for Vector Space Model (VSM)

representation; most of them can easily be applied to matrix representation by

undertaking a simple modification. Cosine measure, Jaccard coefficient, Dice

coefficient and Euclidean distance can be defined for matrices as:

𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇1,𝑇𝑇2) = cos(𝐴𝐴′,𝐵𝐵′) =
∑ ∑ 𝐴𝐴′𝑥𝑥𝑦𝑦𝑛𝑛

𝑦𝑦=1
𝑛𝑛
𝑥𝑥=1 𝐵𝐵′𝑥𝑥𝑥𝑥

�∑ ∑ 𝐴𝐴𝑥𝑥𝑥𝑥
′2𝑛𝑛

𝑦𝑦=1
𝑛𝑛
𝑥𝑥=1 �∑ ∑ 𝐵𝐵′𝑥𝑥𝑥𝑥

2𝑛𝑛
𝑦𝑦=1

𝑛𝑛
𝑥𝑥=1

 (6)

Where, SCos is used for Cosine measure.

𝑆𝑆𝐽𝐽𝐽𝐽𝐽𝐽 =
∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥𝐵𝐵′𝑥𝑥𝑥𝑥

|𝑇𝑇|
𝑦𝑦=1

|𝑇𝑇|
𝑥𝑥=1

∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥2
|𝑇𝑇|
𝑦𝑦=1

|𝑇𝑇|
𝑥𝑥=1 +∑ ∑ 𝐵𝐵′𝑥𝑥𝑥𝑥2 −∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥𝐵𝐵′𝑥𝑥𝑥𝑥

|𝑇𝑇|
𝑦𝑦=1

|𝑇𝑇|
𝑥𝑥=1

|𝑇𝑇|
𝑦𝑦=1

|𝑇𝑇|
𝑥𝑥=1

 (10)

Where, SJac is used for Jaccard coefficient.

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
2∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥𝐵𝐵′𝑥𝑥𝑥𝑥

|𝑇𝑇|
𝑦𝑦=1

|𝑇𝑇|
𝑥𝑥=1

∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥2
|𝑇𝑇|
𝑦𝑦=1

|𝑇𝑇|
𝑥𝑥=1 +∑ ∑ 𝐵𝐵′𝑥𝑥𝑥𝑥2

|𝑇𝑇|
𝑦𝑦=1

|𝑇𝑇|
𝑥𝑥=1

 (11)

Where, SDice is used for dice coefficient.

𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �∑ ∑ �𝐴𝐴′𝑥𝑥𝑥𝑥2 −𝐵𝐵′𝑥𝑥𝑥𝑥2 �𝑛𝑛
𝑦𝑦=1

𝑛𝑛
𝑥𝑥=1 (12)

Where, DEuclidean is representing the distance between two matrices, now using

this distance the similarity score, SEuclidean between a tree pair is calculated as follows:

𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1 − 𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
max (𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

 (13)

The accuracy comparison in Figure 13 shows that cosine gives better precision

than other measures. The cosine measure usually performs well when documents of

varied length exist. Since both datasets include trees of diverse sizes, the cosine

measure outperforms others.

124Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

Figure 13: Performance of various measures over BOM and CSLOGS datasets

5.5 Results: Comparison with Tree Edit Distance Methods

5.5.1 Quality Comparison

Figure 14 shows that the proposed method (labelled as BOS+AAM) has

achieved a minor improvement in accuracy over state-of-the-art tree edit distance-

based methods. In this figure, CliqueEdit, UwCliqueEdit and DpCliqueEdit are

abbreviated as CE, UCE and DCE respectively. All these methods perform similarly

as they are developed over the similar concept. For both BOM and CSLOGS

datasets, our method has a better FScore than the other methods. For, CSLOGS data

the FScore difference with other methods is not very high as this dataset contains a

tree with large structural variation; therefore any trivial method can distinguish

between similar and non-similar trees, whereas BOM contains mostly homogeneous

data and needs a sophisticated method to get accurate results. Our method considers

intra structural relationships like hierarchical dependencies and optimal encoding,

and hence achieves better results.

In reality, the tree edit distance methods are known to achieve high accuracy

but they suffer from high computational complexity [42]. Achieving better accuracy

than the tree-edit methods assures us that the proposed method does not compromise

on accuracy when addressing the computational complexity problem. Let us see the

runtime analysis next.

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BOM data

Precision Recall FScore
1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CSLOGS Data

Precision Recall FScore

Cosine Measure
Dice Coefficient
Euclidean Similarity
Jaccard Coefficient

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm125

Figure 14: Accuracy performance of various tree edit distance based in comparison

to the proposed method

Figure 15: Run time comparison of all considered tree edit distance based methods vs

proposed method over BOM and CSLOGS datasets

5.5.2 Running Time

The main contribution of the proposed method is that it can compute the

similarity between unordered trees within polynomial time complexity, O(n2)

whereas other methods have shown this problem to be intractable [45]. The

benchmarking methods have also been designed to address this problem by ensuring

fast computation. The runtime is reported as the average run time or CPU time per

pair for all pairs within a specific tree size (maximum size among the tree pair) in the

given datasets.

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BOM data

Precision Recall FScore
1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CSLOGS Data

Precision Recall FScore

BOS+AAM
CE
UCE
DCE

30 35 40 45 50 55 60 65 70 75 80 85 90
0

200
400
600
800

1000
1200
1400
1600
1800

BOM Dataset

Various Ranges of Tree Size (a)

CP
U

Ti
m

e(
se

c)

30 35 40 45 50 55 60 65 70 75 80 85 90 95
0

10
20
30
40
50
60
70
80
90

100
CSLOGS Dataset

Various Ranges of Tree Size (b)

CP
U

Ti
m

e
(s

ec
)

30 35 40 45 50 55 60 65 70 75 80 85 90
0

0.5

1
BOM Dataset (zoom view)

Various Ranges of Tree Size (c)

CP
U

Ti
m

e
(s

ec
)

30 35 40 45 50 55 60 65 70 75 80 85 90 95
0

0.5

1
CSLOGS Dataset (zoom view)

Various Ranges of Tree Size (d)

CP
U

Ti
m

e
(s

ec
)

Proposed Method

CliqueEdit

UwCliqueEdit

DpCliqueEdit

DpCliqueEdit-A

DpCliqueEdit-B

DpCliqueEdit-C

DpCliqueEdit-D

Run Time Exceeds 3600 secs

Run Time Exceeds 3600 secs

Run Time Exceeds 3600 secs

Run Time Exceeds 3600 secs

126Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

Results in Figure 15(a, b) reveal that the proposed method runs consistently

faster than the existing methods. It displays polynomial complexity even for the trees

of large size. In the BOM dataset (Figure 15(a)), all of the baseline algorithms show

exponential complexity after reaching a tree size in the range of 60 ≅ 65 nodes.

When the proposed method was showing very short runtime (less than a second),

benchmarking methods were showing the runtime exceeding 3600 seconds for large

sized trees. From the zoom view (Figure 15(c)), we can see the proposed method is

able to achieve results within 0.5 seconds for all the considered ranges for BOM. In

CSLOGS dataset (Figure 15(d)), the baseline methods exceed the 3600 seconds limit

for trees of 30 ≅ 36 nodes in size, except DpCliqueEdit-C, which gives polynomial

complexity up until the tree size reaches 55 nodes, whereas our method produced a

solution within 1 second. Incorporating optimal navigation and matrix calculation

into the proposed method allowed for the saving of a significant amount of

computation time.

In summary, the proposed method achieved a small improvement in accuracy,

however a very significant improvement in runtime over the existing tree edit

methods.

5.5.3 Sensitivity Analysis

In the previous section, we observed that the runtime performance of the

proposed method varies for different tree sizes as well as showing different runtimes

for the same sized trees coming from different datasets. This indicates that the

proposed method may be sensitive to some tree parameters. A series of sensitivity

analyses is conducted with varied breadth, depth and size of the trees to find the

reason of this uncertainty in output. Figure 16 and 17 display the performance of the

proposed method by measuring runtime consumption (shown as the lines in graphs)

with varied tree breadth, depth and size. Some subsets of the main data were created

by varying a particular parameter while keeping other parameters constant. These

figures also show the percentage of distribution of each case retrieved by varying a

particular parameter in all over data (bar chart). So in a way, the number of trees of

that particular parameter existing in the dataset can be known.

For testing the effect of tree breadth, the tree depth is fixed at 7 and tree size

range is kept between 20 ≅ 29 nodes. For testing the effect of tree depth, the tree

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm127

breadth was fixed at 4 and tree size was fixed at 20 ≅ 29 nodes. For testing the effect

of tree size, the tree depth and breadth are fixed at 7 and 4 respectively. The reason

behind choosing these parameters is because these are average parameters of the

whole dataset. Besides, each of these cases reflects the majority distribution of the

whole data.

Figure 16: Sensitivity analysis over BOM Data

Figure 17: Sensitivity analysis over CSLOGS Data

For the CSLOGS dataset, a similar configuration is done using the following

parameter values; depth = 10, breadth = 6 and tree size range = 30 ≅ 40 nodes.

Figure 16 and 17, show that the proposed method is insensitive to tree depth, but

slightly sensitive to tree breadth and when the values of the tree size increase, the

2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sensitivity to Tree Breadth

Tree Breadth

%
 o

f D
at

a
Di

st
rib

ut
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Ru

n
Ti

m
e

(s
ec

)

3 4 5 6 7
0

0.2

0.4
Sensitivity to Tree Depth

Tree Depth

%
 o

f D
at

a
Di

st
rib

ut
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ru
n

Ti
m

e
(s

ec
)

26 40 60 80
0

0.1

0.2

0.3

0.4
Sensitivity to Tree Size

Tree Size

%
 o

f D
at

a
Di

st
rib

ut
io

n

0

0.1

0.2

0.3

0.4

Ru
n

Ti
m

e
(s

ec
)

Data Distribution
Run Time

2 4 6 8 10 12
0

0.1

0.2

Sensitivity to Tree Breadth

Tree Breadth

%
 o

f D
at

a
Di

st
rib

ut
io

n

0.2

0.3

0.4

0.5

Ru
n

Ti
m

e
(s

ec
)

4 6 8 10 12
0

0.1

0.2

Sensitivity to Tree Depth

Tree Depth

%
 o

f D
at

a
Di

st
rib

ut
io

n

0.3

0.35

0.4

0.45

0.5

Ru
n

Ti
m

e
(s

ec
)

22 35 53 65 75
0

0.2

Sensitivity to Tree Size

Tree Size

%
 o

f D
at

a
Di

st
rib

ut
io

n

0.3

0.4

0.5

Ru
n

Ti
m

e
(s

ec
)

Data Distribution
Run Time

128Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

time required for the computation of the similarity increases quadratically (line

chart).

Figure 18: Clustering performance using the proposed similarity measure over BOM

and CSLOGS datasets

5.6 Performance on a Similarity Measure Application

Clustering, classification, data integration and retrieval problems are some of

the real-life applications of the proposed similarity measure method. To show one of

these real-life applications, in this paper we have conducted clustering analysis on

the pair-wise similarity matrix generated using the proposed method.

A clustering task on the tree data, like LOGML, BOM or XML, involves

grouping them based on their similarity without any prior knowledge. Clustering has

been frequently applied to group data based on the similarity of their content.

However, tree data contains structural information with content that makes the

clustering process more challenging [162]. The structure information is showed by

the hierarchical relationship between the elements at various levels, which has been

preserved while calculating pair-wise similarity in the proposed method. The

majority of the existing algorithms utilise the tree-edit distance to compute the

structural similarity between each pair of objects. This may lead to incorrect results,

as the calculated tree-edit distance can be large for very similar trees.

The similarity matrix is fed to a partitional clustering algorithm such as k -way

clustering [164]. The k-way clustering solution computes clustering by performing a

sequence of k -1 repeated bisections. In this approach, the matrix is first clustered

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

K

FS
co

re

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

K

N
M

I

BOM
CSLOGS

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm129

into two groups, and then one of these groups is chosen and bisected further. This

process of bisection continues until the desired number of groups is reached. We

chose partitional clustering because the incremental clustering technique for a given

clustering threshold often generates a large number of clusters.

The k -way clustering algorithm option in CLUTO [164] is used to group both

datasets to the required number of clusters. We varied the number of clusters k and

recorded the value of evaluation metrics for both BOM and CSLOGS datasets.

Figure 18 summarises the results, which ensure the reasonable performance of our

similarity method based clustering. BOM data consists of four prominent classes,

therefore better clustering performance was achieved when the value of k was set to

4, whereas for CSLOGS data the highest performance achieved was for when k = 2,

as this dataset has two major classes. The results show that the similarity method

proposed in this paper facilitates the final clustering solution of a data set.

6. CONCLUSION

Due to the strong representation capability of tree structured data, they have

been commonly used in representing characteristics of real-life database applications.

In this paper, based on optimisation, a novel tree traversal algorithm BOS has been

proposed for unordered tree data. It is distinct from the existing approaches as it is

order independent and ensures optimal traversing order for an unordered tree. This

traversal order provides encoding of the nodes which enables us to represent the tree

data with an efficient and equivalent matrix form, AAM. The BOS traversing and

AAM representation facilitate the pair-wise similarity computation accurately and

efficiently.

Empirical analysis showed that our method was able to achieve higher

accuracy with less computation time in comparison to existing methods, even for

large data sets. It requires only polynomial complexity, O(n2), whereas existing

methods for calculating similarity between unordered trees suffer from the problem

of high complexity and the problem has shown mostly as NP-hard or MAX-SNP

hard. In the future, we will work on further improving the efficiency and scalability

of our proposed method. We may consider data from other domains such as

bioinformatics to check the versatility of the proposed method. Further, we are

planning to expand the applicability of our proposed method into the area of

130Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm

information retrieval where the proposed method could be used in the filtering step

or be used directly in a subtree query.

Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm131

Paper 3: Identifying Product Families Using
Data Mining Techniques in
Manufacturing Paradigm

Israt Jahan Chowdhury* and Richi Nayak*

*School of Electrical Engineering and Computer Science, Queensland

University of Technology, GPO BOX 2434, Brisbane, Australia

PUBLISHED IN: Australasian Data Mining Conference (AusDM 2014),

Brisbane. Conferences in Research and Practice in Information Technology, Vol.

158. Richi Nayak, Xue Li, Lin Liu, Kok-Leong Ong, Yanchang Zhao, Paul Kennedy

Eds

Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm 133

Abstract4: Identifying product families has been considered as an effective

way to accommodate the increasing product varieties across the diverse market

niches. In this paper, we propose a novel framework to identifying product families

by using a similarity measure for a common product design data BOM (Bill of

Materials) based on data mining techniques such as frequent mining and clustering.

For calculating the similarity between BOMs, a novel Extended Augmented

Adjacency Matrix (EAAM) representation is introduced that consists of information

not only of the content and topology but also of the frequent structural dependency

among the various parts of a product design. These EAAM representations of BOMs

are compared to calculate the similarity between products and used as a clustering

input to group the product families. When applied on a real-life manufacturing data,

the proposed framework outperforms a current baseline that uses orthogonal

Procrustes for grouping product families.

Keywords: Product families BOM, frequent mining, matrix representation,

and clustering.

1. INTRODUCTION

Agile manufacturing has resulted in mass customisation and product

proliferation, which consequently increases the number of products and part

variations extensively. Simultaneously the current business climate demands for

moving a product quickly from concept-to-market by reducing the product

development lead time. A key element of shortening this lead time is the ability to

use existing knowledge and designs to generate new variations of existing products,

which ensure a reduction in time-to-market [173]. Therefore, the concept of grouping

product families has been introduced. Besides leveraging product development cost,

this grouping can offer multiple benefits including reduction in new product

launching risks, improved ability to upgrade products, and enhanced flexibility and

responsiveness of manufacturing processes [174]. For example, if two products have

45 out of 50 parts common, design of the similar parts can be reused and positioned

4 Copyright (c) 2014, Australian Computer Society, Inc. This paper appeared at Australasian Data
Mining Conference (AusDM 2014), Brisbane, 27-28 November 2014. Conferences in Research and
Practice in Information Technology, Vol. 158. Richi Nayak, Xue Li, Lin Liu, Kok-Leong Ong,
Yanchang Zhao, Paul Kennedy Eds. Reproduction for academic, not-for profit purposes permitted
provided this text is included.

Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm 135

for assembly early so that the remaining five parts can be added to the assembly

when an order for a specific assembly has arrived. Exploring similarity among

products may lead to the redesign of some parts.

Nowadays, with the advent of cheap storage and fast computer, a huge amount

of data is generated during product design and development in a manufacturing

system. The ability beyond human is required to process this huge amount of

complex data into useful knowledge such as common product family information.

The identification of product families is a non-trivial task due to the volume and

complexity of the available data. A well-known historical approach of grouping

product families is Group Technology (GT) [175, 176]. However, the practical

acceptance of GT has been limited in modern manufacturing [23, 177], as it requires

enormous effort to do groupings due to the involvement of manual intermittent steps

for developing a “coding system” to summarise the key design and other attributes.

Some efforts have been made towards automation [178], but acceptable performance

is not reached yet, especially for situations where the sheer volume of data becomes

overwhelming for both human and systems.

Data mining techniques have been specifically designed to deal with massive

amount of data automatically (i.e. without human intervention) and to identify

meaningful patterns and dependencies hidden behind the data. However, due to the

complex nature of the data generated in product design domain, existing data mining

algorithms require modifications. Although data mining algorithms have been

specifically written to effectively analyse large datasets, the product design data

often cannot be simply “plugged in” to these programs [179].

Bill of Materials (BOM) is a common product design data used in various

domains like mechanical, electrical, electronic and civil/infrastructure. BOM is a

hierarchical, structured representation of the products that details information such as

parts descriptions, raw materials, quantities, manufacturing details, production times,

etc. [23]. Researchers and practitioners have started using BOM specifications more

commonly to represent their data [180]. It has become essential to propose similarity

measures for BOM data to determine similarity between product designs, which will

eventually lead to find effective groupings of product families.

For BOM data, the critical information lays in the recursive parent-child

relationships between the end item, its components or subassemblies, and the raw (or

136 Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm

purchased) materials they contain. This information can naturally be depicted in

rooted labelled unordered tree format. In this paper we represent BOM data as

unordered trees and introduce a novel matrix form called Extended Augmented

Adjacency Matrix (EAAM) for equivalent tree representation. This representation

facilitates search for similar designs and thus reduces the time consumption between

concept and product launch. Our approach is to utilise the data mining techniques

like frequent mining and clustering for ensuring efficient similarity calculation and

reducing the search space for finding similar groups. Using frequent mining allows

finding frequent structural dependencies like parent-child in a particular database,

which gives the list of most occurred BOM parts or components relations. This

information is then used with other content and topological information such as

optimal part encoding, hierarchical position or level, and part quantity, in clustering.

Using EAAM representations of BOM data, cosine similarity measure is used to

generate a similarity matrix that becomes input to a clustering algorithm for

identifying the product families.

When applied on a real-life manufacturing data, the proposed framework

including the BOMs similarity measure method has proven to excel in solving the

problem of grouping product families automatically. The results are also compared

with a current baseline that uses Orthogonal Procrustes [77] for finding the product

families and the proposed framework clearly outperforms.

Road map: In the following section, the related work is discussed. In Section 3, the

background knowledge is presented. In Section 4, the proposed method for BOM

similarity measure and the framework for identifying product families are given. The

results are discussed in Section 5. In Section 6, the conclusion is drawn.

2. RELATED WORKS

Many efforts have been made for grouping the product families based on

similarity schemes with emphasis on the different design areas and manufacturing.

Most of them have focused on the historical approach of grouping individual parts

into families, called as Group Technology (GT) [175, 176]. The practical acceptance

of GT has remained limited due to the expensive coding system development for

summarising the key product design and manufacturing attributes for doing the

Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm 137

grouping. The main limitation of GT is the manual coding system. Though some

efforts have been made towards automation, still more improvements are needed.

Later, Authors in [181] used a back-propagation neural network based method for the

product family grouping, but kept the existing GT classification and coding system.

Another automated retrieval and ranking process for finding similar parts was

proposed by authors in [178], but again based on GT coding. Authors in [182]

employed genetic algorithm to form the families, however, this approach also

required to use the existing classification and coding scheme.

Instead of using information derived from a fixed GT code; some methods

proposed similarity based on product functional features. Authors in [183] used the

Adaptive Resonance Theory neural network to develop a functional feature-based

similarity method for grouping product families. Authors in [184] introduced another

functional similarity-based combinatorial design method to produce a variety of

products that satisfy various customer requirements in time. However, these

functional feature-based schemes did not consider the hierarchical product design

features. Authors in [77] attempted to calculate the similarity between BOMs

considering the shape or geometrical structure, where a matrix representation and

orthogonal Procrustes method were used to calculate the similarity score for

grouping the product families. But BOMs are very flexible in shape, since there is no

common rule or template to follow for generating them, therefore looking for

geometrical or exact shape difference may give false similarity score. Emphasis

should be put on the significant structural dependencies, hierarchical positions and

other important contents during similarity calculation. The proposed framework in

this paper focuses on the above for identifying the product families. To our best of

knowledge, this is the first work on BOM data to determine product families using

data mining.

3. BACKGROUND KNOWLEDGE

3.1 Bill of Materials (BOMs)

BOM represents hierarchical relations between various product parts with

necessary details of manufacturing a particular product. It is a structural

representation of a product including its required subassemblies, components and

138 Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm

parts at various levels of production [185]. To understand the proposed framework,

following definitions need to be considered.

Definition 1 (End Items): The entities that are sold directly to the customer without

any further value added manufacturing step. End items usually contain several

subassembly parts and raw materials and appear at the top of the BOM hierarchal

position.

Definition 2 (Subassemblies): These are the entities that cannot be sold to the

customer. Subassemblies may contain manufactured or purchased part or other

subassemblies, and therefore, are appeared at a level of BOM hierarchy which is

positioned neither at the top nor at the bottom.

Definition 3 (Purchased Parts): The raw materials which are the initial entities for

finishing a final product. Purchased parts are positioned at the bottom level of the

BOM structure.

Definition 4 (Quantity Representation): In BOM, repeated subassemblies or parts are

represented by a quantity per value. This value is the number of the part required per

one unit of the part’s parent.

Definition 5 (Part Number): This is an alphanumeric string that uniquely identifies

an end item, subassembly and a purchased part. Each number corresponds to a

specific item with specific characteristics.

Office Chair A

P(1) Q(2) R(1) S(1)

W(1) V’(1)T(1) U(1) V(1)

X(1) Y(4)

Nodes meanings: P=Seat, Q=Elbow rest, R=Lumbar support, S and S’=Back variation,
T and T’=Under frame variation, U=Seat frame, V and V’=Upholstery variation,
W=Back frame, X =Standard, Y=Wheel, Z=Footrest

Office Chair B

P(1) S’(1)

T’(1) U(1) V(1) W(1) V’(1) R(1)

X(1) Y(4) Z(1)

Figure 1: Variants of office chair

Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm 139

Properties of BOM: BOM structures can be different for the identical end items, as

each end item may be designed by a different company. Moreover, the product

design is the result of human made input and developed completely based on

individuals’ understandings of how the product is manufactured or assembled.

Similar BOMs may have different structures with same parts appearing at different

level. However they will share similar components or parts and, most importantly,

the structural dependencies among them will be usually kept same (Figure 1). BOMs

substructures are unordered which means that the order of components is not

significant. For instance, it does not matter if we say a chair has a seat, elbow rest

and wheel, or a chair has a wheel, seat and elbow rest. In this paper we depicted

BOM as rooted labelled unordered tree.

Definition 6 (Unordered Tree): A rooted labelled unordered tree has an identical

root node and preserves only ancestor-descendant or parent-child relationships

among nodes. There is no left-to-right order among the sibling nodes.

3.2 Data Mining Techniques Used

To satisfy the need of mass customisation and agile manufacturing, we need to

apply techniques that will extract implicit, previously unknown, potentially useful

and understandable pattern from a large database [1], thus the product design and

manufacturing system will have substantial improvement. Using data mining

techniques in advance manufacturing is becoming popular [7]. In the proposed

framework, we have used frequent mining and clustering, two well-known data

mining techniques for finding similarities between products and grouping them into

families.

Frequent mining is used to extract interesting patterns from a database using a

specified support [57, 58]. Support determines how often a pattern is applicable to or

appears to a given data set. It represents the probability that a database instance

contains that pattern.

BOM consists of structural dependencies like parent-child and ancestor-

descendant relations between the end item, its components or subassemblies, and the

raw (or purchased) materials they contain. The main challenge in BOM data analysis

is dealing with the flexibility in its representation. It is very hard to put BOM data

into a common format, thus the accurate analysis like similarity comparison can be

140 Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm

carried out. Apparently, in BOM no other information keeps constant except the

structural dependencies. So, instead of considering geometrical structure and shape,

understanding structural dependencies is crucial for BOM similarity comparison. We

utilise frequent mining to extract common structural dependencies in a database,

which can be used as important representational component of the BOM data. These

common structures can be input to clustering along with other information about the

BOM data.

Clustering is an unsupervised data mining technique that can group objects

based on their common characteristics, without the presence of any prior information

about classification [162, 163]. Without using domain knowledge and GT coding

based classification, the identification of product families can be possible using

clustering. Clustering is now commonly used in manufacturing domain for doing

unsupervised grouping [186]. To apply clustering, a similarity measure value needs

to be calculated based on commonality of the features. In this work, we utilise cosine

similarity [133] to determine a similarity matrix based on the equivalent Extended

Augmented Adjacency Matrix (EAAM) of a BOM dataset.

4. PROPOSED BOM SIMILARITY FRAMEWORK FOR IDENTIFYING

PRODUCT FAMILIES

In this section a method of similarity measure between two BOM data

instances is presented. A framework is then proposed integrating the similarity

measure for identifying product families.

Figure 2: Data pre-processing steps

Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm 141

4.1 Data Pre-processing

To begin with our approach it is necessary to pre-process BOM data in order to

make it useful for knowledge discovery. Figure 2 shows the tasks, which are used in

this process.

4.1.1 Final Data

A company’s database generally consists of a lot of data records. Only those

records that correlate closely with the mining purpose are taken into account. Mostly

BOM records are found in a tabular form, which typically contains the part name,

part no, part revisions, part manufacturing description and the quantities required

building a product assembly (as shown in Figure 3). Usually, the BOM input is given

by human in spreadsheet, that can be formatted however one likes, but as anyone can

format them, it often results in inconsistencies across a company’s BOMs. Hence for

mining BOM data, these inconsistencies need to be removed. Moreover not all of the

information comprised by BOMs is necessarily mined for knowledge discovery.

Therefore, once received the raw data through integration of multiple databases, the

final data sets should be identified involving such data cleaning and filtering tasks as

removal of noises, handling of missing data files, etc.

4.1.2 Unordered Tree Representation

After identifying final BOM data, tree modelling is done to support the EAAM

construction. This modelling is carried out by using unordered tree structure scheme

as template, where only parent-child and ancestor-descendent relationships are

important. The BOM data can naturally be represented as unordered tree. By

considering the parent-child and ancestor-descendant relationships between end item,

subassemblies and purchased parts, a mapping can be derived.

Table 1 shows a general mapping that can be used to represent the BOM data

as unordered tree. The end item, or finished product, can be considered a root of the

tree; manufactured or assembled components can become the nodes; purchased parts

or raw materials can be the leaf nodes. For example, in Figure 3 the tabular or

indented BOM of an ABC Lamps Product-LA01 [187] is given, where the lamp is

the end product, and the parts given under first column are different subassemblies

and purchased parts. For constructing a tree from this BOM only the relationships

among various parts are important, such as B100, S100 and A100 are the children of

142 Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm

the end item; 1100, 1200, 1300, 1400 are the children of B100, representing

descendants of the end item.

Unordered Tree BOM data

Root node End item

Parent or ancestor node End item and subassemblies

Child or descendant node Subassemblies and purchased parts

Leaf node Purchased parts

Parent-child or, ancestor-
descendant relationships

End item-subassembly or, end item-purchased part or,
subassembly-purchased part relationships

Node label Part number

Table 1: Considered mapping for BOM to unordered tree representation

For node labelling, part numbers are used. If we compared two BOMs of

product Lamp, using part numbers as labels, two BOMs would only match where the

part numbers were exactly the same. For instance, suppose part S-14 is a shade with

I.D. = 14” (inch). Part S-18 is a shade with I.D. = 18” (inch). These two shades

would not be matched because of the unique part numbers. However, we are

interested in finding BOMs of similar nature even if they do not share exact content

and topology. For this reason, we replace the part numbers with general node labels

derived from the part characteristics and types. In the case of these two parts, we

would replace the unique part labels with a single label S for the class of shades.

Figure 3: ABC lamps product-LA01 [187]

Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm 143

4.2 Finding Frequent Structural Relationship

The objective of the proposed framework is to form the product families based

on the existing product models (BOMs). Due to the vast flexibility in BOM data,

characterizing structural relationships based on frequent occurrence is essential to

include in the global similarity calculation as in some cases, frequent-infrequent

decision are used as a scale to measure the importance of the structural relations [49].

We consider these relationships as a representational component for the BOM

dataset. We explain next how these relationships are derived.

4.2.1 Tree Traversal

Prior to implement frequent subtree mining algorithm, an optimal traversal

[155] algorithm is used to ensure unique identity or canonical form [188] of each

product model, which is in unordered tree form. Optimal traversal is included as it

ensures optimality by providing unique encoding within minimum computation time

[155]

4.2.2 Frequent Mining Algorithm

Once the canonical form is built, the frequent mining can now be applied that

permits not only to explore the relationships and dependencies but also to handle a

huge amount of data in an optimal way [57, 58]. However, such algorithms are

sometimes limited to the memory because of its size and calculations that they

perform. The candidate frequent subtrees generation can be exponential in large

databases [49].

We propose to apply the BOSTER algorithm [57] which allows setting the

subtree length equal to 1 and retrieves only single relationships exhibiting between

parent-parts. This algorithm has proved to be memory efficient and exhibits limited

computational complexity [57]. A support threshold is needed for frequent subtree

mining process. A minimum support is set by trial and error, as it is a data specific

parameter that prunes the infrequent subtree.

4.2.3 Characterizing Structural Relationships

Based on the result of the frequent subtree mining algorithm the structural

relationships are characterized. If a subtree is frequent then the inherent parent child

relation is considered as mandatory. Once all mandatory parent-child or ancestor-

144 Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm

descendant relationships are identified, the remaining relationships are classified as

optional. During the EAAM representation a weighted value of 1 and 0 are used to

represent the mandatory and optional relationship respectively. The structural

relationship importance weight is denoted as fw, which contains binary variable.

4.3 Extended Augmented Adjacency Matrix (EAAM) Representation

In this paper a new matrix representation called EAAM is introduced.

Although, EAAM is an extension of Augmented Adjacency Matrix (AAM)

representation [155], but to our best knowledge, this is the first matrix, where the

frequent structural relationship is included as one of the representational components.

The rest of the components are:

− Optimal part sequence of BOM using optimal traversal.

− Part level information from BOM interface.

− Quantity representation (q) representing the number of the part required

per unit of the part’s parent.

An adjacency matrix of a tree is based on the ordering chosen for the nodes

[160]. For EAAM the ordering is achieved using optimal traversal [155] which

ensures unique encoding of BOM represented in unordered tree form. For populating

the cell of EAAM mainly structural relationship importance weight, level

information and quantity representation are used.

Let a BOM, B is depicted as a rooted labelled unordered tree B = (I, R), where I

= {i0, i1, i2, …, in} denotes the set of items with i0 as end item, and other set elements

as subassembly and purchased items, R = {(i1, i2)|i1, i2 ∈ I} = {r1, r2, …, rn-1}. The

number of each item is given as {q0, q1, q2, …, qn}. For B, the EAAM representation

can be formulated in which a cell, acd is populated as follows:

𝑎𝑎𝑐𝑐𝑐𝑐 =

⎩
⎪⎪
⎨

⎪⎪
⎧

1 if 𝑖𝑖𝑐𝑐 is a node of 𝐵𝐵
𝐿𝐿(𝐵𝐵, 𝑖𝑖𝑑𝑑)
𝐿𝐿(𝐵𝐵, 𝑖𝑖𝑐𝑐) + 𝑞𝑞𝑑𝑑 + 𝑓𝑓𝑤𝑤 if 𝑖𝑖𝑐𝑐 is a parent of 𝑖𝑖𝑑𝑑

𝐿𝐿(𝐵𝐵, 𝑖𝑖𝑑𝑑)
𝐿𝐿(𝐵𝐵, 𝑖𝑖𝑐𝑐) + 𝑓𝑓𝑤𝑤 if 𝑖𝑖𝑐𝑐 is an ancestor of 𝑖𝑖𝑑𝑑

0 otherwise

These four components are explained as follows:

Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm 145

1. To represent the presence of each part in a BOM, each diagonal cell is

populated with 1.

2. If the part is parent of the other respective part, then the cell is populated

with level information (fraction of level of corresponding two nodes),

weight information (quantity of the child node) and structural relationship

importance weight value of 1 or 0 depending on the frequent or infrequent

status of the parent-child relation in the respective database.

3. If the part is ancestor of the other respective part, then the cell is populated

with level information (fraction of level of corresponding two nodes), and

structural relationship importance weight value of 1 or 0 depending on the

frequent or infrequent status of the ancestor-descendant relation.

4. If none of these are true, then the cell receives a value of 0.

Level 4

Level 3

Level 2

A

A

P S

Q

P

S

T

T

Y

Y

1 3/4+2+1 3/4+1+1 3/4+1+1 2/4+1 1/4+1

1

1

1

1

1

0

0

0

0

0

0

0 2/3+1+1

0 0 0

0 0 0 0

0 0 0 0

0

0 0 0 0

Office Chair A

P(1) Q(2) R(1) S(1)

W(1) V’(1)T(1) U(1) V(1)

X(1) Y(4)
Level 1

1/3+4+1

Q

Figure 4: EAAM construction

Example: From Figure 1, we consider the first example BOM of product

model “office chair A” to explain the EAAM construction. Consider a BOM database

that only consists of two BOM trees given in Figure 1, and the minimum support is

two. It means that if a subtree appears twice or more in the database, it will be

146 Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm

considered as a frequent sub-tree. Based on this, A-Q, A-R, A-Z, T-Z and S-R are

found infrequent relationships and considered as optional. The order of the nodes for

constructing EAAM is derived using optimal traversal. Consider the cell between

nodes A and Q. For this BOM tree, A is the parent of part Q, therefore the level

information is added as 3/4, where the level of A is 4 and the level of Q is 3. For the

child part Q, the quantity representation value is 2, which is added after the fraction

of level into that cell. Finally, the frequent parent-part relation adds a value 1 to

indicate the mandatory relationship. The overall calculated value for this cell is

3/4+2+1 (Figure 4). The rest of the cell values are calculated following the same

way.

4.4 BOM Similarity Measure

After constructing EAAMs, we use cosine similarity for matrix comparison for

measuring the similarities between a BOM pair [155] as follows:

cos(A, B) =
∑ ∑ A𝑥𝑥𝑥𝑥

𝑛𝑛
𝑦𝑦=1

𝑛𝑛
𝑥𝑥=1 B𝑥𝑥𝑥𝑥

�∑ ∑ A𝑥𝑥𝑥𝑥
2𝑛𝑛

𝑦𝑦=1
𝑛𝑛
𝑥𝑥=1 �∑ ∑ B𝑥𝑥𝑥𝑥

2𝑛𝑛
𝑦𝑦=1

𝑛𝑛
𝑥𝑥=1

Where, A and B are two (n×n) matrices.

Figure 5: The flow chart of calculating similarity

If sizes of the two BOM trees are not same, then additional columns and rows

with zero elements are padded to the smaller matrix for making the size of both

Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm 147

matrices equal, this is called the augmentation of matrix. These two square matrices

can be considered as two |B|×|B| (where |B| = max {B1, B2}; B1, B1 are two BOM

trees) dimensional vectors. The overall procedure for similarity measure is given in

Figure 5 using a flow chart, where matrix is represented as Ra×a, where a is the size

of that matrix representing the number of the components or parts in a BOM tree.

Figure 6: Framework for product family design

4.4 The Proposed Framework

The proposed framework for grouping product families has three main phases

as shown in Figure 6. In the first phase data pre-processing is done. BOM has

different storage under different enterprises; some of them store BOM data in

database, some in files like XLS file. Some enterprises use part table/relationship

table to express BOM, and some enterprises use a single table. All these variations

need to save in memory as a BOM generating interphase, from this node the pre-

148 Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm

processing will carry out in next. Next phase covers the EAAM construction where

all necessary steps (dotted blue boxes) are implemented for populating the feature

weights. In the third and final phase, the pairwise similarity is calculated using the

EAAM comparison and a similarity score is calculated between BOM pairs where a

similarity score of 0 means completely dissimilar and a score of 1 means exactly

similar. Using this similarity values a similarity matrix is constructed which is then

employed as an input to a clustering algorithm. Table 2 shows an example of the

similarity matrix. We used a well-known clustering algorithm, Repeated Bisection

Partitioning [189], for grouping the BOMs into families. This algorithm divides trees

into two groups and then selects one of the larger groups according to a clustering

criterion function and bisects further. This process is repeated until the desired

number of clusters is achieved. During each step of bisection, the cluster is bisected

so that the resulting 2-way clustering solution locally optimises a particular criterion

function. Other clustering algorithms can also be applied. Finally from the cluster

result, the product families will be identified.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

B1 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44

B2 0.40 1.00 0.43 0.47 0.40 0.49 0.37 0.40 0.40 0.42 0.32 0.43 0.32 0.54 0.39

B3 0.43 0.43 1.00 0.65 0.43 0.53 0.43 0.43 0.43 0.45 0.39 0.44 0.39 0.52 0.33

B4 0.57 0.47 0.65 1.00 0.57 0.70 0.60 0.57 0.57 0.71 0.50 0.35 0.50 0.63 0.34

B5 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44

B6 0.50 0.49 0.53 0.70 0.50 1.00 0.62 0.50 0.50 0.71 0.65 0.34 0.65 0.71 0.35

B7 0.61 0.37 0.43 0.60 0.61 0.62 1.00 0.61 0.61 0.58 0.56 0.33 0.56 0.58 0.41

B8 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44

B9 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44

B10 0.64 0.42 0.45 0.71 0.64 0.71 0.58 0.64 0.64 1.00 0.56 0.31 0.56 0.72 0.39

B11 0.41 0.32 0.39 0.50 0.41 0.65 0.56 0.41 0.41 0.56 1.00 0.25 1.00 0.47 0.31

B12 0.30 0.43 0.44 0.35 0.30 0.34 0.33 0.30 0.30 0.31 0.25 1.00 0.25 0.42 0.31

B13 0.41 0.32 0.39 0.50 0.41 0.65 0.56 0.41 0.41 0.56 1.00 0.25 1.00 0.47 0.31

B14 0.58 0.54 0.52 0.63 0.58 0.71 0.58 0.58 0.58 0.72 0.47 0.42 0.47 1.00 0.31

B15 0.44 0.39 0.33 0.34 0.44 0.35 0.41 0.44 0.44 0.39 0.31 0.31 0.31 0.31 1.00

Table 2: BOM similarity matrix

5. EVALUATION OF THE PROPOSED FRAMEWORK

We implemented the proposed framework on a real manufacturing data to

evaluate the performance. This data is collected from a manufacturer of nurse calling

Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm 149

devices [68]. It consists of 404 BOMs with four major product families. From this

data set we randomly generated four samples, consisting 100 BOMs each and named

them as Data 1, Data 2, Data 3 and Data 4. We used all these four datasets for

empirical analysis.

For benchmarking we consider a method that used the orthogonal Procrustes

problem to find the orthogonal matrix for two given matrices that will closely map

one matrix to another and used this as a geometrical similarities between BOMs and

then clustered them into families [77]. For the benchmark method we used the same

clustering algorithm, but we used the orthogonal Procrustes based similarity measure

as input and performed the product grouping. Finally we checked the clustering

results with the known product family information and compared the performances.

(a) Data 1

(b) Data 2

(c) Data 3

(d) Data 4

Figure 7: Accuracy performance over Data 1(a), Data 2(b), Data 3(c) and Data4

(c)

The main contribution of this paper is the similarity measure method of product

BOMs. An efficient grouping of product families largely depends on an efficient

0 0.5 1

Precision

Recall

F1 score

Baseline Method Proposed Method

0 0.5 1

Precision

Recall

F1 score

0 0.2 0.4 0.6 0.8 1

Precision

Recall

F1 score

0 0.2 0.4 0.6 0.8 1

Precision

Recall

F1 score

150 Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm

similarity measure method. We evaluated our similarity measure approach using the

well-known evaluation metrics including precision, recall and F1 score [190] and

performed on all four data samples. For these metrics, the value close to 1 is

considered as an indication of better performance. From Figure 7, we can see for all

four data sets our proposed similarity measure method gives higher accuracy in

comparison to the benchmark method. This good accuracy performance should also

reflect during the clustering process, as we used this similarity method as an input for

an off-the-self clustering algorithm for doing the product family grouping. Table 2

gives a partial view of the similarity matrix generated by our proposed BOM

similarity measure method. For clustering we used this similarity matrix for

identifying product families.

Table 3 reports the clustering performance results, where we mainly included

the number of mis-clustered product BOM for each data by the proposed method and

the benchmarked method. The proposed framework outperforms the baseline

method.

Method Data 1 Data 2 Data 3 Data 4

Proposed Framework 2 5 5 6

Baseline Method 19 21 25 35

Table 3: Number of Mis-Clustered BOMs for Different Data Sets

6. CONCLUSION

A product family is a group of related products based on a product platform,

facilitating mass customisation by cost-effectively providing a variety of products for

different market segments. In this paper we present a data mining approach based

framework for grouping various products into families. We introduced a similarity

measure method for a common product data type, BOM that can be used to cluster

products into families. The benchmarking results confirm the efficiency of the

proposed work.

In future work, we intend to expand the study on unifying the families into a

single Generic Bill of Material (GBOM) [191] group.

Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm 151

Chapter 5: Frequent Subtree Mining

Frequent subtree mining is one of the major contributions of this thesis. Three

efficient algorithms for mining frequent subtrees from databases of labelled

unordered trees are proposed, which utilise the novel canonical representation

BOCF. Each of these algorithms is published as a separate publication. The first

paper presents the BOSTER algorithm, which is designed for mining frequent rooted

unordered induced subtrees. The second paper presents the BEST algorithm, which is

designed for mining frequent rooted unordered embedded subtrees. The third paper

presents the algorithm FreeS for mining frequent free induced subtrees. All of these

algorithms work toward achieving an optimal candidate generation process with a

good growth strategy as well as avoiding the generation of false candidate trees, with

a focus on a specific frequent subtree mining problem. Empirical analysis in these

papers shows that these algorithms have proven their efficiency in dealing with the

isomorphism and automorphism problem which is a pressing issue in the process of

frequent rooted unordered and free subtree mining. Empirical analysis of each

method also shows its superiority in efficiency of generating patterns in comparison

to the corresponding state-of-the-art benchmarking methods.

Algorithm Input Tree type Output Subtree type

BOSTER Rooted Unordered Tree Induced Subtree

BEST Rooted Unordered Tree Embedded Subtree

FreeS Free Tree Induced Subtree

Table 5.1: A general overview of the proposed frequent subtree mining algorithms

Table 5.1 presents the general overview of the proposed frequent subtree

mining algorithms in this chapter. This table mainly includes the information of input

tree type and subtree type for which each of these algorithms is specially designed

and the input database on which these algorithms can be applied.

This chapter is organised based on three papers that introduce the proposed

algorithms and follow the sequence of Paper 4 on BOSTER, Paper 5 on BEST and

Frequent Subtree Mining 153

Paper 6 on FreeS. Before presenting each paper in its original form, a brief overview

of each method is provided along with some of materials that were excluded from the

papers due to space restrictions enforced by the publishers.

5.1 BOSTER: AN EFFICIENT ALGORITHM FOR MINING FREQUENT
UNORDERED INDUCED SUBTREES

This paper focuses on designing, developing and testing the BOSTER

algorithm for mining frequent induced subtrees from a database of labelled

unordered trees. This paper first introduces the novel BOCF canonical form for

representing the rooted unordered trees. To the best of our knowledge, this is the first

tree mining algorithm that does not require additional isomorphism and

automorphism checking during frequency counting. To ensure optimal enumeration,

a tree structure, guided scheme-based enumeration tree is proposed for candidate

generation. This enumeration approach uses tree weight, level and fan-out

information to guide the candidate generation process. The enumeration tree is

expanded with patterns using the extension and join operations defined to support

BOCF and the structure guided enumeration. In order to limit the number of

candidates, the growth rules are introduced that control the availability of right most

nodes to be used in extension for candidate generation. Consequently, by using this

approach of candidate generation, BOSTER is able to generate only valid subtrees,

which results in saving time and memory by avoiding the generation of invalid

subtrees and then pruning later on. Most of the existing algorithms spend a fair bit of

time on checking whether the generated candidate subtrees are in considered

canonical form or not, in order to remove the invalid subtrees. The modified

occurrence list based frequency counting method is used to improve the efficiency.

BOSTER is evaluated with both the synthetic data and real life data. The real

life data CSLOGS is used, which is a most commonly used data set for evaluating

frequent subtree mining algorithms [34, 36, 49, 70, 192]. The two most relevant and

state-of-the-art algorithms - UNI3 and HybridTreeMiner (HBT) - are used for

benchmarking. BOSTER proved its scalability and efficiency in most cases. It

particularly works efficiently (takes less computation time) when a dataset is more

likely to have isomorphic trees.

Due to the space constraints, some of the results were not part of the published

article and the results presented in the paper focused on showing the scalability of

154 Frequent Subtree Mining

BOSTER. Figure 5.1 shows the impact of using the BOCF canonical form when the

datasets include isomorphic trees. In addition to benefitting BOSTER, this provides a

greater benefit to the BEST algorithm for finding embedded subtrees from the

unordered tree data, as well as to the FreeS algorithm for finding induced subtrees

from the free tree data. As in these two algorithms, the problem of isomorphism and

automorphism has greater impact, due to dealing with more flexibility in

trees/subtrees.

5.1.1 BOSTER Handling Isomorphism

 BOSTER uses the BOCF canonical form for tree representation, which makes

it efficient to deal with the isomorphism problem. To empirically evaluate this

statement, a synthetic dataset is generated based on the following parameters where

Zaki’s tree generator [38] is used:

− The number of labels (N) = 50,

− The number of nodes (M) = 1,000,

− The maximum depth (D) = 5,

− The maximum fan-out of a node (F) = 5,

− The total number of trees in the dataset (T) = 10,000.

Due to the setting of node labels to very small with large number of nodes and

trees, this data will have a high probability of getting a huge number of isomorphic

trees. This would cause the presence of a large number of overlapping trees in the

dataset, and a tree mining method would have to deal with this issue.

In this isomorphism test, the results are compared against two benchmarking

algorithms UNI3 [98] and HybridTreeMiner (abbreviated as HBT) [96], which are

also designed to mine frequent rooted unordered induced subtrees. As shown in

Figure 5.1. BOSTER consumes the least runtime followed by UNI3. HBT has to be

aborted due to high runtime for smaller support thresholds. HBT needs an exclusive

isomorphism test for avoiding overlapping trees and, therefore, requires high

runtime. UNI3 deals with the isomorphism problem by creating a separate

embedding list, which allows saving runtime in comparison to HBT, but BOSTER is

still the fastest one because of using BOCF canonical form. Since BOCF does not

Frequent Subtree Mining 155

allow generation of isomorphic trees, no additional checking test is carried out. This

result ascertains that BOSTER is robust to the problem of isomorphism.

Figure 5.1: Runtime in presence of isomorphism

5.2 BEST: AN EFFICIENT ALGORITHM FOR MINING FREQUENT
UNORDERED EMBEDDED SUBTREES

This paper contains the detail of the BEST algorithm, which mines frequent

embedded subtrees from a database of labelled unordered trees. The BEST algorithm

utilises the BOCF canonical form for representing the rooted unordered trees. In this

paper, distinct properties including lemmas and proofs of balance optimal canonical

form are presented.

Mining embedded subtrees can be considered as a generalised problem of

mining induced subtrees, but the difficulty level of this problem is higher than the

induced subtree mining problem [49, 97]. Embedded subtree mining requires

examining several levels within a tree to identify an embedded subtree. BEST

incorporates level conditions during candidate generation that are represented in

BOCF forms and the enumeration operations are defined accordingly. The structure

guided enumeration tree allows avoiding invalid candidate subtree generation, which

makes BEST more time and memory efficient than the existing benchmarking

algorithms like SLEUTH [70] and U3 [97]. BEST holds the downward closure

lemma during its processing and avoids generation of pseudo frequent [154, 192]

subtrees, which SLEUTH fails to do. Therefore during the test, SLEUTH extracted

the higher number of subtrees as frequent in comparison to U3 and BEST. Both

synthetic and real life datasets are used for evaluating this algorithm. BEST ensures

0
100
200
300
400
500
600
700
800
900

1000

s30 s27 s25 s20 s18 s15

HBT

UNI3

BOSTER

R
un

ni
ng

 T
im

e
(s

ec
)

Minimum Support

aborted

156 Frequent Subtree Mining

the least runtime consumption on a real life dataset for a support (1.5%) without

missing any frequent patterns. For the synthetic datasets, BEST also shows the

competitive performance.

5.3 FREES: A FAST ALGORITHM TO DISCOVER FREQUENT FREE
SUBTREES USING A NOVEL CANONICAL FORM

This paper presents the FreeS algorithm for mining frequent free induced

subtrees from a database of labelled free trees. The BOCF tree representation is

extended for distinctively representing free trees despite the presence of

isomorphism. The BOCF of a free tree is generated by identifying a root node

uniquely, which is called normalisation. FreeS uses a tree structure guided scheme-

based enumeration for generating the candidate of free subtrees. This scheme

includes a set of conditions that conforms generation of candidate free subtrees in

their canonical forms. Required lemmas and respective proofs are provided in this

paper. For growing the enumeration trees, both the extension and join operations are

used which are defined to support the generation of candidate free subtrees. For

counting frequency, a modified occurrence list based support is used. Finally, the

performance of FreeS is checked against the state-of-the-art free tree mining

algorithms FreeTreeMiner [63] and HBT [96]. Empirical analysis confirms that

FreeS is faster and computationally efficient.

In this thesis only the frequent free induced subtree mining problem is

addressed, and the frequent embedded subtree mining problem is not studied due to

time constraints. The frequent embedded subtrees can be extracted by adding new

conditions in the enumeration tree, which will allow generation of candidate

embedded subtrees only. To the best of the authors’ knowledge, there is no available

work on mining frequent free embedded subtrees, so the evaluation process will be

challenging in terms of benchmarking.

NB: The reader may be found the published paper a bit different than the

version of the paper added in this thesis. This is done to correct some confusing

wordings, which does not change any core concept of the work.

Frequent Subtree Mining 157

Paper 4: BOSTER: An Efficient Algorithm
for Mining Frequent Unordered
Induced Subtrees

Israt Jahan Chowdhury* and Richi Nayak*

*School of Electrical Engineering and Computer Science, Queensland

University of Technology, GPO BOX 2434, Brisbane, Australia

PUBLISHED IN: Lecture Note in Computer Science: Web Information

Systems Engineering – WISE 2014, 8786, pp. 146-155

Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees 159

Abstract5: Extracting frequent subtree from the tree structured data has

important applications in Web mining. In this paper, we introduce a novel canonical

form for rooted labelled unordered trees called the balanced-optimal-search

canonical form (BOCF) that can handle the isomorphism problem efficiently. Using

BOCF, we define a tree structure guided scheme based enumeration approach that

systematically enumerates only the valid subtrees. Finally, we present the balanced

optimal search tree miner (BOSTER) algorithm based on BOCF and the proposed

enumeration approach, for finding frequent induced subtrees from a database of

labelled rooted unordered trees. Experiments on the real datasets compare the

efficiency of BOSTER over the two state-of-the-art algorithms for mining induced

unordered subtrees, HybridTreeMiner and UNI3. The results are encouraging.

Keywords: Web mining, frequent subtrees, labelled rooted unordered trees,

induced subtrees, canonical form, enumeration approach.

1. INTRODUCTION

In order to improve the Web-based applications, finding frequent patterns is a

common task in Web usage mining that discovers useful information from the Web

data. The web usage data, the sequences of accesses pursued by users, can be easily

represented as trees [193]. The frequent subtree mining task can be used in

distinguishing various users according to their common browsing behaviour [50].

In this paper we study the problem of finding frequent subtrees from the

database of unordered trees.

Unordered trees have shown the capability of identifying interesting relations

due to not being constrained by sibling order (i.e. no fixed left-to-right order among

sibling nodes) [29]. However, this distinct property makes the process of mining

frequent unordered subtrees more challenging in comparison to ordered trees.

Exponential candidate generation with redundancy is the main problem in mining

frequent unordered subtrees. It is critical to determine a “good” growth strategy as

there can be many possible ways to extend a candidate subtree due to not having

sibling order constraint. Moreover, high computation and memory expense are

5 B. Benatallah et al. (Eds.): WISE 2014, Part 1, LNAI 8786, pp. 146–155, 2014.
© Springer International Publishing Switzerland 2014

Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees 161

always an issue for mining tree data. Many algorithms have been proposed to

overcome these challenges where they use a canonical form, and extend the

candidates only that conform to the canonical form. Several canonical

representations based on sorted pre-order string [93], depth-first traversal [90-92] and

breadth-first traversal [96] have been proposed. These canonical forms need an

additional isomorphism test for avoiding redundancy problem. Besides, the existing

algorithms use extension and join operations for candidate enumeration [53, 96],

which produce a large number of candidates including invalid subtrees. Authors in

[98] have developed an enumeration approach using underlying tree structure

information that generates only valid subtrees, but, the method suffers from extensive

memory usage.

We have previously proposed an optimal tree traversal algorithm for traversing

a rooted unordered tree [155] and finding similarity amongst tree data. In this paper,

we extend this traversing algorithm by introducing a new heuristic that leads towards

a new definition of canonical form for representing unordered trees, called the

balanced-optimal canonical form (BOCF). The BOCF can alleviate redundancy

problem as it is able to represent unordered trees uniquely even in the presence of

isomorphism. Using BOCF, we specify an optimal enumeration approach to

systematically enumerate all frequent subtrees based on underlying tree structure

information. This enumeration approach is efficient as it restricts the search, by only

generating the unambiguous and valid subtrees using the underlying tree structure

information. Finally, the balanced optimal search tree miner (BOSTER) algorithm is

proposed for mining frequent induced unordered subtrees from a database of labelled

rooted unordered trees. Empirical analysis carried out using a real data has shown the

effectiveness of BOSTER over the two state-of-the-art algorithms, HybridTreeMiner

[96] and UNI3 [98].

2. PRELIMINARIES

Let T = (V, E, L) be a rooted labeled unordered tree, where V = {v0, v1, v2, …,

vn} denotes the set of nodes with v0 as root node, E = {(vi, vj)| vi, vj ∈ V} = {e1, e2, …,

en-1} denotes the set of edges and L denotes the set of labels. The label is given by a

function Φ: V → L which maps nodes with unique labels. An unordered tree has no

ordering relationship among the nodes except ancestor-descendent or parent-child.

162 Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees

The ancestor-descendent relationship between two nodes is denoted by vi ≺ vj, i.e. vi

is ancestor of vj, the ‘≺’ symbol represents ‘precedes’. The level of a node vi in a tree

T is denoted as Lv(T, vi) and the height of a tree T is denoted as H(T).

Definition 1 (Induced Subtrees): A tree T´(V´, L´, E´) is an unordered induced

subtree of a tree T (V, L, E) iff: (1) V´ ⊆ V , (2) E´ ⊆ E, (3) L´ ⊆ L and the labelling

of V´ in T is preserved in T´ (4) ∀vi´ ∈ V´, ∀vi ∈ V and vi´ is not the root node, then

parent of vi´= parent of vi, and (5) no left-to-right ordering among the siblings in T is

preserved among the corresponding nodes in T´.

Definition 2 (Equivalent Node): If two nodes vi and vj of a tree T, have the same

label originated from the same labelled parent node (parent of vi = parent of vj) and

have the same labelled child nodes then they are called equivalent nodes, denoted by

vi ≅ vj.

Definition 3 (Weight of Node): Weight of a node vi (vi ≠ v0) is defined as the total

number of its equivalent node and denoted by wi (Figure 1).

According to the properties of unordered trees we have Lemma 1.

Lemma 1 Weight of the root node v0 is always zero, w0 = 0. For each node vi ∈ V (vi

≠ v0), the weight wi (wi ≠ w0) should always have a minimum value of one.

PROOF:

1. According to the tree structure schema no equivalent node of a root node is

possible as its ancestors are undefined. Hence, the weight of the root is always

zero.

2. Each node vi (vi ≠ v0) of tree T should have at least one equivalent node, otherwise

vi doesn't belong to that tree. Hence, the minimum weight of the node is one, wi =

1. For node vi, wi > 1 if the node has more than one equivalent node.

Definition 4 (Mining Unordered Induced Subtree): Let Tdb denotes a database where

each transaction is a labelled rooted unordered tree. The task of frequent induced

subtree mining from Tdb is finding all induced subtrees that have minimum support s.

Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees 163

Definition 5 (Support): Support s of a tree T´ in database Tdb is defined as the

number of trees, T that has at least one occurrence of T´ as an induced subtree in its

structure.

Figure 1: The highlighted nodes are the equivalent nodes (a) and the numerical

values are the weights of the respective nodes (b), for simplicity only label is used to

represent a node

Figure 2: Four rooted ordered trees obtained from the same rooted unordered tree

3. OPTIMAL CANONICAL FORM

A canonical form (CF) of a tree is a representative form that can consistently

represent many equivalent variations of that tree into one standard [90, 188]. The

canonical forms for ordered and unordered subtrees are different. Due to having no

sibling order, several ordered variations are possible from an unordered tree.

Definition 6 (Equivalent Ordered Trees): Two distinct ordered trees T1 and T2 are

equivalent trees if they represent the same unordered tree T, denoted by T1 ≅ T2.

An example of equivalent ordered trees is given in Figure 2, where four

ordered trees can be derived from an unordered tree. We propose to represent these

ordered variations by a single canonical form following an optimal traversal so that

the same unordered tree is derived from each of them.

3.1 Balanced Optimal Canonical Form

We have earlier developed an optimal tree search traversal algorithm [155] by

reducing the traversing problem to an optimisation problem called “simple assembly

164 Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees

line balancing” [65]. Unlike existing traversal algorithms [188], our algorithm [155]

works based on optimisation instead of fixing left-to-right order among siblings. We

propose heuristics that are applied recursively for setting the rules of traversing the

whole tree. Heuristic 1 identifies a potential node during the traversal process.

Heuristics 2 and 3 select the best node if multiple nodes are identified as candidates

for traversal. Induction of heuristics will result in the optimal traversal balanced.

Heuristic 1 After traversing the root node, the enumeration of available nodes

satisfying the ancestral relationship (vi ≺ vj) will be prioritized based on their

weights.

Heuristic 2 If there exist two or more nodes with maximum weight, the node with

maximum number of children will get priority for traversing next.

Heuristic 3 In case of existence of multiple nodes with equal weight and children

count, the minimum lexicographical order will be used to prioritize their traversing.

Consider the example tree in Figure 1, following this traversal scheme, root

node va will be traversed first. Next eligible nodes for traversing will be ve, vc, vb as

their parent node has been traversed. Node vc will be chosen following heuristic 1.

Heuristic 3 will need to be applied to choose between ve and vb, as the other two

heuristics fail to prioritize the order. vb will be traversed accordingly. Node ve will be

traversed next using heuristic 2. The final sequence for traversing the whole tree will

be va, vc, vb, ve, vd, vc, vf, that is not restricted by depth-first or breadth-first order.

We propose a balanced-optimal canonical form for a tree represented in the

optimal order obtained by this traversal. BOCF is a string representation of a tree

along with four unique symbols, +1, -1, +2 and -2, that are used to represent the

breadthwise movement from sibling to sibling and the depth-wise movement from a

child to its parent. We use +1 and -1 for forward and backward travel towards depth,

and +2 and -2 for forward and backward travel towards breadth respectively. We

assume that none of these symbols are included in the alphabet of node labels.

Definition 7 (BOCF String Representation of Unordered Tree): The BOCF string

representation of the rooted unordered tree is achieved by a guided record of sibling

Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees 165

nodes. When a new node appears under its parent node, only the breadthwise

movement from the existing rightmost sibling node is permitted.

Consider the trees in Figure 2. The optimal order of the equivalent trees in

Figure 2 is: va, vb, vc, vd, vc, vf. Using definition 7, the unique BOCF string

representation of these four trees is 0va, +1, 2vb, +1, 2vc, -1, +2, 1vd, +1, 2vc, -2, 1vf. It

should be noted that all equivalent ordered trees is represented by a unique standard

form. It indicates that they all are originated from the same unordered tree. This

greatly benefits unordered tree mining. The optimal traversal poses a total order on

all variants of an unordered tree which guarantees the uniqueness of BOCF for a

labelled rooted unordered tree.

3.2 Dealing with the Isomorphism and Automorphism Problem

A main challenge in defining a canonical form for unordered trees is faced

when two trees are found isomorphic. If a bijective mapping exists between the set of

nodes of two trees T1 and T2, which preserves and reflects the tree structures, then

these trees are called isomorphic to each other, denoted as T1≅T2. The term

automorphism corresponds to isomorphism of a tree to itself. It is necessary to

identify which of the ordered subtrees forms an automorphism group of an unordered

subtree. During candidate generation, each subtree encoding should uniquely map to

a single subtree only. Existing research addresses this problem by choosing one of

the trees from the automorphism group as the representative of the group, and then

all other isomorphic subtrees are ordered according to the representative of the

automorphism group during candidate generation [90, 96]. This ensures that, for a

particular unordered subtree, its occurrences are correctly counted so that the

frequency can be easily determined. However, a checking is always required to find

the presence of isomorphism in a tree. This causes an additional memory and time

consumption for keeping the record of the representative tree and for doing

isomorphism testing.

As shown earlier, the proposed BOCF encodes an unordered tree (including all

of its ordered variants which are actually isomorphic to each other) uniquely. In other

words, BOCF provides a unique representation to all isomorphic trees. This ensures

that trees encoded with BOCF representation will be correctly grouped and counted.

Unlike other canonical forms, BOCF does not require a record of representative trees

166 Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees

or, an extra checking during candidate generation for dealing the isomorphism

problem. Moreover, BOCF can naturally handle the automorphism problem. For

applying the optimal traversal, the trees need to be pre-processed so that a concise

tree representation can be derived by combining equivalent nodes. Consequently the

weight of each node under its parent node is calculated. It is to be noted that the

equivalent nodes (i.e. same labelled sibling nodes having the same child) should not

be treated as distinct nodes. The order between them is not important, but, only the

occurrences are important. This process allows us to avoid the isomorphism of a tree

to itself, i.e. solving the automorphism problem. Consider the following example in

Figure 3(a) where the dotted area is showing a case of automorphism problem for the

considered tree. However, the BOCF representation is derived based on the weighted

tree as shown in Figure 3(b) where automorphism can no longer exist.

Figure 3: Automorphism problem

4. MINING FREQUENT LABELLED UNORDERED INDUCED

SUBTREES

We define an enumeration tree that lists all induced unordered subtrees in Tdb

according to their BOCF strings. We used the right-path extension and join

operations for growing the enumeration tree. Previous research has shown that the

right-path extension produces a complete and non-redundant candidate generation

[38, 90, 96]. The use of extension alone for growing enumeration tree can be

inefficient because the number of potential growth may be very large, especially

when the cardinality of the alphabet for node labels is large. This shortcoming

necessitates of using a join operation [90, 96]. However, a join operation often

generates invalid subtrees. We propose using a tree-structure guided schema for

enumeration which allows the generation of valid subtrees only. In the proposed tree

structure guided enumeration approach, the underlying level and fan-out information

of nodes are utilised during candidate generation.

Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees 167

Operations on the Enumeration Tree: The basis of our enumeration tree is as

follows. An unordered N-tree (i.e. a tree with N number of nodes) BOCF is formed

from the unordered (N+1)-tree BOCF by removing the right-most path (i.e. the right-

most node along with its edge) at the bottom level.

For growing the enumeration tree we define extension and join operations

using the BOCF string and the tree-structure guided schema.

Definition 8 (BOCF-extension): For a node vi (fan-out ≠ 0) of the BOCF T1,

extension is possible to apply using every frequent label vj having level Lv(T1, vi)-1.

This extension operation will result in a new BOCF T2 in the enumeration tree where

vj will be the child of vi. If T1 is a N-tree BOCF, then the resultant new BOCF T2 will

be a (N+1)-tree with height H(T1) +1. Further extension is possible from this new

right-most node vj.

Before giving the definition of BOCF-join operation, we define equivalent

groups.

Definition 9 (Equivalent Group): If two N-node trees T1 and T2 have height H(T1) =

H(T2) and share first N-1 node (along with labels and weights) in common, they are

considered as equivalent group, denoted by T1≅T2.

Definition 10 (BOCF-join): Join operation is a guided extension between two

BOCFs, T1 and T2, from an equivalent group, T1≅T2. Assume, vi and vj are the

corresponding right-most node of T1 and T2, where wi>wj or, wi=wj with vi

lexicographically sorts lower than vj. By joining vj in T1 at the position of Lv(T1, vi)-1

will result in a new (N+1) node BOCF, denoted by T1 ⨀ T2, of the same height as

tree T1.

Growth Rules: Candidate trees can have a large number of potential nodes to get a

right-path extension. In order to restrict this growth, heuristics can be employed

using BOCF definition. This will result in reduction of the number of candidates

generated as well as in the reduction of the number of isomorphic subtrees. These

rules support the basic formation principle of the enumeration tree, i.e. keeping the

N-tree BOCF unchanged with the newly generated (N+1)-tree BOCF.

168 Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees

Rule1: Among all the nodes at the bottom level, the node with the maximum weight

will be chosen for BOCF-extension.

Rule2: If there are more than two maximum weighted nodes then the node with

maximum children will be chosen for BOCF-extension.

Rule3: If more than two maximum weighted nodes with the same number of children

exist then the node that sorts lexicographically lower will be chosen for BOCF-

extension.

Consider an example database in Figure 4(a). We compare our enumeration

tree (Figure 4(b)) with the enumeration tree (Figure 4(c)) generated by following the

HybridTreeMiner method [96] (abbreviated as HBT here). HBT also uses the right-

path extension and join operations for growing the enumeration tree, but, these are

defined using a different canonical form (BFCF) [90], whereas we use BOCF and the

tree-structure guided schema for growing the enumeration tree. The dotted rectangles

in (Figure 4(c)) are showing the generation of invalid subtrees in HBT. We did not

show the full enumeration tree for HBT. If we continue it will grow in a much bigger

size, resulting in much higher numbers of invalid subtrees. But, for our method,

Figure 4(b) is the complete enumeration tree of the considered database.

Figure 4: Comparison between the proposed and existing enumeration techniques

considering minimum support 1 and the dotted rectangles indicate invalid subtrees

It can be clearly seen that our enumeration tree generates much less candidates

in comparison to HBT enumeration tree because of producing only valid subtrees.

Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees 169

Generation of several invalid subtrees causes extra memory space and, then, pruning

of these subtrees causes additional computational cost for HBT. Moreover, our

enumeration approach is more robust to the isomorphism problem. In Figure 4(c) the

enumeration tree produces two candidate trees T3 and T4, which are isomorphic. For

counting the exact support these two should consider as same candidate. In that case

an extra checking method is needed to count isomorphic trees; but our enumeration

approach avoids growing any isomorphic tree. For example, in Figure 4(b); only tree

T3 exists, tree T4 can't be generated. According to BOCF-join, join is supported only

from T1, “0va +1 2vb” to T2, “0va +1 1 vd” as wb > wd.

BOSTER Algorithm

Input: a database Tdb consisting of labelled rooted unordered trees represented as BOCF
strings, a dictionary containing level and fan-out information of each node, a user defined
minimum support (min_sup).

Output: All frequent induced subtrees.

1. Result ←∅;
2. F1 ← the set of all frequent nodes;
3. for all tk ∈ F1 do
4. if fan-out(tk) = 0
5. continue
6. end if
7. Grow_Enum (tk, level, weight, fan-out);
8. end for
9. return Result;

Grow_Enum (Ck, level, weight, fan-out)

1. for all f ∈ Ck do
2. Select the right-most node of Ck using Growth rules;
3. Generate candidate Ck+1 by adding f; //using BOCF-extension;
4. if support (Ck+1) ≥ min_sup then
5. Result ← Result ∪ Ck+1;
6. end if
7. Grow_Enum (Ck+1, level, weight, fan-out);
8. end for
9. for all Ck´ such that Ck ≅ Ck´ do
10. Ck+1 ← Ck ⨀ Ck´; //using BOCF-join;
11. if support (Ck+1) ≥ min_sup then
12. Result ← Result ∪ Ck+1;
13. end if
14. Grow_Enum (Ck+1, level, weight, fan-out);
15. end for

Figure 5: High level pseudo code of BOSTER algorithm

170 Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees

Figure 5 lists the pseudocode of the BOSTER algorithm. The process of

frequent subtree mining is initiated by scanning the tree database, Tdb, where trees are

stored as BOCF strings along with weight, level and fan-out information of each

node. The candidate generation method Grow_Enum is called recursively for

growing the candidates. The frequency of every resultant candidate tree is computed

according to the method used in [90, 96]. This is basically an apriori based frequency

counting which gives us the exact frequent subtree list. In order to improve

computational efficiency, we stop counting of a subtree as soon as the tree count

reaches the minimum support value.

5. EXPERIMENTAL EVALUATION

We have performed experiments to evaluate the efficiency of the proposed

algorithm on real application data. All experiments have been conducted on a

2.8GHz Intel Core i7 PC with 8GB main memory and running the UNIX operating

system. Two state-of-the-art unordered tree mining algorithms, HBT [96] and UNI3

[98] are used for benchmarking. We recorded the run time and memory usage of

each algorithm and compared their performances.

In line with other research and to show scalability, three variations of the real

weblog data, CSLOGS [38, 50], are used. (1) CSLOG1 - data generated from the

first week web log usage consisting of 8,074 trees. (2) CSLOG12 - data generated

from the first two weeks usage consisting of 13,934 trees. (3) CSLOGS - the entire

data covering all weeks consisting of 59,691 trees, 716,263 nodes and 13,209 unique

node labels.

Figure 6(a, b, c) and Figure 7(a, b, c) compare the runtime and memory

comparison of BOSTER against HBT and UNI3 respectively. For both runtime and

memory comparison, BOSTER significantly outperforms HBT in all cases.

However, UNI3 gave better memory consumption than BOSTER over CSLOG1 and

CSLOG12. On the entire set of CSLOGS, BOSTER started to outperform UNI3 for

support value less than 100. After this support value, UNI3 could not perform due to

extensive memory usage (Figure 7(c)). We allocated about 15GB memory to run

UNI3, but, it still failed to execute results. UNI3 includes a large number of extra

data structure to hold intermittent information for the mining process. These

additional structures cause the out of memory problem when mining the large data

Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees 171

with small support values. Moreover, both HBT and UNI3 keep record of

representative trees for performing an isomorphism test that causes additional time

and memory expense, but BOSTER can avoid this extra cost using BOCF string

representation.

(a)

(b)

(c)

Figure 6: Runtime comparison over CSLOG1 (a), CSLOG12 (b), full CSLOGS (c)

0.1

1

10

100

1000

10000

s20 s18 s16 s15 s13

HBT
UNI3
BOSTER

Minimum Support

R
un

ni
ng

 T
im

e
(s

ec
)

1

10

100

1000

10000

s30 s21 s19 s17 s15

HBT
UNI3
BOSTER

Minimum Support

R
un

ni
ng

 T
im

e
(s

ec
)

aborted

0
50

100
150
200
250
300
350
400

HBT
UNI3
BOSTER

aborted due to high memory

Minimum Support

R
un

ni
ng

 T
im

e
(s

ec
)

172 Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees

In real-life applications, memory usage can have a significant impact on the

application’s usability from the perspective of performance, interactivity, etc.

BOSTER is able to consume less memory with yielding efficient time complexity, in

comparison to the benchmarked algorithms, even in the presence of large data

(a)

 (b)

(c)

Figure 7: Memory comparison over CSLOG1 (a), CSLOG12 (b), full CSLOGS (c)

0
1
2
3
4
5
6
7
8
9

s20 s18 s16 s15 s13

HBT
UNI3
BOSTER

Minimum Support

M
em

or
y

U
sa

ge
 (M

B
)

0
2
4
6
8

10
12
14
16
18

s30 s21 s19 s17 s15

HBT
UNI3
BOSTER

Minimum Support

M
em

or
y

U
sa

ge
 (M

B
)

aborted due to high runtime

0

50

100

150

200

250

300

350

HBT
UNI3
BOSTER

Minimum Support

M
em

or
y

U
sa

ge
 (M

B
)

out of memory

Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees 173

6. DISCUSSION

In this paper, we presented a novel canonical form, and developed a new

method of finding frequent induced subtrees from the dataset of labelled rooted

unordered trees. We empirically evaluated the efficiency of the proposed algorithm,

BOSTER, against the well-known algorithms in the literature, over real life datasets.

In future we will extend the proposed algorithm to find condensed

representations like frequent closed patterns and we also will explore the scope for

extending our canonical form to represent free trees in order to mine frequent

patterns from them.

174 Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees

Paper 5: BEST: An Efficient Algorithm for
Mining Frequent Unordered
Embedded Subtrees

Israt Jahan Chowdhury* and Richi Nayak*

*School of Electrical Engineering and Computer Science, Queensland

University of Technology, GPO BOX 2434, Brisbane, Australia

PUBLISHED IN: Lecture Note in Computer Science: PRICAI 2014: Trends

in Artificial Intelligence, 8862, pp. 459-471

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 175

Abstract6: This paper presents an algorithm for mining unordered embedded

subtrees using the balanced-optimal-search canonical form (BOCF). A tree structure

guided scheme based enumeration approach is defined using BOCF for

systematically enumerating the valid subtrees only. Based on this canonical form and

enumeration technique, the balanced optimal search embedded subtree mining

algorithm (BEST) is introduced for mining embedded subtrees from a database of

labelled rooted unordered trees. The extensive experiments on both synthetic and real

datasets demonstrate the efficiency of BEST over the two state-of-the-art algorithms

for mining embedded unordered subtrees, SLEUTH and U3.

Keywords: Frequent subtrees, labelled rooted unordered trees, embedded

subtrees, canonical form, enumeration approach.

1. INTRODUCTION

The problem of finding frequent subtrees from the tree structured data has

important applications in diverse areas including web mining, XML mining,

computer vision, network routing and bioinformatics. From the tree structured data,

frequent subtree mining discovers important patterns in the tree form showing the

distinct features of the data. For example, in [50] frequent subtree mining is used in

web log data to distinguish users according to their browsing behaviours on web. It

also facilitates other data mining tasks such as association rule mining, classification

and clustering.

The tree structured data is often represented in ordered form in which parent

and siblings relationships (i.e., fixed left-to-right order) are preserved. However, in

practice, the ordering among siblings is not always of great importance to users and

is not always available [126]. Unordered trees have shown the capability of

identifying interesting relations due to not being constrained by sibling conditions

[29, 35]. This distinct property of unordered trees, however, makes the process of

mining frequent subtrees more challenging in comparison to ordered trees. A huge

number of candidate generation occurs where subtrees with similar structure are

included. Besides, it is non-trivial to determine the “good” growth strategy and avoid

6 D.-N. Pham and S.-B. Park (Eds.): PRICAI 2014, LNAI 8862, pp. 459–471, 2014.
© Springer International Publishing Switzerland 2014

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 177

redundancy, as there can be many possible ways to extend an existing pattern in a

tree format, due to not having an order constraint in sibling nodes. Moreover, high

computational and memory expense are an ongoing issue for mining tree structured

data.

Two possible types of subtrees, Induced and Embedded, can be mined from the

tree data, preserving parental and ancestral relationships respectively. Mining

embedded subtree can be seen as a generalisation task of mining induced subtree that

is essential to mine interesting relational information inherent within deeply

embedded data objects in the tree database. It is a more difficult problem than

induced subtree mining as it requires examining several levels within a tree to

identify an embedded subtree [70].

In this paper we present an algorithm for mining unordered embedded subtrees.

Distinct from existing tree traversal methods [188], we have previously proposed an

optimal tree traversal algorithm for traversing a rooted unordered tree without

enforcing an order among sibling nodes [155]. We extended this traversing algorithm

by introducing a new heuristic that leads towards a new definition of canonical form

for representing unordered trees, called the balanced-optimal canonical form (BOCF)

[57]. The BOCF is able to represent unordered trees uniquely even in the presence of

isomorphism.

In this paper we study some properties of the BOCF and design an optimal

enumeration tree using BOCF that systematically enumerates all frequent embedded

subtrees based on the tree structure guided scheme. This enumeration approach is

efficient as it restricts the search by only generating the unambiguous and valid

subtrees using the underlying tree structure information. For growing the

enumeration tree as well as generating candidates, we define extension and join

operations. Finally, the balanced optimal search embedded subtree miner algorithm

(BEST) is proposed for mining embedded subtrees from a database of labelled rooted

unordered trees. Empirical analysis carried out using both real and synthetic data has

shown the effectiveness of BEST over the two state-of-the-art algorithms, SLEUTH

[70] and U3 [97].

178 Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

2. RELATED WORKS

For finding unordered frequent tree patterns, most of the proposed algorithms

use a canonical form and extend only candidates that are in the canonical form. A

sorted pre-order string canonical form that can be obtained in linear time was first

defined by [94]. A few more similar canonical representations based on depth-first

traversal and breadth-first traversal have been defined [90-92]. The proposed

method BEST uses the optimal traversal based canonical form (BOCF) that is robust

to isomorphism problem due to its order independence and use of optimisation.

Using BOCF, we proposed a tree structure guided scheme based enumeration

technique that uses both right-path extension and join to grow for mining unordered

embedded subtrees. None of the above state-of-the-art methods used similar structure

guided enumeration process. HybridTreeMiner uses extension and join operations for

growing the enumeration tree like BEST using the BFCF canonical form, but for

mining induced subtrees. Whereas, SLEUTH [70] is designed to mine embedded

subtrees and also uses extension and join operations for growing the enumeration

trees but the join is scope-list join via the descendant and cousin tests. More recent

methods UNI3 [98] and U3 [97] also proposed a tree model guided enumeration

where they used embedded level information, but we incorporated much more tree

information including level, fan-out and a new tree parameter called weight for

proposing the tree structure guided enumeration. Moreover they used only right path

extension for growing the enumeration tree and used depth-first traversal based string

representation which requires additional processing for tackling isomorphism. The

unordered embedded subtrees [142, 194] mining algorithm, Treefinder, can miss

some patterns especially for a lower support and others have been designed for

mining maximal embedded subtrees [142, 194].

3. MINING EMBEDDED FREQUENT SUBTREES

We present the balanced-optimal canonical form, BOCF. We describe the tree

structure guided scheme based enumeration approach and the proposed BEST

algorithm.

3.1 Preliminaries

Unless otherwise stated, all trees considered in the paper are rooted, labelled,

and unordered. Let T = (V, E, L) be a rooted labeled unordered tree, where V = {v0,

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 179

v1, v2, …, vn} denotes the set of nodes with v0 as root node, E = {(vi, vj)| vi, vj ∈ V} =

{e1, e2, …, en-1} denotes the set of edges and L denotes the set of labels. The label is

given by a function Φ: V → L which maps nodes with unique labels. The size of a

tree is denoted as |T| which is the number of nodes |V|. An unordered tree has no

ordering relationship among the nodes except ancestor-descendent or parent-child.

The ancestor-descendent relationship between two nodes is denoted by vi ≺ vj, i.e., vi

is ancestor of vj, the ‘≺’ symbol represents ‘precedes’. The level of a node vi in a tree

T is denoted as Lv(T, vi) and the height of a tree T is denoted as H(T).

Definition 1 (Embedded Subtrees): A tree T´(V´, L´, E´) is an unordered embedded

subtree of a tree T (V, L, E) iff: (1) V´ ⊆ V, (2) E´ ⊆ E, (3) L´ ⊆ L and the labelling of

V´ in T is preserved in T´ (4) ∀vi´ ∈ V´, ∀ vi ∈ V and vi´ is not the root node, then

ancestor of vi´= ancestor of vi, and (5) no left-to-right ordering among the siblings in

T is preserved among the corresponding nodes in T´.

Definition 2 (Equivalent Node): In a rooted labelled unordered tree T, if two nodes vi

and vj have the same label (labi = labj & labi, labj ∈ L), originated from the same

labelled parent node (parent of vi = parent of vj) and has the same labelled child nodes

then they are called equivalent nodes, denoted by vi ≅ vj.

Definition 3 (Weight of Node): Weight of a node vi (vi ≠ v0) is defined as the total

number of its equivalent node. For tree T, weight of node vi is wi such that wi = total

number of equivalent nodes of vi.

Definition 4 (Mining Unordered Embedded Subtree): Let Tdb is a database, where

each transaction is a labelled rooted unordered tree. The task of mining frequent

unordered embedded subtree from Tdb is finding all embedded subtrees that have

minimum support s.

Definition 5 (Support): Support s of a tree T´ in Tdb is defined as the number of trees,

T that has at least one occurrence of T´ as an embedded subtree in its structure.

3.2 Balanced Optimal Canonical Form (BOCF)

We first describe the balanced optimal canonical form (BOCF) for a rooted

ordered tree [57, 155]. A canonical form (CF) of a tree is a representative form that

can consistently represent many equivalent variations of that tree into one standard

180 Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

[90, 188]. The canonical forms for ordered and unordered subtrees are different. A

main difference is the possibility of having several subtrees showing different orders

between sibling nodes, even though, the information contained within the structure

remains essentially the same. Several ordered variations can be formed from a unique

unordered tree. This leads us to define Equivalent ordered trees [57].

Definition 6 (Equivalent Ordered Trees): Two distinct ordered trees T1 and T2 are

equivalent to each other if they represent same unordered tree T, denoted by T1 ≅ T2.

An example of equivalent ordered trees is given in Figure 1, where four rooted

ordered trees can be derived from a rooted unordered tree. We propose to represent

these ordered variations by a single canonical form following the optimal tree

traversing so that the same unordered tree is derived from each of them.

The canonical form, BOCF is defined by using the order obtained by traversing

the tree optimally [155]. BOCF is a string representation of a tree that records label

of each node along with its weight following the optimal order [57, 155]. This string

also includes four unique symbols, +1, -1, +2 and -2, to represent the breadthwise

movement from sibling to sibling and depth-wise movement from a child to its

parent. The symbols +1 and -1 are used for depth-forward and depth-backward travel

respectively. The symbols +2 and -2 are used for breadth-forward and breadth-

backward travel respectively. It is assumed that the alphabet of node labels includes

none of these symbols.

Figure 1: Four rooted ordered trees obtained from the same rooted unordered

tree. Different equivalent nodes are shown as highlighted; weights of nodes are

calculated accordingly

An Example: In Figure 1 the string encoding using BOCF of the four ordered trees

are (a) “0va, +1, 2vc, +1, 2vd, -1, -2, 1ve, +1, 1vd, -2, 1vf”; (b) “0va, +1, 2vc, +1, 2vd, -

1, -2, 1ve, +1, 1vd, +2, 1vf”; (c) “0va, +1, 2vc, +1, 2vd, -1, +2, 1ve, +1, 1vd, -2, 1vf”; (d)

“0va, +1, 2vc, +1, 2vd, -1, +2, 1ve, +1, 1vd, +2, 1vf”.

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 181

We prove that there exists a one-to-one correspondence between a labelled

rooted ordered tree and its BOCF.

Lemma 1: Each labelled rooted ordered tree corresponds to a unique balanced

optimal canonical form. Each valid balanced optimal canonical form corresponds to

a unique labelled rooted ordered tree.

PROOF: Since the traversing path of a tree is determined using an optimisation

model, each ordered tree from an equivalent group for that unordered tree actually

represents the same network. Consequently, the optimal traversal gives the same

traversing order to all equivalent ordered trees. BOCF is defined using this optimal

order along with some unique symbols to capture the sibling constraints for the

different ordered trees. As a result, each labelled rooted ordered tree will be

represented by a unique BOCF.

The second statement of the aforementioned lemma is proved by the induction

on the number of nodes N in a labelled rooted ordered tree. For the base case, when

N = 1, the valid string representation of BOCF is of the form 0labi, where labi (labi ∈

L) is the label of the single node vi; weight 0 indicates a root node. In this case, the

corresponding labelled rooted unordered tree is a single node, which is unique.

For simplicity of this proof we group all unique symbols of representing the

sibling constraints; let C be the group containing all the unique symbols for

representing constraints where C ∉ L and {-1, +1, -2, +2} ∈ C. So incorporating this

notation the string representation, S of BOCF can be represented as “S = “w0, lab0, C,

wi, labi, …”. For the induction step, we assume that, for each BOCF string

representation Sn with N = n nodes, there is a unique labelled rooted ordered tree in

corresponding to it. A valid BOCF string representation Sn+1 with N = n + 1 nodes is

of the form “Sn . . . C, wn+1, labn+1”. Sn determines a unique labelled rooted ordered

tree with n nodes. In addition, the last node (with label labn+1) becomes the rightmost

child of node n. As a result, the labelled rooted ordered tree Nn+1 corresponding to

Sn+1 is determined uniquely.

Consider the example in Figure 1, for a rooted unordered tree, different rooted

ordered trees and the corresponding BOCFs are obtained by assigning different

orders among the children of internal nodes. The BOCFs of equivalent ordered trees

182 Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

only vary in terms of breadth movement, which shows the order of siblings for

different trees that can be ignored for portraying the unordered tree. The BOCF

string representation of the rooted unordered tree is defined by a guided breadthwise

movement while forming the string of ordered trees. The rest of the ordering that

reflect ancestor descendent relationship is kept unchanged.

Definition 7 (BOCF String Representation of Unordered Tree): The BOCF string

representation of the rooted unordered tree is achieved by a guided record of sibling

node. When a new node is recorded under its parent node, only the breadthwise

movement from the existing rightmost sibling node is permitted.

By doing so, all equivalent ordered trees will be represent by a unique standard

form, which will be advantageous for unordered tree mining. Consider again the

example of Figure 1, using definition 7 the string representation of all four equivalent

ordered trees are: (a) “0va, +1, 2vc, +1, 2vd, -1, +2, 1ve, +1, 1vd, +2, 1vf”; (b) “0va, +1,

2vc, +1, 2vd, -1, +2, 1ve, +1, 1vd, +2, 1vf”; (c) “0va, +1, 2vc, +1, 2vd, -1, +2, 1ve, +1,

1vd, +2, 1vf”; (d) “0va, +1, 2vc, +1, 2vd, -1, +2, 1ve, +1, 1vd, +2, 1vf”, which are same

and represent the fact that they are originated from the same unordered tree.

Lemma 2: The BOCF construction procedure for unordered trees has time

complexity O (|T| log |T|).

PROOF: The optimal traversal algorithm gives O(|T| log |T|) time complexity where

|T| is the number of nodes in a tree. Implementing any of the three heuristics [57] of

optimal traversal for sorting nodes will give a possible time complexity of O(|T| log

|T|). Assuming there are |Tj| nodes in recursion j of the tree traversal for j =1, 2, …n,

it will take O(|Tj| log |Tj|) comparisons to sort nodes at recursion j. The total number

of comparisons for normalising the whole tree is log ()j j
j
O T T∑ , which is O(|T|

log |T|) (note that log ()j j
j

T T∑ ≤ log ()j
j

T T∑ = |T| log |T|). BOCF is driven

using the exact ordering of optimal traversal, therefore its construction complexity is

also O (|T| log |T|).

It can be noted that all equivalent ordered trees is represented by a unique

standard form and indicate that they are originated from the same unordered tree.

This greatly benefits unordered tree mining. The optimal traversal poses a total order

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 183

on all variants of the same unordered tree which guarantees the uniqueness of BOCF

for a labelled rooted unordered tree.

Figure 2: Automorphism problem

Handling the Isomorphism and Automorphism Problems: Two trees T1 and T2

are isomorphic to each other if a bijective mapping exists between their sets of nodes,

which preserves and reflects their structures, denoted as T1≅T2. If isomorphism

exists within a tree, then it is called automorphism. It is necessary to identify which

of the ordered subtrees belongs to an automorphism group of an unordered subtree in

order to ensure the exact count of its occurrences as well as the frequency. Therefore,

canonical form should be defined in a way that will uniquely map each subtree to a

single subtree during candidate generation. Existing research addresses this problem

by choosing one of the trees from the automorphism group as the representative of

the group, and then all other isomorphic subtrees are ordered according to the

representative of the automorphism group during candidate generation [70].

However, a checking is always required to find the presence of isomorphism in a

tree, which causes additional memory consumption for keeping the record of the

representative tree during the candidate generation phase, thus, the exact ordering

can be followed for generating other isomorphic subtrees.

Proposed BOCF addresses this problem [57] as follows. It gives a unique

representation to all isomorphic trees without requiring any representative tree record

or, any extra checking during candidate generation. Moreover, it naturally handles

the automorphism problem by using the concept of weights (Definition 3) to

represent equivalent nodes (Definition 2). The equivalent nodes for an unordered tree

should not be treated distinctively since their occurrences are important for mining,

not the inherent ordering between sibling nodes. Consider the following example

where the dotted area shows a case of automorphism problem for the considered tree.

184 Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

The proposed canonical form is derived based on the weighted tree as shown in

Figure 2 where automorphism can no longer exist.

Figure 3: Valid and invalid subtrees following tree structure guided scheme

3.3 The Enumeration Tree

In this section we define an enumeration tree that enumerates all embedded

unordered subtrees in Tdb according to their BOCFs. We used both right-path

extension and join operation for growing the enumeration tree. Previous research has

shown that the right-path extension produces a complete and non-redundant

candidate generation [195]. Due to the large number of potential growth, only using

extension for growing an enumeration tree can be inefficient, especially when the

cardinality of the alphabet for node labels is large [70, 90]. This emphasises the need

of using a join operation; however, it often generates invalid subtrees. Since we use a

tree structure guided scheme for enumeration, this generates valid subtrees only.

Tree Structure Guided Scheme Based-Enumeration: This enumeration is a

bottom-up approach that generates non-redundant candidates [55]. A candidate

generation technique can generate valid frequent and infrequent candidates as well as

invalid frequent and infrequent candidates. It is desirable to enumerate valid frequent

subtrees only to save memory and computational expense, instead of generating all

possible candidates and prune invalid and infrequent subtrees later.

To illustrate this, we show a simple tree structure as an example database in

Figure 3. We also show some possible valid and invalid subtrees that can be

generated from this example tree. The subtree that does not follow the available tree

structure information (i.e., the position of various nodes at various levels, ancestor-

descendent or parent-child relationship, number of child nodes under parent node,

etc.) is considered invalid. In our proposed tree structure guided scheme based

enumeration, we utilise underlying level and fan-out information of nodes during

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 185

candidate generation to make the approach structure guided. For efficiently growing

the enumeration tree we define the extension and join operations using BOCF and

the tree structure guided scheme.

Definition 8 (Extension): From a node vi (fan-out ≠ 0) of the BOCF tree T1,

extension is possible by adding a frequent label vj having a level > Lv(T1, vi). This

will result in a new BOCF tree T2 in the enumeration tree where vj will be the child of

vi. If T1 is a N-tree then the resultant new BOCF tree T2 will be a (N+1)-tree with a

height H(T1)+1. Further extension will be possible from this newly added right-most

node vj.

Before giving the definition of join operation, we define equivalent groups.

Definition 9 (Equivalent Group): If two N-node trees T1 and T2 have height H(T1) =

H(T2) and have the first N-1 nodes (along with labels and weights) common, they are

considered as equivalent group, denoted by T1 ≅ T2.

Definition 10 (Join): Join operation is a guided extension between two BOCF trees

T1 and T2 from an equivalent group, T1 ≅ T2. Assume vi and vj are the corresponding

right-most nodes of T1 and T2 respectively, where wi > wj or wi = wj with vi

lexicographically sorts lower than vj. By joining vj in T1 at the position of Lv(T1, vi)-1

will result in a new (N+1) node BOCF tree, denoted T1 ⨀ T2, of the same height as

BOCF tree T1.

Growth Rules: Candidate trees can have a large number of potential nodes to get a

right-path extension. In order to restrict this growth, heuristics can be employed. This

will result in reduction of the number of candidates generated as well as in the

reduction of the number of isomorphic subtrees. These rules support the basic

formation principle of the enumeration tree, i.e., keeping the N-tree BOCF

unchanged with the newly generated N+1- tree BOCF.

Rule1: Among all the nodes at the bottom level, the node that has the maximum

weight will be chosen for applying an extension.

Rule2: If there are more than two maximum weighted nodes then the node that has

the maximum children will be chosen for applying an extension.

186 Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

Rule3: If more than two maximum weighted nodes exist with the same number of

children then the node that appears lexicographically lower will be chosen for

applying an extension.

Figure 4: Comparison between the proposed and an existing enumeration technique

considering minimum support 1 and the dotted rectangles indicate invalid subtrees

An Example: We compare the enumeration tree generated by BEST with

another enumeration tree generated by SLEUTH [70] using an example database in

Figure 4(a). Considering all labelled nodes as frequent, the SLEUTH enumeration

tree grows as Figure 4(c), where the extension and join operations are defined using

another canonical form (Figure 4(c)) and are not following tree structure guided

scheme. In Figure 4(b), the proposed BOCF and the tree structure guided scheme

based BEST enumeration tree is shown, which is the complete enumeration tree for

the given database, whereas the state-of-the-art enumeration tree cannot be

completed due to limited space. If we continue, it will grow more. The dotted

rectangles in Figure 4(c) show an example of generated invalid subtrees in SLEUTH.

Figure 4(c) only shows some, a lot more is generated during the process, whereas no

invalid subtree is generated by BEST. It can be noted that the BEST enumeration tree

generates much less candidate trees in comparison to SLEUTH because the former

only produces valid subtrees. Consequently, a lot of memory space and additional

computational time can be saved that will be required to prune these invalid subtrees

afterwards. Empirical analysis ascertains these claims.

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 187

BEST Algorithm

Input: a database Tdb consisting of labelled rooted unordered trees in their BOCFs, a
dictionary containing level and fan-out information of each node, a user defined
minimum support (min_sup).
Output: All frequent embedded subtrees.

1. Result ←∅;
2. F1 ← the set of all frequent nodes;
3. F2 ← ∅;
4. while F1 ≠ ∅ do
5. for all tk ∈ F1 do
6. if fan-out(tk) = 0
7. continue
8. end if
9. Ext_can ← Enum (tk, level, weight, fan-out);
10. for all tk+1 ∈ Ext_can do
11. if support (tk+1) ≥ min_sup then
12. F2 ← F2 ∪ tk+1;
13. end if
14. end for
15. end for
16. F1← F2;
17. Result ← Result ∪ F1;
18. F2 ← ∅;
19. end while
20. return Result

Enum

Input: candidate Ck, level, weight, fan-out
Output: all (k+1) extensions of Ck
1. out ←∅;
2. for all frequent label f do
3. Select the right-most node of Ck using Growth rules;
4. Generate candidate Ck+1 by adding f; //using definition 8;
5. out ← out ∪ Ck+1;
6. end for
7. for all Ck´ such that Ck ≅ Ck´ do
8. Ck+1 ← Ck ⨀ Ck´; //using definition 10;
9. out ← out ∪ Ck+1;
10. end for
11. return out;

Figure 5: High level pseudo code of BEST algorithm

188 Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

3.4 The BEST Algorithm

The overall BEST algorithm is presented in Figure 5. The process of frequent

subtree mining is initiated by scanning a database, Tdb, where trees are stored as

BOCF strings along with weight, level and fan-out information of each node. The set

of frequent labels (frequent subtrees of size 1) is generated and larger sized subtrees

are generated by calling the Enum function recursively. In Enum (Figure 5), a subtree

is extended if the right-most node of the tree supports any of the three rules of

growing strategy. For implementing extension, the level difference of the right-most

node of the considered tree is checked with the frequent label and the new candidate

subtree is generated if the condition is met. Frequency of every resultant candidate

tree is computed according to the method used in [90]. This is an apriori based

frequency counting which gives us the exact frequent subtree list. In order to

improve computational efficiency, we stop counting of a subtree as soon as the tree

count reaches the minimum support value. Throughout the BEST algorithm the

downward-closure lemma [140] is hold; each N-subtree of a frequent N+1-subtree

has to be frequent. In the Enum function, we also used join for generating candidates

from equivalent groups that support the join operation and the frequency of each

subtree is calculated for further processing.

4. EXPERIMENTAL EVALUATION

We have performed extensive experiments to evaluate the efficiency of the

proposed BEST algorithm on real application data as well as on synthetic data. All

experiments have been conducted on a 2.8GHz Intel Core i7 PC with 8GB main

memory and running the UNIX operating system. SLEUTH [70] and U3 [97], used

for benchmarking, are designed for mining unordered embedded subtrees and are

most relevant to our proposed method.

Performance on Real Application Data - CSLOGS: In our experiments, we used

the CSLOGS dataset a real weblog data that consists of 59,691 trees, 716,263 nodes

and 13,209 unique node labels [70, 195]. This data set has been largely used to

evaluate various frequent subtree mining algorithms [70, 97].

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 189

(a)

(b)

Figure 6: Comparison over CSLOGS data based on runtime (a) and no of frequent

subtrees (b)

For evaluating the performance we consider the runtime and candidate

generation for all three algorithms. For CSLOGS dataset, BEST consistently

outperformed SLEUTH and U3 (Figure 6(a)). Although SLEUTH performs almost

same as BEST, but after a certain value of minimum support (1.5%) it took longer

time than the other two algorithms. For SLEUTH the number of candidate subtrees is

higher than the other two algorithms, i.e., it includes a lot of invalid subtrees during

enumeration, therefore, spends more time on candidate generation and pruning

afterwards. Besides, both SLEUTH and U3 require a canonical form test to avoid

isomorphism and take longer processing time than BEST.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 4.5 4 3.5 3 2.5 2 1.5

U3

SLEUTH

BEST

Minimum Support (%)

T
ot

al
 T

im
e

(s
ec

) aborted due to high run

12000

12500

13000

13500

14000

14500

15000

15500

16000

5 4.5 4 3.5 3 2.5 2

U3
SLEUTH
BEST

N
o

of
 F

re
qu

en
t S

ub
tr

ee
s

Minimum Support (%)

190 Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

From Figure 6(b), it can be observed that SLEUTH generated more frequent

subtrees in comparison to BEST, as it uses the opportunistic pruning technique which

does not fulfil the downward closure lemma and may generate pseudo frequent

subtrees [55].

Performance on Synthetic Data: Zaki’s tree generator [38] is used for generating a

synthetic data using following parameters: the number of labels N = 100, the number

of vertices in the master tree M = 10,000, the maximum depth D = 10, the maximum

fan-out F = 10 and the total number of subtrees T = 100,000. We used three synthetic

datasets: D10 had all default values, F5 had all values set to default except for fan-

out F = 5, and for T1M we set T = 1,000,000, with remaining default values. These

are used for doing scalability and sensitivity analysis.

In Figure 7(a) for D10 dataset, U3 performed better than the other two, but the

results for U3 are reported here for level difference one, otherwise the algorithm was

aborted due to very high memory expense. As we restricted the level difference value

to one, so the list of embedding subtrees is not completed and accordingly required

less time, whereas both SLEUTH and BEST retrieved all of the embedding subtrees

within reasonable time and memory expense.

For F5 dataset, we can see in Figure 7(b) BEST outperformed both SLEUTH

and U3. Here U3 results are again reported based on restricted level difference, still

BEST performed slightly better. Finally for T1M dataset we can see again BEST

performed a little better than SLEUTH for lower and higher support values. Again,

we only managed to run U3 for extracting embedded subtrees for level difference =

1, hence, it is not reporting the real time for extracting all embedded subtrees.

From these results we notice that both SLEUTH and U3 are sensitive to

breadth, for small breadth value (small tree width), these baseline algorithms took

high run time, as shown by F5 dataset (the fan-out number is less than D10 and T1M

datasets). When SLEUTH and U3 performed over F5, the runtime increased about 8

and 2 times respectively in comparison to runtime over D10 and T1M. BEST seems

not sensitive to this parameter and gives a consistent performance. It can be ascertain

that BEST is a robust and efficient algorithm in comparison to existing state-of-the-

art algorithms for mining embedded subtrees. It can tackle isomorphism using BOCF

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 191

canonical form and generates only valid subtrees using the tree structure guided

enumeration. These allow BEST to save reasonable amount of time and memory.

(a)

(b)

(c)

Figure 7: Comparison over D10 (a), F5 (b) and T1M (c) synthetic datasets

0

10

20

30

40

50

60

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

U3
SLEUTH
BEST

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

0

200

400

600

800

1000

1200

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

U3
SLEUTH
BEST

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

0

10

20

30

40

50

60

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

U3

SLEUTH

BEST

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

192 Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

5. CONCLUSION

In this paper, we presented a novel method for finding frequent embedded

subtrees, using an optimal canonical form, from the dataset of labelled rooted

unordered trees. We empirically evaluated the efficiency of the proposed method and

benchmarked with the well-known algorithms in the literature, over both real and

synthetic datasets.

Although finding the condensed representations of frequent patterns has found

more interest in recent years, developing efficient algorithms for finding frequent

patterns is still important. The efficiency of the algorithms for finding condensed

representations depends on the efficiency of the base, i.e., frequent pattern mining

algorithms. In future we will extend the proposed algorithm to find condensed

representations.

Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 193

Paper 6: FreeS: An Efficient Algorithm for
Mining Frequent Unordered
Embedded Subtrees

Israt Jahan Chowdhury* and Richi Nayak*

*School of Electrical Engineering and Computer Science, Queensland

University of Technology, GPO BOX 2434, Brisbane, Australia

PUBLISHED IN: Lecture Note in Computer Science: Web Information

Systems Engineering – WISE 2015 (Accepted)

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 195

Abstract7: Web data can often be represented in free tree form; however, free

tree mining methods seldom exist. In this paper, a computationally fast algorithm

FreeS is presented to discover all frequently occurring free subtrees in a database of

labelled free trees. FreeS is designed using an optimal canonical form, BOCF that

can uniquely represent free trees even during the presence of isomorphism. To avoid

enumeration of false positive candidates, it utilises the enumeration approach based

on a tree-structure guided scheme. This paper presents lemmas that introduce

conditions to conform the generation of free tree candidates during enumeration.

Empirical study using both real and synthetic datasets shows that FreeS is scalable

and significantly outperforms (i.e. few orders of magnitude faster than) the state-of-

the-art frequent free tree mining algorithms, HybridTreeMiner and FreeTreeMiner.

Keywords: Web data, free tree, canonical form, enumeration approach

1. INTRODUCTION

 In the Web domain, graphs and trees are commonly used data structures for

modelling information with complex relations. Free trees - the connected, acyclic and

undirected graphs - have become popular for presenting such data due to having

unique properties [54, 63, 64, 96]. For obtaining useful structural information, free

tree mining provides a good compromise between the more expressive but

computationally harder general graph mining and the less expressive but faster

sequence mining. As a middle ground between these two extremes, free trees have

been widely used for representing and mining data in diverse areas including web,

bioinformatics, computer vision and networks. For example, in analysis of molecular

evolution, an evolutionary free tree, called phylogeny, can describe the evolution

history of certain species [196]. In bioinformatics various useful patterns can be

treated as free trees during pattern mining [54]. In computer networking, multicast

free trees have been mined and used for packet routing [197]. Web access trees

treated as free trees give interesting insight about the browsing behaviour since they

do not take the point of entry into consideration [49].

7 J. Wang et al. (Eds.): WISE 2015, LNAI 9418, pp. 123–137, 2015.
© Springer International Publishing Switzerland 2015

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 197

The process of finding frequent subtrees incurs high cost due to the inclusion

of expensive but unavoidable steps like frequency counting and candidate subtrees

generation. Frequency counting step often requires subtree isomorphism checking

which is computationally hard, even known as NP-complete problem in graph

mining algorithms [54]. Exponential and redundant candidate generation is another

problem. During candidate generation, determining a “good” growth strategy is

critical as there can be many possible ways to extend a candidate subtree. These

problems become worse in free trees, due to being less-constrained structurally, in

comparison to other tree forms such as ordered and unordered. With these

complexities involved, only a few free tree mining algorithms are available in the

literature. Chi et al. developed an apriori-like algorithm FreeTreeMiner [90] as well

as an enumeration tree based algorithm HybridTreeMiner [96] to discover frequent

free subtrees in a database of free trees. Rückert et al. [54] and Zhao et al. [64] have

proposed algorithms for mining frequent free trees from a graph database. These

algorithms generate large number of false positives (i.e., invalid candidate subtrees)

during enumeration that need to be pruned in the frequency counting step. This

causes high processing time. Moreover, the necessity of performing isomorphism

checking to avoid redundant candidate tree generation and false frequency counting

causes additional computational complexity.

In this paper, we propose an algorithm, FreeS which is a fast and accurate

method for mining frequent free induced subtrees in a database of labelled free trees.

First, we propose a unique representation of free trees by introducing a new order-

independent balanced optimal canonical form (BOCF) that can effectively handle

the subtree isomorphism problem. We introduce conditions to conform free tree

candidate generation in their BOCFs for which the necessary proofs are also

provided. Second, we propose a tree-structure guided scheme based enumeration

approach that only generates valid candidate subtrees. To the best of our knowledge,

FreeS is the first algorithm that uses the underlying tree-structure information to

avoid invalid subtree generation while mining frequent free subtrees. Because of

using the optimal canonical form and tree-structure guided scheme based

enumeration, FreeS does fast processing. Our experiments with both synthetic and

real-life datasets confirm that FreeS is faster by few orders of magnitude than two

198 Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

leading free tree mining algorithms, HybridTreeMiner and FreeTreeMiner

(abbreviated as HBT and FTM respectively).

2. PRELIMINARIES

Let a graph constitute a set of nodes V = {v1, v2, …, vn} and a set of edges E =

{(vi, vj)| vi, vj ∈ V} = {e1, e2, …, en-1}. A labelled graph has a set of labels Σ, where a

function L: V ∪ E → Σ maps nodes with unique labels. A graph is connected but

acyclic when it has at least one node that is connected to the rest of the graph by only

one edge, which is leaf. For our purposes, the class of connected acyclic labelled

graphs is of special interest, which is also called free tree, an unrooted unordered

tree-like structure. In this paper, we denote a free tree with n nodes as n-free tree.

Let two free trees be t and T. t is a subtree of T if t can be obtained from T by

repeatedly removing one degree nodes from its structure. Free trees t and T are

isomorphic to each other if a bijective mapping exists between their set of nodes that

preserves node labels, edge labels and also reflects the tree structures.

Figure 1: Equivalent nodes and the condensed weighted representations of free trees8

Let Tdb be a database where each transaction is a labelled free tree. The

problem of frequent free tree mining is to discover the complete set of frequent free

subtrees. If tree T ∈ 𝑇𝑇𝑑𝑑𝑑𝑑 has a subtree isomorphic to subtree t, that indicates T has an

8 Tree nodes are represented using labels and the edge labels are ignored in this paper.

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 199

occurrence of t in its structure. Formally we define the support of subtree t in Tdb

using the concept of occurrence as follows,

Occurrence (t, T) = �1 𝑖𝑖𝑖𝑖 𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑇𝑇
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (1)

Support (t, Tdb) = ∑ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑡𝑡,𝑇𝑇) 𝑇𝑇∈𝑇𝑇𝑑𝑑𝑑𝑑 (2)

The subtree t is called frequent if Support (t, Tdb) ≥ minsup where minsup is

user-defined minimum support threshold.

In this paper, in a free tree, two adjacent nodes vi and vj with same label are

defined as equivalent nodes, denoted by vi ≅ vj. The weight of a node vi is defined as

the total number of its equivalent nodes and denoted by wi (as shown in Figure 1).

Using weights, we represent free trees of a database in a concise manner for further

processing. Figure 1 shows an example of two free trees and their corresponding

weighted representations by combining equivalent nodes (highlighted using different

color patterns).

3. CANONICAL FORM FOR LABELLED FREE TREES

A Canonical Form (CF) of a tree is a representative form that can consistently

represent many equivalent variations of that tree into one standard form [90, 188].

Several CFs have been proposed for rooted tree representations using traversing

algorithms such as depth-first-search (DFS) or breadth-first-search (BFS) [90].

However, defining CF for free trees is non-trivial as it requires handling the vast

variants that a free tree can have, i.e., the isomorphism problem. Due to the inherent

structural flexibility (e.g., undefined root node and no direction among sibling

nodes), there are more ways to represent a free tree than that of a rooted tree. A

canonical form is critical for appropriate representation and efficient processing of

free trees, because it ensures finding a common pattern amongst free trees. Before we

define CF of free trees, we explain the process for unordered rooted trees and extend

it to free trees.

3.1 Why Canonical Form Is Needed For Free Trees?

A rooted tree has a distinguished root node. A rooted tree that preserves order

among the sibling nodes is called rooted ordered. This type of trees can easily be

represented uniquely by using either the depth-first or the breadth-first string

200 Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

representations [90]. They do not face isomorphism. Two ordered trees will be

similar iff all of its properties are identical; no variation is possible in similar rooted

ordered trees [63]. Whereas, two similar unordered trees can have different orders

among sibling nodes and these trees are called isomorphic trees. A free tree is also an

unordered tree. The chance of having isomorphic trees in a database of free tree is

very high due to the flexible property of being unrooted and unordered. Representing

free trees using a systematic approach is non-trivial but critical to ensure its proper

indexing for further processing and knowledge discovery.

Optimal Order: we will now briefly describe the concept of optimal order that is

the basis of the proposed canonical form. An optimal order of a tree is an order

obtained by the balance optimal tree search (BOS) algorithm [155] that traverses a

rooted labelled tree uniquely, without the presence of sibling order information.

Unlike existing traversal strategies [188], this algorithm works based on optimisation

instead of enforcing a left-to-right order among siblings. Three heuristics are applied

recursively in this traversing algorithm to find out the optimum traversing path of a

tree. Heuristic 1 identifies a potential node during the traversal process. Heuristics 2

and 3 select the best node if multiple nodes are identified as candidates for traversal.

Heuristic 1 After the root node traversal, the children of the root node, i.e., {vi, vj,

…,vk} with weights {wi, wj, …,wk} become eligible for traversing. The traversal

order of these eligible nodes will be prioritized according to their ascending weights.

The node with the highest weight is chosen first.

Heuristic 2 If two or more nodes {vi, vj, …,vk} have the same maximum weight (i.e.

maximum weight = MAX{wi, wj, …,wk}), the next node in the traversal order is

selected based on the maximum number of their children (i.e., fan-out).

Heuristic 3 If two or more nodes hold the maximum weight with equal number of

children, the traversal order will be prioritized using the minimum lexicographical

order.

The optimal order is unique even for trees that are isomorphic. This property is

advantageous for mining frequent labelled free trees. For a free tree, several rooted

ordered tree variations are possible only by changing the position of root node and

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 201

the order among sibling nodes. An example can be seen in Figure 2, where a free tree

is treated as rooted unordered tree with root node “va” (Figure 2a). Considering va as

root node, several ordered variations of this free tree are shown in Figure 2(b, c, d, e).

Figure 2: Four rooted ordered trees obtained from the same rooted unordered tree

According to the BOS algorithm [155] the unique optimal traversal order of all

these equivalent ordered trees will be “va, vb, vc, vd, vc, vf”. In contrast, the BFS or

DFS traversal [90] will provide different traversing order for each equivalent ordered

tree because of its structure dependent strategy. It is desirable to obtain a unique

canonical form of an ordered tree representation; however, it is absolutely critical to

obtain a single canonical form for all equivalent variations of a free tree to allow

efficient indexing for further processing. The proposed optimal traversal strategy is

based on optimisation and is not sensitive to the structural changes. It gives the same

optimal traversing order for all equivalent ordered trees that originate from a same

free tree.

3.2 Balanced Optimal Canonical Form of Free Labelled Trees

If we can uniquely define root node of a free tree, then the optimal order can be

used to define its canonical form. In this paper, we propose a two-step process for

defining the canonical form of free trees. First, we normalise a free tree into the

rooted unordered tree by fixing a root node and then we define the canonical form as

well as canonical string.

Normalisation: This step includes a systematic approach to define a root node in a

free tree. Following the commonly used technique [63, 64, 96], all the leaf nodes

along with their incident edges in the free tree are removed at each step until a single

node or two adjacent nodes are left. The tree with a single remained node is called a

central tree and, the tree with a pair of remaining nodes is called a bicentral tree

[96]. With the remaining single node, this node becomes the root of the free tree.

202 Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

With the remaining two nodes, we apply heuristic 3 to obtain the root; therefore the

node with minimum lexicographically ordered label becomes the root node.

The overall normalisation takes O(|T|) time, where |T| is the number of nodes in

the free tree. Figure 3 shows the process of obtaining the root node from the free

trees.

Figure 3: Process of finding a root node in free trees

Canonical Form and String: After the free tree is normalised to a rooted unordered

tree, the balanced optimal canonical form can be defined as follows:

Definition 1 (Balanced Optimal Canonical Form): For a rooted labelled unordered

tree, the balanced optimal canonical form is its optimal order of node labels along

with corresponding weights.

A canonical string representation for labelled trees is equivalent to, but

simpler than, canonical forms which facilitates frequency counting of trees in a

database. For a balanced optimal canonical string encoding, we introduce four unique

symbols +1, -1, +2 and -2 to specify directions on depth and breadth. More

specifically, +1 and -1 are used to represent forward and backward travel towards

depth between child and parent nodes; +2 and -2 are used to represent forward and

backward travel towards breadth between sibling nodes respectively. We assume that

none of these symbols are included in the alphabet of node labels. The canonical

string representation of the rooted unordered tree is achieved by a guided record of

sibling nodes,–“under a parent node, a new node will always be recorded in a

breadthwise direction from the existing rightmost sibling node.”

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 203

Figure 4: Balanced optimal canonical form of free tree

Example: For all the equivalent trees in Figure 2 with the unique optimal order “va,

vb, vc, vd, vc, vf , the balanced optimal string representation of these trees will be “1va,

+1, 2vb, +1, 2vc, -1, +2, 1vd, +1, 2vc, -2, 1vf”. Similarly, the optimal canonical string

of the free tree in Figure 4(a) will be “1vc, +1, 2vd, +2, 1va, +2, 1vb, +1, 2va, -1, -2,

+1, 1va, +2, 1vc” and for the tree in Figure 4(b) will be “1va, +1, 2vb, +2, 2va, -2, +1,

2vc, -1, +2, +2, 1vb, +1, 1va, +2, 1vc, +2, 1va, -2, -2, +1, 1vc, -1, +2, +1, 1vd”.

The isomorphic free trees can be successfully tracked because of having the

same balanced optimal string representation. This ensures correct frequency counting

for the processing of frequent subtrees. During the mining process, tree structural

information such as level, weight, fan-out is stored that allows to differentiate the

same alphabet appearing in different position. For sorting the optimal order it

requires O (|T| log |T|) complexity, where |T| is the number of nodes in a tree.

The balanced optimal canonical forms of free tree and rooted unordered tree

embrace an interesting relationship which is described under Lemma 1. This relation

is a fundamental step for growing the enumeration tree of free trees

Lemma 1: Balanced optimal canonical form of a free tree is always the balanced

optimal canonical form of a rooted unordered tree; however, the reverse is not true.

PROOF: Consider a free tree T, with v1, v2, …,vn nodes, with its balanced optimal

canonical form tv1 that has a normalised root v1. The n-number of different rooted

unordered trees can be derived in their balanced optimal canonical forms tv1; tv2; …;

204 Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

tvn by changing the position of root in T. Only one of the balanced optimal canonical

forms of these rooted unordered trees will have the same balanced optimal canonical

form as the free tree, e.g. tv1.

Prior to detailing our FreeS algorithm, we add following two lemmas that

introduce important conditions which are essential to hold true during candidate free

subtree enumeration through the balanced optimal canonical form representation.

Fist we give the definitions of tree dimensions including depth, height and level [84].

Definition 2 (Depth, Height, Level of Node): For node vi of a tree T, depth is the

length of the unique path from that node towards the root node, denoted by d(T, vi).

The height h(vi) of node vi is the longest path from that node to a leaf. The height H

of a tree is the height of root node, h(v0). The level of a node vi in a tree T is defined

as Lv(T, vi) = H - d(T, vi).

Lemma 2: Balanced optimal canonical form of a rooted unordered tree T with two

nodes is balanced optimal canonical form of a free tree iff the root node has

lexicographically minimum label.

PROOF: T is a rooted unordered tree with two nodes, where v0 is root and v1 is its

child. The optimal canonical form will be generated based on its optimal order, i.e.,

“v0, v1”. Let us consider case 1, where root node v0 has lexicographically minimum

label. In this case treating T as free tree will end up having same canonical form as

the rooted unordered tree, since a free tree considers the node with lexicographically

minimum label as the center. Now consider case 2, where label of root node v0 is

higher than v1. In this case the canonical form of free tree will be different than the

rooted unordered tree, since v1 will be the center instead of v0.

Lemma 3: Balanced optimal canonical form of a rooted unordered tree, T with 3 or

more nodes and height H is balanced optimal canonical form of a free tree iff the

following conditions hold:

1. The root has at least 2 children;

2. The root node has lexicographically smaller label than the labels of its children;

and

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 205

3. One branch or subtree induced by a child of the root has a leaf node, vi positioned

at level Lv(T, vi) = 0 (bottom level of the tree) and at least another branch or one

subtree induced by another child of the root has a leaf node, vj positioned at level

Lv(T, vi) ≤ 1 (at most one level up than the last level).

PROOF: For a rooted unordered tree T in its balanced optimal canonical form, we

denote the root of T by v0 and the children of v0 by v1; …; vm. Let us consider case 1.

Tree T has 3 or more nodes and v0 has only one child. It indicates that the rest of the

nodes are appeared in that tree as child nodes of the immediate child of the root node.

The node v0 will be removed in the first step of finding center/bicenter.

Consequently, v0 cannot be the center or one of the bicentres. Therefore condition 1

will be held in this case. Let us consider case 2 when the root node v0 has more than

one child. This indicates that the leaf node of a subtree induced by one of v1; …; vk is

at the bottom level of tree T. Assume this child to be vj. If none of the subtrees

induced by other child node of v0 has a leaf node at the bottom level or second last

level of tree T, then v0 cannot be the center or one of the bicentres. This is because

the center (or the bicenter) must be a node (or nodes) of the subtree induced by vj.

Without the loss of generality, we assume the subtree tv1 induced by v1 has a leaf

node at the bottom level of tree for which the path from root is H. The subtree tv2

induced by v2 has a leaf node either at the last level or second last level. Therefore

the path of that leaf node from root is either H or H-1. Now 2H or 2H-1 will be the

length of path considering from the bottom-level leaf of tv1 to the bottom-level leaf of

tv2 which makes v0 as the center or one of the bicenters of the free tree. Therefore,

condition 3 holds. Besides in case 2, it is essential to hold the condition 2 true, when

T turns out to a bicentral tree and v0 will only become the center if it has

lexicographically minimum label.

4. FREQUENT FREE SUBTREE MINING ALGORITHM: FREES

FreeS consists of two main steps: (1) candidate subtree generation using the

enumeration tree; and (2) frequency counting to determine frequent subtrees.

4.1 Candidate Subtree Generation using Enumeration Tree

Using the proposed balanced optimal canonical form of free trees and other

tree structural information from a database, we define an enumeration tree that lists

206 Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

all subtrees in Tdb, in their balanced optimal canonical forms. Since the underlying

tree structure information is used for defining the enumeration tree, it is called tree-

structure guided scheme based enumeration. To the best of our knowledge, FreeS is

the first algorithm where this enumeration approach is used to generate candidate

free trees.

Tree-Structure Guided Scheme based Enumeration Tree: The task here is

enumerating a complete and non-redundant list of candidate subtrees from a given

database. A candidate enumeration technique can generate both valid and invalid

candidates. A candidate subtree is called valid if it exists in the considered database

[58]. It is desirable to enumerate only the valid subtrees in order to reduce the

computational efforts, instead of generating all possible candidates and prune invalid

subtrees later. The tree-structure guided scheme based enumeration allows invalid

subtrees, which will never be significant in spite of being frequent, to be excluded

from counting the number of candidate trees. It utilises the tree structural information

such as level, weight and fan-out of nodes, which are learned from a given database,

in determining a valid subtree. This information is obtained after the free trees are

normalised to rooted unordered trees. Instead of testing whether a tree actually exist

in the database that is computationally expensive, a subtree is considered valid if it

conforms to the tree structural information

Extending the Enumeration Tree: The right-path extension and join operations

have been used to grow the enumeration tree. Previous research has shown that the

right-path extension produces a complete and non-redundant candidate generation

[38, 90, 96]. However, the use of extension alone for growing enumeration tree can

be inefficient because the number of potential growth may be very large, especially

when the cardinality of alphabets for node labels is large [90, 96]. This shortcoming

necessitates of using a join operation; however, it often generates invalid subtrees.

FreeS controls it by using the tree-structure guided scheme based enumeration. The

basis of growing the enumeration tree of free trees is as follows: By removing the last

leg (node along with edge), i.e., the rightmost leg at the bottom level, of a (n+1)-free

tree BOCF will result in the BOCF for another n-free tree. The definitions of two

operations for extending the enumeration tree are as follows.

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 207

Figure 5: Sample database of labelled free trees (a), enumeration tree for free trees

using tree structure guided scheme in FreeS (b) enumeration tree using the approach

from HBT algorithm (c) (the dotted line with arrow is showing the candidates that

are generated using join operations in HBT, and the dotted rectangle is showing the

invalid candidate tree)

Definition 3 (FreeS-extension): For node vi (fan-out ≠ 0) of a n-free tree in its

balanced optimal canonical form tv, an extension is possible by applying every

frequent node label vj that has a level equal to Lv(tv, vi)-1. This extension operation

will result in another balanced optimal canonical form tꞌv of a new (n+1)-free tree,

with vj child of vi, in the enumeration tree iff conditions of Lemma 2 and 3 are held.

Further extension is possible from this new right-most node vj iff conditions are

fulfilled again.

Before giving the definition of FreeS-join operation, we define equivalent

group.

Definition 4 (Equivalent Group): If two balanced optimal canonical forms tv and tꞌv

of two n-free trees that have equal height H and common first n-1 nodes (along with

labels and weights), they are considered as equivalent group, denoted by tv ≅ tꞌv.

Only the nth node of each of these trees that appear last in their canonical forms are

different.

208 Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

Definition 5 (FreeS-join): Join operation is a guided extension between two free

trees in balanced optimal canonical forms tv and tꞌv, that are members of an

equivalent group, tv ≅ tꞌv. Assume, vi and vj are the corresponding right-most node of

tv and tꞌv, where wi > wj or, wi = wj with vi lexicographically sorts lower than vj. By

joining vj in tv at the position of Lv(tv, vi)-1 will result in a new (n+1) node balanced

optimal canonical form of free tree, denoted by tv ⨀ tꞌv, of the same height as tree tv.

The join operation does not change the height or the level position of leaf

nodes of a newly generated candidate tree, therefore Lemma 2 and 3 are not

considered. As in the tree-structure guided approach, the enumeration tree growth is

guided by the prior learned tree structure information. Therefore only valid subtrees

are expected to be generated as candidate trees.

Consider an example database in Figure 5(a), where for minimum support 1,

we compare the enumeration tree (Figure 5(b)) used by FreeS with the enumeration

tree (Figure 5(c)) used by the HybridTreeMiner (HBT) method [96]. HBT also uses

the right-path extension and join operations for growing the enumeration tree, but,

these are defined using a different canonical form (Breadth First Canonical Form)

[90], whereas we use BOCF and the tree-structure guided scheme for growing the

enumeration tree. The dotted rectangles in (Figure 5(c)) show the generation of

invalid subtrees in HBT. We only show a small part of the enumeration tree for HBT.

If it is continued, it will grow in a much bigger size and will result in much higher

numbers of invalid subtrees. In contrast, Figure 5(b) is the complete enumeration tree

of the considered database for FreeS.

It can be clearly seen that the FreeS enumeration tree generates much less

candidates in comparison to HBT enumeration tree because of producing only valid

subtrees. Generation of invalid subtrees causes extra memory space and then,

pruning of these subtrees causes additional computational cost for existing methods.

4.2 Frequency Counting

For counting frequency we modified the method described in [90, 96], which is

basically an apriori like frequency counting that gives the exact support measure of

each candidate subtree by maintaining an occurrence list. We used a catching

technique to make the process of keeping occurrence list more efficient, which is

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 209

“stopped counting tree when the ID counter reaches the min support”, therefore the

occurrence list becomes smaller than usual.

FreeS Algorithm

Input: Balanced optimal canonical form strings of labelled free trees present in a database
Tdb; level, weight and fan-out information of each node, minimum support (minsup)
threshold.
Output: All frequent free subtrees.

1. Result ←∅;
2. Frq1 ← the set of all frequent subtrees of size 1;
3. Frq2 ←∅;
4. while Frq1 ≠ ∅ do
5. for all c ∈ Frq1 do
6. if fan-out(c) != 0
7. Candidate ← Enumeration (c, Frq1, level, weight, fan-out);
8. end if
9. for all Ɛ´∈ Candidate do
10. if support (Ɛ´) ≥ minsup then
11. Frq2 ← Frq2 ∪ Ɛ´;
12. end if
13. end for
14. end for
15. Frq1← Frq2;
16. Result ← Result ∪ Frq1;
17. Frq2 ← ∅;
18. end while
19. return Result

Figure 6: High level pseudo code of FreeS algorithm

Enumeration (lk, Frq1, level, weight, fan-out)

1. Output ←∅;
2. for all Ɛ ∈ Frq1do
3. Enumerate candidate lk+1 by adding Ɛ; /* Using FreeS-extension */
4. Output ← Output ∪ lk+1;
5. end for
6. for all equivalent groups in Output do
7. lk+2 ← lk+1 ⨀ l´k+1; /* Using FreeS-join and lk+1 ≅ l´k+1 */
8. Output ← Output ∪ lk+2;
9. end for
10. return (Output)

Figure 7: High level pseudo code of candidate generation

210 Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

Figures 6 and 7 list the overall enumeration approach and the FreeS algorithm.

The process of frequent subtree mining is initiated by scanning the database Tdb,

where free trees are stored as BOCF strings along with weight, level and fan-out

information of each node. The set of frequent subtrees of size 1 is generated and the

Enumeration method (in Figure 7) is called recursively for generating the candidates

of larger sized subtrees. The frequency of every resultant candidate tree is computed.

The full pruning is also performed to ensure downward-closure lemma [140]. But

full pruning is expensive; therefore to accelerate this process we cease the frequency

checking for a subtree belong to (K-1) set as soon as the K subtree is found frequent.

5. EMPIRICAL ANALYSIS

The efficacy of FreeS is shown by conducting systematic experiments using

both real-life and synthetic datasets. FreeS is benchmarked with the most relevant

and leading algorithms FreeTreeMiner (FTM) [90] and HybridTreeMiner (HBT)

[96] which are designed to mine frequent free subtrees from a database of labelled

free trees. All experiments have been done on a 2.8GHz Intel Core i7 PC with 8GB

main memory and running the UNIX operating system.

CSLOGS: This real-life dataset has been widely used in evaluating various tree

mining algorithms. CSLOGS [38, 70] contains web access trees of the CS

department of Rensselaer Polytechnic Institute during one month. There are a total of

59,691 transactions and 13,209 unique node labels (corresponding to the URLs of the

web pages).

Figure 8(a) shows that FreeS can find the same amount of subtrees in

significant lesser time than its counterparts. Results show that below a certain

support threshold (0.25%) the number of frequent trees explodes that causes huge

memory consumption for HBT and consequently, the software automatically aborts

the process. For calculating support of free trees, HBT uses occurrence list that

makes the process faster, but, it is responsible for high memory usage too. FreeS

performs this step within the memory size even for smaller minimum support

threshold such as 0.15% because of using modified occurrence list. FTM does not

suffer from the memory exhaustion problem though; however the run time increases

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 211

drastically for smaller supports due to the lack of efficient frequency counting and

inclusion of the expensive apriori candidate generation.

(a)

(b)

Figure 8: Run time comparison (a) and completeness test (b) using CSLOGS data (a

log10 scale is used in Y axis)

The runtime performance of FreeS is few orders of magnitude better than HBT

and FTM due to several reasons. (1) FreeS uses tree-structure guided based

enumeration tree that allows enumerating only valid subtrees. (2) BOCF is defined to

enumerate only one free tree for either of central or bicentral free trees, hence the

occurrence list only keeps record of one tree. (3) A catching technique assists in

keeping the occurrence list shorter. On the other hand, HBT can’t avoid generating

invalid candidate subtrees during enumeration, which results in extra memory

consumption. HBT may also enumerate two free trees from a bicentral tree because

of the supplementary canonical form concept [96]. Consequently, it will keep record

of both trees which increases the size of the occurrence list.

0.1

1

10

100

1000

0.15 0.2 0.25 0.3 0.4 0.5 1 2

HBT FTM FreeS

R
un

 T
im

e
(S

ec
on

ds
)

Minimum Support (%)

Aborted due to out of memory

Aborted due to high runtime

1

10

100

1000

10000

0.25 0.3 0.4 0.5 1 2 3 4

HBT

FTM

FreeS

N
um

be
r

of
 F

re
qu

en
t T

re
es

Minimum Support (%)

212 Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

Results in Figure 8(b) show that FreeS extracts the same amount of frequent

patterns as the other state-of-the-art methods. The tree model guided enumeration

employed in FreeS does not generate any invalid trees but does not miss on any valid

trees. All three algorithms satisfy the completeness property and do not miss any

frequent patterns since they all used full pruning (downward closure lemma), not an

opportunistic pruning. This shows the accuracy of FreeS in finding subtrees.

(a)

(b)

Figure 9: Memory usage comparison using dataset D1 (a log10 scale is used in Y

axis)

Synthetic Data Sets: We conducted few more experiments using synthetic datasets

with varied properties to support all of the above findings. The synthetic data sets

were generated by a tree generator as described in [38]. The dataset called D1 is

created using following parameters: the number of labels L = 10, the number of

vertices in the master tree M = 100, the maximum depth D = 10, the maximum fan-

out F = 5 and the total number of subtrees T = 5000. Such characteristics reflect the

0.1

1

10

100

1000

0.6 0.8 1 1.5 2 3 4 5 10

HBT
FTM
FreeS

R
un

 T
im

e
(s

ec
on

ds
)

Minimum Support (%)

1

10

100

1000

0.6 0.8 1 1.5 2 3 4 5 10

HBT

FTM

FreeS

M
em

or
y

U
sa

ge
 (M

B
)

Minimum Support (%)

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 213

properties of web-browsing but not of very large databases. Result in Figure 9(a)

shows that FreeS requires less runtime than HBT and FTM as expected. The memory

consumption is also low for FreeS, whereas for being the small dataset the other two

can also perform within the given memory size, Figure 9(b).

The dataset called D2 is generated using high fan-out, F = 20 with low number

of labels L =10 and a moderate size dataset T = 10,000. The rest of the parameters

are kept the same. This makes D2 having wider trees than the deep trees. The

isomorphic problem is known to occur more commonly when trees have several

siblings at same label. This facet of experiment will support the claim that FreeS can

handle isomorphism more effectively than any other algorithms due to the use of

BOCF.

(a)

(b)

Figure 10: Runtime (a) and memory (b) comparison using dataset D2 (a log10 scale is

used in Y axis)

0.1

1

10

100

1000

2 2.5 3 4 5 7.5 10 20

HBT
FTM
FreeS

Aborted due to out of memory R
un

 T
im

e
(S

ec
on

ds
)

Minimum Support (%)

1

10

100

1000

2 2.5 3 4 5 7.5 10

HBT
FTM
FreeS

Out of memory

M
em

or
y

U
sa

ge
 (M

B
)

Minimum Support (%)

214 Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees

As shown in Figure 10, FreeS consumes much less processing time in

comparison to other methods. It happens as FreeS does not generate a candidate tree

multiple times because of using BOCF that ensures same identity for all isomorphic

trees. Therefore, no additional test is required for checking the presence of

isomorphism during frequency counting. In contrast, the state-of-the-art algorithms

perform a mandatory isomorphism checking which makes them more expensive

(Figure 10(a)).

Figure 10(b) shows that HBT consumes larger memory space than FTM and

FreeS, and it becomes worse for smaller support thresholds. As explained before,

FTM does not use occurrence list for frequency counting but computes the

occurrences of each free tree. Therefore, it saves memory but consumes additional

computational time. The usage of occurrence list becomes a pressing concern in

terms of memory for large data, especially when the support threshold is low, but

allows fast and efficient frequency checking. The catching mechanism employed in

FreeS makes it consume less memory as well as the enumeration strategy does not

generate any invalid subtrees, therefore FreeS can offer a good trade-off between

memory usage and runtime.

6. CONCLUSION

In this paper, we consider an important problem of mining frequent free

subtrees from a collection of free trees. We proposed a computationally efficient

algorithm FreeS to discover all frequent subtrees in a database of free trees. A novel

balanced optimal canonical form is introduced that ensures unique identity of

frequent free trees even in presence of isomorphism. Because of this canonical form

the isomorphism problem can be handled, that is responsible for computational

complexity in this process. Moreover, the proposed tree-structure guided scheme

based enumeration enables FreeS to reduce the cost for candidate generation by

enumerating only valid subtrees. We modified the efficient apriori like occurrence

list based frequency counting method that ensures less memory consumption.

Our empirical analyses show FreeS is scalable to mine frequent free trees in a

large database of free trees with low support thresholds. In future we are planning to

extend our algorithm for mining free trees in graph database.

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 215

Chapter 6: Conclusions

The omnipresence of tree data is noticeable in multitudinous domains such as

web, computational biology, pattern recognition, XML databases and computer

networks [14, 17, 19, 22, 61]. Mining tree databases is non-trivial and arises many

issues in discovering knowledge due to the presence of hierarchical relationships,

structural flexibility and enormous data expansion. This thesis focuses on mining the

databases of labelled unordered trees, which is more challenging than mining the

popular ordered tree type databases. This is because the flexibility in unordered tree

structure causes issues with their representation, which affects their further

processing.

The broad research objective of this study was discovering knowledge from the

databases of labelled unordered trees in an efficient and scalable manner. In order to

achieve the objective, this thesis presented algorithms for frequent subtree mining

and tree matching, using novel and effective tree representation.

6.1 SUMMARY OF CONTRIBUTIONS

Based on the literature review as presented in Chapter 2, the following

shortcomings were noted:

− Lack of current tree representation methods including tree traversing,

canonical form and adjacency matrix for rooted unordered and free trees.

− Lack of an efficient and scalable tree matching algorithm for unordered

trees.

− Lack of efficient frequent rooted unordered subtree algorithms.

− Lack of an efficient frequent free subtree mining algorithm.

This thesis has aimed to overcome these shortcomings by proposing novel tree

representations, frequent subtree mining and tree matching algorithms. Firstly, in this

thesis a novel balance-optimal-search traversing algorithm is proposed that provides

an optimal traversal order for trees without relying on sibling orders. The canonical

string-based representation, called balanced optimal canonical form, is proposed for

Conclusions 217

rooted unordered trees and free trees. These canonical forms ensure one-to-one

mapping between a labelled tree and a string by ensuring unique identity of

isomorphic trees. This thesis also explored the matrix representation of trees and

proposed two adjacency based matrix representations with information embedded in

tree structures. These matrix representations ensure unique identity for the variations

of the same unordered tree that is lacking in the traditional adjacency matrix

representation.

Secondly, a tree matching algorithm is proposed for finding similarities

between unordered tree pairs. One of the algorithms uses the Augmented Adjacency

Matrix (AAM) for representing unordered trees and a cosine similarity metric is used

for calculating the pairwise similarity. The cosine metric is modified for making it

compatible with matrix computation. The other algorithm uses Extended Augmented

Adjacency Matrix (EAAM)-based comparison for measuring similarities between

trees. The EAAM matrix uses not only the embedded tree information along with

adjacency but also uses knowledge of the considered database for representing the

tree data. The similarity scores obtained by the matching algorithm based on each

representation are utilised in clustering the unordered tree data. Empirical analysis

shows the efficacy of this algorithm in clustering and establishes that the matrix-

based comparison method is more computationally efficient than the traditional edit

string operation based method, i.e., tree edit distance-based method.

Thirdly, algorithms for mining frequent subtrees for databases of labelled

unordered and free trees are introduced, based on the canonical form BOCF.

BOSTER is a tree structure guided scheme-based enumeration tree for systematically

enumerating all frequent rooted unordered induced subtrees. BEST is a frequent

rooted unordered embedded subtree mining algorithm using the tree structure guided

scheme-based enumeration tree with the extension and join operations defined with

changed level conditions of nodes. FreeS has been designed to extract frequent

induced subtrees from the databases of free trees. Considering the literature review,

FreeS is the first algorithm that has used the tree structure guided scheme-based

enumeration for mining frequent free trees. These algorithms have addressed three

different frequent subtree mining problems focusing on different tree types as inputs

and different types as subtrees. The extensive experimental studies have been

218 Conclusions

conducted to demonstrate the performance of the proposed algorithms as well as to

compare the performance with the state-of-the-art algorithms.

6.2 SUMMARY OF FINDINGS

This section presents the main findings derived from this thesis:

− In response to Research Question 1, an optimisation-based tree traversal

approach, new canonical forms and adjacency matrices are proposed in this

thesis and the main findings are the following:

o The BOS traversal ensures identical encoding of isomorphic rooted

unordered and free trees. Unlike the BFS and DFS traversal, BOS is

using optimisation for traversing trees, therefore the structural

flexibilities (i.e. sibling ordering) does not impact the traversing order

as well as encoding.

o The AAM and EAAM adjacency matrices ensure identical

representation for all variations of an unordered tree. Moreover, these

matrices include more tree structural information in addition to

adjacency information. With the proposed tree matching algorithm,

these matrices showed improved accuracy performance over the

traditional adjacency matrix in finding the trees pairwise matching

(16% improvement in the value of FScore).

o BOCFs ensure a common identity to a rooted unordered tree or a free

tree in the presence of isomorphism without performing an expensive

operation for finding the representative canonical form of the

isomorphic trees from the sorted BFCF or DFCF string encodings.

This unique characteristic of BOCFs allows it to save a significant

amount of time during processing of the frequent unordered and free

subtree mining algorithms.

o An optimisation based representation that does not depend upon the

sibling ordering can produce better results in any further manipulation

like tree matching and frequent subtree mining.

− In response to Research Question 2, the proposed tree matching algorithm

uses a matrix (e.g., AAM and EAAM)-based comparison instead of string

Conclusions 219

edit operations for measuring similarities. The following findings can be

summarised.

o The proposed AAM matrix-based tree matching algorithm requires

significantly less computational time than the tree edit distance based

methods, without compromising the accuracy of output. Incorporating

optimal encoding and matrix calculation into the proposed method

allows saving a significant amount of computation time. Any matrix-

based computation is very fast and requires almost no time for

processing, which motivated to represent trees in equivalent matrices

and avoid the expensive edit string operation for calculating the

approximate similarity score between a pair of trees. The optimal

order allows the proposal of a matrix form that ensures identical

representation of isomorphic unordered trees; also the additional tree

information in AAM form offers more accuracy while processing the

similarity calculation. The baseline algorithms [79, 112, 124] showed

exponential complexity after reaching a tree size in the range of

60~65 nodes, while the proposed method yields a fraction of second

runtime to determine pairwise similarity.

o The proposed EAAM-based similarity measure method led to more

accurate clustering results than the benchmark methods [77] through

incorporating additional database specific knowledge in tree

representation. A tree database, in which hierarchical relations of tree

structures are frequent, can be found using a frequent subtree mining

algorithm; adding this piece of information during the representation

of tree structured data ensures more accuracy in its further

manipulating processes, like tree matching and clustering. The results

show that the proposed algorithm gives more accurate (on an average

10-15% improvement in FScore value) tree matching than the

baseline as well as ensuring better clustering output.

− In response to Research Question 3, the proposed frequent subtree mining

algorithms use the BOCF canonical form and an effective tree structure

guided scheme-based enumeration tree for improving computational

efficiency. All of these algorithms are compared against the popular and

220 Conclusions

relevant benchmark algorithms using both synthetic and real life datasets.

The experimental results indicate the following findings.

o All these algorithms can handle isomorphism issues more effectively

than the state-of-the-art methods due to using BOCF representation.

For example, while performing on a synthetic dataset with presence of

isomorphic trees, the BOSTER algorithm is able to save 73.55%

runtime in comparison to the UNI3 [98] algorithm for a small support

threshold of 0.15%, while the HBT [96] algorithm could not even

perform due to high memory usage. BEST has also been shown to

save reasonable amounts of time and memory because of using

BOCF. In FreeS algorithm, significant runtime improvement is

achieved with reasonable memory use while performing on a

synthetic dataset that has high probability of the presence of

isomorphic trees.

o The BOSTER algorithm has shown consumption of less memory and

less runtime for mining frequent rooted unordered induced subtrees,

in comparison to the benchmarks, even in the presence of large data.

Using the CSLOGS data, BOSTER is able to extract all induced

subtrees a lot faster and with one order of magnitude less memory

consumption than HBT [96], whereas UNI3 [98] could not even finish

extracting the complete list of frequent subtrees due to excessive

usage of memory.

o BEST outperforms SLEUTH and U3 algorithms [70, 97] in terms of

runtime and memory usage without missing any frequent subtree

generation. The tree structure guided scheme-based enumeration tree

of BEST uses both join and extension operations to grow, which

ensures faster computation compared to other algorithms. BEST also

successfully avoids generating invalid subtrees as well as it does not

need to save an additional data structure (e.g., embedding list) for

checking isomorphism like U3. These improvements allow BEST to

perform computations in memory.

Conclusions 221

o FreeS is the first algorithm that utilises a tree structure guided

scheme-based enumeration tree for its candidate generation. This

enumeration approach allows shortening the list of candidate trees,

resulting in less memory utilisation in processing. FreeS has been

found very fast using both real and synthetic datasets. It outperforms

HybridTreeMiner [96] and FreeTreeMiner [63] by reducing the

runtime expense (few orders of magnitude) without missing any

frequent subtrees. The algorithm has also performed in memory for a

large real life data while the other benchmark algorithms show an out

of memory problem. The usage of a scalable enumeration approach,

BOCF and modified occurrence list allows saving a lot of memory for

FreeS.

o The runtime of FreeS in comparison to BOSTER and BEST with their

corresponding benchmarking is found much lower. This may indicate

that the optimal order is more beneficial for less constrained trees9.

6.3 FUTURE WORKS

There is always room for work to be done to improve the scalability of existing

methods. Besides working in this direction, some of the most promising other

directions for future research relate to concise subtree mining; frequent subgraph

mining; social network analysis and clustering. This section provides some hints and

brief descriptions of these potential future research areas, which can be built upon

from the base research that has been carried out in this thesis.

A. Further Scope of Improving The Proposed Method

The sensitivity behaviours of the proposed frequent subtree mining algorithms

across various tree parameters are not completely known yet. This discovery will

help to make these algorithms more generic. The scalability performance of an

algorithm may vary depending upon various domain properties. An extensive

sensitivity analysis can be considered for making the algorithm more efficient,

regardless of any domain.

9 This may be just a coincidence, as the research in the area of free tree mining is still underway and
the state-of-the-art benchmarking algorithms are not that efficient as other benchmarking algorithms
of rooted unordered tree.

222 Conclusions

Although the proposed algorithms performed well with large datasets in

regards to both runtime and memory usage in comparison to benchmarking methods,

the space efficiency of these algorithms can be improved further by improvising the

data structures. For example, the possibility of proposing a more compact

representation than AAM and EAAM can be checked, which will maintain the same

level of accuracy performance but within reduced usage of space.

Further, the possibility of adding some new conditions to support free

embedded candidate tree generation can be checked for the frequent free subtree

mining algorithm, which may lead to proposing a new algorithm for mining frequent

free embedded subtrees.

B. Concise Subtree Mining

Due to the large number of frequent subtrees generated, several researchers

have focused their attention on finding the condensed representations of frequent

patterns such as concise subtrees (e.g., closed and maximal subtrees). The efficiency

of the algorithm for finding a condensed representation depends largely on the

efficiency of the base algorithms that have been addressed in this thesis. The frequent

concise subtree mining algorithms can be developed for mining patterns from

unordered and free trees based on the efficient base algorithms as proposed in this

thesis. For extracting these subtrees, the candidate generation process should be

designed according to their definitions based on the BOCF canonical forms and

incorporating pruning conditions. The tree structure guided scheme based-

enumeration tree has rarely been used in designing frequent concise subtree mining

algorithms in the literature. The enumeration process can be implemented in this area

to improve performance. If it can be ascertained that the BOCF representation would

be advantageous, in finding concise subtrees, this will be advantageous as this is an

area that still requires an efficient algorithm to be developed.

C. Graph Mining

Since this thesis has presented an algorithm for mining frequent free trees,

which can be seen as an acyclic version of graph data, therefore this algorithm can be

helpful in the research field of graph mining. The proposed canonical form can be

extended in order to deal with the graph data. In future this research can be carried

out to check whether is it is possible to come up with other canonical forms tailored

Conclusions 223

to graph morphisms like homomorphism or bisimulation, in the spirit of classic Web

graph query languages like WG-log [198].

D. Implementation in Other Application Domains

Some important application domains like Social Network Analysis (SNA) and

process mining in Business Process Management (BPM) can be considered as a

future study. In some of these areas, the proposed contributions have direct

implementation or have scope to evolve further in a way that could be useful in

analysing these domains. Besides, the applicability of available SNA techniques in

mining tree data especially in finding frequent free trees can be investigated, such as

using the method of finding betweenness centrality, can be used in finding the root

node for a free tree.

Lastly, evidence was given in Paper 3 included in this thesis that the

knowledge gained from frequent subtree mining and from the tree matching can be

combined for a better outcome; an effective integration would be an interesting

avenue for future exploration.

224 Conclusions

Bibliography

1. Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth, From data mining to
knowledge discovery: an overview, in Advances in Knowledge Discovery and
Data Mining, U.M. Fayyad, Piatetsky-Shapiro, G., Smyth, P. And
Uthurusamy, R. , Editor. 1996, AAAI Press/MIT Press. p. 1-34.

2. Piateski, G. and W. Frawley, Knowledge discovery in databases. 1991: MIT
press.

3. Chen, M.-S., J. Han, and P.S. Yu, Data mining: an overview from a database
perspective. IEEE Transactions on Knowledge and Data Engineering, 1996.
8(6): p. 866-883.

4. Nica, A., F.M. Suchanek, and A.S. Varde, New Research Directions in
Knowledge Discovery and Allied Spheres. ACM SIGKDD Explorations
Newsletter, 2015. 16(2): p. 46-49.

5. Han, J. and M. kamber, Data Mining Concepts And Techniques. 2006,
Morgan Kaufmann.

6. Neaga, E.I. and J.A. Harding*, An enterprise modeling and integration
framework based on knowledge discovery and data mining. International
Journal of Production Research, 2005. 43(6): p. 1089-1108.

7. Choudhary, A.K., J.A. Harding, and M.K. Tiwari, Data mining in
manufacturing: a review based on the kind of knowledge. Journal of
Intelligent Manufacturing, 2009. 20(5): p. 501-521.

8. Casillas, J. and F.J.M. Lopez, A knowledge discovery method based on
genetic-fuzzy systems for obtaining consumer behaviour patterns. An
empirical application to a Web-based trust model. International Journal of
Management and Decision Making, 2009. 10(5/6).

9. Nagabhushana, S., Data Warehousing OLAP and Data Mining. 2006: New
Age International.

10. Han, J., X. Yan, and P.S. Yu, Mining, Indexing, and Similarity Search in
Graphs and Complex Structures, in International Conference on Data
Engineering. 2006.

11. Hadzic, F., H. Tan, and T.S. Dillon, Mining of Data with Complex Structures.
Vol. 333. 2010: Springer Berlin Heidelberg.

12. Aggarwal, C.C. and H. Wang, Managing and Mining Graph Data. 2010,
Boston/Dordrecht/London: Springer.

13. Cao, L., Actionable Knowledge Discovery and Delivery, in Metasynthetic
Computing and Engineering of Complex Systems. 2015, Springer. p. 287-312.

14. Yan, X., P.S. Yu, and J. Han, Substructure similarity search in graph
databases, in International Conference on Management of Data. 2005. p.
766-777.

15. Wang, J., et al., Research on a frequent maximal induced subtrees mining
method based on the compression tree sequence. Expert Systems with
Applications, 2015. 42(1): p. 94-100.

16. Washio, T. and H. Motoda, State of the art of graph-based data mining. IEEE
Transactions on Knowledge and Data Engineering, 2003. 5(1): p. 59-68.

Bibliography 225

17. Tan, H., et al., State of the art of data mining of tree structured information.
2008.

18. Balcázar, J.L., A. Bifet, and A. Lozano, Mining frequent closed rooted trees.
Machine Learning, 2010. 78(1-2): p. 1-33.

19. Tekli, J., et al., Approximate XML structure validation based on document–
grammar tree similarity. Information Sciences, 2015. 295: p. 258-302.

20. Brisaboa, N.R., S. Ladra, and G. Navarro, Compact representation of Web
graphs with extended functionality. Information Systems, 2014. 39: p. 152-
174.

21. Kuboyama, T., K. Hirata, and K. Aoki-Kinoshita, An Efficient Unordered
Tree Kernel and Its Application to Glycan Classification, in Advances in
Knowledge Discovery and Data Mining, T. Washio, et al., Editors. 2008,
Springer Berlin Heidelberg. p. 184-195.

22. Kertész-Farkas, A., et al., PTMTreeSearch: a novel two-stage tree-search
algorithm with pruning rules for the identification of post-translational
modification of proteins in MS/MS spectra. Bioinformatics, 2014. 30(2): p.
234-241.

23. Romanowski, C.J. and R. Nagi, On comparing bills of materials: a
similarity/distance measure for unordered trees. IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, 2005. 35(2): p.
249-260.

24. Kashkoush, M. and H. ElMaraghy, Matching Bills of Materials Using Tree
Reconciliation. Procedia CIRP, 2013. 7: p. 169-174.

25. Jansson, J. and W.-K. Sung, Maximum Agreement Supertree, in Encyclopedia
of Algorithms, M.-Y. Kao, Editor. 2015, Springer US. p. 1-5.

26. Zhang, S. and J.T.-L. Wang, Discovering frequent agreement subtrees from
phylogenetic data. IEEE Transactions on Knowledge and Data Engineering,
2008. 20(1): p. 68-82.

27. Hadzic, F., H. Tan, and T. Dillon, TMG Framework for Mining Unordered
Subtrees, in Mining of Data with Complex Structures. 2010, Springer Berlin
Heidelberg. p. 139-174.

28. Balcázar, J., A. Bifet, and A. Lozano, Mining Frequent Closed Unordered
Trees Through Natural Representations, in Conceptual Structures:
Knowledge Architectures for Smart Applications, U. Priss, S. Polovina, and
R. Hill, Editors. 2007, Springer Berlin Heidelberg. p. 347-359.

29. Wang, Y., D.J. DeWitt, and J.-Y. Cai. X-Diff: An Effective Change Detection
Algorithm for XML Documents. in Proceedings of the 19th International
Conference on Data Engineering. 2003. Vienna: IEEE.

30. Zhao, Q., et al., Discovering frequently changing structures from historical
structural deltas of unordered XML, in Proceedings of the thirteenth ACM
international conference on Information and knowledge management. 2004,
ACM: Washington, D.C., USA. p. 188-197.

31. Zhao, Q., et al., XML structural delta mining: Issues and challenges. Data &
Knowledge Engineering, 2006. 59(3): p. 627-651.

32. Boiret, A., et al., Logics for Unordered Trees with Data Constraints on
Siblings, in Language and Automata Theory and Applications. 2015,
Springer. p. 175-187.

33. Punin, J.R., M.S. Krishnamoorthy, and M.J. Zaki, LOGML: Log markup
language for web usage mining, in WEBKDD 2001—Mining Web Log Data
Across All Customers Touch Points. 2002, Springer. p. 88-112.

226 Bibliography

34. Chehreghani, M.H. Efficiently Mining Unordered Trees. in Proceedings of
the 11th IEEE International Conference on Data Mining. 2011. Vancouver,
BC.

35. Shasha, D., J.T.-L. Wang, and S. Zhang. Unordered tree mining with
applications to phylogeny. in Proceedings on the 20th International
Conference on Data Engineering, (ICDE' 04). . 2004. IEEE.

36. Zhang, S., Z. Du, and J.T. Wang, New Techniques for Mining Frequent
Patterns in Unordered Trees. 2015.

37. Deepak, A., et al., EvoMiner: frequent subtree mining in phylogenetic
databases. Knowledge and Information Systems, 2014. 41(3): p. 559-590.

38. Zaki, M.J., Efficiently Mining Frequent Trees in A Forest: Algorithms and
Applications. IEEE Transactions on Knowledge and Data Engineering, 2005.
17(8): p. 1021-1035.

39. Chowdhury, I.J. and R. Nayak, Measuring Similarity between Unordered
Trees with the Balanced-Optimal-Search Traversal Algorithm (Under
Review). Knowledge and Information Systems (KAIS).

40. Fukagawa, D., et al., A Clique-based Method for the Edit Distance between
Unordered Trees and Its Application to Analysis of Glycan Structures. BMC
Bioinformatics, 2011. 12(1): p. 1-9.

41. Pavel Zezula , F.M., Federica M , Riccardo Martoglia, Unordered XML
Pattern Matching with Tree Signatures. SOFSEM Conference, 2004.

42. Bille, P., A survey on tree edit distance and related problems. Theoretical
Computer Science, 2005. 337(1-3): p. 217-239.

43. Jiang, T., L. Wang, and K. Zhang, Alignment of trees — an alternative to tree
edit. Theoretical Computer Science, 1995. 143(1): p. 137-148.

44. Kilpelainen, P. and H. Mannila, Ordered and Unordered Tree Inclusion.
SIAM Journal on Computing, 1995. 24(2): p. 340-17.

45. Hirata, K., Y. Yamamoto, and T. Kuboyama. Improved MAX SNP-Hard
Results for Finding an Edit Distance between Unordered Trees. in The 22nd
Annual Conference on Combinatorial Pattern. 2011. Palermo, Italy: Springer
Berlin Heidelberg.

46. Yamamoto, Y., K. Hirata, and T. Kuboyama, eds. On Computing Tractable
Variations of Unordered Tree Edit Distance with Network Algorithms. New
Frontiers in Artificial Intelligence, ed. M. Okumura, D. Bekki, and K. Satoh.
Vol. 7258. 2012, Springer Berlin Heidelberg. 211-223.

47. Zhang, K. and T. Jiang, Some MAX SNP-hard results concerning unordered
labeled trees. Information Processing Letters, 1994. 49(5): p. 249-254.

48. Zhang, K., R. Statman, and D. Shasha, On the Editing Distance between
Unordered Labeled Trees. Information Processing Letters, 1992. 42(3): p.
133-139.

49. Chi, Y., et al., Frequent Subtree Mining - An Overview. Fundamental
Informatic., 2004. 66(1-2): p. 161-198.

50. Zaki, M.J. and C.C. Aggarwal. XRules: An Effective Structural Classifier for
XML Data. in Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2003. Washington,
D. C.: ACM.

51. Nayak, R., Fast and effective clustering of XML data using structural
information. Knowledge and Information Systems, 2008. 14(2): p. 197-215.

52. Han, J., et al., Frequent pattern mining: current status and future directions.
Data Mining and Knowledge Discovery, 2007. 15(1): p. 55-86.

Bibliography 227

53. Chehreghani, M.H., Efficiently Mining Unordered Trees, in IEEE 11th
International Conference on Data Mining (ICDM). 2011: Vancouver, BC. p.
111-120.

54. Rückert, U. and S. Kramer. Frequent free tree discovery in graph data. in
Proceedings of the 2004 ACM symposium on Applied computing. 2004.
ACM.

55. Tan, H., et al., IMB3-Miner: mining induced/embedded subtrees by
constraining the level of embedding, in Advances in Knowledge Discovery
and Data Mining. 2006, Springer. p. 450-461.

56. Hadzic, F., H. Tan, and T. Dillon, Algorithm Development Issues, in Mining
of Data with Complex Structures. 2010, Springer Berlin Heidelberg. p. 41-65.

57. Chowdhury, I.J. and R. Nayak. BOSTER: An Efficient Algorithm for Mining
Frequent Unordered Induced Subtrees. in WISE 15th International
Conference on Web Information Systems Engineering. 2014. Athens, Greece:
Springer Berlin Heidelberg.

58. Chowdhury, I.J. and R. Nayak. BEST: An Efficient Algorithm for Mining
Frequent Unordered Embedded Subtrees in PRICAI 13th Pacific Rim
International Conference on Artificial Intelligence. 2014. Gold Coast,
Australia: Springer Berlin Heidelberg.

59. Chowdhury, I.J. and R. Nayak. FreeS: Fast Algorithm to Discover Frequent
Free Subtrees Using a Novel Canonical Form (Accepted). in WISE 16th
International Conference on Web Information Systems Engineering. 2015.
MIami, Florida, USA: Springer Berlin Heidelberg.

60. Yang, R., P. Kalnis, and A.K. Tung. Similarity Evaluation on Tree-Structured
Data. in the Proceedings of the ACM SIGMOD International Conference on
Management of Data. 2005. Maryland, USA: ACM.

61. Hadzic, F., A Structure Preserving Flat Data Format Representation for
Tree-Structured Data, in New Frontiers in Applied Data Mining, L. Cao, et
al., Editors. 2012, Springer Berlin Heidelberg. p. 221-233.

62. Cormen, T.H., et al., Introduction to Algorithms. 2001, Cambridge: MIT
Press and McGraw-Hill.

63. Chi, Y., Y. Yang, and R.R. Muntz. Indexing and mining free trees. in In
Third IEEE International Conference on Data Mining, 2003, (ICDM'03)
2003. IEEE.

64. Zhao, P. and J. Yu, Fast Frequent Free Tree Mining in Graph Databases.
World Wide Web, 2008. 11(1): p. 71-92.

65. Scholl, A., Balancing and Sequencing of Assembly Lines. 1999, Heidelberg:
Physica-Verlag.

66. Nijssen, S. and J.N. Kok, A quickstart in frequent structure mining can make
a difference, in International conference on Knowledge discovery and data
mining (Proceedings of the tenth ACM SIGKDD). 2004, ACM: Seattle, WA,
USA. p. 647-652.

67. Anderson, R., Professional XML. 2000, Birmingham, England: Wrox Press
Ltd.

68. Romanowski, C.J. and R. Nagi, A data mining approach to forming generic
bills of materials in support of variant design activities. Journal of
Computing and Information Science in Engineering, 2004. 4(4): p. 316-328.

69. Watts, F.B., Configuration Management Metrics. 2009, William Andrew:
Burlington.

228 Bibliography

70. Zaki, M.J., Efficiently Mining Frequent Embedded Unordered Trees.
Fundamental Informatic, 2004. 66(1-2): p. 33-52.

71. Møller, A. and M.I. Schwartzbach, An Introduction to XML and Web
Technologies. 2006: Addison-Wesley.

72. Nayak, R. and S. Xu, XCLS: A Fast and Effective Clustering Algorithm for
Heterogenous XML Documents, in Advances in Knowledge Discovery and
Data Mining, W.-K. Ng, et al., Editors. 2006, Springer Berlin Heidelberg. p.
292-302.

73. Cooley, R., B. Mobasher, and J. Srivastava. Web mining: Information and
pattern discovery on the world wide web. in Ninth IEEE International
Conference onTools with Artificial Intelligence. 1997. IEEE.

74. Cooley, R., B. Mobasher, and J. Srivastava, Data Preparation for Mining
World Wide Web Browsing Patterns. Knowledge and Information Systems,
1999. 1(1): p. 5-32.

75. Punin, J.R., M.S. Krishnamoorthy, and M.J. Zaki, Web usage mining—
Languages and algorithms, in Exploratory Data Analysis in Empirical
Research. 2003, Springer. p. 266-281.

76. Hopp, W.J. and M.L. Spearman, Factory Physics. 2011: Waveland PressInc.
77. Shih, H.M., Product structure (BOM)-based product similarity measures

using orthogonal procrustes approach. Computers & Industrial Engineering,
2011. 61(3): p. 608-628.

78. Aoki-Kinoshita, K.F., et al., ProfilePSTMM: capturing tree-structure motifs
in carbohydrate sugar chains. Bioinformatics, 2006. 22(14): p. e25-e34.

79. Akutsu, T., et al., An Improved Clique-Based Method for Computing Edit
Distance between Unordered Trees and Its Application to Comparison of
Glycan Structures, in International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS). 2011. p. 536-540.

80. Kanehisa, M., KEGG for representation and analysis of molecular networks
involving diseases and drugs. Nucleic acids research, 2010. 38(suppl 1): p.
D355-D360.

81. Li, G., et al., Efficient Similarity Search for Tree-Structured Data, in
Scientific and Statistical Database Management, B. Ludäscher and N.
Mamoulis, Editors. 2008, Springer Berlin Heidelberg. p. 131-149.

82. Diestel, R., Graph theory {graduate texts in mathematics; 173}. 2000:
Springer-Verlag Berlin and Heidelberg GmbH & amp.

83. Valiente, G., Algorithms on trees and graphs. 2013: Springer Science &
Business Media.

84. Ullman, J.D., A.V. Aho, and J.E. Hopcroft, The design and analysis of
computer algorithms. Addison-Wesley, Reading. Vol. 4. 1974. 1.2-4.3.

85. Suciu, D., Semistructured data and XML Information., in Information
Organization and Databases: Foundations of Data Organization., K. Tanaka,
Ghandeharizadeh, S., Kambayashi, Y., Editor. 2000, Kluwer Academic
Publishers: Dordrecht. p. 9–30.

86. Feng, L., et al. An XML-enabled association rule framework. in Database
and Expert Systems Applications. 2003. Springer.

87. Han, J. and M. Kamber, Data mining: concepts and techniques (the Morgan
Kaufmann Series in data management systems). 2000.

88. Cormen, T.H., et al., Representations of graphs, in Introduction to
Algorithms. 2009, MIT Press and McGraw-Hill: Cambridge. p. 524-531.

Bibliography 229

89. Hopcroft, J.E. and R.E. Tarjan, Efficient algorithms for graph manipulation.
1971.

90. Chi, Y., Y. Yang, and R.R. Muntz, Canonical Forms for Labelled Trees and
Their Applications in Frequent Subtree Mining. Knowledge and Information
System, 2005. 8(2): p. 203-234.

91. Nijssenm, S. and J.N. Kok, Efficient Discovery of Frequent Unordered Trees,
in First International Workshop on Mining Graphs, Trees and Sequences.
2003, Springer Berlin Heidelberg: Croatia.

92. Asai, T., et al., Discovering Frequent Substructures in Large Unordered
Trees, in Discovery Science, G. Grieser, Y. Tanaka, and A. Yamamoto,
Editors. 2003, Springer Berlin Heidelberg. p. 47-61.

93. Luccio, F., et al., Exact Rooted Subtree Matching in Sublinear Time, in
Universita Di Pisa Technical Report TR-01. 2001.

94. Luccio, F., et al., Bottom-up subtree isomorphism for unordered labeled
trees. International Journal of Pure and Applied Mathematics, 2007. 38(3): p.
325.

95. Nijssen S, K.J., Efficient discovery of frequent unordered trees. First
international workshop on mining graphs, trees and sequences, 2003.

96. Chi, Y., Y. Yang, and R.R. Muntz. HybridTreeMiner: An Efficient Algorithm
for Mining Frequent Rooted Trees and Free Trees Using Canonical Forms.
in Proceedings of the 16th International Conference on Scientific and
Statistical Database Management. 2004. Santorini: IEEE.

97. Hadzic, F., H. Tan, and T.S. Dillon, U3 - Mning Unordered Embedded
Subtrees Using TMG Candidate Generation, in Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology - Volume 01. 2008, IEEE Computer Society. p.
285-292.

98. Hadzic, F., H. Tan, and T.S. Dillon, UNI3 - efficient algorithm for mining
unordered induced subtrees using TMG candidate generation, in IEEE
Symposium on Computational Intelligence and Data Mining (CIDM). 2007:
Honolulu, Hawaii. p. 568-575.

99. Huan, J., W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the
presence of isomorphism. in Third IEEE International Conference on Data
Mining (ICDM), 2003. . 2003.

100. Inokuchi, A., T. Washio, and H. Motoda, An Apriori-Based Algorithm for
Mining Frequent Substructures from Graph Data, in Proceedings of the 4th
European Conference on Principles of Data Mining and Knowledge
Discovery. 2000, Springer-Verlag. p. 13-23.

101. Choi, S.-S., S.-H. Cha, and C.C. Tappert, A survey of binary similarity and
distance measures. Journal of Systemics, Cybernetics and Informatics, 2010.
8(1): p. 43-48.

102. Chen, Y. and D. Cooke. Unordered Tree Matching and Strict Unordered
Tree Matching: The Evaluation of Tree Pattern Queries. in the 2010
International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery. 2010. Huangshan: IEEE Computer Society.

103. Shasha, D., et al., Exact and approximate algorithms for unordered tree
matching. Systems, Man and Cybernetics, IEEE Transactions on, 1994.
24(4): p. 668-678.

104. Lu, S.Y., A tree-to-tree distance and its application to cluster analysis IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1979.

230 Bibliography

105. Hackman, S.T., M.J. Magazine, and T.S. Wee, Fast, Effective Algorithms for
Simple Assembly Line Balancing Problems. Operation Research, 1989. 37(6):
p. 916-924.

106. Levenshtein, V.I. Binary codes capable of correcting deletions, insertions,
and reversals. in Soviet physics doklady. 1966.

107. Ogawa, H., Labeled point pattern matching by Delaunay triangulation and
maximal cliques. Pattern Recognition, 1986. 19(1): p. 35-40.

108. Tomita, E., et al., A Simple and Faster Branch-and-Bound Algorithm for
Finding a Maximum Clique, in WALCOM: Algorithms and Computation,
M.S. Rahman and S. Fujita, Editors. 2010, Springer Berlin Heidelberg. p.
191-203.

109. Pawlik, M. and N. Augsten, RTED: a robust algorithm for the tree edit
distance. Proceedings of the VLDB Endowment, 2011. 5(4): p. 334-345.

110. Pawlik, M. and N. Augsten, Efficient Computation of the Tree Edit Distance.
ACM Transactions on Database Systems (TODS), 2015. 40(1): p. 3.

111. Arora, S., et al., Proof verification and the hardness of approximation
problems. Journal of the ACM (JACM), 1998. 45(3): p. 501-555.

112. Akutsu, T., et al., Exact algorithms for computing the tree edit distance
between unordered trees. Theoretical Computer Science, 2011. 412(4-5): p.
352-364.

113. Horesh, Y., R. Mehr, and R. Unger, Designing an A* Algorithm for
Calculating Edit Distance between Rooted-Unordered Trees. Journal of
Computational Biology, 2006 13(6): p. 1165-1176.

114. Demaine, E.D., et al., An optimal decomposition algorithm for tree edit
distance. ACM Transactions on Algorithms, 2009. 6(1): p. 1-19.

115. Kaizhong, Z., Algorithms for the constrained editing distance between
ordered labeled trees and related problems. Pattern Recognition, 1995.
28(3): p. 463-474.

116. Fukagawa, D., T. Akutsu, and A. Takasu. Constant factor approximation of
edit distance of bounded height unordered trees. in String Processing and
Information Retrieval. 2009. Springer.

117. Shasha, D. and K. Zhang, Fast algorithms for the unit cost editing distance
between trees. Journal of Algorithms, 1990. 11(4): p. 581-621.

118. Akutsu, T., et al., Efficient Exponential Time Algorithms for Edit Distance
between Unordered Trees, in Combinatorial Pattern Matching, J. Kärkkäinen
and J. Stoye, Editors. 2012, Springer Berlin Heidelberg. p. 360-372.

119. Selkow, S.M., The tree-to-tree editing problem. Information Processing
Letters, 1977. 6(6): p. 184-186.

120. Kilpelainen, P.T., Tree matching problems with applications to structured
text databases. 1992, Helsingin Yliopisto (Finland): Finland. p. 110-110 p.

121. Richter, T., A new algorithm for the ordered tree inclusion problem. in the
Proceeding of 8th Annual Symposium on Combinatorial Pattern Matching
(CPM), Lecture Notes of Computer Science (LNCS), 1997. 1264: p. 150–
166.

122. Chen, W., More Efficient Algorithm for Ordered Tree Inclusion. Journal of
Algorithms, 1998. 26(2): p. 370-385.

123. Matoušek, J. and R. Thomas, On the complexity of finding iso- and other
morphisms for partial k-trees. Discrete Mathematics, 1992. 108(1–3): p. 343-
364.

Bibliography 231

124. Mori, T., et al., A clique-based method using dynamic programming for
computing edit distance between unordered trees. Journal of computational
biology, 2012. 19(10): p. 1089-1104.

125. Okamoto, Y. and T. Shoudai. Hardness of Learning Unordered Tree
Contraction Patterns. in Advanced Applied Informatics (IIAIAAI), 2013 IIAI
International Conference on. 2013. IEEE.

126. Yoshimura, Y. and T. Shoudai, Learning Unordered Tree Contraction
Patterns in Polynomial Time, in Inductive Logic Programming, F. Riguzzi
and F. Železný, Editors. 2013, Springer Berlin Heidelberg. p. 257-272.

127. Vercoustre, A.-M., et al., A flexible structured-based representation for XML
document mining. 2006: Springer.

128. Pelillo, M., K. Siddiqi, and S.W. Zucker, Matching hierarchical structures
using association graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1999. 21(11): p. 1105-1120.

129. Torsello, A. and E.R. Hancock, Computing approximate tree edit distance
using relaxation labeling. Pattern Recognition Letters, 2003. 24(8): p. 1089-
1097.

130. Shin, K., Tree Edit Distance and Maximum Agreement Subtree. Information
Processing Letters, 2015. 115(1): p. 69-73.

131. Akutsu, T., D. Fukagawa, and A. Takasu, Improved approximation of the
largest common subtree of two unordered trees of bounded height.
Information Processing Letters, 2008. 109(2): p. 165-170.

132. Deza, M.M. and E. Deza, Encyclopedia of distances. 2009: Springer.
133. Cha, S.-H., Comprehensive survey on distance/similarity measures between

probability density functions. International Journal of Mathematical Models
and Methods in Applied Sciences, 2007. 1(4): p. 300-307.

134. Kutty, S., R. Nayak, and Y. Li, XML Documents Clustering Using a Tensor
Space Model, in Advances in Knowledge Discovery and Data Mining, J.
Huang, L. Cao, and J. Srivastava, Editors. 2011, Springer Berlin Heidelberg.
p. 488-499.

135. Nayak, R. and W. Iryadi, XML schema clustering with semantic and
hierarchical similarity measures. Knowledge-Based Systems, 2007. 20(4): p.
336-349.

136. Naghibzadeh, M., Tag Name Structure-based Clustering of XML Documents.
International Journal of Computer and Electrical Engineering-IJCEE, 2010.

137. Antonellis, P., C. Makris, and N. Tsirakis. XEdge: clustering homogeneous
and heterogeneous XML documents using edge summaries. in Proceedings of
the 2008 ACM symposium on Applied computing. 2008. ACM.

138. Hadzic, F., T.S. Dillon, and H. Tan, Mining of Data with Complex Structures.
2011: Springer Berlin Heidelberg.

139. Pelillo, M., Matching free trees, maximal cliques, and monotone game
dynamics. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2002. 24(11): p. 1535-1541.

140. Agrawal, R. and R. Srikant. Fast Algorithms for Mining Association Rules in
Large Databases. in Proceedings of the 20th International Conference on
Very Large Data Bases. 1994. Morgan Kaufmann Publishers Inc.

141. Liu, T.-L. and D. Geiger. Approximate tree matching and shape similarity. in
Computer Vision, 1999. The Proceedings of the Seventh IEEE International
Conference on. 1999. IEEE.

232 Bibliography

142. Chehreghani, M.H., M. Rahgozar, and C. Lucas. Mining maximal embedded
unordered tree patterns. in IEEE Symposium on Computational Intelligence
and Data Mining, 2007 (CIDM 2007) 2007. IEEE.

143. Aggarwal, C.C., M.A. Bhuiyan, and M.A. Hasan, Frequent Pattern Mining
Algorithms: A Survey, in Frequent Pattern Mining, C.C. Aggarwal and J.
Han, Editors. 2014, Springer International Publishing. p. 19-64.

144. Inokuchi, A., et al. General framework for mining frequent patterns in
structures. in Proceedings of the ICDM-2002 workshop on Active Mining
(AM-2002). 2002.

145. Kuramochi, M. and G. Karypis, Frequent Subgraph Discovery, in IEEE
International Conference on Data Mining (ICDM), 2001 2001, IEEE
Computer Society. p. 313-320.

146. Tan, H., et al., MB3-Miner: efficiently mining eMBedded subTREEs using
Tree Model Guided candidate generation. 2005.

147. Tatikonda, S., S. Parthasarathy, and T. Kurc. TRIPS and TIDES: new
algorithms for tree mining. in Proceedings of the 15th ACM international
conference on Information and knowledge management. 2006. ACM.

148. Wang, C., et al., Efficient pattern-growth methods for frequent tree pattern
mining, in Advances in Knowledge Discovery and Data Mining. 2004,
Springer. p. 441-451.

149. Han, J., J. Pei, and Y. Yin, Mining frequent patterns without candidate
generation. ACM SIGMOD Record, 2000. 29(2): p. 1-12.

150. Pavón, J., S. Viana, and S. Gómez. Matrix Apriori: Speeding Up the Search
for Frequent Patterns. in Databases and Applications. 2006.

151. Ghoting, A., et al. Cache-conscious frequent pattern mining on a modern
processor. in Proceedings of the 31st international conference on Very large
data bases. 2005. VLDB Endowment.

152. Xiao, Y., et al. Efficient Data Mining for Maximal Frequent Subtrees. in
Proceedings of the Third IEEE International Conference on Data Mining.
2003. IEEE Computer Society.

153. Termier, A., M.-C. Rousset, and M. Sebag. Treefinder: a first step towards
xml data mining. in In the Proceedings of IEEE International Conference on
Data Mining, 2002 (ICDM'03). 2002. IEEE.

154. Hadzic, F., et al., Mining of data with complex structures. Vol. 333. 2011:
Springer.

155. Chowdhury, I.J. and R. Nayak. A Novel Method for Finding Similarities
between Unordered Trees Using Matrix Data Model. in WISE 14th
International Conference on Web Information Systems Engineering. 2013.
Springer Berlin Heidelberg.

156. Chowdhury, I.J. and R. Nayak. Identifying product families using data mining
techniques in manufacturing paradigm. in 12th Australasian Data Mining
Conference (AusDM 2013). 2014. Conferences in Research and Practice in
Information Technology, Australian Computer Society.

157. Baybars, I., A survey of exact algorithms for the simple assembly line
balancing problem. Management science, 1986. 32(8): p. 909-932.

158. Sotskov, Y.N., et al., Stability of optimal line balance with given station set,
in Supply Chain Optimisation. 2005, Springer. p. 135-149.

159. Ghoniem, M., J. Fekete, and P. Castagliola. A comparison of the readability
of graphs using node-link and matrix-based representations. in Information
Visualization, 2004. INFOVIS 2004. IEEE Symposium on. 2004. IEEE.

Bibliography 233

160. Rosen, K., Discrete Mathematics and Its Applications 7th edition. 2011:
McGraw-Hill Science.

161. Kutty, S., et al., Clustering XML Documents Using Frequent Subtrees, in
Advances in Focused Retrieval, S. Geva, J. Kamps, and A. Trotman, Editors.
2009, Springer Berlin Heidelberg. p. 436-445.

162. Kutty, S., et al., Clustering XML documents using closed frequent subtrees: A
structural similarity approach, in Focused Access to XML Documents. 2008,
Springer. p. 183-194.

163. Algergawy, A., et al., XML data clustering: An overview. ACM Computing
Surveys (CSUR), 2011. 43(4): p. 25.

164. Karypis, G., CLUTO—software for clustering high-dimensional datasets.
2007, Karypis Lab:

165. Shen, Y. and B. Wang, Clustering schemaless XML documents, in On The
Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE.
2003, Springer. p. 767-784.

166. Aggarwal, C.C., et al. Xproj: a framework for projected structural clustering
of xml documents. in Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2007. ACM.

167. Shasha, D., et al., Exact and approximate algorithms for unordered tree
matching. IEEE Transactions on Systems, Man and Cybernetics, 1994. 24(4):
p. 668-678.

168. Zhang, S. and J.T.L. Wang, Discovering Frequent Agreement Subtrees from
Phylogenetic Data. IEEE Transactions on Knowledge and Data Engineering,
2008. 20(1): p. 68-82.

169. Jiang, T., et al., A General Edit Distance between RNA Structures. Journal of
Computational Biology, 2002. 9(2): p. 371-88.

170. Nakamura, T. and E. Tomita, Efficient algorithms for finding a maximum
clique with maximum vertex weight, in Tech. Rep. UEC-TRCAS3. 2005, The
University of Electro-Communications: Japan.

171. Wee, T. and M. Magazine, Assembly line balancing as generalized bin
packing. Operations Research Letters, 1982. 1(2): p. 56-58.

172. Manning, C.D., P. Raghavan, and H. Schütze, Introduction to information
retrieval. Vol. 1. 2008: Cambridge university press Cambridge.

173. Utterback, J. and M. Meyer, The product family and the dynamics of core
capability. Sloan Management Review, 1993. 34: p. 29-47.

174. Sawhney, M.S., Leveraged high-variety strategies: from portfolio thinking to
platform thinking. Journal of the Academy of Marketing Science, 1998.
26(1): p. 54-61.

175. Harhalakis, G., A. Kinsey, and I. Minis. Automated group technology code
generation using PDES. in Third International Conference on Computer
Integrated Manufacturing. 1992. IEEE.

176. Marion, D., J. Rubinovich, and I. Ham, Developing a group technology
coding and classification scheme. Industrial Engineering, 1986. 18(7): p. 90-
97.

177. Romanowski, C.J. and R. Nagi, A data mining-based engineering design
support system: a research agenda, in Data mining for design and
manufacturing. 2002, Kluwer Academic Publishers. p. 161-178.

178. Iyer, S. and R. Nagi, Automated retrieval and ranking of similar parts in
agile manufacturing. IIE Transactions, 1997. 29(10): p. 859-876.

234 Bibliography

179. Romanowski, C.J., R. Nagi, and M. Sudit, Data mining in an engineering
design environment: OR applications from graph matching. Computers &
Operations Research, 2006. 33(11): p. 3150-3160.

180. Matías, J., et al., Automatic generation of a bill of materials based on
attribute patterns with variant specifications in a customer-oriented
environment. Journal of Materials Processing Technology, 2008. 199(1): p.
431-436.

181. Kao, Y. and Y. Moon, A unified group technology implementation using the
backpropagation learning rule of neural networks. Computers & Industrial
Engineering, 1991. 20(4): p. 425-437.

182. Lee-Post, A., Part family identification using a simple genetic algorithm.
International Journal of Production Research, 2000. 38(4): p. 793-810.

183. Chen, Y., et al. Using artificial neural networks to develop a mechanism for
functional feature-based reference design retrieval. in IEEE International
Conference on Engineering Management 2004. IEEE.

184. Liu, F., et al., Research on product combinatorial design based on functional
similarity. International Journal of Design Engineering (IJDE), 2008. 1(3): p.
333–356.

185. Clement, J., A. Coldrick, and J. Sari, Manufacturing Data Structures;
Building Foundations for Excellence with Bills of Materials and.. 1992, New
York: John Wiley & Sons, Inc.

186. Ye, X. and J.K. Gershenson, Attribute-based clustering methodology for
product family design. Journal of Engineering Design, 2008. 19(6): p. 571-
586.

187. Fogarty, D.W., J.H. Blackstone, and T.R. Hoffmann, Production & Inventory
Management. 1991: South-Western Publishing Company.

188. Valiente, Algorithms on Trees and Graphs. 2002, New York: Springer, Berlin
Heidelberg.

189. Rasmussen, M. and G. Karypis, gcluto: An interactive clustering,
visualization, and analysis system, in UMN-CS TR-04. 2004.

190. Goutte, C. and E. Gaussier, A Probabilistic Interpretation of Precision,
Recall and F-Score, with Implication for Evaluation, in Advances in
Information Retrieval, D. Losada, Fernández-Luna, JuanM, Editor. 2005,
Springer Berlin Heidelberg. p. 345-359.

191. Hegge, H.M.H. and J.C. Wortmann, Generic bill-of-material: a new product
model. International Journal of Production Economics, 1991. 23(1–3): p. 117-
128.

192. Hadzic, F., H. Tan, and T.S. Dillon. UNI3 - Efficient Algorithm for Mining
Unordered Induced Subtrees Using TMG Candidate Generation. in
Proceedings of the 1st IEEE Symposium on Computational Intelligence and
Data Mining. 2007. Honolulu, Hawaii.

193. Pei, J., et al., Mining Access Patterns Efficiently from Web Logs, in
Knowledge Discovery and Data Mining 2000. 2000, Springer Berlin
Heidelberg: Kyoto. p. 396-407.

194. Termier, A., M.-C. Rousset, and M. Sebag. Treefinder: a first step towards
xml data mining. in IEEE International Conference on Data Mining, 2002
(ICDM 2002). 2002. IEEE.

195. Zaki, M.J. Efficiently mining frequent trees in a forest. in Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and
data mining. 2002. Edmonton, Alberta, Canada: ACM.

Bibliography 235

196. Hein, J., et al., On the complexity of comparing evolutionary trees. Discrete
Applied Mathematics, 1996. 71(1): p. 153-169.

197. Cui, J.-H., et al., Aggregated multicast–a comparative study. Cluster
Computing, 2005. 8(1): p. 15-26.

198. Comai, S., E. Damiani, and L. Tanca. Flexible Queries to Semistructured
Datasources: The WG-log Approach. in IIA/SOCO. 1999. Citeseer.

236 Bibliography

	Keywords
	Abstract
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Publications
	List of Abbreviations
	Statement of Contribution of Co-Authors for
	Thesis by Published Paper
	Statement of Original Authorship
	Acknowledgements
	Chapter 1: Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research objectives and goals
	1.4 Research questions
	1.5 Research contributions
	1.6 Account of Research Publications
	1.7 High Level Overview
	1.8 Research significance
	1.9 Thesis Outline

	Chapter 2: Literature Review and Background
	2.1 Tree Structured Data Source
	2.1.1 XML (eXtensible Markup Language)
	2.1.2 Web log data
	2.1.3 Bill of Material (BOM)
	2.1.4 Glycan

	2.2 Basic Tree Concepts
	2.2.1 Types of trees
	2.2.2 Types of subtrees

	2.3 Tree Representation
	2.3.1 Tree Traversal
	2.3.2 Canonical Form
	2.3.3 Canonical Representation for Unordered and Free Trees
	2.3.4 Adjacency List and Adjacency Matrix

	2.4 Tree Matching
	2.4.1 Tree Edit Distance based Methods
	2.4.2 Other Methods

	2.5 Frequent Pattern Mining
	2.5.1 Candidate Generation Step
	2.5.2 Frequency Counting Step
	2.5.3 Algorithms for Mining Frequent Rooted Unordered and Free Trees

	2.6 Concluding Remarks

	Chapter 3: Tree Representation and Data Structure
	3.1 The Balance Optimal Search (BOS) Algorithm
	3.1.1 Simple Assembly Line Balancing (SALB) Problem
	3.1.2 The BOS Traversal

	3.2 Adjacency Matrix
	3.2.1 Augmented Adjacency Matrix
	3.2.2 Extended Augmented Adjacency Matrix

	3.3 Canonical Forms for Labelled Rooted Unordered Trees
	3.3.1 The Balanced Optimal Canonical Form (BOCF)

	3.4 Canonical Forms for Labelled Free Trees
	3.4.1 Balanced Optimal Canonical Form of Free Trees

	3.5 Other Data Structures
	3.5.1 Dictionary
	3.5.2 Occurrence List

	3.6 Chapter Summary

	Chapter 4: Tree Matching
	4.1 An overview of the clustering process
	4.2 A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model
	4.3 Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm
	4.4 Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm

	Paper 1: A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model
	Paper 2: Measuring Similarity between Unordered Trees with the Balanced-Optimal-Search Traversal Algorithm
	Paper 3: Identifying Product Families Using Data Mining Techniques in Manufacturing Paradigm
	Chapter 5: Frequent Subtree Mining
	5.1 BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees
	5.1.1 BOSTER Handling Isomorphism

	5.2 BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees
	5.3 FreeS: A Fast Algorithm to Discover Frequent Free Subtrees Using a Novel Canonical Form

	Paper 4: BOSTER: An Efficient Algorithm for Mining Frequent Unordered Induced Subtrees
	Paper 5: BEST: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees
	Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees
	Chapter 6: Conclusions
	6.1 Summary of Contributions
	6.2 Summary of findings
	6.3 future works

	Bibliography

