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Abstract 

Various domains such as Web, XML, Bioinformatics, Computer Networks and 

Manufacturing commonly represent their data in tree structures. Trees have become a 

formal means of studying link-based structures present in these domains. The tree 

structured data can appear in many forms such as rooted labelled ordered trees, 

unordered trees and free trees due to enforced structural constraints. The structural 

flexibility of unordered tree data allows extracting additional interesting information 

with practical significance, but at the same time, enforces complexities like 

exponential increase of runtime and memory usage.  

An important problem in the knowledge discovery of labelled unordered trees 

is to find frequently occurring subtrees, thus facilitating data understanding. Another 

important problem is pairwise tree matching–a fundamental core operation of many 

data manipulation tasks such as clustering, data integration, and data querying. This 

thesis proposes efficient methods for solving these two problems. The main 

contributions of this thesis are three-fold. 

An efficient tree representation serves as a basic block for further tree 

manipulation. Firstly, the Balanced-Optimal-Search (BOS) traversal, a novel 

traversing algorithm for trees, which can define an optimal order for any rooted 

labelled trees, is introduced. Utilising this optimal order, canonical forms, named 

Balanced Optimal Canonical Forms (BOCFs) for labelled rooted unordered trees and 

free trees are defined. BOCF uniquely represents a rooted unordered tree or a free 

tree, which helps deal with isomorphic trees in tree processing. Two matrix 

representations of unordered trees are proposed—Augmented Adjacency Matrix 

(AAM) and Extended Augmented Adjacency Matrix (EAAM); these will capture 

more structural information than the traditional adjacency matrix. These matrix 

representations ensure the unique identity of an unordered tree (one-to-one mapping). 

Secondly, a tree matching algorithm is proposed for measuring similarity 

between rooted unordered tree pairs with two variations, one based on the AAM 

representation and another on the EAAM representation. This algorithm ensures 

faster similarity computation by comparing the matrices using a cosine similarity 
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measure without compromising the accuracy. The similarity information can be 

embedded further in a clustering algorithm for grouping the tree datasets. 

Thirdly, based on the BOCFs, frequent tree mining algorithms are developed 

that can effectively deal with the isomorphism problem–a pressing issue in frequent 

subtree mining. The Balanced Optimal Search Tree minER algorithm (BOSTER) 

proposes a tree structure guided scheme-based enumeration to generate only valid 

candidate subtrees for mining frequent induced unordered subtrees. The Balanced 

optimal search Embedded SubTree mining algorithm (BEST) generates candidate 

subtrees through the tree structure guided scheme-based enumeration approach with 

modified enumerate operation to find frequent embedded unordered trees. The 

Frequent Free Subtree algorithm (FreeS) mines all frequent free induced subtrees 

using the tree structure guided scheme-based enumeration approach subject to 

constraint on supporting the generation of candidate trees in the canonical form of 

free trees.  

Empirical analysis for the tree matching algorithm shows that the runtime 

reduces drastically without compromising the accuracy of output. The baseline 

algorithms show exponential complexity after reaching a tree size in the range of 

60~65 nodes while the proposed method yields the runtime of less than a second. 

The performance of each frequent subtree mining algorithm is also evaluated using 

extensive empirical analysis and is compared with the state-of-the-art algorithms 

using both synthetic and real life data. In general, the runtime and memory usage of 

each algorithm has reduced a few orders of magnitude than the benchmarks without 

missing any frequent subtree.  

This thesis contributes towards the process of knowledge discovery from tree 

databases by focusing on alleviating the hurdles of existing tree representation 

methods. The BOS-based representation plays an important role in significantly 

improving the scalability performance of tree matching and frequent subtree mining 

algorithms. 
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Chapter 1: Introduction 

Chapter 1 provides an introduction to the field of knowledge discovery from 

tree databases and describes the motivation behind the research. Following on from 

this, specific research questions are presented to address the research aims and guide 

the investigation through certain objectives. Given a separate list of research 

contributions, a high level overview of the thesis is shown through a relational map, 

which illustrates how the research progress has been carried out through linking the 

contributions. This is a thesis by publication, where the peer reviewed publications 

are directly used as chapters in comprising the greater part of the thesis. Details of 

the publications are provided, along with a brief summary of how each paper 

contributes to the thesis. A comprehensive introduction (i.e., preamble) of each paper 

is presented at the start of each chapter. 

1.1 BACKGROUND 

Knowledge discovery is a nontrivial process for extracting implicit, unknown 

and potentially useful information like patterns, rules, constraints, regularities and 

various relationships from a large set of data [1, 2]. Some other terms like data 

mining, data archaeology, data dredging, and data analytics have been used 

interchangeably in various reports, and have a similar or slightly different meaning. 

A general architecture of the knowledge discovery process is provided in Figure 1.1, 

where it can be seen that the journey of this process starts from the relevant data in 

databases and ends by extracting interesting knowledge and high level information as 

it passes through several stages. This process is considered as a rich and authentic 

way to generate and confirm knowledge, and therefore, has been recognised as a key 

research topic by many researchers from database systems, artificial intelligence, 

knowledge-based systems, knowledge acquisition and machine learning [3-5]. 

Moreover, an increasing interest has developed in the fields of business analysis, 

marketing management and industrial companies, where knowledge discovery is 

treated as an important area, which can potentially create opportunities for major 

revenues [6-8]. 
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Figure 1.1: Architecture of knowledge discovery [5, 9] 

In this era, the popularity of knowledge discovery has risen with the explosive 

growth in data, due to an easy access of internet and advanced storage capacity. 

Now, the knowledge discovery is no longer a random process but it has become a 

necessity for gaining insights and extracting information from the vast amount of 

data. Besides its enormous volume, data has become more complex in structure, with 

many interconnections and hierarchical dependencies [10, 11]. There is a need for 

developing new techniques that can deal with intricacy and volume of data to 

advance the current progress in the area of semi-structured data [10-15].  

Trees are one of the most common data with complex structures [11, 12, 15-

17]. Tree data have strong representational and expressive power for naturally 

capturing topological and relational characteristics embedded within a dataset. Tree 

structures therefore have become the de-facto standard for representing information 

with hierarchical dependencies [11, 18]. The dominance of tree data is noticeable in 

various applications, such as, XML and Weblogs in Web intelligence [19, 20]; DNA 

and Glycan in bioinformatics [21, 22]; Bill of Material (BOM) documents in 

manufacturing [23, 24]; and Phylogenetic trees in evolutionary science [25, 26]. 
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Figure 1.2: Example of a simple Web site and a fragment of Web usage patterns 

Tree data can appear in several forms such as free tree, rooted unordered tree 

and rooted ordered tree, based on how nodes are represented in a tree. A rooted 

ordered tree preserves specific left-to-right order among the sibling nodes, whereas, a 

rooted unordered tree does not have any fixed order among the nodes except the 

ancestor-descendant order/relations. A free tree is unordered as well as unrooted, i.e., 

no root node is specified and has no sibling order. All these trees are usually found as 

labelled in real-life application, where the labels are attached to their nodes and 

edges (the formal definitions of all of these terms such as sibling, ancestor, and 

descendant nodes are provided in Chapter 2). 
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Ordered trees are well-studied in the area of knowledge discovery. On the 

contrary, the area of unordered and free tree mining has been understudied due to the 

complexities involved with the flexible structures. Therefore, knowledge discovery 

from unordered and free tree databases has become of interest and is the focus in this 

thesis. This thesis presents novel methods for representing rooted unordered and free 

trees that are utilised to propose novel frequent subtree mining and tree matching 

algorithms. These algorithms discover knowledge in the forms of frequent patterns 

and similarity information by ensuring less processing complexity.  

1.2 MOTIVATION 

With computing storage getting cheaper, heterogeneous data sources are rising. 

A tree model, especially of unordered nature, is robust to the data inconsistency and 

irregularity that a heterogeneous data source usually possesses [27, 28]. 

Consequently, it becomes enticing to use unordered tree structure models to 

represent this type of data. Moreover the progression of Web technology causes swift 

changes in online information that is better portrayed through an unordered tree 

model [29-31]. The common tree data (e.g., XML, Weblog\ Log Markup Language) 

for representing and exchanging information are treated as unordered in various 

database applications as a more reliable information transfer in comparison to the 

form of ordered trees [29, 32]. The following two examples are used to show the 

superiority of unordered tree models in data representation compared to their 

counterpart, ordered trees. 

Figure 1.2, presents a simplified structure of a Web site that sells movies and 

books. The Web content is represented through LOGML, which is a Web log 

representation in XML template [33]. The LOGML documents can be modelled as 

trees. Each node in the tree corresponds to a Web page in the Web site. The 

interactions with the Web site are illustrated through user sessions following the Web 

site structure where the sample trees show the visit of Web pages from left to right. 

An interesting and useful information for site managers will be knowing how many 

times a set of Web pages (in the sub-tree form) have been accessed under the home 

Web page. This information can be useful in improving the site design. In this 

scenario, the order in which the set of Web pages were visited is irrelevant. The only 

information of interest is the set of Web pages, not the ones that are visited in the 

same order. Imposing the order may treat a frequently visited set of Web pages as 
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non-frequent. For a given threshold in a frequent subtree mining process, only the 

Web pages that are visited in the same order will be extracted as frequent if the trees 

are considered as ordered. The same set of Webpages, browsed through different 

sessions in different order, will not be treated as the same during the process of 

ordered subtree mining. Hence, in order to extract the frequent subtrees, trees should 

be represented as unordered. For example, in Figure 1.2, the ‘Books’ and ‘Order 

Info’ Web pages were accessed in both user sessions 1 and 2, but in different order. 

This user behaviour should be shown as frequent information regardless of the 

visiting order.  

 

Figure 1.3: Example of a subtree query system using a heterogeneous collection of 
documents. Here the dotted lines are showing the exact matching between a query 

tree (a) and the available documents (b) 

Consider a heterogeneous collection of documents (Figure 1.3(b)) that are 

modelled as trees. Quite often, these documents contain the same information with 

different structures (i.e., different order among sibling nodes). Modelling these 

documents as unordered trees is more appropriate for similarity computation, since a 

user will not be aware of document structures. As output, all matching subtrees 

containing the same information will be retrieved without considering the difference 

in the sibling node orders. Suppose these trees are organised in a database and a 

query system is designed to get useful information. The user may have partial 

knowledge of the data structure and specifies a query that meets his/her information 

need (Figure 1.3(a)). Due to the enforcement of ordering, only the Document 1 will 

be returned, despite the fact that Documents 2 also matched the user’s information 

need (only the sibling nodes are reversed in Document 2). Now, if the sibling order is 

not used as a grouping criterion in the system, then the query subtree would be 
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treated as unordered and both the documents would be retrieved. The latter result 

would be more favourable. 

The omnipresence of unordered tree data in various applications has sparked 

interest from the data mining community [23, 32, 34-38]. Discovered information 

that is manifested in structures with rich semantics can portray many inherent 

relationships and finding them is significant [27, 35, 39-41]. Learning knowledge 

from unordered trees includes abstracting useful pattern information, finding 

similarity information and finding many other relationships embedded within the 

repository. But extracting knowledge from the data with increased granularity, such 

as unordered trees, possesses additional processing complexity which cannot be dealt 

with by simple tree mining techniques. Discovering this knowledge would require 

developing specialised methods such as similarity measures, frequent pattern mining, 

and clustering. Compared to the fruitful achievements in ordered tree mining, the 

field of unordered tree mining yet requires more maturity and in-depth study. 

Unordered tree mining requires new algorithms to be developed that can deal with 

the underlying structural flexibility and uncertainty. 

Similarity measure methods like tree edit distance, alignment distance, and tree 

inclusion have been successfully used for comparing various tree data [42-44]. 

However, these standard edit distance-based methods do not produce desirable 

results when applied on unordered tree data [42, 45, 46]. Research has shown that 

when computing the symmetric difference between unordered trees, overstating and 

double counting problems often arise that result in less accurate measures [23]. 

Nodes with distinctive parents are counted more than once in various calculations. A 

variety of methods based on tree edit string operations have been proposed to solve 

the unordered tree similarity measure problem, but the majority of these methods 

have provided an intractable solution [42, 45, 47, 48]. 

Frequent pattern mining is a popular method to discover knowledge from tree-

structured data in the form of subtrees. It is a basic step for performing association 

mining; this is a commonly used data mining technique for finding the association 

between data entities that can potentially reveal novel and useful relationships. The 

knowledge driven by frequent pattern mining also has some other important 

applications such as in database indexing and access method design, classification, 

clustering, and query system [49-52]. Mining frequent subtrees is non-trivial since it 
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contains hierarchical relationships among the data entities through rich semantics. A 

subtree mining problem becomes more complex in dealing with unordered and free 

trees due to the flexibility in structural constraints. For an unordered tree, the 

subtrees that only differ in permutations of the ordering of siblings are to be 

considered the same. This causes the “repeated exploration” problem that will result 

in the generation of a huge number of candidates, where subtrees with similar 

structure will be included. This eventually creates the “repeated counting” problem 

[38, 49, 53]. This problem is referred to as an “isomorphism problem” in the 

literature and the frequency counting step often needs subtree isomorphism checking, 

which is computationally hard, even known as an NP-complete problem in graph 

mining algorithms [54]. Exponential candidate generation is another problem 

wherein a lot of candidate trees, including invalid subtrees, are generated during 

enumeration [27, 55]. Moreover, it is hard to find a good growth strategy during 

enumeration. Most of the frequent pattern mining algorithms for the unordered tree 

type are computationally expensive in terms of both memory usage and run time 

because of these challenges [11, 12, 49]. Some work has been done to overcome the 

challenges, but this field still requires improvisation to make the methods efficient 

and scalable.  

The challenges in various tasks of knowledge discovery are in general 

associated with the structural complexity of tree data [56]. An increasing structural 

complexity in tree data involves a higher processing cost in various tree manipulation 

algorithms [11, 42]. Hence, for rooted unordered trees, the knowledge discovery 

tasks are computationally harder than those of the ordered trees, and also for the free 

tree, the processing is harder than that of the rooted unordered tree [57-59]. When a 

tree structure becomes less constrained; it poses additional complexities during 

processing. If the complex structure of trees can be represented in a way that will 

ease the processing, the computational intricacy involved in manipulating algorithms 

can be resolved. Moreover, it is also evident that for developing an algorithm to 

process any data, one of the essential parts is data representation, and representation 

has a close relation with the efficiency and scalability of an algorithm [56, 60, 61]. 

Because of having complex semantics and additional hierarchical information 

embedded in a tree structure, the efficient encoding of all tree information often 

requires more memory. Sometimes, the representation does not even reflect the 
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fundamental properties of a tree, especially when the tree is unordered, which may 

affect the accuracy performance of an algorithm. 

 For example, the traditional Breadth First Search (BFS) and Depth First 

Search (DFS) traversal algorithms [62] are largely used for encoding trees during 

various tree manipulating algorithms. The BFS and DFS algorithms traverse a tree 

either following the breadth wise or the depth wise direction, where the sibling node 

are visited from left to right order. Using the traversing order, the tree is encoded. 

For unordered trees, the order among sibling is not important; therefore similar 

unordered trees may have different structures varied in sibling orders. The structural 

dependant traversing strategy of BFS or DFS will provide a different traversing order 

for each tree, and will result in different encoding for similar unordered trees. This 

encoding has direct relation with other tree representation methods like canonical 

form and adjacency matrix, which eventually causes pressing issues such as 

scalability and accuracy in knowledge discovery methods. Therefore, it is essential to 

utilise an appropriate data representation scheme for unordered trees. 

All of these issues appear more intensely during the processing of free tree 

since they have a root node as well as no ordered sibling nodes. Mining free tree 

databases has significant importance in the area of knowledge discovery as 

modelling trees as free trees offers richer expressivity and a good compromise 

between graphs and sequences. A graph is a richer representation of tree data, but 

mining graph data is known as very hard problem in the literature [12]. Sequential 

mining does not have processing issues but sequences fail to express structural 

characteristic inherent in the data. Therefore free tree mining often gets priority over 

graph data mining and sequential mining [54, 63, 64]. 

This dissertation will explore the mining tasks from a database of labelled 

unordered trees, with an emphasis on tree similarity measure and frequent subtree 

mining methods. Firstly, it looks into the scope of using a novel representation for 

both rooted unordered and free trees that will efficiently capture the embedded 

relationships and dependencies. It is assumed that this will lead towards achieving 

less manipulating cost during knowledge processing. The concept of optimisation is 

utilised to overcome the existing barriers in representation methods. Secondly, it 

works on the similarity measure method of trees by using the new data 

representations as well as by utilising the frequent pattern information. Thirdly, it 
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focuses on frequent pattern mining to alleviate the existing research problems by 

incorporating the new tree representation as well as by improvising the candidate 

enumeration and frequency counting steps. Besides using new representation, an 

optimised enumeration approach has been explored for generating candidate trees 

that will only generate valid subtrees without hampering the completeness property 

(i.e., will not miss any candidate patterns). All the proposed works and findings are 

evaluated with state-of-the-art methods using multiple datasets with diverse 

characteristics. 

1.3 RESEARCH OBJECTIVES AND GOALS 

The objective of this research is to provide efficient and scalable methods for 

discovering knowledge from databases of labelled unordered trees. To achieve this 

objective, the research emphasises tree representation, as it is usually a mandatory 

step in tree manipulation methods. For knowledge discovery, the research focuses on 

two important tree mining problems, tree matching and frequent subtree mining.  

This research is guided by the following goals to achieve the above mentioned 

objectives: 

− Utilising an optimisation technique for representing unordered tree data in 

a structure independent manner since it represents more complex and less 

constrained structures. Based on this representation, the canonical form 

and matrix form representations can be developed that will allow more 

appropriate encoding and efficient manipulation of rooted unordered trees 

and free trees. 

− Proposing a tree matching algorithm that will provide tractable solution to 

the similarity measure problem of unordered trees. This algorithm should 

avoid complex mapping between unordered tree pairs by using an 

appropriate data model. This similarity measure should ensure fast 

computation without compromising accuracy. 

− Developing fast and effective frequent subtree (e.g., induced and 

embedded) mining algorithms by using the introduced canonical form that 

will ensure efficient indexing of rooted unordered and free trees during 

frequency counting and candidate generation steps. In order to make the 

frequent subtree mining algorithms computationally efficient an optimal 
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and non-redundant candidate enumeration technique needs to be 

developed. Also, the frequency counting step needs to be explored to boost 

its performance. 

1.4 RESEARCH QUESTIONS 

This research is structured to answer the following research questions: 

1. How can the labelled unordered tree be represented in a more appropriate 

and efficient manner? 

a. Can the existing traversal techniques (Breadth-first Search and Depth-

first Search) encode the unordered trees without breaching their structural 

flexibility? 

b. Can an optimisation technique be utilised for representing unordered 

trees? 

c. Can an unordered tree be represented through the traditional adjacency 

matrix?  

d. Which canonisation will ensure unique identity of both unordered and 

free trees regardless of the structural flexibility? 

2. What is the appropriate method for addressing the tree matching problem 

from a database of labelled unordered trees? 

a. Is a better accuracy and scalability possible with the proposed method in 

comparison to the tree edit distance-based methods? 

b. Can representation play a role in reducing the computation complexity of 

the unordered tree matching algorithm? 

e. Can the knowledge of frequent subtrees be helpful in finding similarity 

between trees pairs? 

3. How can the frequent subtree mining algorithms be designed for mining 

frequent rooted unordered and free subtrees through ensuring less run time 

and memory usage? 

a. Can a canonical form provide unique identity of unordered trees in the 

presence of isomorphism and automorphism? 
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b. How can the candidate generation be restricted without hampering the 

completeness property? 

c. How can an enumeration approach be optimised by generating only the 

valid candidate trees? 

d. What is a more suitable approach for executing the frequency counting? 

1.5 RESEARCH CONTRIBUTIONS 

This thesis has developed the following contributions in the field of knowledge 

discovery from the databases of labelled unordered trees: 

− A novel tree traversal algorithm, named as Balanced Optimal Search 

(BOS), is proposed by reducing the tree traversal problem to the SALB 

(Simple Assembly Line Balancing) problem, a well-known optimisation 

problem in Operations Research (OR) paradigm [65]. An optimisation 

model is formulated for solving the traversing problem, which consists of 

feasibility constraints and an objective function for minimising the 

computation time of traversal. BOS traversal gives an optimal traversing 

sequence for a rooted unordered tree without relying on a fixed left-to-

right order among sibling nodes, unlike existing traversal algorithms [62]. 

In order to enhance the effectiveness of frequent subtree mining 

algorithms, new canonical forms called Balanced Optimal Canonical 

Forms (BOCF) are proposed based on BOS traversal for effectively 

representing rooted unordered trees and free trees.   

− A new data structure-based tree matching algorithm for unordered trees is 

introduced. The traditional adjacency matrix representation of trees uses a 

BFS or DFS traversal driven encoding in its construction. BFS and DFS 

traverse a tree following breadth- and depth- wise movements respectively. 

Their encodings preserve the structural flexibilities such as sibling order 

variations. Even if the unordered trees are similar they have different 

encodings because of the different sibling orders. This leads to having 

different matrix representations for similar unordered trees. Instead of a 

structure dependent traversal strategy, the BOS traversal is used to provide 

optimal encoding of trees that are independent to the structural variations. 

By using this encoding and additional tree structural information, an 
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approximate numerical matrix representation called Augmented Adjacency 

Matrix (AAM) is presented, which ensures similar matrix representations 

for similar trees. Finally, the vector cosine similarity metric is modified to 

make it compatible with matrix computation for calculating the similarity 

between tree pairs. The similarity information is further used in clustering 

to show an application of this method. Necessary empirical analysis has 

been conducted to establish the findings. 

− Another new data structure-based tree matching algorithm is proposed, 

which is utilising not only the tree information but also the database 

specific knowledge for measuring similarities between unordered trees. By 

applying the frequent pattern mining algorithm, the common structures 

present in a database can be discovered, which often aids in understanding 

a database, especially a new one [24, 49]. Using additional information, in 

the form of frequent structural dependencies like parent-child, for 

representing a tree, will emphasise the characteristics of the database 

during finding similarities between its trees. In this work, a novel 

Extended Augmented Adjacency Matrix (EAAM) representation is 

introduced, that consists of the frequent subtree information of a particular 

database along with other important information of an individual tree. The 

EAAM representation also uses BOS encoding to ensure unique identity of 

a rooted unordered tree. The unordered trees represented in EAAM are 

compared to calculate the similarity between a tree pair, and used as a 

clustering input to group the trees of a database. This work is empirically 

evaluated against relevant benchmarking works.  

− An efficient Balanced Optimal Search Tree minER (BOSTER) algorithm 

is developed to mine frequent induced unordered subtrees from a database 

of labelled rooted unordered trees. BOCF is used to generate candidate 

subtrees using a tree structure guided scheme based- enumeration 

approach. Representing the rooted unordered trees has been always an 

issue due to the flexible order among sibling nodes which causes the 

isomorphism problem. It is important to represent trees uniquely during 

candidate generation to ensure accurate frequency counting through 

correct indexing. BOCF handles the isomorphism and automorphism 
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problems efficiently. Exponential candidate generation is another pressing 

problem in frequent unordered tree mining that BOSTER mitigates using 

the tree structure guided scheme-based enumeration by generating the 

valid candidate subtrees only. A catching technique is used to boost-up the 

frequency counting step. BOSTER is evaluated and compared against 

relevant benchmark algorithms. 

− Another important frequent mining algorithm, Balanced optimal search 

Embedded SubTree miner (BEST) that finds the set of frequent embedded 

unordered subtrees from a database of labelled rooted unordered trees is 

proposed. Mining embedded subtrees can be seen as a generalisation task 

of mining induced subtrees that mines interesting relational information 

inherent within deeply embedded data objects in the tree database. It is a 

more difficult problem than induced subtree mining as it requires 

examining several levels within a tree to identify an embedded subtree. 

Both the extension and join operations are defined using a level constraint 

to enumerate only the valid candidate subtrees. BEST is compared with 

several benchmarks using both real and synthetic datasets.  

− The problem of mining frequent free subtrees in a database of labelled free 

trees is considered and a fast algorithm called FreeS (Frequent Free 

Subtree) is proposed. Free trees can be considered as a good compromise 

between graph and sequence data, and as a stepping stone towards solving 

the graph mining problem [66]. The BOCF canonical form of free trees 

requires an additional step for normalising the root node. Using this BOCF 

of free trees, a tree structure guided scheme based enumeration approach is 

introduced that avoids generating false positive in the candidate generation 

step, one of the key issues in frequent pattern mining. A lemma is proved 

that satisfies the conditions to grow the enumeration tree using extension 

and join operations using the proposed canonical form of free trees. FreeS 

is compared with several benchmarks using both real and synthetic 

datasets.  
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1.6 ACCOUNT OF RESEARCH PUBLICATIONS  

This is a thesis by publication, and the body of the thesis is comprised of peer-

reviewed journal and conference papers. Each paper listed in Table 1.1 is either 

published, accepted, or submitted for review. In this table, the thesis chapter number 

is also mentioned where the full paper has appeared. 

Publications Details of papers included in thesis  

− Paper- 1  (TRA) 

{Citations: 3} 

{Chapter 4} 

− Chowdhury, Israt J. & Nayak, Richi (2013) A novel method for 

finding similarities between unordered trees using matrix data 

model. Lecture Notes in Computer Science: WISE 2013, 8180, 

pp. 421-430   

− Paper- 2   

{Chapter 4} 

− Chowdhury, Israt J. & Nayak, Richi, “Measuring Similarity 

between Unordered Trees with the Balanced-Optimal-Search 

Traversal Algorithm”, Knowledge and Information Systems 

(Under Review)  

− Paper- 3  (TRB) 

{Chapter 4} 

− Chowdhury, Israt J. & Nayak, Richi (2014) Identifying product 

families using data mining techniques in manufacturing 

paradigm. In Nayak, Richi, Li, Xue, Liu, Lin, Ong, Kok-Leong, 

Zhao, Yanchang, & Kennedy, Paul (Eds.) Australasian Data 

Mining Conference (AusDM), Australia 

− Paper- 4  (TRA) 

{Citations: 2 

Chapter 5} 

− Chowdhury, Israt J. & Nayak, Richi (2014) BOSTER: an 

efficient algorithm for mining frequent unordered induced 

subtrees. Lecture Notes in Computer Science: WISE 2014, 

8786, pp. 146-155 

− Paper- 5  (TRB) 

{Citations: 1 

Chapter 5} 

− Chowdhury, Israt Jahan & Nayak, Richi (2014) BEST: an 

efficient algorithm for mining frequent unordered embedded 

subtrees. Lecture Notes in Computer Science: PRICAI 2014, 

8862, pp. 459-471 

− Paper- 6  (TRA) 

{Chapter 5} 

− Chowdhury, Israt J. & Nayak, Richi (2015) FreeS: Fast 

Algorithm to Discover Frequent Free Subtrees Using a Novel 

Canonical Form. Lecture Notes in Computer Science: WISE 

2015, 9418, pp. 123–137 

Table 1.1: List of peer reviewed papers forming chapter in this thesis 
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STATEMENT OF THE CONTRIBUTION 

All of the published papers that are included in this thesis are co-authored by 

the PhD candidate, Israt Jahan Chowdhury and the candidate’s principle supervisor, 

Associate Professor Richi Nayak. Apart from that no one else has contributed in 

these published papers. Both authors have agreed to use these publications as a part 

of this thesis. 

1.7 HIGH LEVEL OVERVIEW 

The aim of this section is to present a high level overview of all the 

contributions made in the thesis and show how they fit together. A novel tree 

traversing scheme based on optimisation and the novel tree representations using this 

scheme are developed to facilitate the effective knowledge discovery from labelled 

unordered tree databases. A tree matching algorithm is developed based on the new 

matrix form. Novel frequent pattern mining algorithms are developed using the 

proposed representation and a new enumeration approach with specific growth rules. 

The matrix representation is further extended utilising the results of frequent pattern 

mining algorithms to incorporate more domain specific insights into similarity 

calculation. The similarity measure results are evaluated through a clustering 

algorithm. A map of the contributions of this thesis is presented in Figure 1.4. Each 

arrow indicates that the following contribution is built upon the results in the 

previous contribution.  

The backbone of this thesis is the novel Balanced Optimal Search (BOS) 

traversal algorithm, which is proposed by reducing the tree traversal problem to the 

Simple Assembly Line Balancing (SALB) problem – an optimisation problem from 

an Operations Research (OR) paradigm. The BOS traversal derives an optimal 

encoding of an unordered tree that ensures a total unique order for all available 

similar unordered trees in a database. A novel tree representation named as Balance 

Optimal Canonical Form (BOCF) is defined using BOS traversal, which can 

represent a rooted unordered tree uniquely. The BOCF is extended to define 

canonical form for representing free trees. 
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The optimal BOS encoding is further used to overcome the limitations of 

traditional adjacency matrix representations of unordered trees. This optimal order 

gives birth to a novel adjacency matrix representation called Augmented Adjacency 

Matrix (AAM), which allows capturing more tree information in matrix form by 

including adjacency information, level information and weight along with BOS 

encoding. The AAM facilitates comparing tree pairs with using the cosine similarity 

metric adopted for matrix. The proposed tree similarity measure method is found 

efficient and scalable in comparison to the traditional tree similarity measure 

methods based on empirical analysis. The tree edit distance problem is commonly 

used for finding similarity between unordered trees is known to be computationally 

hard (no known tractable solution without restricting tree parameters), whereas the 

proposed AAM based similarity measure method offers a radical reduction in the 

computational complexity without an accuracy compromise. The result of this 

method is further used as input to a clustering algorithm — an important application 

of this contribution. 

Another matrix representation of unordered tree, Extended Augmented 

Adjacency Matrix (EAAM) is defined by incorporating the knowledge of frequent 

subtrees of a database in the basic AAM construction. This provides a domain 

specific insight of tree data as the frequent pattern mining allows initial analysis of 

an unexplored database. The EAAM is used for calculating similarity between tree 

pairs and used as input to a clustering algorithm. All of these results are evaluated 

and compared with relevant benchmark methods.  

The BOCF representation of a rooted unordered tree is used to propose two 

scalable frequent pattern mining algorithms, BOSTER and BEST for unordered trees 

that can mine frequent induced and embedded subtrees respectively. BOCF resolves 

the isomorphism and automorphism problems quite naturally. Hence, the processing 

time is reduced by skipping an additional isomorphism checking test unlike the state-

of-the art methods. Moreover, a tree structure guided scheme- based enumeration is 

used that alleviates generation of the false positive candidates and boosts the 

frequency counting step. The enumeration process consists of two operations, BOCF 

extension and BOCF join, that are defined according to the proposed canonical form 

and enumeration approach. Growth rules are specified in these algorithms for 

restricting the number of potential nodes for having an extension in enumeration 
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process. The algorithm for mining induced subtrees can be considered as a 

generalised algorithm for mining embedded subtrees. An additional level constraint 

is introduced while mining embedded subtrees to make the corresponding algorithm 

scalable. Both the algorithms are evaluated using the relevant and state-of-the-art 

algorithms from the literature. Empirical analysis shows the superior performance of 

the proposed algorithms over the benchmarking algorithms. These algorithms are 

found computationally efficient in term of both memory and runtime in comparison 

to the state-of-the-art algorithm. 

 

Figure 1.4: A research map to provide the high level overview of the thesis 

Introduction 17



 

Research 
Phase Phase 1 Phase 2 Phase 3 

Research 
Activity 

Tree Representation and Data 
Structure Tree Matching Frequent Subtree Mining 

Research 
Question Q 1 Q 2 Q 3 

Corresponding 
Chapters Chapter  3 Chapter 4 Chapter 5 

Contributions BOS  BOCF Adjacency 
Matrices 

AAM- 
based 

Method 

EAAM
- based 
Method 

BOSTER BEST FreeS 

Corresponding  
Papers 

Paper 
1, 2 

Paper 
4, 5, 6 

Paper 1, 2, 
3 

Paper 
1, 2 Paper 3 Paper 4 Paper 

5 
Paper 

6 

BOS Traversal 

Reduction 
from SALB to 
Tree Traversal 

The 
Optimisation 

Model 
Formulation  

Pseudocode of the Algorithm Properties of BOS along with 
complexity analysis 

Paper 2 (Sub-
section 3.1 & 
3.2) 

Paper 2 (Sub-
section 3.3) Paper 2 (Sub-section 3.3) Paper 2 (Sub-section 3.3) 

Balance Optimal Search Canonical Forms (BOCFs) 

BOCF for Rooted Unordered Tree (definition and 
properties) 

BOCF for Free Tree (definition and 
properties) 

Paper 4 (Sub-section 3.1); Paper 5 (Sub-section 
3.2) Paper 6 (Sub-section 3.1) 

Adjacency Matrices 

AAM definition AAM Properties EAAM definition 

Paper 1 (Sub-
section 2.2); Paper 
2 (Sub-section 4.2) 

Paper 2 (Sub-section 
4.2) Paper 3 (Sub-section 4.3) 

Table 1.2: A detailed sketch of the major contributions made in the thesis 

The BOCF representation of rooted unordered trees is used to define canonical 

form of free trees by using tree normalisation. A scalable algorithm, FreeS for 

mining frequent free trees is then proposed. This algorithm uses additional conditions 

for enumerating free candidate trees with the support of tree structure scheme; 

accordingly the FreeS-extension and FreeS-join operations for growing the 

enumeration tree are defined. Evaluation is done by comparing it with relevant state-
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of-the-art methods. It provides an improved result by a few orders of magnitude for 

the computational complexity. Currently, this algorithm works on a database of 

labelled free trees and can be considered as a first step towards mining frequent 

subgraphs in the future. 

From the above discussion it is ascertained that the research carried out in this 

thesis has three major phases. In the first phase, the BOS traversal is proposed. Based 

on BOS traversal, some novel tree representation methods – BOCF canonical forms 

and adjacency matrices – are introduced. In the second phase, tree matching 

algorithms are developed and in the third phase, frequent subtree mining algorithms 

are proposed. Table 1.2 shows the corresponding references in this thesis where the 

necessary descriptions of the proposed methods under each research phase has been 

made. 

1.8 RESEARCH SIGNIFICANCE 

This thesis advances the field of knowledge discovery from tree databases with 

a focus on alleviating the hurdles of existing tree representation methods. The BOS 

based representation plays an important role in significantly improving the scalability 

performance of frequent subtree mining and tree matching algorithms. The area of 

unordered tree mining is under researched; this makes the significance of this 

research unquestionable. 

The research carried out in this thesis has practical significance, since all of 

these contributions have a relationship with many real life applications. 

− The research focus is on mining unordered and free trees, which are often 

used in modelling various common and popular domain data such as 

Weblog, XML, BOM, Glycan and many more. This is an era of “big data”, 

where data are coming from many sources and are stored in a common 

platform for future manipulation for knowledge discovery. Data coming 

from various sources are likely to have inconsistency, where unordered 

tree modelling is more suitable to support the overall knowledge discovery 

process. In general, the findings in this area of research are going to 

benefit various domains, which are currently lacking in the process of 

discovering knowledge from such less constrained and complex data 

models. 
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− The balance optimal traversal search based representations (i.e., BOS 

encoding and BOCFs) can ensure one-to-one mapping of unordered and 

free trees regardless of the presence of isomorphic trees in a database. This 

will greatly benefit the indexing of a database of trees. Finding frequently 

occurring subtrees can also help the database indexing system. Moreover, 

knowledge in the form of frequent subtrees improves a user’s 

understanding about a data source. The frequent subtree mining algorithm 

also serves as the first step in classifying and clustering tree-structured 

data.  

− The frequent free tree mining algorithm can be helpful in solving some 

graph and network data problems, which are a very common data format 

in social network and business intelligence systems. 

−  The similarity information of a tree database may facilitate building a 

query system. This similarity information can feed to a clustering 

algorithm for grouping trees without any class information. Based on 

similarity measures, a nearest-neighbour classification, data integration 

and data cleaning methods can be built upon.   

− The proposed methods of knowledge discovery focus on scalability and 

less complex processing which will be beneficial for processing big data.  

1.9 THESIS OUTLINE 

A detailed introduction of the thesis topic is provided in Chapter 1 with 

specific research questions and objectives. A brief relational map of contributions is 

added to provide a clear idea of research tasks. Since the thesis is presented as a 

thesis by publication, the reader may notice some repetition of materials between 

published articles. Each article should be self-contained and therefore, has been 

published with relevant material for completeness. In this way, a reader does not 

have to refer to several different references to get the whole picture for the results 

presented. Therefore, the author’s suggestion to the reader is to skip the repeated 

parts unless otherwise you have not read them already. The outline of other chapters 

is given below: 
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Outline of Chapter 2 

A concise review of existing peer-reviewed literature and the necessary 

prerequisites to understand the thesis contents are presented in Chapter 2. Critical 

studies on existing literature are performed based on the research questions and 

objectives. These studies mainly present a review of the literature on tree 

representation, tree similarity measure for unordered tree pairs, and frequent subtree 

mining, especially the  mining of frequent rooted unordered and free subtrees. 

Outline of Chapter 3 

After the initial literature review, the research questions and objectives are 

addressed gradually. This chapter mainly focuses on tree representation, which is a 

primary contribution in this thesis. The novel tree traversal approach, canonical 

forms and matrix representations are introduced briefly as the attached subsequent 

publications include the details of these concepts. Although the technical detail of 

each of the representations is discussed under the published articles with the 

corresponding algorithms, Chapter 3 is presented as a hub for other contributing 

chapters to increase the thesis readability and to avoid abrupt discussion. 

Outline of Chapter 4 

Chapter 4 presents the detailed contribution on tree matching algorithms based 

on Paper 1, Paper 2 and Paper 3. Paper 1 is published in a Tier A conference, which 

includes preliminary information on the BOS traversal approach and AAM 

representation. Paper 2 details the overall BOS traversal algorithm, including 

mathematical modelling and heuristics. It includes the detailed empirical analysis of 

the tree matching algorithm. This is currently under review in a high impact factor 

journal. Paper 3 has been published in a popular Tier B conference, and utilises the 

tree matching algorithm with the EAAM matrix representation. Before presenting the 

paper’s contents, a preamble is added to explain its contents.  

Outline of Chapter 5 

Chapter 5 is formed from Paper 4, Paper 5 and Paper 6 and describes the 

contributions to frequent subtree mining from the databases of trees and free trees. 

Paper 4 was published in a Tier A conference, and explains the algorithm of mining 

frequent rooted unordered induced subtrees. Paper 5 is published in a well-known 

Introduction 21



 

Tier B conference that describes the algorithm of mining frequent rooted unordered 

embedded subtrees. Paper 6 is accepted in a Tier A conference that is about the 

algorithm of mining frequent free subtrees. Before presenting the paper contents, a 

preamble is included to explain the context of these papers in the thesis.  

Outline of Chapter 6 

Chapter 6 summarises the outcomes obtained from the research work in 

Chapters 3, 4 and 5. The significant research findings are specified, and also 

mentioned are how these findings have answered the considered research questions. 

Finally, recommendations for future research directions are suggested. 
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Chapter 2: Literature Review and 
Background 

This section will give a review of the tree structured data and various tree 

mining techniques. The background of labelled unordered trees with basic tree 

concepts and tree mining terminologies is detailed first. The methods of tree 

representation are discussed next, guiding the discussion on two major data mining 

tasks tree matching and frequent subtree mining. This research is focused on 

unordered and free trees; therefore the state-of-the-art research of these types of trees 

will mostly be discussed here. Moreover, the limitations of various tree mining 

methods will be highlighted to support the research hypothesis of this thesis.  Figure 

2.1 outlines the main areas to which this thesis is related. It provides the relationships 

between various fields of tree mining research, as viewed in this thesis. The middle 

area, where clustering is shown as a common part, is a real life application, which 

can be fitted to both of tree matching and frequent subtree mining algorithms. 

Clustering is briefly discussed under the preamble of Chapter 4. 

Tree Structured Data Source 

Tree 
Representation

Tree 
Representation

Clustering
Tree Matching

Frequent 
Subtree Mining

 

Figure 2.1: Related research areas and coverage of literature review 
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2.1 TREE STRUCTURED DATA SOURCE 

Semi-structured data can portray the two-dimensional relationships among data 

entities that are manifested through structural relationships among entities. Hence, 

the analysis of semi-structured data objects can often reveal valuable information  

[11]. Trees are the most common data format used to represent semi-structured data 

[12, 19, 67]. Due to the usefulness of semi-structured data, the research field of tree 

mining has gained a considerable amount of interest in applications such as XML 

document management, Web intelligence, Bioinformatics, Manufacturing and 

Product Design [38, 49, 68]. This section presents some of the significant domains 

that use tree data to express their domain information. Data originated from some of 

these domains have been used in this thesis for evaluating the designed methods. 

Table 2.1 provides a summary of these domains. 

DOMAINS  EXAMPLE OF DATA BRIEF DESCRIPTION 

Internet/ 

Intranet 
XML or HTML 

Quite often the online information is stored and 

exchanged in HTML or XML format. These data on 

Internet / Intranet can be represented as trees [67]. 

Web 

Intelligence 
Web log 

The Web log data represented with tree format, can 

provide useful insight on user behaviour [20, 38].   

Production or 

Manufacturing 

Industry 

Bill of Material (BOM) 

[69] 

Similarity information among Bill of Materials 

(BOMs) of various products can help in accelerating 

the design phase of a new product. Based on the 

similarity, often BOM of an existing product is 

reused and modified to design a new product. A 

BOM document can naturally be depicted as rooted 

unordered tree [23, 24]. 

Bioinformatics 

RNA secondary 

structures, Phylogenetic 

trees, Glycan, etc.  

RNA structures represented as trees can be compared 

for finding important information of a newly 

sequenced RNA based on the common topological 

patterns of a known RNA [25, 70]. This is useful for 

obtaining some important clues about the function of 

the RNA.  

Table 2.1: The example of various tree data domains 
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2.1.1 XML (eXtensible Markup Language) 

XML (eXtensible Markup Language) is a markup language defined by the 

World Wide Web Consortium (W3C) that consists of a set of rules for encoding 

documents [71]. XML is advantageous in comparison to other markup languages like 

Hypertext Markup Language (HTML), because it describes the content in a way that 

is readable to both human and machine. Moreover, XML allows for user-defined tags 

that makes it more flexible than HTML. XML data is application and platform 

independent. Figure 2.2(a) shows a simple example of an XML document. 

An XML document can be naturally represented as a tree [67]. For deriving a 

tree structure from an XML document various XML parsers (e.g., Document Object 

Model (DOM) and, the Simple API for XML (SAX)) are used which treat the 

element in an XML document as a node in a tree representation. To show the 

hierarchical relationships between elements, tree branches are used. For instance a 

tree-based model for the XML document in Figure 2.2(a) can be derived as the one 

shown in Figure 2.2(b). These trees are often modelled as unordered [29, 41]  as 

there is no order in appearances of multiple instances. The unordered representation 

also assists in dealing with the irregularities and inconsistency that may present in an 

ill-formed XML document due to it originating from heterogeneous sources. 

 

Figure 2.2: Tree modelling from XML data [72] 
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index.php/csse

issue search information index about login user

archive authors titles readers authors librarians register

LOGML

(a) (b)

index.php/csse
index.php/csse/issue/archive
index.php/csse/search/authors
index.php/csse/search/titles
index.php/csse/information/readers
index.php/csse/information/authors
index.php/csse/information/librarians

 

Figure 2.3: Example of Web log data in tree format [11] 
 

2.1.2 Web log data 

Web log data contains information on Web users’ browsing behaviour during a 

visit to a Web site. Analysis of user browsing behaviour can result in obtaining user 

browsing patterns and frequent usage paths [73, 74]. These useful insights inform 

site managers for improvement of the site as well as creation of business 

opportunities.   

Recent research advancement in Web mining encourages a more complex 

structural representation of Web log data, which will allow the capturing of deep 

information on structure of the site and navigational patterns. A popular 

representation language of Web log data is LOGML [33, 75], which uses XML 

templates to detail the user activities. LOGML data can easily be represented as trees 

where the set of requested Web pages refer to the tree nodes and the traversed 

hyperlinks in a Web log file refer to the edges or links between tree nodes.  

An example of tree representation of Web log data in LOGML format is shown 

in Figure 2.3. From the sequence of logs in Figure 2.3(a), the ‘index.php/csse’ is 

considered as the home page which leads to the tree representation as shown in 

Figure 2.3(b). The unordered tree representation of Web log data allows finding 

more detailed insights of a Web domain [38], as discussed in Chapter 1. 

2.1.3 Bill of Material (BOM)  

Bill of Material (BOM) is a common data type used in various engineering 

domains such as mechanical, civil or infrastructure, electrical and electronic. It is a 

structured or hierarchical portrayal of an end product comprising information about 
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part or components, raw materials, quantity and manufacturing instructions [76]. 

BOM data is usually produced in tabular form that represents the overall description 

of particular product manufacturing. By considering the parent and part name, the 

BOM data can be easily represented as a tree, whereby the underlying product will 

be the root node and the tree model will maintains the parent-child relationship by 

using the level information, parent and part name [23, 77]. For BOM data only the 

ancestral or parent-child relationship is significant; the order among the parts under 

the same parent is unimportant. That is why the unordered tree modelling of BOM 

data will result in meaningful analysis. 

 

(a) 

 

(b) 

Figure 2.4: Tree modelling from BOM data (Collected from SAS Bill of Material 
Processing1) 

1 
http://support.sas.com/documentation/cdl/en/orbomug/63972/HTML/default/viewer.htm#orbomug_bo
m_sect002.htm#orbomug.bom.gs3_ 
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Figure 2.4 gives an example of a raw BOM data and its corresponding tree 

modelling. This is the Bill of Material of a product named table lamp, ‘LA01. The 

table in Figure 2.4(a) contains the information on various parts of the lamp, such as 

part level positions, parent name, part name, quantity per parent, quantity per 

product, etc. For building a tree only the red marked information is used, which 

includes the level information, the parent item and the part number of the component 

under each parent item. If a component is used in more than one parent item, it 

appears in multiple records. For example, the part number '1400' is used in 

both ‘B100’ and ‘1500’; this item occurs in records identified by the values 6 and 10 

in Figure 2.4(b). 

2.1.4 Glycan 

In bioinformatics, after DNA and proteins, the third major class of 

biomolecules is carbohydrate sugar chains knows as  glycans [78]. Glycan carries 

important genomic information, and is extremely vital in functioning multicellular 

organisms. Gaining insight from this data structure has practical significance. The 

general structure of glycan is very complex and contains many branching 

monosaccharides, starting from a single monosaccharide, which allows it be 

represented through a rooted tree structure. Since siblings do not have order 

precedence, Glycan is a good example of real-life rooted unordered tree data. 

Researchers have treated glycans as rooted unordered trees and have applied tree 

mining techniques for discovering useful knowledge from them [21, 40, 79]. In 

Figure 2.5, a sample glycan structure is shown; similar examples can be found in the 

KEGG database [80], one of the famous repositories for glycan data. 

 

Figure 2.5: A sample glycan structure 
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Discussion: The omnipresence of trees is noticeable in various domains such as web 

intelligence, bioinformatics, production process and many others. Quite often, 

treating these data as rooted unordered trees allows the discovery of more useful 

knowledge and insights. Some of these data are naturally structured as rooted 

unordered trees (i.e. Glycan, BOM) and treating these domain data as rooted ordered 

trees will violate the fundamental properties embedded in their structure. On the 

other hand, some of the domain data are preferred to be modelled as rooted 

unordered trees (i.e. Web log data, XML) for supporting some specific applications, 

such as in some applications; it is preferable to regard input trees as unordered trees 

to allow more flexible matching. Hence, modelling these data as rooted ordered trees 

may cause the loss of some interesting patterns and information because of enforcing 

the grouping constraint. In fact, any data that exhibits a hierarchical relationship can 

be represented as trees, and can further be analysed through various tree mining 

techniques for insight in the domain. Moreover, patterns in the forms of sub-trees are 

found to be more descriptive and informative than itemsets or sequence patterns [11]. 

So, developing methods for mining tree data has great value and conducting research 

in the area of rooted unordered trees is essential, as this field is still in need of 

developing some efficient methods.   

2.2 BASIC TREE CONCEPTS 

Tree data is an interesting compromise between the structural representation 

such as graphs, and the linear representation such as vectors and matrixes. This can 

be considered as a natural representation of rules and hypotheses which expresses 

hierarchical dependencies with implicitly defined semantics [81].  

The following definitions are adopted from [82-84], which are the necessary 

basics of a tree structure data and its various formalisations. 

A labelled tree can be formally denoted as T = (V, E, L, Ø), where (1) the set of 

nodes is V(T) = {v0, v1, v2, …, vn}, v0 = root, (2) the set of edges is E, defined as E = 

{(vi, vj) | vi, vj ∈ V} = {e1, e2, …, en}; (3) L is the set of node labels and (4) Ø is a 

labelling function that maps nodes to the set of labels and a label can be shared 

among many nodes, Ø : V → L. This thesis does not consider any edge label in 

formalising a tree structured data. 
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A tree has a distinguished root node v0, and for any other node vi, there is a 

unique path from v0 to vi. A tree contains no cycle. A cycle is a path in which the first 

and the last node of the path are the same. 

A path is a sequence of consecutive edges between two nodes in the tree. The 

length of this path is defined by the number of edges. Each node vi of a tree has a 

unique path from its position to root v0. The size of a tree denoted as |T| is the total 

number of nodes present in tree T.  

A tree structure poses several hierarchical relationships - parent-child, 

ancestor-descendant and sibling relationships - among its nodes, as shown in Figure 

2.6.  

The parent of vi (and vi ≠ v0), is the adjacent node of vi in that unique path to v0. 

The ancestors of vi, are all the other nodes in that unique path except vi itself. 

The children of vi is the immediate follower nodes of vi, the number of the 

children is also known as fan-out, denoted by fi.  

The descendants of vi are the list of all follower nodes of vi.  

Sibling nodes share the same parent, so a sibling relationship exists between 

nodes that originate from the same parent node. 

Definition 2.1 (Depth, Height, Level): For node vi, the length of the unique 

path is called the depth of that node in tree T, denoted by d(T, vi). The height h(vi) of 

a node vi in a tree is the longest path from that node to a leaf.  The height H(T) of a 

tree is the height of root h(v0). The level of a node vi in a tree T is, Lv(T, vi) = H(T) - 

d(T, vi).  

According to this definition, the root node of a tree is positioned at the highest 

level. 

Ancestor - 
Descendant

Parent - 
Child

Parent - 
Child

A

CB

D ESiblings F

 

Figure 2.6: Hierarchical relationships amongst tree nodes 
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Definition 2.2 (Tree Isomorphism) Let two trees denoted by T1 = (V1, E1, L1) 

and T2 = (V2, E2, L2) respectively. A tree isomorphism is a bijective function f: V1 → 

V2 satisfying 

(1) L1 (V1) = L2 (f(V1)) for all nodes vi ∈ V1 

(2) for each edge e1 = (vi, vj) ∈ E1, there exists an edge e2 = (f(vi), f(vj)) ∈ E2  

If a bijective mapping exists between the set of nodes of two trees T1 and T2, 

which preserves and reflects the tree structures, then these trees are isomorphic to 

each other, denoted as T1≅T2. The automorphism corresponds to isomorphism of a 

tree to itself. 

2.2.1 Types of trees 

There are many types of trees. Based on the topology, three types of trees are 

listed below: 

Definition 2.3 (Free Tree) A free tree is connected, acyclic and undirected 

whose edges have no direction. Therefore, it has no designated root node. 

Definition 2.4 (Rooted Unordered Tree) A rooted unordered tree is connected, 

acyclic and directed, which has a distinguished root node from which all other nodes 

can be reached. A root node does not have any incoming edge. For a rooted 

unordered tree, there is no predefined or fixed left-to-right order among siblings; 

only ancestor-descendant and parent-child order are defined. 

Definition 2.5 (Rooted Ordered Tree) A rooted ordered tree is connected, 

acyclic and directed and also has a designated root node. In this tree type, the 

predefined order among siblings exists along with ancestor-descendant/ parent-child 

relations. 

This research emphasises using rooted unordered trees and free trees for 

mining useful information from them, but the rooted ordered tree type is also 

discussed to provide a general tree type concept.  

2.2.2 Types of subtrees 

Subtrees play an important role in tree mining. They are a portion of a tree data 

structure that can be considered as a tree itself. Formally, the tree T´ with node set V´ 

Literature Review and Background 31



 

and edge set E´ is a subtree of a rooted tree T with node set V and edge set E iff (1) V' 

⊆ V, (2) E' ⊆ E, (3) the labelling of V' and E' is preserved in T' according to T. There 

are different types of subtrees that are also well known for their wide usage in 

various tree mining algorithms, but the following discussion is provided based on the 

research focus of this thesis.  

Definition 2.6 (Induced Subtree) For a rooted labelled tree T with node set V 

and edge set E, a tree T' with node set V' and edge set E' is called an induced subtree 

of T iff (1) V' ⊆ V, (2) E' ⊆ E, (3) the labelling of V' is preserved in T' according to T, 

and (4) (v1, v2) ∈ E' if and only if v1 is a parent of v2 in T. In other words, the induced 

subtree T' is a subtree that keeps the parent-child relationship among the vertices of 

the tree, T. In the case of defining it for a rooted ordered tree, on top of the above 

mentioned conditions, the left-to-right ordering among the siblings in T' should also 

be preserved.  

Definition 2.7 (Embedded Subtree) For a rooted labelled tree T with node set V 

and edge set E, a tree T' with node set V' and edge set E' is called an embedded 

subtree of T iff (1) V' ⊆ V (2) the labelling of V' is preserved in T' according to T (3) 

(v1, v2) ∈ E' where v1 is the parent of v2 in T' only if v1 is an ancestor of v2 in T and 

the set of ancestors of (v2 ∈ V') ∩ the set of ancestors of (v2 ∈ V)) ≠ φ. In simple 

words, an embedded subtree T´ preserves an ancestor-descendant relationship among 

the nodes of the tree, T. If it is an ordered embedded subtree, besides other 

conditions, the left-to-right ordering among the siblings in T' should also be 

preserved. Examples of induced and embedded subtrees for a tree T are given in 

Figure 2.7. 

Subtrees
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Figure 2.7: Examples of induced and embedded subtrees (b) for a tree, T (a) 
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Discussion: From the above discussion, it is certain that all induced subtrees are 

embedded subtrees but vice-versa is not true. Embedded subtrees can be considered 

as a generalised form of induced subtrees. Based on a tree type, properties of the 

trees can be defined. For example, the order among siblings does not need to be 

preserved for an unordered tree. Trees with the different permutation among siblings’ 

order will still be considered the same. This property leads to the concept of 

isomorphic trees. According to the nature of desired information, different subtrees 

need to be mined. If the parent-child relationships are the main focus in the tree data, 

induced subtree mining should be performed. Mining of embedded subtrees would 

result in undesired outcomes in those situations. For example, if one is interested in 

characterising a particular disease then induced subtrees are essential to mine, due to 

the fact that some features of the dataset may have a similar set of values, and it is 

necessary to indicate which value belongs to which particular feature. On the other 

hand, if the captured relationships are to be generalised to those of ancestor-

descendant nodes in the trees, then the focus should be shifted towards mining 

embedded subtrees that allow detection of information embedded deeply within the 

tree structure. In summary, both induced and embedded subtrees carry important 

information and hence, proposing algorithms to mine these subtrees is significant. 

2.3 TREE REPRESENTATION 

Semi-structured data, as known as tree data, has no fixed schema or class. It is 

implicit, irregular, nested and heterogeneous [85] which makes it more complex to 

be mined in comparison to the flat-representation data [86]. Mining tree structured 

data requires a rigorous pre-processing to get it prepared for further processing or 

manipulation. The data should be cleaned, transformed, and formatted before using it 

as input to a data mining task [87]. The pre-processing step takes a lot of time, but it 

is essential for discovering meaningful information. This thesis focuses on efficient 

representation of the tree data in order to apply mining techniques directly. This 

section covers the state-of-the-art methods of tree representation. Some of the most 

popular tree representations, such as canonical form, adjacency list and adjacency 

matrix that have been used in the algorithms of frequent subtree mining and tree 

matching, are discussed below.  
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2.3.1 Tree Traversal 

Tree traversal refers to the approach of visiting all nodes of a tree in a 

systematic way [62, 83]. This allows the tree structured data to be represented as list 

data in order to facilitate knowledge discovery. Two basic traversal schemes for 

ordered trees are preorder and postorder traversals [83]. In a left-to-right preorder 

traversal, the root of a tree is visited first, and then the subtrees rooted at its children 

are visited recursively from left to right. (The children are visited from right to left 

recursively in a right-to-left preorder traversal) 

On the other hand, in a left-to-right postorder traversal, before visiting root 

node, first all of the subtrees rooted at its children are visited recursively from left to 

right. (In a right-to-left postorder traversal, these children are visited from right to 

left recursively.) In the literature often the left-to-right preorder or postorder is 

simply referred to as preorder or postorder [83, 88]. 

In tree mining algorithms mainly preorder traversal are used to encode trees. 

Depth-First Search (DFS) and Breadth-First Search traversals [83] are the most 

popular pre-order schemes, which have been widely used in encoding both ordered 

and unordered trees [89, 90]. According to [62], these traversals can be defined as 

follows: 

Definition 2.8 (Depth-First Search) Depth-First Search (DFS) is a preorder 

traversal that visits tree nodes following its depth.  

In Figure 2.8 (a) the traversal order using DFS traversal for the given tree will 

be A-B-A-C-B-C-C-B-A.  

A

B C

A C B

C

B A

A

B C

A C B

C

B A

Breadth-first search 
(b)

Depth-first search 
(a)  

Figure 2.8: Examples of the depth-first search (a), and the breadth-first search (b). 
The dotted arrow lines show the traversing directions 
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Figure 2.9: The Depth-first search (a), and the Breadth-first search (b) traversing 
orders for the same example tree of Figure 2.8, but with a different sibling order 

Definition 2.9 (Breadth-First Search) Breadth-First Search (BFS) is a preorder 

traversal that visits the tree nodes following breadth or “level by level” after the root 

traversal; all its children are processed next, then all of their children, etc. down to 

the bottom level.  

For the given tree in Figure 2.8(b), BFS traversal of nodes will be in this order: 

A-B-C-C-A-C-B-B-A.  

Being left-to-right preorder traversal in both DFS and BFS schemes, the tree 

nodes are visited iteratively from left-to-right order following depth and breadth 

respectively. Both DFS and BFS are used widely to encode ordered and unordered 

trees. The traversing order of a tree should be unique so that it can be used to encode 

a tree distinctively. It is considered as a first step to define a canonical form of the 

tree. In order to maintain an accurate tree indexing in various tree mining algorithms, 

the traversing order and encoding play an important role. 

Discussion: From the above description, it is clearly understandable that both the 

DFS and BFS traversal visit the sibling nodes by preserving an order from left-to-

right, which implicitly forces the properties of an ordered tree. Using the BFS and 

DFS traversing orders for encoding ordered trees will not raise any issue, however, 

for unordered trees these two schemes encode two similar unordered trees (only 

varied in sibling order) differently, which causes various issues like isomorphism in 

frequent mining and false similarity measure in tree matching.  The example tree in 

Figure 2.9 is the same tree as Figure 2.8 with the only difference of position of 
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sibling nodes. For an unordered tree, the position of sibling nodes can be exchanged 

and the trees with varied sibling orders will still be considered the same. The DFS 

and BFS orders for the trees in Figure 2.9(a) and (b) are A-C-B-A-C-B-A-C-B and 

A-C-C-B-B-A-A-C-B respectively, which are different orders than those listed 

before for the example tree in Figure 2.8. Since these are the same unordered trees, 

their encodings should be the same, but the DFS and BFS traversal orders will lead 

different encodings for them due to enforcing the left-to-right order. During tree 

manipulation, these trees will be treated differently and may result in incorrect 

answers. This prompts the need for developing an alternative traversing approach as 

well as an unordered tree encoding scheme without relying on the left-to-right sibling 

order. 

2.3.2 Canonical Form  

The canonical form (CF) of an entity (or tree) is a representative form that can 

consistently represent many equivalent variations of that entity into one standard [83, 

90]. It can be considered as a bijective mapping function that maps a tree along with 

all of its equivalent variant trees in a database into a unique identity, which ensures 

efficient processing of many tree mining algorithms. 

In the literature, various canonical forms for representing trees have been 

proposed [63, 90-92]. A canonical representation is normally referred to as string 

encoding, which is a compact and memory efficient way of representing the tree data 

[83, 90]. Besides, the string encoding provides an efficient data access mechanism. 

Often, canonical form and canonical form string encoding are used interchangeably. 

To build a canonical form, the nodes of a tree are stored in the string encoding 

following a traversing order. Based on the DFS or BFS traversing order, the state-of-

the-art canonical forms can be classified as follows.  

Depth-first Canonical Form (DFCF) String Encoding 

 The DFCF string encoding utilises the DFS order of a tree. It is usually built 

by adding the label of the tree nodes in a depth-first order with a special backtrack 

symbol that is not in the label alphabet. The backtrack symbol is used whenever, in 

accordance with the traversing order, the encoding needs to come back from a child 

node to its parent node. Different backtrack symbols such as ‘$’, ‘/’, ‘↑’ or -1 have 
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been used by researchers [70, 90, 93, 94]. Another symbol “#” is commonly used to 

indicate the end of the string encoding. All of these special symbols should not be in 

the node labels set. The DFCF using ‘$’ for backtrack for the example tree in Figure 

2.8(a) would be ABA$C$B$$C$CB$A$$. Asai et. al. [92] and Nijssen & Kok [91] 

independently defined a similar string encoding for rooted ordered trees using depth 

sequences, where they explicitly store the depth of each node within the tree. For 

example, the depth sequence for the tree used in the previous examples will be 

“(0;A); (1;B); (2;A); (2;C); (2;D); (1;C); (1;C); (2;B); (2;A)” or equivalently 

“0A1B2A2C2D1C1C2B2A”.  

Breadth-first Canonical Form (BFCF) String Encoding  

The BFCF string encoding is obtained by storing the label of each node in 

accordance with the BFS traversing order, level by level. Additional symbols “$” and 

“#” are added that should not be in the label alphabet. “$” is used to separate the 

families of siblings and “#” is used to indicate the end of the string encoding. The 

breath-first encoding for the previous example in Figure 2.8(b) will be 

“A$BCC$ACB$$BA#”. 

The BFCF representations have been also utilised by many researchers, 

especially in various frequent subtree mining algorithms [49]. 

2.3.3 Canonical Representation for Unordered and Free Trees 

Canonical Representation for Rooted Labelled Unordered Tree 

Defining the canonical form for unordered trees is not as simple as for the 

ordered trees. For an unordered tree, many possible ordered tree variations are 

available. All of these ordered trees will actually map the same unordered tree, 

therefore they should be treated as the same unordered tree for doing further 

manipulation like frequent subtree mining or clustering. Therefore, the canonical 

form of unordered trees should be defined in a way that will ensure unique identity to 

all of its isomorphic trees.  

Figure 2.10 shows the example of a group of isomorphic trees which hold an 

exact bijective map to each other and preserve the same tree structure. These trees 

Literature Review and Background 37



 

represent the same unordered tree. The concept of the presence of isomorphic trees in 

a database is known as isomorphism [62, 82]. 

A

C BC

 (a)

B A A C B

A

B CC

 (b)

B AA C B

A

B CC

A BA B C

 (c)  

Figure 2.10: Example of isomorphic trees 

To deal with this representational issue of unordered trees, many researchers 

proposed to choose a representative of the isomorphic trees and then use the 

canonical form of the representative tree for all isomorphic trees [49, 92, 95]. To 

describe this canonical form, the breadth-first canonical string (BFCS) is used here; 

the encoding proposed by Chi et al. is used as an example [90, 96]. First all possible 

rooted ordered trees and the corresponding breadth-first string encodings are 

obtained by assigning different orders among the sibling nodes. Then, according to 

the lexicographic order, the minimum breadth-first strings of the ordered trees is 

defined as the breadth-first canonical form of the rooted unordered tree. Consider the 

example in Figure 2.10, where for three different rooted ordered trees, the breadth-

first string encodings are:  

(a) “A$CCB$BA$$ACB#”,  

(b) “A$BCC$ACB$$BA#”,  

(c) “A$BCC$ABC$AB#”.  

According to the minimum lexicographic order, the BFCF string encoding 

“A$BCC$ABC$AB#” will become the canonical form of these trees and other 

isomorphic trees. 

Any of the breadth-first search and depth-first search-driven preorder scheme 

can be used to define the canonical form of an unordered tree in similar manner. Chi 

et al [90] defined a depth-first search canonical form (DFCF) of unordered trees. In 

another work, Chi et al have defined the canonical form based on breadth-first search 

order [96]. Asai et al. [92], Nijssen & Kok [91] and Zaki [70] also proposed similar 
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canonical form in their works. Hadzic et al. also utilised similar canonical forms in 

[97, 98]. The most recent contribution to encoding process of unordered tree is found 

in [53], which also used the preorder to encode the tree nodes. 

Canonical Representation for Free Trees 

A free tree is unrooted and unordered in nature, which make its representation 

even harder than the rooted unordered tree, as it can possibly be represented in 

multiple ways due to having different choices for the root. To define a canonical 

form for a free tree, the root node is defined uniquely at first by repeatedly removing 

the leaf node at a time along with its incident edge until one or two nodes remain [54, 

63, 64, 96]. If a single node remains then the free tree is called centred, whereas if 

two nodes remain then the free tree is called bicentred [10]. A free tree is either 

centred or bicentred. 

Ruckert et al. [54], Nijssen et al. [66], and Chi et al. [63, 96] have shown for a 

centred free tree, the centre can be designated as the root, and the tree becomes a 

rooted unordered tree. The canonical form for the rooted unordered tree then can be 

used to define the canonical form of the transformed tree (centred free tree). If a free 

tree is bicentred, the tree can be imagined as two pieces of a free trees, each of which 

is rooted in one of the bicentres, and therefore a canonical string can be obtained by 

comparing the string encodings of two subtrees based on the lexicographic order [54, 

96].  

Discussion: From the above description, it can be ascertained that the canonical 

forms of trees have been developed based on the BFS and DFS traversal approaches. 

For the rooted ordered trees, there is no issue in the CF representation due to the 

order dependency. An ordered tree cannot have any other variations or isomorphic 

trees. A BFCF or DFCF string encoding can represent an ordered tree identically. 

However, for unordered trees this is not true. An unordered tree can have several 

isomorphic trees. Researchers have proposed various solutions to choose a 

representative isomorphic tree and use its CF for all. However these processes 

depend upon costly operation such as sorting. A method is yet to be proposed that 

ensures a unique identity of a rooted unordered tree without performing an expensive 

operation to find the lexicographically minimum BFCF or DFCF string encodings 
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from the available ordered variations of an unordered tree. The same applies to free 

trees, since the CF of a free tree uses the CF of a rooted unordered tree as its 

canonical form after deciding the root node. For a bicentred free tree, if an approach 

can be proposed to define the root node or to make it centred then again the sorting 

can be avoided to define the CF of a bicentred free tree.  

In general, the majority of tree mining algorithms (e.g., frequent subtree 

mining) use a canonical form for representing trees and then processing to obtain 

patterns. A novel breakthrough in tree representation will save the cost of the overall 

process. 

2.3.4 Adjacency List and Adjacency Matrix 

Adjacency List and Adjacency Matrix are two common forms of tree 

representation for pairwise comparison. Generally, an Adjacency List representation 

of a tree consists of each node along with its collection of adjacent nodes and edges. 

This basic idea may vary, depending upon how the association between a node and 

its adjacent collection is detailed [62]. On the other hand, an Adjacency Matrix used 

a matrix form to represent the adjacency information of each node of a tree. From 

this representation, it can be understood which nodes of a tree are adjacent to which 

other nodes. 

The adjacency list is more space efficient than the adjacency matrix, but can be 

cumbersome when a tree node has lots of adjacent edges. Usually, when the data is 

sparse, then an adjacency list is preferred over adjacency matrix, but it is vice versa 

when the data is dense. An adjacency matrix allows fast computation in case of 

checking or comparing trees; more specifically, when it is needed to check whether 

two nodes are adjacent to each other or not. An adjacency matrix can be even used as 

canonical form while doing frequent pattern mining [99, 100], but due to the compact 

size, the string encoding representation has become popular, since the frequent 

mining process includes some complex steps like frequency counting and candidate 

generation. The adjacency matrix representation can be considered useful for finding 

approximate similarity scores between trees. Therefore, the adjacency matrix 

representation can be considered as more appropriate for the tree mining tasks in 

which the similarity calculation is required. 
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Figure 2.11: Adjacency matrix representation using BFS and DFS order 

Discussion: The traditional adjacency matrix representation has some issues, since it 

uses a pre-order traversal for encoding the tree nodes and then populates the 

adjacency information in a matrix form, therefore the same issues highlighted for 

traversing unordered trees also held true during the node encoding of the adjacency 

Literature Review and Background 41



 

matrix. It is well understood now that an unordered tree can form many ordered 

variations, but during the knowledge discovery process, all these variations should 

correspond to the same unordered tree. The representation of all these ordered tree 

variations should be the same. Adjacency matrix representation uses a pre-order to 

arrange the rows and column which contains the adjacency information. The usual 

practice is to use either a depth-first search or breadth-first search traversal to get that 

pre-order. Since both DFS and BFS preserve a left-to-right order among sibling 

nodes, the adjacency matrix is not unique for all variations of an unordered tree. To 

elaborate on this, consider the example in Figure 2.11 where, two trees (a) and (b) 

are two ordered variations of the same unordered tree due to the variations in sibling 

nodes only. The BFS orders are different: for (a) “ABCDEF” and for (b) 

“ACBEDF”, which eventually build two different adjacency matrices for the same 

unordered tree. Similar results are obtained while using DFS orders for constructing 

adjacency matrices as shown in Figure 2.11(c) and (d). 

Other limitations of Adjacency matrix representation exist. Semantic 

information of nodes in the tree cannot be represented in an adjacency matrix. 

Moreover, for a tree structure, an adjacency matrix just shows the relationship of 

parent-child. The information of ancestor-child cannot be represented. It cannot 

precisely depict the difference of positions of different nodes. Value 1 is used to 

merely indicate that there is a link between two nodes; it is not able to distinguish 

different situations. For example, the level importance of a node is not equal, which 

it fails to express. This representation can be improved by inserting the ancestor-

descendant relation; the information about existence of a node, etc. This thesis 

proposes an improvised adjacency matrix that includes more hierarchical and 

semantic information. 

2.4 TREE MATCHING 

Tree matching is fundamental to the core operation of many data manipulation 

tasks such as clustering analysis, nearest-neighbour classification, data integration, 

data cleansing and data querying [60, 81, 101]. The tree matching problem refers to 

the problem of finding a similarity (or distance) score between tree pairs by means of 

some comparison [60].  The concept of similarity or distance can be expressed using 

a distance function (dist). Let a tree database Tdb contains trees {Ti, Tj, Tk}. dist: Tdb × 

Tdb →R+ be a mapping function that defines a distance between each pair of trees of a 
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database. For example, the similarity between trees Ti and Tj can be expressed by 

dist(Ti, Tj), which will give a distance or similarity score between these two trees.  

This distance function is treated as distance metric if it satisfies the following 

conditions: 

1. dist(Ti, Tj)  ≥ 0 (non-negativity) 

2. dist(Ti, Tj) = 0 iff Ti = Tj (coincidence axiom) 

3. dist(Ti, Tj) = dist(Tj, Ti) (symmetry) 

4. dist(Ti, Tk) ≤ dist(Ti, Tj) + dist(Tj, Tk) (triangle inequality) 

A myriad of tree mining methods have been developed for finding similarity 

between tree pairs. The majority of them are applicable for ordered trees, and very 

few are available for unordered trees due to the complexities involved with 

unordered tree processing [42]. These methods are developed based on nodes, paths, 

subtree representations, higher order model and many more [42, 102, 103]. Amongst 

these varieties, the tree edit distance is the most widely used method for tree 

matching. Some other methods are also available based on level similarity, frequent 

pattern, matrix computation, etc. This section mainly details the available methods 

for unordered tree matching, including their pros and cons in general. The discussion 

on various tree matching algorithms spans across two major areas: the tree edit 

distance-based methods; and the other methods not using an edit distance operation. 

The tree edit distance methods use string representation and other methods use a non-

string representation such as vector, matrix, and tensor etc. Figure 2.12 provides an 

overview of the tree matching approaches used for unordered tree comparison. 
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Figure 2.12: An overview of various tree matching approaches 
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2.4.1 Tree Edit Distance based Methods 

Amongst these method varieties, tree edit distance is the most widely used for 

tree matching [42, 104, 105]. Tree edit distance methods utilises the string 

representation of trees and, for the strings of characters; a particular syntax of string 

is used in many programming languages to represent regular expression. Researchers 

found the string edit operation-based tree edit distance methods convenient. 

Moreover, for ordered trees, the string representation usually consumes less memory 

[42, 106].  This method measures the distance between two trees by the minimum 

cost to transform one tree into another tree by applying a sequence of edit operations, 

which are constrained to be metric, such as deletion, insertion and substitution of 

nodes. The tree alignment distance problem is a special case of the tree editing 

problem, which can be considered as a restricted edit distance where all insertions 

must be performed before any deletions [42]. It only uses insertion and deletion as 

edit string operations. The tree inclusion problem is another special case of the tree 

edit distance problem, which only uses deletion as an edit string operation to 

calculate the distance [42]. Ti is included in Tj iff deleting nodes from Tj gives Ti. In 

clique based approach, a tree edit distance is reduced to a clique problem, and then a 

clique solver is used to solve the problem. [107, 108]. 

Many tree matching algorithms have been developed based on these problems. 

For an ordered tree, the edit distance-based algorithms are known to exhibit O(n2) 

complexity [109, 110] (where n is the maximum size of the two input trees), whereas 

for an unordered tree, the tree edit distance problem is found NP-hard [42, 48, 111]. 

The tree edit distance and the alignment problems for unordered trees have even been 

shown as MAX SNP-hard in literature [45, 47].  

To avoid this computational intractability, researchers have developed 

algorithms constrained to conditions such as tree size and other tree properties; 

however they result in compromising on accuracy [42]. Akutsu et al [112] introduced 

an algorithm under fixed parameters, which exhibited improved complexity of 

O(2.62k.poly(n)) (where k  is the maximum allowed edit distance), however, it 

performs poorly for comparing non-similar trees. Horesh et al. [113] developed an 

A* algorithm which can efficiently compare unordered trees of moderate size but 

only under the unit cost distance (i.e., the cost of each edit operation is 1).  
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Variant Type Time Reference 

Tree edit distance 
General O O(n3) [114] 
General O O(n2) [109, 110] 
General U Max SNP-hard [45, 47] 
Constrained O O(|Ti||Tj|) [115] 
Constrained (bounded height, h) U O(h) [116] 
Less-constrained O O(|Ti||Tj|Ii

3Ij
3 (Ii+Ij)) [104] 

Less-constrained U Max SNP-hard [104] 
Unit-cost O O(u2min(|Ti|, |Tj|) min(Li, Lj)) [117] 

Unit-cost U O(2.62k⋅poly(n))  [112] 

Bounded degree trees U O((1 + Ɛ) |Ti|+|Tj| ), for any fixed Ɛ > 0 [118] 
1-degree O O(|Ti||Tj|) [119] 

Tree alignment distance 
General O O(|Ti||Tj|(Ii+Ij)2) [43] 
General U Max SNP-hard [43, 45] 

Tree inclusion 
General O O(|Ti||Tj|) [120] 
General O O(|∑Ti||Tj|+ mTi,Tj D2) [121] 
General O O(Li|Tj|) [122] 
General U NP-hard [44, 123] 

Clique-based  

General U Not defined/ calculated [40, 124] 

Others (Pattern Matching) 
Tree contraction pattern-based U NP complete [125, 126] 

Largest common subtree 
(constrained)  

U Polynomial  [112] 

Table 2.2: Time complexity of various tree edit distance-based methods, here O = 
ordered tree and U = unordered tree, adopted from [42] 

In most recent times, some methods have been developed by reducing the tree 

edit distance problem to a clique problem [40, 79, 108, 124]. For example, Fukagawa 

et al [40] proposed a method of computing maximum clique, in which an instance of 

tree edit distance is directly transformed into an instance of the maximum vertex 

weighted clique problem, and then it is solved using a clique solver [127]. This 

method can work efficiently on moderate sized trees, but it will be slow for the large 

sized trees. This method is further improved with using dynamic programming that 

repeatedly solves instances of the maximum vertex weighted clique problem as 

subproblems [124]. However, this method still suffers from high complexity for large 

tree structures with many leaves. Some similar reductions [128, 129] and methods of 

variants of the tree edit distance problem [107] have been proposed, however none of 
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them exactly solves the formal tree edit distance problem for unordered trees. Some 

of the available tree edit distance-based methods may work efficiently for some 

particular tree shapes (i.e., by constraining height, size, etc.) but will degenerate for 

others by arising unpredictable, even infeasible runtime [46, 110, 116]. 

Apart from the tree edit distance, some other string representation based tree 

matching methods are proposed using pattern matching [102], maximum agreement 

subtree [26, 130], smallest common super tree and largest common subtree [131], 

tree contraction pattern [125, 126]. Unfortunately, these methods also provide 

unfavourable results for unordered trees by exhibiting high computational 

complexity [42]. In Table 2.2, some of the available tree edit distance based 

algorithms for both ordered and unordered trees are listed including their 

complexities. 

2.4.2 Other Methods 

Due to the high complexity involved in tree edit distance methods, researchers 

have attempted to calculate the approximate similarity score between tree pairs using 

the similarity function on Vector Space Model (VSM), Adjacency Matrix (AM) and 

Tensor Space Model (TSM) of tree representation. Trees represented as VSM can be 

compared using distance measures such as Cosine, Euclidean, Manhattan, Jaccard, 

Dice, etc. [127, 132]. A comprehensive survey on various distance measures can be 

found in [133]. Though these methods have reported as computationally efficient, 

VSM representation has its own limitations. It is a feature vector that contains 

information about tree content only, the structural detail in a tree such as hierarchical 

relationships cannot be captured through this representation. 

In response to this need, researchers have developed methods based on AM 

representation for doing the tree computation. Romanowski et al. [23]  proposed a 

method for matching unordered trees by employing the minimum weighted 

symmetric difference metric. Authors in [77] attempted to calculate the similarity 

between unordered trees by considering the shape or geometrical structure, where a 

Orthogonal Procrustes method was used to calculate the similarity score. But again, 

the AM representation also has some limitation; it only contains the adjacency 

information of nodes, whereas for representing tree structure, some other pieces of 

information like ancestor-descendant relationship, fan-out and level are also required, 
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especially when these equivalent representations of trees are going to be used further 

for calculating the similarity score between tree pairs. 

Recently, the TSM representation is used that can capture both the tree content 

and structure information for tree matching, however, it faces high computational 

complexity due to high dimensionality and sparsity [134]. Another family of 

algorithms (path-based method) uses the level similarity concept by counting the 

common nodes in the corresponding levels of two trees where each level has 

different weight assigned. These methods fail to preserve the child-parent 

relationship among tree nodes [51, 72, 135-137], which is an important 

differentiating factor for trees. Besides, these methods have been proposed for 

ordered trees only. 

Discussion: Much research has been conducted in the area of ordered trees, but the 

methods for unordered tree matching are still underway due to immense 

computational complexities. Many important problems in the research fields of 

genetics, bioinformatics and web intelligence emphasise the need for developing 

efficient methods of manipulating unordered trees  [21, 29]. The nature of an 

unordered tree mining problem is harder than that of an ordered tree due to its less 

constrained structure, which results in complex tree mapping.  

The structure of a tree plays an important role in differentiating the data; 

therefore, the dependencies inherent in a structure need to be captured efficiently. 

The representation format of a tree heavily affects the performance and complexity 

of the algorithm [46, 138]. Due to having a less constrained expression of 

hierarchical dependencies, the representation of an unordered tree for further 

manipulation is trickier and challenging. Apparently the lack of efficient equivalent 

representation raises the complexity in tree mapping as well as increasing the 

computational complexity of executing tree manipulation algorithms [42].  

Researchers have tried to solve the tree matching problem using tree edit 

distance and have built polynomial algorithms for ordered trees. Unfortunately, for 

unordered trees, the tree edit distance problem have been shown as NP-complete, 

even MAX SNP-hard, which means unless P = NP there is no polynomial time 

approximation scheme [45, 47], therefore no tractable solution is available following 

this approach. Because of the high complexity yielded by tree edit distance-based 
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methods, measuring similarities of unordered trees is still an open problem. In 

comparison to tree edit distance-based algorithms, the other methods that use vector 

and matrix comparisons seem to be more promising as they allow faster computation 

than the edit string operations. However, the majority of these methods have 

proposed solutions for ordered tree matching only.  

This thesis conjectures that an efficient equivalent representation of the exact 

tree structure may propose the effective solution. In comparison to the rooted ordered 

trees, the unordered tree representation is way more challenging and the existing 

representation methods are lacking in efficient representation due to their structure or 

order dependent scheme. This causes an accuracy issue in tree matching with the 

presence of isomorphic trees. If the representation problem can be solved then, in 

comparison to the edit string-based method, the other methods may find a faster 

solution. 

In this thesis only the database of rooted unordered trees is considered for 

addressing the tree matching problem. Since a free tree is very similar to graph data, 

it is usually discussed under the main stream of graph matching [12, 139], which is 

another vast area of research, therefore no separate study on free tree matching is 

carried out here. 

2.5 FREQUENT PATTERN MINING 

With explosive growth in structured data that presses the need for insight 

information, frequent pattern mining has generated much interest in the data mining 

community. It is a basic step in association mining [3, 11, 140] and a pre-requisite in 

many other data mining tasks such as sequence mining [85-87, 141]; multi-

dimensional patterns [83, 107]; maximal pattern mining [36, 142]; emerging pattern 

mining [110]; clustering [111, 130, 132] and classification [50]. Generally the 

problem of frequent pattern (or, subtree) mining can be stated as identifying the 

common patterns based on a user-specified support which is called minimum 

support, denoted by (min_sup). The terms “frequent pattern mining”, “frequent tree 

mining” and “frequent subtree mining” are interchangeably used in this thesis. 

Formally the frequent subtree mining problem can be defined as: 

Given a tree database Tdb = {T1,T2, ...,Tn}, find a list of frequent subtrees S = 

{t1, t2, . . . , tr}, such that for every tr ∈ S, support(tr) >= min_sup, where support(tr) 
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is the percentage of Trees in Tdb that contain tr. The support definition may vary, 

which is discussed later.  

Mining frequent patterns is significant and the overall process requires several 

non-trivial steps. Candidate generation and frequency counting are two main steps in 

a frequent pattern mining algorithm, which are in general very expensive in terms of 

memory and time [49, 143]. Because of the complex nature of the frequent pattern 

mining problem, many efforts have been made to propose different approaches for 

solving this problem. The available works in the literature on frequent pattern mining 

can be classified based on several factors as shown in Figure 2.13. Most of them will 

be covered in the following discussion but with a stronger focus on the unordered 

and free tree mining algorithms. 

Most of the frequent tree mining algorithms (including the proposed one in this 

thesis) adopt the basic ideas from frequent itemset mining algorithms which mainly 

consist of two steps:  

− Candidate generation step 

− Frequency counting step 

2.5.1 Candidate Generation Step  

This step generates candidate trees so that their frequencies can be analysed 

and a list of frequent patterns can be generated. Given a database, all trees are 

represented in their canonical form such as BFCF, DFCF, adjacency matrix or 

adjacency list [90, 96, 144, 145]. The candidate generation step can be performed 

using various algorithms such as the apriori algorithm [140], vertical mining 

algorithm [49], hybrid or combination of apriori and vertical mining [96], and many 

others. The vertical mining algorithms have recently become popular due to their 

relatively small memory footprint as compared to apriori algorithms – the most 

widely used algorithm for candidate generation step in frequent subtree mining.  

In vertical mining algorithms, the concept of an enumeration tree is used. All 

of the candidate trees will be generated into this tree following a traversal strategy, 

which can be breadth-first, depth-first, or a combination of the two. In the breadth-

first search approach, the search for an appropriate candidate is performed level-

wise. First, all size 1 trees are generated and counted, which are basically frequent 
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labels; then from the frequent 1 trees, candidate 2 trees are constructed and verified 

to be frequent and the process continues. In the depth-first search, the enumeration 

tree is traversed following depth. In this case, first from a single frequent 1 tree, all 

possible candidate trees will be generated and validated; then it will start processing 

another frequent 1 tree. The third approach is to use a combination of depth-first 

search and breadth-first search traversal, which means that the candidate trees will be 

generated following both breadth and depth.  
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Figure 2.13: Overview of various frequent pattern mining approaches 

The BFS traversal requires more space since at each enumeration the generated 

subtree would not have the final frequency count yet, whereas, the DFS traversal is 

space efficient, even for processing a long pattern, because every enumeration will 

compute a frequency count of each generated subtree completely [38, 49]. 

Depending upon the type of enumeration process, various operations or strategies 

can be adopted to grow the enumeration tree by generating candidates. These are: 

− Enumeration by Extension 

− Enumeration by Join 

− Structure Guided Enumeration  
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The extension approach, also known as right-most-path extension, is a 

commonly used technique for growing the enumeration tree for both ordered and 

unordered trees. For any type of subtree, the right-most path extension method is 

reported to be complete and non-redundant (i.e., all valid candidates are enumerated 

at most once) [38, 91]. By following the extension operation, adding a frequent label 

at the right most path of the existing frequent K-tree will generate a new candidate 

K+1-tree. Usually this operation is used in DFS traversal or vertical mining. 

The join operation, also referred as the guided extension process, is mainly 

used in the enumeration tree where a combination of BFS and DFS traversal is 

employed [38, 70, 96, 100]. When the cardinality of the node label is very high, 

using an only extension operation can be exhaustive and inefficient. Given frequent 

K-trees, candidate K+1-trees are formed by joining a pair of K-trees that have a 

common K - 1 prefix (node along with tree structure). The BFS traversal and the 

combined DFS and BFS traversal usually adopt this operation for their candidate 

generation.  

Both extension and join operations result in a huge number of candidates and 

not all of them are valid or, frequent. Therefore, to reduce the number of candidates 

generation, the apriori heuristic [140] has been applied, i.e., “if length K pattern is 

not frequent in the database, its length (K + 1) super-pattern will not be frequent”. As 

the process generates a lot of candidates and then requires adopting a full pruning 

process, the overall complexity of the step to enumerate and generate candidates is 

very high. An improved candidate enumeration technique is desirable and will be 

considered as an important contribution in this research field.  

An idea of utilising a structural model for efficient enumeration proposed in 

[91, 146, 147], suggests generating only valid candidates by guiding the candidate 

generation process using the available information on XML Schema. The candidates 

that confirm the available schema are only considered valid. This idea can be utilised 

by considering the tree structured data information as the guidance scheme. In Figure 

2.14, an example is given for the task of mining frequently occurring rooted induced 

unordered subtrees. Now based on the underlying structure (e.g., available 

hierarchical relationships, leaf node, root node etc.) of the database, the candidate 

generation is guided for obtaining only the valid subtrees. Here, the valid subtrees are 

only those that confirm their existence according to the tree structure scheme of the 
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considered database. By following this enumeration technique, a large amount of 

memory and time can be saved, as it will allow skipping the record of invalid 

subtrees, which are not going to be frequent anyway and therefore, are needed to be 

pruned in between the process. Besides, this approach can complement the join 

approach by overcoming its existing limitation, i.e., avoiding generation of invalid 

subtrees. Depending upon the tree representation process, this scheme information 

will vary. 

 

Figure 2.14: An example of valid and invalid subtree, considering the underlying 
information of the sample database while mining frequent induced subtrees 

Besides the above mentioned enumeration process to find out the frequent 

subtrees, another technique is also reported in the literature, which can obtain 

frequent subtrees without candidate generation. This is called pattern growth [148], 

based on FP-tree [149]. A pattern-growth approach does not perform level-by-level 

candidate enumeration; rather, it works by constructing a compact database utilising 

the FP-tree structure, which is an extended prefix-tree structure for storing 

compressed and significant information about frequent patterns. Although the FP-

tree based method avoids costly and repeated database scans by giving a compact 

representation of a large database, it comes with its own limitations. This process can 

end up having a lot of projected databases in accordance to each of the frequent 

prefix substructures, which causes huge expense because of the recursion process to 

reach the different node and FP-growth [5, 150]. Apart from this common problem, 

another problem with mining frequent unordered trees is that the FP-tree can’t avoid 

the expensive task of sorting canonical forms to avoid the isomorphism. The 

projected database can also become large and as well, the number of pseudo 

projection steps can be bigger in comparison to that of the ordered trees, which 

causes thrashing of memory.  
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In general, the excessive candidate generation, large memory foot print, 

memory thrashing issue, and costly I/O processing are the shortcomings of the 

candidate generation step [143, 151]. 

2.5.2 Frequency Counting Step 

In this step, the occurrences or frequencies of candidate trees are counted to 

calculate their supports to determine if they are frequent, whilst the infrequent ones 

have to be pruned. This step needs to be very efficient since the number of 

candidates to be counted can be huge.  

A conventional approach is direct checking, which generally uses a hash-tree 

data structure to count the frequency [140]. For each generated candidate, its 

frequency is increased by one if it exists in the transaction; FP-tree based frequent 

mining techniques also use conceptually similar hast-tree to count the frequency. 

Another widely used approach is the occurrence list-based approach, which 

associates an occurrence list with each candidate subtree [38, 90, 146]. A vertical 

representation is used to store a list of Ids of the transactions that support the 

candidate subtree; therefore by simply checking the size of the occurrence list one 

can determine whether the corresponding candidate subtree is frequent or not. In the 

literature, this approach is found faster than direct checking [38, 90]. Another scope 

list-based frequency counting approach is also proposed by the researchers which is 

also computationally effective [70].  

 

Figure 2.15: Isomorphism issue during candidate generation step of mining frequent 
unordered tree using enumeration tree [49]   
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Removing the infrequent subtrees or pruning is also a part of the frequency 

counting step. Based on the pruning techniques, a frequency counting step can give 

varied performance. The two most common pruning techniques are full pruning and 

opportunistic pruning [11, 49, 70]. Full pruning is time consuming, but will confirm 

the completeness, whereas opportunistic pruning can be beneficial when a dataset 

contains long patterns and can afford to miss out some of the frequent patterns.  

Different support definitions are also found to be used for determining the 

frequent trees. The most commonly used one is a conventional support which is 

sometime referred to as transaction-based support [5]. The transaction-based support 

count of a subtree is defined as the total number of transactions that contain it; here a 

transaction is referring to a tree. Most of the existing subtree mining algorithms use 

this support definition [49]. On the contrary, occurrence-match or weighted support 

count of a subtree is defined as the total number of occurrences of that subtree in all 

of the transactions [70, 146]. Occurrence-match support can produce pseudo-frequent 

subtrees; a detailed discussion about this is provided in [55, 97, 98]. 

2.5.3 Algorithms for Mining Frequent Rooted Unordered and Free Trees  

Generally, mining unordered subtrees is a more difficult problem than mining 

ordered subtrees. For mining ordered trees, only the ordered subtrees need to be 

enumerated, whereas for mining unordered subtrees one additional checking is 

required in candidate generation to avoid the isomorphism problem [70]. This extra 

computation is essential to determine which subtrees are isomorphic to each other. 

Otherwise, the many isomorphic trees will be generated, which makes the candidate 

generation process redundant and eventually leads toward counting incorrect 

frequency. In Figure 2.15, an example is shown, where the enumeration tree is 

generating candidate trees for a rooted unordered tree, and the red rectangles are used 

to show some of the isomorphic trees that should not be generated more than once as 

a candidate. Because these are the same subtrees, a checking mechanism is required 

for avoiding such generation, which is an expensive sorting or ordering process of 

canonical forms. The success of a frequent mining algorithm for unordered subtrees 

largely depends on efficient enumeration and canonical form transformations [98] as 

well as on avoiding expensive canonical sorting [142]. This thesis works toward 
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achieving such goals. In Table 2.3, the list of available algorithms for mining rooted 

unordered and free trees are classified, based on their types and mining approaches. 

Algorithm Type Mining Approach Algorithms 

Tree Type 

Rooted Unordered 
Tree 

uFreqt, Unot, RootedTreeMiner, HybridTreeMiner, 
CMTreeMiner, UNI3, UITree, SLEUTH, TDU, U3, 
Treefinder 

Free Tree Chi’s FreeTreeMiner, HybridTreeMiner, Rückert’s 
FreeTreeMiner, F3TM 

Subtree Types 
Induced Subtree 

uFreqt, Unot, RootedTreeMiner, HybridTreeMiner, 
CMTreeMiner, UNI3, UITree, Chi’s FreeTreeMiner, 
HybridTreeMiner, Rückert’s FreeTreeMiner, F3TM 

Embedded Subtree SLEUTH, TDU, U3, Treefinder 

Canonical Form 
(Pre-order based 
String 
Representation) 

DFS traversal uFreqt, Unot, SLEUTH, UNI3, U3, UITree, Chi’s 
FreeTreeMiner, Rückert’s FreeTreeMiner 

BFS traversal RootedTreeMiner, HybridTreeMiner, Rückert’s 
FreeTreeMiner 

DFS or,  BFS 
traversals F3TM 

Enumeration Tree 

BFS traversal RootedTreeMiner, Rückert’s FreeTreeMiner  

DFS traversal uFreqt, Unot, RootedTreeMiner, F3TM 

Combination of BFS 
& DFS traversals PathJoin, HybridTreeMiner 

Structure Guided UNI3, U3 

Enumeration 
Operation 

Extension uFreqt, Unot, RootedTreeMiner, F3TM 

Join PathJoin, Rückert’s FreeTreeMiner, Chi’s 
FreeTreeMiner 

Extension & Join HybridTreeMiner, SLEUTH, UITree 

Frequency 
Counting 

Occurrence List uFreqt, Unot, PathJoin, RootedTreeMiner, 

Based on Pruning F3TM, Chi’s FreeTreeMiner 

Scope list SLEUTH 

Table 2.3: A general classification of the available frequent subtree mining 
algorithms for rooted unordered and free trees 

Algorithm for Mining Rooted Unordered Induced Subtrees 

For finding unordered frequent tree patterns, most of the proposed algorithms 

use a canonical form and extend only candidates that are in the canonical form. A 

sorted pre-order string canonical form that can be obtained in linear time was first 
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defined by [94] and the frequent subtree mining algorithm was developed 

accordingly. A few more similar canonical representations based on either depth-first 

traversal or breadth-first traversal have been defined [90-92, 96]. But, all these 

canonical forms need an additional isomorphism test for avoiding the redundancy 

problem during the frequency counting step, which results in more run time for 

processing the frequent subtree mining algorithm. 

To deal with the computational complexity, some researchers played with the 

varied frequency counting approaches to improve the algorithmic efficiency. Asai et 

al. [92] proposed an algorithm, uNot that mines induced unordered subtrees by using 

a reverse search technique for incremental computation of unordered subtree 

occurrences. Another algorithm Ufreqt, proposed by Nijssen & Kok [91] is designed 

to mine induced subtrees based on a bottom-up strategy for determining the 

frequency. Both the uNot and Ufreqt algorithms use the concept of an occurrence 

list-based frequency count. In UITree algorithm [53], the authors use an early 

termination or early pruning technique for boosting up the algorithm performance 

while mining frequent induced subtrees. 

Variations are also found in the candidate generation step, such as the Chi et al. 

proposed [90] RootedTreeMiner, which is a vertical mining algorithm and 

conceptually a re-implementation of uNot. Later, as an extension to their previous 

work, the authors proposed the HybridTreeMiner [96] algorithm that can 

systematically enumerates all induced subtrees; it uses a hybrid concept for candidate 

generation that utilises both the apriori and vertical mining algorithm. PathJoin [152] 

assumes that children of every node are labelled identically and finds maximal 

patterns using vertical mining algorithm-based candidate generation that utilises only 

a join operation to grow. Another algorithm, UNI3 [98] was proposed for mining 

unordered induced subtrees and for candidate generation; it uses structure guided 

enumeration that is associated with a right path extension operation to grow the 

enumeration tree, but this algorithm is designed for working on a database of labelled 

ordered trees. Recently, another algorithm was proposed based on a compression tree 

sequence but it is designed for mining frequent condensed subtree (i.e., maximal 

induced subtree) mining [15]. Some other similar works are also found in the 

literature, based on condensed representation of unordered trees [18, 28, 150].  
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HybridTreeMiner [96] and UNI3 [98] have been used in benchmarking the 

proposed BOSTER algorithm. The process of growing the enumeration tree in 

HybridTreeMiner is similar to BOSTER, but it is not structure guided. Whereas, 

UNI3 uses the structure guided enumeration tree but only utilising extension 

operation to grow it. Similar to BOSTER, both the HybridTreeMiner and UNI3 use 

the canonical form for storing the trees. Moreover, HybridTreeMiner is the most 

widely used method for benchmarking and UNI3 is a recent method. 

Algorithm for Mining Rooted Unordered Embedded Subtrees 

The majority of the existing unordered subtree mining methods work with 

induced subtrees and very few are available for mining unordered embedded 

subtrees. SLEUTH [70] was one of the first techniques to mine frequent embedded 

unordered subtrees and used a scope-list join via the descendant and cousin tests for 

growing the enumeration tree. Chehreghani et al. [142] developed the TDU 

algorithm to mine unordered embedded subtrees, which was reported as a faster 

algorithm because of avoiding isomorphism checking, but it only mines maximal 

subtrees, which are subsets of the all frequent embedded subtrees that SLEUTH 

discovers. Hadzic et al. also proposed an algorithm, U3 [97], based on the structure 

guided enumeration to mine frequent unordered embedded subtrees from a database 

of labelled ordered trees. Another algorithm for mining frequent embedded 

unordered subtrees is Treefinder [153], which uses an Inductive Logic Programming 

approach for mining, but this process does not guarantee completeness (can miss 

many frequent subtrees), especially at a lower support. Besides these approaches, 

another apriori based frequent mining algorithm FRESTM is proposed which has 

used a restricted tree edit distance technique to detect restrictedly rooted unordered 

embedded subtrees [36]. Since, the tree edit distance problem is already known for 

exhibiting high complexity for an unordered tree, the overall performance of this 

algorithm can be affected. Moreover, this algorithm yields low recall in comparison 

to other algorithms and misses some patterns, which is not desirable in many cases. 

Another algorithm, EvoMiner, is proposed, where the phylogenetic tree is considered 

as a rooted unordered embedded subtree but with some restricted properties; 

therefore, it is not exactly solving the general embedded subtree mining problem 

[37]. 
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For comparing the proposed work – BEST [58] for frequent rooted unordered 

embedded subtree mining – U3 [97] and SLEUTH [70] are used as benchmarks in 

this thesis. U3 uses a structure guided enumeration similar to BEST, although BEST 

utilises different tree information for guiding the candidate generation. SLEUTH is 

commonly used benchmarking algorithm as well as it adopts the extension and join 

concepts for candidate generation. Moreover, both of these U3 and SLEUTH utilise 

the canonical form based representation. So it facilitates testing of BEST for 

performing against the existing canonical form based works. 

Algorithm for Mining Free Subtrees 

Compared to mining rooted unordered trees, mining free trees is more 

complex, since it has no root node specified. Many possible variations of the same 

free tree can exist, which need to be reduced during candidate enumeration. Because 

of the complexities involved, only a handful of free tree mining algorithms are 

available in the literature. Chi et al. have presented an apriori-like algorithm 

FreeTreeMiner [90] which uses apriori based algorithm for candidate generation. 

Then for reducing the memory usage, another algorithm, HybridTreeMiner, is used 

based on a combination of apriori and vertical mining algorithms for candidate 

generation [96]. Both of these algorithms are designed for working on databases of 

labelled free trees. Rückert et al. [54] and Zhao et al. [64] have proposed algorithms 

for mining frequent free trees from a graph database. These algorithms generate large 

number of false positives (i.e., invalid candidate subtrees) during enumeration, which 

need to be pruned in the frequency counting step. This results in high processing 

time. Moreover, the necessity of performing isomorphism checking to avoid 

redundant candidate tree and false frequency counting causes additional 

computational complexity. 

For the benchmarking purpose, FreeTreeMiner [90] and HybridTreeMiner [96] 

algorithms are used due to their good performance record as well as for the relevancy 

with the proposed work, FreeS. HybridTreeMiner uses both the extension and join 

operations to grow the enumeration tree, as well as it uses the occurrence list-based 

frequency counting method. Both of them use canonical form for representing trees. 

They come closest to FreeS in terms of the algorithmic design and enable a fair 

comparison.  
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Discussion: Mining frequent unordered trees and mining free trees are advantageous 

in many cases over mining frequent ordered trees; however, in comparison to ordered 

tree mining these two fields require more maturity. Frequent ordered tree mining 

methods already face high computation and memory expense issues; for unordered 

and free trees the complexity turns even higher. Although some works have been 

done to mine frequent rooted unordered and free subtrees, the exponential candidate 

generation with redundancy and the isomorphism issue are there. The available 

algorithms lack a systematic enumeration process as well as an efficient frequency 

counting process. It is also critical to determine a good growth strategy, as there can 

be many possible ways to extend a candidate subtree due to not having the sibling 

order constraint. Therefore, an optimal enumeration strategy for a tree-structured 

pattern is highly sought after. There should be algorithms for mining both induced 

and embedded unordered trees, because each of them has different applications and 

needs. Besides, during mining frequent free subtrees, the whole candidate generation 

process becomes trickier. The confirmation of candidate generation in canonical 

form of free tree requirement is essential, which demands additional care. Since the 

free trees are more flexible than rooted unordered trees, the number of isomorphic 

trees can be huge. Clearly the frequent free tree mining process requires an efficient 

canonical form as well as candidate enumeration approach, which are missing in the 

existing state-of-the-art algorithms.  

2.6 CONCLUDING REMARKS 

Undoubtedly, mining frequent subtrees and finding tree similarity information 

as a course of knowledge discovery are significant. Any data mining task for 

unordered (both rooted and unrooted) tree databases faces additional challenges over 

the ordered tree databases, due to the flexibility of data representation; however, the 

need for developing techniques of knowledge discovery from unordered tree 

databases is inevitable. 

From the literature review, it can be noticed that the representation of 

unordered or free trees is not as straight-forward as ordered trees because of its less 

constrained structure. The existing representation methods (i.e., tree traversal, 

canonical string representation, and adjacency matrix) lack in dealing with the 

isomorphism and automorphism problems, which are the most pressing issues in 

unordered (both rooted and unrooted) tree representation. The field of unordered 
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trees calls for a novel representation that can overcome this issue. It would be 

beneficial if the canonical form for both rooted unordered trees and free trees can be 

proposed, which will help in avoiding the isomorphism/automorphism checking step 

during candidate generation. Moreover, the present enumeration processes are found 

to be memory and time inefficient. An optimal enumeration approach is therefore 

needed to accelerate the unordered tree mining process which can resolve the 

exponential candidate generation issue. The technique to boost up the traditional 

frequent counting approaches should also be explored. 

Besides mining induced unordered subtrees, embedded subtrees also need to be 

mined, since they carry additional information that is interesting to some of the 

significant applications. Compared to induced unordered subtrees, not too many 

algorithms are available for mining embedded unordered subtrees, due to the 

complex nature of this problem. Serious attention should be directed to this topic. 

Similarly, the field of frequent free tree mining lacks efficient algorithms despite its 

importance in various domains. The canonical representation of a free tree faces 

additional challenge due to the fact of being unrooted, which also makes the 

enumeration process in free tree mining challenging.  

For tree matching, most of the available methods provide unfavourable results 

in terms of time and space complexities for unordered trees. Most of string-edit 

based matching problem exhibit NP-hard complexities; some of them are even Max 

SNP-hard. Apart from tree edit distance based methods, some other approaches seem 

to be promising but yet require improvisation, especially in choosing the right data 

structure. Instead of using string representation for comparing trees, matrix-based 

representation can be considered for facilitating fast computation of similarity 

metrics. However, it is essential to investigate whether the available similarity 

metrics will support this representation while differentiating the trees.  

In summary, the following research gaps can be highlighted after reviewing the 

literature:  

− Lack of current tree representation methods including tree traversing, 

canonical form and adjacency matrix for rooted unordered and free trees.  

− Lack of efficient and scalable tree matching algorithms for unordered 

trees. 
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− Lack of efficient frequent rooted unordered induced and embedded subtree 

mining algorithms. 

− Lack of efficient frequent free subtree mining algorithms.  

All the important achievements of the considered works to date have been 

highlighted, while some of the problems that remain outstanding are pointed out and 

will be addressed in this thesis. In particular, a number of development needs is 

evident: 

− An efficient tree traversal approach that will encode all ordered variations 

of an unordered tree uniquely. 

− An efficient tree representation, i.e., canonical form, adjacency matrix, 

which will resolve the isomorphism issue of unordered trees and will also 

capture some other important tree information. 

− A faster and memory efficient tree matching approach for unordered tree 

that can resolve the current complexity issues. 

− An optimal and measurable enumeration strategy for a tree-structured 

pattern that improves on the enumeration operations 

Despite the present research progress in the field of tree mining, the persistent 

limitations in unordered and free tree mining algorithms are hard to be overlooked. 

The majority of the algorithms developed for unordered trees exhibit high 

complexity. Though restricting tree properties allows achieving polynomial 

algorithms, this raises the issues of non-completeness and compromising accuracy. 

Apparently the lack of efficient equivalent representations raises the complexity in 

tree mapping, which results in higher complexity in further tree manipulation. 

Conducting research in this direction to resolve the highlighted limitations is 

significant and much needed. 
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Chapter 3: Tree Representation and Data 
Structure 

Tree structured data has become ubiquitous because of its capability to portray 

widely available information hierarchically. Much popular domain data (e.g., XML, 

Weblog, BOM, etc.) can simply be considered as a manifestation of tree structured 

data [19-21, 23, 24]. In previous chapters, it is noted that the problem of knowledge 

discovery from databases of unordered trees which are less constrained in structure is 

compelling and useful. This thesis will concentrate on developing mining techniques 

from databases of rooted unordered and free trees. Mining these tree types is 

challenging as highlighted in the literature review especially for the tasks of frequent 

subtree mining and tree matching. The current state-of-the-art algorithms are lacking 

in achieving optimal processing, which promotes the development of new efficient 

and scalable techniques. 

Representation is a fundamental and essential component for conducting 

efficient manipulation of tree structured data [154]. The previous chapter detailed the 

different representation techniques utilised in the existing frequent subtree mining 

and tree matching algorithms. From that discussion, it is clear that the existing 

representation techniques are deficit in appropriate encoding of rooted unordered and 

free trees, which apparently hampers the efficiency performance of mining methods. 

An improved tree representation technique should be able to improve the 

performance of mining algorithms by offering appropriate encoding and optimal 

processing. 

This chapter summarises the contribution of this thesis in the area of tree 

representation and shows how the different representation techniques are related and 

developed. It will help to link with the other contributions in the thesis since these 

representations are discussed in detail while presenting the corresponding method.  

 The process of tree representation is not just concerned with how the actual 

subtree is modelled and represented in memory; it is also concerned with how the 

complex computation and data manipulation tasks can be performed efficiently and 

effectively. The tree representation methods are developed, focusing on the static 
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aspects of trees. The static aspect refers to the typical data representation, which 

demands improvisation according to the literature review. Whereas the dynamic 

aspects refer to data operations used in designing the algorithm mechanisms; this is 

covered to some extent in this thesis. 

The chapter starts with the proposed tree traversal algorithm BOS that provides 

an optimal encoding of the tree [39, 155]. A description of the data structures, 

canonical forms and adjacency matrix, which are utilised to ensure efficient 

processing of the proposed tree mining algorithms [39, 57-59, 155, 156], is included 

in subsequent sections. Other data structures that amplify the performance of the 

proposed algorithms - such as dictionary and occurrence list - are presented next. 

This chapter includes only the essential introductory material on the proposed 

representation forms, and puts them all together in a single chapter to give an 

overview. As discussed in Table 1.2, the full detail of BOS will appear in Chapter 4, 

adjacency matrices in Chapter 4 and canonical forms in Chapter 5 in the form of 

published papers. 

3.1 THE BALANCE OPTIMAL SEARCH (BOS) ALGORITHM 

The existing schemes for traversing trees provide different encodings for the 

variations of the same rooted unordered tree, which cause problems in tree mining 

algorithms (as discussed in Sub-section 2.3.1). A new tree traversal algorithm, named 

as Balance Optimal Search (BOS), is proposed based on the concept of optimisation 

[39] (detailed description can be found in Chapter 4 as outlined in Table 1.2). Due to 

having the order-independent scheme, the new traversal algorithm encodes all 

variations of the same rooted unordered tree identically. 

To propose the BOS traversal algorithm, the tree traversal problem is reduced 

to the Simple Assembly Line Balancing (SALB) problem, which is a well-studied 

optimisation problem in the Operations Research (OR) paradigm [65, 157]. SALB is 

a combinatorial optimisation problem that chooses an optimal path for a network by 

avoiding the exhaustive search. In the literature, SALB has been used to solve 

networks in manufacturing problems that are represented by a predecessor digraph, 

i.e., a graph holding all properties of an unordered tree [65, 158]. This thesis 

conjectures that SALB can propose an optimal path for visiting an unordered tree 

like a network if the tree traversal problem is reduced to a SALB problem. 
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Figure 3.1: The simple assembly line balancing problem, (a) replicates an assembly 
line, (b) represents an optimal sequence of tasks on various machines 

3.1.1 Simple Assembly Line Balancing (SALB) Problem  

In manufacturing, the SALB problem is used to minimise the cost of 

production by balancing an assembly line [65, 157]. An assembly line is a sequence 

of linearly ordered stations where each station performs several machine tasks 

repeatedly during each cycle of the assembly line. The cycle of an assembly line is 

fixed; therefore each station must complete all the tasks in a way that the whole 

product can be delivered within the cycle time to avoid any delay. It becomes 

essential to identify the best possible sequence of tasks that will balance an assembly 

line. The solution of the SALB problem should conform to achieve an optimal 

sequence of tasks in the assembly line by ensuring minimum delay.  

In Figure 3.1(a) an assembly line is shown using a predecessor digraph where 

the nodes are representing various tasks performed by different machines and the 

numerical values outside the nodes stand for the task time required for each machine. 

The tasks cannot be assigned to the station arbitrarily because of the sequencing 

requirement. This sequence constraint can be considered similar to the concept of 

ancestral constraint, which poses a partial order among the set of tasks. Hence a task 

can only be completed after completion of all of its predecessor tasks. In Figure 

3.1(b) the optimal sequence of the completion of tasks is shown in accordance to the 

assembly line in Figure 3.1(a).  

3.1.2 The BOS Traversal 

In the proposed method an assembly line is a metaphor for an unordered tree 

which maps the parameters of assembly line to the parameters of a tree (e.g., tasks as 
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tree nodes). Therefore the tree traversal problem can be reduced to the SALB 

problem and the mathematical model of the optimisation problem can be developed 

accordingly. This model is formulated with an objective function of minimising the 

computational cost of the overall traversal process. The other constraints are set by 

following the basic properties of a tree structure and restrictions as per tree traversal. 

By solving this model, an optimal sequence of tree nodes can be found, where if a 

tree is traversed, the minimum computational cost can be ensured. It is in the same 

line as the SALB problem that obtains the optimal sequence of performing tasks with 

an objective function of minimising delays. 

 

Figure 3.2: The BOS traversing order of the given tree is va-vb-vd-vc-ve. The arrow is 
directing the sequence of steps that traversing process is carried out and the 

highlighted nodes are showing the list of nodes that have traversed 

The technical details of obtaining the optimal traversal sequence are provided 

in Chapter 4. A simple example is given in Figure 3.2 to show how the BOS traversal 

will encode a rooted tree. A rooted unordered tree is provided in Figure 3.2(a), where 

each node is associated with a numerical value. These numerical values are referred 

to as weights in this thesis. A weight is calculated by counting the number of 

appearances of a node under its parent node; the detail of this definition is provided 

in Chapter 4 and 5. Following BOS traversal, first the root node va will be traversed, 

therefore, its immediate followers or child nodes vb and vc will become eligible to 

traverse next. In the case of having multiple eligible nodes, the node that has highest 

weight will be chosen for traversing next. For this example, both the eligible nodes 

have same weight, but vb is chosen as it has the maximum fan-out. After traversing 
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vb, its child nodes vd and ve become eligible along with vc. vd is chosen next because 

of having maximum weight. Following this the final traversing order will be va-vb-vd-

vc-ve. 

The BOS traversal can encode an unordered tree effectively since its working 

approach is structure independent and it does not consider the sibling constraint. It is 

based on optimality and a variation of the unordered tree, due to swapping the order 

between siblings, will be treated equally during the optimisation modelling. In the 

SALB problem, the tasks that are initiated from the same immediate predecessor do 

not have any specific order in execution and hence changing the order of these tasks 

does not change the optimal point [65]. BOS ensures a unique traversing order as 

well as a unique encoding for a rooted unordered tree (and all its variations) which 

the other traversal approaches fail to provide. Using this uniqueness of BOS order, 

effective adjacency matrix and canonical form can be derived which may take the 

performance of tree mining algorithms to the higher level of efficiency. 

The BOS traversal can also be used to traverse a free tree. A free tree is also 

unordered therefore the order independent traversing strategy of BOS is suitable for 

its encoding too. BOS is designed to work for a rooted tree; hence after identifying 

the root node of a free tree, the BOS traversal can be applied to it. Paper 6 shows the 

proof and lemma that BOS can be used to define the canonical form of free trees 

[59]. 

3.2 ADJACENCY MATRIX 

Representing unordered trees is challenging than the ordered tree, due to the 

less constrained structure. Among various methods, a commonly used tree 

representation is a matrix that allows for simplifying computation of tree mining 

algorithms [62]. Adjacency matrix is a popular matrix representation of trees [159] 

that depends on the encoding scheme. For the same unordered tree T, there can be 

|T|! different adjacency matrices using different permutations of the set of nodes 

[160]. It is not possible to get a unique adjacency matrix representation for the 

variations of the same unordered tree using any of the DFS and BFS traversal based 

encoding, as these encodings rely on sibling order. Moreover the traditional 

adjacency matrix only shows the adjacency information among the nodes, whereas 

trees have other important information that can be portrayed in their representation. 
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Figure 3.3: Augmented adjacency matrix 

In this thesis, a new Augmented Adjacency Matrix (AAM) using the BOS 

encoding is proposed, which has the ability to encode an ordered variation of the 

same unordered tree identically. AAM includes additional level information and 

weight information of nodes, which ensure rich portrayal of a tree structure.  

3.2.1 Augmented Adjacency Matrix 

This is a square matrix representation of a rooted unordered tree that utilises 

the BOS encoding, node level and node weight information of a tree to represent the 

cell values [39, 155]. 

Encoding information: The BOS order encoding is derived using the balanced 

optimal search traversing algorithm, which is unique for an unordered tree and its 

variations. The root node becomes the first row and column to be represented in the 

matrix and the other nodes are arranged in accordance to BOS order.   

Level information: The level information in a tree represents the ancestor-

descendant relationships of the nodes. This structural information is important for 

finding similarity between trees. The level information is generated from the node 

level based on their hierarchical relationships, which is explained in Chapter 4. 

Weight information: The nodes in a tree carry a weight displaying how 

frequently the node occurs under its parent node. Besides including the node weight, 

an additional weight value of 1 is added to each diagonal cell of the adjacency matrix 

to represent the existence of a corresponding node on that tree. 

In Figure 3.3, an example of AAM representation is shown. The level of the 

tree nodes are shown according to their position. The BOS order of the given tree 
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Figure 3.3(a) is va-vb-vd-vc-ve and the nodes are arranged accordingly. The diagonal 

cells are populated with a weight value 1 to confirm the node existence. The other or 

off-diagonal non-zero values of the cells are a summation of level information and 

weight information. The weight information is coming straight from the number of 

occurrences of a node under its parent node. If for a cell the respective nodes have a 

parent-child relation, then the weight value is added (the node relation should be read 

from row to column) into it and if the nodes have an ancestor-descendant relation 

then the level information will be added with the weight. The AAM resolves the 

issue of having different matrix representation for the isomorphic unordered trees. 

The incorporation of additional implicit information in tree representation allows 

more accuracy in tree matching, which is reported later in Chapter 4.  

3.2.2 Extended Augmented Adjacency Matrix 

Extended Augmented Adjacency Matrix (EAAM) is an extension of AAM that 

includes the frequent subtree information for imaging a tree [156]. By incorporating 

sub-tree information, EAAM includes a much richer structural relationship 

importance, in addition to ancestor relationship, in tree representation. Due to its use 

of BOS encoding, it ensures unique identity of a rooted unordered tree. 

Frequent mining algorithms provide information on frequent structural 

dependencies like parent-child and siblings in a particular database. They provide the 

list of frequent sub-trees that, in turn, detail the most occurred parent-child or 

ancestor-descendant and sibling relations. A data structure such as an unordered tree 

has a vast flexibility; characterising the structural relationships based on frequent 

occurrence will aid in the global similarity calculation. Adding the frequent 

substructure as a representational component can be advantageous for tree structure 

processing like similarity measures. This is the inspiration behind proposing this new 

adjacency matrix. 

Structural relationship importance weight: Based on the result of the frequent 

subtree mining algorithm, the structural relationships are characterised and the 

weights are defined accordingly. If a subtree is frequent then the inherent parent-

child relation is considered as mandatory. Once all the mandatory parent-child or 

ancestor-descendant relationships are identified, the remaining relationships are 
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classified as optional. During the EAAM representation, a weighted value of 1 and 0 

are used to represent the mandatory and optional relationship respectively.  

In the previous AAM representation, the off-diagonal non-zero entry of a cell 

is either level information or the summation of level information and node weight, 

but in EAAM the structural relationship importance weight will be also added based 

on the frequent information of the corresponding nodes. This representation is 

incorporated in the proposed tree matching algorithm, which is found useful and 

accurate in finding similarities between trees, as reported in Chapter 4. 

3.3 CANONICAL FORMS FOR LABELLED ROOTED UNORDERED 
TREES 

A key problem of mining unordered trees is the representation issue. Several 

ordered variations of an unordered tree are possible and during representation these 

multiple ordered trees should be mapped to one canonical form of an unordered tree. 

These trees vary in the order of sibling nodes only; the information contained within 

the structures is essentially the same. An example is given in Figure 3.4, where the 

four ordered trees are same if the sibling constraint is relaxed. Since the unordered 

tree can have many isomorphic trees as well as it can have automorphism, the 

canonical form representation becomes challenging.  

This thesis presents a new Balanced Optimal Canonical Form (BOCF), which 

is proposed following the balance optimal search (BOS) traversing order. The BOCF 

ensures representing all isomorphic ordered variations of an unordered tree with a 

single canonical form. 

3.3.1 The Balanced Optimal Canonical Form (BOCF) 

BOCF is defined using the order of optimal search traversing [57, 58]. It is a 

string representation of a tree that records the label of each node along with its 

weight following the BOS order. This string representation includes four unique 

symbols, +1, -1, +2 and -2, to represent the breadthwise movement from sibling to 

sibling and depth-wise movement from a child to its parent. The symbols +1 and -1 

are used for depth-forward and depth-backward travel respectively. The symbols +2 

and -2 are used for breadth-forward and breadth-backward travel respectively. It is 

assumed that the alphabet of node labels includes none of these symbols. 
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Figure 3.4: An example of four rooted ordered tree variations of the same rooted 

unordered tree 

An Example: The balance optimal search (BOS) traversing order is va-vb-vd-vc-ve for 

all four trees in Figure 3.4. This order is unique for all the variations of a tree 

relaxing the sibling constraint. If each tree given in Figure 3.4 is treated as rooted 

ordered, the BOCF string encoding will be:  

(a) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, +2, 2ve”; 

(b) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, -2, 2ve”;  

(c) “0va, +1, 4vb, +1, 5vd, -1, -2, 4vc, +2, +1, +2, 2ve”; 

(d) “0va, +1, 4vb, +1, 5vd, -1, -2, 4vc, +2, +1, -2, 2ve”. 

It can be noted that these BOCFs only vary in terms of breadth movement 

which shows that sibling order is preserved.  If a tree is treated as unordered, the 

order of siblings is ignored and only the breadthwise movement from the existing 

rightmost sibling node is permitted. The BOCF string encodings for the trees, viewed 

as unordered, given in Figure 3.4 will be: 

(a) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, +2, 2ve”;  

(b) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, +2, 2ve”;  

(c) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, +2, 2ve”;  

(d) “0va, +1, 4vb, +1, 5vd, -1, +2, 4vc, -2, +1, +2, 2ve”. 

It can now be noted that all of these trees have the same BOCF string encoding 

which supports that they are variations of the same unordered tree. This encoding 

will provide great benefit to unordered tree mining methods where the counting or 

matching of the same trees is required. In the existing algorithms [96, 97], the 

expensive process of finding a representative canonical form for mapping the 

isomorphic unordered trees can be avoided if the BOCF string encoding is used. 

BOCF string encoding provides an improved unordered tree representation in 

Tree Representation and Data Structure 71



 

comparison to their preorder traversal based canonical forms (e.g., BFCF and DFCF) 

because it is not only memory efficient but it also allows avoiding the expensive 

sorting process for choosing a representative canonical form. 

3.4 CANONICAL FORMS FOR LABELLED FREE TREES 

Generally, defining canonical form for free tree is more challenging than the 

rooted unordered trees. The main challenge is that there could be more possible ways 

to represent a free tree than that of a rooted tree because of having no defined root 

node and no direction among sibling nodes. Therefore the chance of having 

isomorphic trees in a database of free trees is very high. This necessitates of having a 

systemic approach for representing a free tree. A proper representation can ensure 

accurate indexing for further processing and knowledge discovery. In frequent 

pattern mining algorithms, defining a canonical form for free trees is required to 

identify the common patterns among free trees. This thesis proposes an efficient 

canonical form for free trees by extending the above mentioned BOCF for unordered 

trees to represent free trees. 

3.4.1 Balanced Optimal Canonical Form of Free Trees 

If the root node of a free tree can be uniquely defined, then the balanced 

optimal search order can be used to define its canonical form. In this thesis, the 

canonical form for free tree is defined by following a two-step process [59]. These 

steps are: 

− Normalisation 

− Canonical String Encoding 

First, a free tree is normalised into the rooted unordered tree by fixing a root 

node and then the canonical form as well as the canonical string is defined. For 

normalising a free tree, first all of its leaf nodes along with their incident edges are 

removed at a time until a single node or two adjacent nodes are left. The free tree 

with a single remaining node is called a central tree and, with a pair of remaining 

nodes is called a bicentral tree [96]. In a central tree, the remaining single node 

becomes the root of the free tree. In a bicentral tree, the node with minimum 

lexicographically ordered label is chosen as the root node. After the normalisation 
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step, a free tree is converted to a rooted unordered tree, and the BOCF for the rooted 

unordered tree can now be used to encode it. 

 

Figure 3.5: Process of finding canonical form for a free tree 

An Example: Consider the free tree in Figure 3.5(a), during the step of 

normalisation, the tree is found bicentral for which node va is defined as the root 

node since this node has the minimum lexicographic label. After defining the root 

node, the BOCF of rooted unordered tree definition is followed to provide the 

canonical string encoding of this tree as follows:  

“0va, +1, 2vb, +2, 2va, -2, +1, 2vc, -1, +2, +2, 1vb, +1, 1va, +2, 1vc, +2, 1va, -2, -

2, +1, 1vc, -1, +2, +1, 1vd”.  

All of these proposed canonical forms have been implemented in the proposed 

corresponding frequent subtree mining algorithms. In Chapter 5, the algorithm 

details are provided with the results of empirical analysis, which proves the 

efficiency of these canonical forms by showing the superior performance over the 

state-of-the-art algorithms, even in the presence of isomorphism. 

3.5 OTHER DATA STRUCTURES  

During data operation, the choice of data structures becomes an important 

factor. For example, in the frequent subtree mining algorithm, both the candidate 

generation and frequency counting steps require a data operation that should be space 
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efficient with fast access, since the efficiency of the frequent subtree mining 

algorithm is measured by how well the candidate generation and frequency counting 

steps are performed. Besides the above mentioned representations of trees, two more 

supporting data structures are introduced in this thesis that will help in fast execution 

of the proposed frequent subtree mining algorithms [57-59]. One of them is a 

dictionary structure that works as a look-up structure to reduce the local subtrees that 

are generated during the candidate generation process into the integer hyperlink form 

[148]. Another one is an occurrence list that allows efficient frequency counting by 

reducing search space. This discussion of effective data structure will help the reader 

to understand the mechanical details of the proposed frequent subtree mining 

algorithms in Chapter 5. 

3.5.1 Dictionary 

The dictionary is a horizontal representation of tree data that captures the inherent 

hierarchical relationships in it. This structure has been used in various frequent 

subtree mining algorithms [98, 148]. In a similar manner, a dictionary is presented as 

a global structure where an array object is used to store the information. Therefore, 

accessing any information out of this structure ensures less memory expense and can 

be performed in O(1) time. In the dictionary, the index of each cell refers to the 

position of each node in the original tree following the BOS traversing order and 

each cell stores the information such as label, level, fan-out, weight and a link to the 

pre-order position of the parent node (for the root node, it is equal to -1). Thus, each 

cell in the dictionary will contain a tuple of {label, level, fan-out, weight, link} (as 

shown in Figure 3.6).  

1

2

2

a

bd

c

0

[1] [2] [3] [4]

a, 3, 2, 0,-1 b, 2, 0, 2, 0 d, 2, 1, 1, 0 c, 1, 0, 2 ,2

BOS Traversing order 
is a-b-d-c

and the corresponding 
encoding is 1-2-3-4

 

Figure 3.6: An illustration of dictionary generation for a tree where each cell in the 
dictionary has a tuple as: {label, level, fan-out, weight, link} 
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It can be determined from observing the cells in this dictionary that a node is a 

leaf node if its fan-out is equal to zero and a node is a root node if its weight is 0. The 

level information can be utilised to determine whether a node is a descendant node or 

child node by checking level difference. The level information encodes the 

hierarchical notion of tree structures.  

3.5.2 Occurrence List 

To ease the frequency counting step of frequent subtree mining algorithms, a 

vertical data structure based on the concept called occurrence list [90, 96, 98] is 

utilised in this thesis. 

The Occurrence List (OL) based vertical structure for a rooted unordered tree 

can be described as a list of each occurrences of that tree in the database. Later by 

simply calculating the size of OL vertically (column wise), the frequent subtree can 

be identified, since the frequency count of each subtree is equal to the OL size. The 

main advantage of using the OL is that the frequency count does not need to be 

updated separately in addition to inserting the occurrence in OL, which is needed 

anyway for the candidate generation process, and the size of OL can be determined at 

almost no cost. 

The OL of tree tv represented in its BOCF can be considered in a form as (ID; 

v1; …; vk) where ids of the transactions containing tv in the database are indicating 

using ID and v1; …; vk indicate the mapping between the indices of nodes in tv and 

those in the transaction. Whether tv is frequent can be checked using its occurrence 

list, because the total number of elements in OL with distinct ID will be same as the 

support of tv.  

3.6 CHAPTER SUMMARY 

The focus of this chapter is to concisely present the proposed representations 

and effective data structures which are part of the proposed tree mining algorithms 

discussed in later chapters. This chapter first introduced novel data representations 

based on optimal tree traversal that address the limitations of the state-of-the-art 

representations, which are all order oriented. A brief discussion is added on effective 

data structures that have been used in the proposed frequent subtree mining 

algorithms to ease the overall data processing cost and speed. An insight into these 
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tree representations and data structure is essential to understand the interaction 

between these components and the proposed algorithms. 

Since several tree representations are available in the literature, Chapter 2 

presented the rationale behind proposing the new tree representations. The existing 

representations lack the capacity of dealing with the problem of isomorphism and 

automorphism associated with the rooted unordered and free trees. To address this 

problem, a novel tree traversal algorithm is proposed that provides a unique 

traversing order for the isomorphic unordered trees. Two adjacency matrices are 

introduced, which offer better portrayal of structural relations existing in rooted 

unordered trees than the traditional adjacency matrix. Two canonical representations 

are proposed that can effectively handle the isomorphism problem in unordered and 

free trees representations.  All of these representations contribute greatly in the 

proposed tree matching and frequent subtree mining algorithms that are discussed in 

Chapter 4 and 5 respectively. These representations can be considered as backbone 

and a reason for improved performance of these algorithms.  

In the last section of this chapter, the dynamic aspects of a tree representation 

are covered, which include the data structures responsible for effective processing of 

the designed algorithms. These data structures are mainly adopted to implement the 

frequent subtree mining algorithms, since these kinds of algorithms are very 

expensive to execute. The concepts of dictionary and occurrence list are introduced 

here, which alleviate the effort of the candidate generation and frequency counting 

steps in the proposed frequent subtree algorithms.  
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Chapter 4: Tree Matching 

Chapter 4 focuses on tree matching – an important contribution of this thesis. A 

tree matching algorithm is proposed for measuring similarity between unordered tree 

pairs. This algorithm yields significantly less computational complexity than the 

traditional tree edit distance-based methods. Instead of using edit string operation, 

this algorithm adopts a matrix comparison approach using a novel equivalent matrix 

representation for trees. The first and second papers utilise the novel Augmented 

Adjacency Matrix (AAM) for tree matching, whereas the third paper utilises the 

novel Extended Augmented Adjacency Matrix (EAAM) representation.  

This chapter is organised based on three papers that introduce the proposed tree 

matching algorithm. It follows the sequence of Papers 1 and 2 that describe the novel 

balance optimal search (BOS) traversal algorithm with technical detail and 

experiments. They also include the AAM-based tree similarity measure algorithm. 

Paper 1 is a published conference article whereas Paper 2 is a comprehensive under-

review journal article. In the journal paper, the proposed tree matching algorithm is 

extended to do clustering. By using the similarity information, the trees can be 

clustered. Paper 3 introduces the tree matching algorithm with the EAAM 

representation that utilises the frequent subtree information for measuring similarity. 

It also shows an implementation of a clustering algorithm using the driven similarity 

information from the proposed tree matching algorithm. 

Each paper is presented in its original form; a brief overview of each method is 

provided along with some of materials that were excluded from the papers due to 

space restrictions enforced by the publishers. Following on from this introduction a 

brief description about the clustering process is provided, which aims to give an 

insight into how the existing clustering algorithms can benefit from the knowledge 

discovered from other algorithms, such as frequent subtree mining and tree matching. 

In this thesis, clustering is only shown as a real life application of the proposed tree 

matching algorithms.  
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4.1 AN OVERVIEW OF THE CLUSTERING PROCESS  

Tree data can be clustered using the pairwise similarity information derived by 

a tree matching algorithm. The tree matching algorithm finds the similarity 

information between trees that can be used in grouping them. The frequent 

substructure mining algorithm finds the commonality among the database of trees in 

the form of frequent subtrees that can be used in clustering trees [161, 162]. Figure 

4.1 presents a generic framework for clustering, which helps to understand how tree 

representation, tree matching, frequent subtree mining and clustering can be 

integrated in the same framework. After representing trees in a suitable format, tree 

matching and frequent subtree mining algorithms can be implemented. Clustering is 

an unsupervised data mining task that does grouping of the data based on their 

similarity, which can be derived through a tree matching or frequent subtree mining 

algorithm. Tree matching can be carried out using the frequent pattern information 

and for finding a frequent subtree, tree matching can also be used. In the literature, it 

is shown that based on the frequently occurred subtrees, rules can be derived to 

calculate similarities between trees [50] and, tree matching algorithms like tree edit 

distance can also be used to restrict the candidate generation step in the task of 

mining frequent embedded subtrees [36]. Hence, these methods have some measures 

of interdependency. 

 

Figure 4.1: A generic tree data clustering framework 
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The success of a tree clustering algorithm largely depends on the representation 

and the similarity measure steps. Consequently, clustering can be seen as the end 

product or application of a similarity measure method. By evaluating clustering 

performance, the performances of tree matching and subtree mining algorithms can 

be evaluated. 

Many established algorithms for tree clustering are available in the literature 

[12, 163]. Among them, one of the most widely used is partitional clustering. Any 

similarity matrix that is derived from a tree matching algorithm can be fed to a 

partitional clustering algorithm, i.e., k-way clustering [164] for getting the clustering 

results. The level-wise similarity-based clustering is also reported [72, 137]. A lot of 

clustering algorithms have used the matrix similarity [23, 77, 165]. Some clustering 

algorithms are proposed using frequent substructure extraction [162, 166]. So, a 

conclusion can be drawn by saying that the improvisation of tree matching and a 

frequent subtree mining algorithm can guarantee a better clustering output. The 

thesis objective is not to compare and critique the existing clustering methods. This 

discussion is only added as the clustering process is carried out in Papers 2 and 3 

using the finding from the proposed tree matching algorithms, and thus the readers 

are given an overview of the available applications of the proposed methods. 

4.2 A NOVEL METHOD FOR FINDING SIMILARITIES BETWEEN 
UNORDERED TREES USING MATRIX DATA MODEL 

This paper contains the preliminary study results of the AAM representation-

based pair wise tree matching algorithm for unordered trees. The initial concept of 

balanced optimal search traversal is introduced in this paper to explain the idea of 

augmented adjacency matrix construction. The promising results of this algorithm 

have been generated based on two real life data sets, Bill of Material (BOM) [23] and 

glycan data [80]. Both of these data can naturally be depicted as a rooted unordered 

tree. 

4.3 MEASURING SIMILARITY BETWEEN UNORDERED TREES WITH 
THE BALANCED-OPTIMAL-SEARCH TRAVERSAL ALGORITHM 

The promising results from Paper 1 encouraged the authors to conduct deep 

study on the BOS traversal algorithm and on the AAM representation. This paper 

details the mathematical modelling of BOS traversal as well as the performance 
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evaluation in comparison to other traversal approaches. Important properties of BOS 

traversal and AAM representations are described in detail. Extensive experiments 

with more data sets have been reported to prove the efficiency of the proposed tree 

matching algorithm. Experimental study shows that the introduced tree matching 

algorithm ensures less computational expense in comparison to the recent tree edit 

distance based algorithms. The AAM representation ensures better accuracy 

performance in comparison to the traditional adjacency matrix. All of these results 

are obtained by using real life datasets. Further, this algorithm is extended to do 

clustering to show an application of the tree matching algorithm.  

4.4 IDENTIFYING PRODUCT FAMILIES USING DATA MINING 
TECHNIQUES IN MANUFACTURING PARADIGM 

This paper introduces the tree matching algorithm using the EAAM 

representation. The AAM representation and, hence the tree matching algorithm, 

only consider the tree specific information for quantizing similarity between trees. It 

would be interesting to check whether incorporating database specific information 

can provide an advantage in similarity measures. For obtaining initial insight of a 

database, frequent subtree information is found helpful [49]. Therefore, in EAAM 

representation of trees, a new weight based on the frequently occurred parent-child 

relations for the considered database is added and trees in EAAM forms are 

compared. The result of this similarity measure algorithm has been found useful in 

clustering trees.  

Since the idea of this work is to use database-specific knowledge in finding 

similarities, therefore the whole contribution is presented, focusing on a particular 

domain data. The bill of material, which can be depicted as a rooted unordered tree, 

is used for conducting the experiments. BOM is an important domain data in the 

manufacturing paradigm and finding similarity between BOMs is essential in various 

applications. One of them is to accelerate the product design and planning for 

launching a new product in the market. However, the proposed method can be 

implemented in any domain as long as the domain data can be modelled as rooted 

unordered trees. 

NB: The reader may be found the published paper a bit different than the version 

of the paper added in this thesis. This is done to correct some confusing wordings, 

which does not change any core concept of the work. 
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Abstract2: Trees are capable of portraying the semi-structured data which is 

common in web domain. Finding similarities between trees is mandatory for several 

applications that deal with semi-structured data. Existing similarity methods examine 

a pair of trees by comparing through nodes and paths of two trees, and find the 

similarity between them. However, these methods provide unfavourable results for 

unordered tree data and the tree matching problem has found NP-hard or MAX-SNP 

hard. In this paper, we present a novel method that encodes a tree with an optimal 

traversing approach first, and then, utilises it to model the tree with its equivalent 

matrix representation for finding similarity between unordered trees efficiently. 

Empirical analysis shows that the proposed method is able to achieve high accuracy 

even on the large data sets. 

Keywords: Semi-structured Data, Unordered Tree, Similarity Measure, Matrix 

Representation. 

1. INTRODUCTION 

The Web domain consists of heterogeneous data in various forms such as 

HTML, XML, image, videos and text. Some of these data are naturally represented 

as tree data structures. Comparing the tree-structured data is important as it enable 

searching for interesting information among the abundant data efficiently. Many 

researchers confirm the significance of unordered tree data representation and their 

comparisons [46, 109]. An unordered tree does not have left-to-right fixed order 

among siblings node and only preserves the ancestor-descendant or parent-child 

relationship. Especially in the Web domain where the data source is heterogeneous, 

the unordered tree representation gives more freedom for flexible matching and 

concise representation. 

A large number of tree mining methods have been developed for finding 

similarities [42]. Majority of them are for ordered trees and very few are available for 

unordered trees due to the complexities involved with the unordered tree processing. 

Existing similarity methods examine a pair of trees by comparing through nodes and 

paths of two trees, and aggregate the similarity between them [167]. Some similarity 

2 X. Lin et al. (Eds.): WISE 2013, Part 1, LNAI 8180, pp. 421–430, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 
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measure methods use tree level information by considering their common nodes in 

the corresponding levels and giving different weight in different levels, but it fails to 

reserve the child-parent relationship among tree nodes [51]. Higher order models 

such as Tensor Space Model (TSM) have also been used for representing tree data 

and finding similarities, though these techniques suffer from high dimensionality as 

well as complexity problems [134]. Tree edit distance methods are also commonly 

used in measuring similarity between the tree data. These methods measure the 

distance between two trees in terms of minimum cost to transform one tree into 

another tree by applying edit operations such as deletion, insertion and substitution 

[42]. The edit distance computing algorithms for ordered tree data are known to 

exhibit O(n3) complexity, where n is the maximum number of nodes in two input 

trees [114]. The tree-edit distance problem for unordered trees is NP-hard [45, 47]. A 

few methods have been developed by reducing the tree edit distance problem to the 

maximum clique problem  [40, 124] or proposing variants of the tree edit distance 

problem [129]. However, they still suffer from high complexity for large unordered 

tree structure [40]. Other examples of unordered tree matching methods are tree 

pattern matching [102], maximum agreement subtree [168], largest common subtree 

[131], and smallest common supertree. These methods also suffer from the 

complexity problem. In summary, existing methods provide unfavorable results for 

unordered tree data and result in yielding high complexity. 

We propose a novel idea of representing the trees with matrix data structure 

using tree encoding, and then comparing two matrix structures using efficient cosine 

similarity measure. An optimal traversing adapting a well-known optimisation 

problem called “Simple Assembly Line Balancing” is used to provide tree encoding 

for unordered tree data. A matrix based representation called “Augmented Adjacency 

Matrix” is proposed to represent the tree data based on the encoding information. 

The empirical analysis shows that the proposed method performs well with high 

accuracy and outperforms benchmarking methods for the large size data. The 

proposed method is able to achieve O(n2) complexity due to its incorporation of 

matrix data for comparison. This is remarkable as the existing similarity methods for 

unordered trees mostly give intractable solutions through exhibiting high 

computational complexity [45, 47]. 
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Figure 1: The simple assembly line balancing problem, first diagram replicates an 

assembly line (a), second one representing optimal sequence of operations on various 

machines (b) 

 

 

Figure 2: Optimal tree traversal 

2. THE PROPOSED SIMILARITY MEASURE METHOD 

The proposed unordered tree similarity method includes three steps. Firstly, the 

tree data is encoded with an optimal traversing approach. Secondly, an equivalent 

matrix representation is obtained for each tree structure utilizing the tree encoding 

with other tree information. Thirdly, cosine similarity measure is used to calculate 

the similarity between two matrices representing unordered trees. 

2.1    Step 1: Tree encoding using an optimal traversal approach 

Tree Traversal: A tree traversal is a systematic approach of visiting each node once 

in a tree by following certain strategy and returns a list containing the node sequence 
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traversed along the way. The depth-first search (DFS) and breadth-first search (BFS) 

are two commonly used traversing algorithms that rely on the fixed ordering among 

sibling nodes. A DFS algorithm starts from root node and explores each branch as far 

as possible before backtracking. They can be classified as pre-order, in-order and 

post-order, based on the sequence of visiting nodes on right or left order. A BFS 

algorithm, also known as level order traversal algorithm, starts visiting a tree from its 

root node and then follows a strategy for traversing other nodes in the order of their 

level from left to right [83]. These strategies are able to represent ordered trees 

efficiently; however, they face challenges when applied for unordered tree traversal 

as there is no fixed order among sibling nodes. To our best knowledge, these are the 

only two strategies that have been used for representing and canonisation of 

unordered trees [90]. 

Optimal Tree Traversal: In this paper we introduce an optimal tree traversal 

method for representing unordered tree. This method is inspired by a well-known 

optimisation problem known as “Simple Assembly Line Balancing” from the 

“Operation Research” paradigm [65]. In manufacturing, the line balancing problem 

is used to minimise the cost of production by balancing the machine sequences of an 

assembly line based on their operating time and finds the optimal sequence that will 

support minimum operation or cycle time. Figure 1(a) illustrates a scenario where the 

nodes are representing various machines in an assembly line and the numerical 

values outside the nodes stand for the operation time requiring for each machine 

(Figure 1(b)) shows the optimal sequence of completion tasks according to the 

assembly line problem. In the proposed method we metaphor the assembly line as the 

unordered tree; a machine as a tree node; and the optimal sequence as the optimal 

tree traversal. The weight of a node is calculated by counting the number of 

occurrences of each node under its parent node. The traversal process begins at the 

root node. The children nodes are visited only after their parent nodes are visited. 

This is done to ensure that the ancestral ordering constraint is preserved. The 

objective of the traversal approach is to minimise the overall traversal time and 

return an optimal node sequence for the unordered tree. 

Problem Definition: Let tree T = (V, E) be an unordered labeled tree where V = (v0, 

v1, …, vn) denotes the set of nodes that presumes a partial order 𝜌𝜌 due to the ancestral 
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relation (i.e., i 𝜌𝜌 j → i > j where i and j are node indices and i is ancestor of j). If 

function tr: T→T* that passes over the tree, listing all nodes that met along the way, 

then it is called tree traversal. T* is n-dimensional vector, representing the list of 

nodes in the order of traversal according to the specified traversal strategy, (v0, vi, …, 

vn) = V ∈ T*, where, v0 is the root node. By using the working principle of line 

balancing problem, we define the general traversal function to an optimisation 

problem for achieving the optimal node traversal sequence. Let the set of nodes V = 

(v0, v1, …, vn), traversed in a sequence by using the line balancing principle, be called 

the optimal tree traversal if the traversal function tr does not violate the ancestry 

relationship given by the unordered tree and ensures minimum computational cost as 

well as traversal time. 

Tree Encoding: After receiving the optimal sequence for traversing all tree nodes, 

each node will be encoded according to its order in this sequence. For instance, in 

Figure 2, the traversal will start from the root node Va and the optimal sequence is va-

vc-ve-vb-vf-vd. The encoded values for the nodes in the tree will be 1-2-3-4-5-6 for va-

vc-ve-vb-vf-vd respectively. 

2.2 Step 2: Tree Modeling with the Augmented Adjacency Matrix 
Representation 
Adjacency matrix has been used for representing trees and graphs by modeling 

the adjacency information regarding parent-child relationship [88]. Let the adjacency 

matrix A model the tree T (V, E) as followings. 

 
,true,      ( )

false,    otherwise
i j

ij
v v E T

A
∈

= 


       (1) 

A tree data is a hierarchical representation that includes the inherent implicit 

relationships and semantics of various nodes. The traditional adjacency matrix fails 

to represent the label information, level information, encoding information, and 

ancestry relationships. To overcome these limitations the following Augmented 

Adjacency matrix is proposed to model tree data more accurately. 

Augmented Adjacency Matrix: This is a square matrix that utilises the level, 

encoding and weight information of a tree to represent the cell values. 
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Encoding Information: By using the optimal traversing sequence, we obtain the 

encoding values of the tree nodes according to the order they are visited. The root 

node becomes the first row and column to be represented in the matrix and the other 

nodes are arranged in the optimal order achieved by the optimal traversal. This 

encoding value also integrates with the level value between two nodes. 

Level Information: The level information in a tree represents the ancestry 

relationships of the nodes. This structural information is important for finding 

similarity between trees [51]. The nodes appearing high on tree carry more influence 

than nodes appearing near the leaf nodes. Consequently, the level assignment is 

bottom-up; the lowest leaf node is assigned the level 1 and the higher value is 

assigned to the root node level. The following rules are applied to assign a value to 

two nodes, vi and vj, incorporating the level information.  

1. If an ancestor-descendant relationship exists between two nodes vi and vj, 

where vi is the ancestor of vj, or if the encoding value of vi is less than the 

encoding value of vj then the level value of cell Cij is: ( )
( )

j

i

level v
level v

. The 

function level outputs the level value of a node. 

2. If an ancestral relationship does not exists between two nodes vi and vj, or 

if the encoding value of vi is greater than the encoding value of vj then the 

level value for cell Cij will be 0. 

Weight Information: In this method, nodes carry a weight displaying how 

frequently the node occurs under its parent node. The node weight is added to the 

corresponding level value. Additionally, a value of 1 is added to each diagonal cell of 

the adjacency matrix to represent the existence of corresponding node on that tree. 

We illustrate the process of modelling the tree with the augmented adjacency 

matrix and populating the matrix values. Figure 3 illustrates the traditional adjacency 

matrix and the augmented adjacency matrix for a given tree. The example tree has 

three levels, and the root node level is considered as the highest one. The encoding 

value of nodes is received from Figure 3 by using the optimal traversal. The traversal 

sequence is va-vc-ve-vb-vf-vd and the encoding values for these nodes are 1-2-3-4-5-6 

respectively. The level information of corresponding nodes is calculated, and the 
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node weights are added to the level values. For instance, consider the calculation of 

the cell value, C23, showing the relation between va-vc. The encoding value of va = 1 

which is less than the encoding value of vc = 2 that means va is ancestor of vc. 

According to rule 1, the level value of C23 is ( ) 2
( ) 3

j

i

level V
level V

= . The weight of vc is 4. The 

final cell value will be 2/3+4. The rest of the cell values are being calculated in the 

same way. 
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Figure 3: Augmented adjacency matrix 

2.3 Step 3: Measuring Similarity 
Let A' and B' represent Augmented Adjacency Matrices of the corresponding 

trees. If the two trees differ in size, extra columns and rows with zero elements are 

added to the smaller matrix for making the size of both matrixes equal. A matrix can 

be considered as a n×n dimensional vector. The value of each cell of a matrix is a 

dimension of the vector, starting from the first row to the end row; the n×n 

dimensional vector is represented. Similarity between two matrices can be calculated 

by using cosine similarity. Table 1 illustrates the similarity process. 

It is expected to achieve a polynomial time complexity with the proposed 

method detailed in Table 1. The method consists of three steps. The complexity of 
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the first step is O(n2), same as the line balancing optimisation problem. The 

complexity of the second step is known to be O(n2) for modelling the adjacency 

matrix based on tree encoding information. The final step comprises cosine similarity 

calculation, too small to count in; consequently it can be ignored during complexity 

analysis. The overall complexity is O(n2) where n is the maximum number of nodes 

in the input trees pair. 

Algorithm : Measuring Similarity 

Input: Unordered trees Ta and Tb 

Output: Measurement similarity between tree pair 

1. Model the tree Ta with the Augmented Adjacency Matrix A'; 
2. Model the tree Tb with the Augmented Adjacency Matrix B'; 
3. if |B'|>|A'| then 

Add (|B'| ─ |A'|) rows and columns of zeros at the right end and bottom of the 
matrix A'; 

else  
Add (|A'| ─ |B'|) rows and columns of zeros at the right end and bottom of the 
matrix B'; 

end if 
4. Calculate  similarity between two trees  using  

1 1

2 2

1 1 1 1

' '

' '
( ', ')

n n

xy xy
x y

n n n n

xy xy
x y x y

A B

A B
Cos A B = =

= = = =

∑ ∑
=

∑ ∑ ∑ ∑
  

Table 1: The proposed similarity measure algorithm 

3. EXPERIMENTAL RESULTS 

The proposed similarity measure method is evaluated on two datasets including 

the Bill of Material (BOM) data that has the similar structure as XML documents 

[23] and the Glycan structures obtained from the KEGG/Glycan database [80]. The 

proposed method is implemented on Matlab and experiments are performed on a PC 

with RAM size 8.00 GB and a processor Intel Core i7. 

Performance on the BOM Data: The BOM data set consists of 404 sample BOMs 

with 50,000 nodes and 12,000 unique nodes. The dataset includes trees with 

maximum and minimum depth of 8 and 4 respectively, whereas the maximum and 

minimum breadth is 10 and 6 respectively. The well-known evaluation metrics such 
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as precision, recall, F-score and AUC are calculated. To calculate these measures, 

positive and negative samples were needed. For this purpose, a tree pair in the data 

set is regarded as positive if the distance score is smaller than a given threshold. 

Otherwise it is regarded as negative. The threshold value is determined empirically. 

Figure 4(a) and (b) show the performance of the matrices with varied threshold 

values. As expected, data in Figure 4(a) shows that with the increase in threshold, 

matching accuracy is improved yielding the best matches showing increase in 

precision; however it reduces the number of matches resulting the fall in recall. 

Considering the trade-off between precision and recall, the proposed method 

produces the best result when the threshold is set in the range between 0.6~0.65 

(Figure 4(a)). For thresholds below the value of 0.3, AUC score is less than 0.5, 

indicating the random classification (Figure 4(b)). The threshold value that is higher 

than 0.5 gives a good quality solution yielding higher AUC. 

 

 (a)                                                 (b) 

 

 (c) 

Figure 4: Evaluation metrics with varied thresholds (a, b) and scalability test (c) 
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Total # 
nodes 

Clique 
Edit 

UwClique 
Edit 

DpClique 

Edit-A 

DpClique 

Edit-B 

DpClique 

Edit-C 

DpClique 

Edit-D 

DpClique 

Edit-E 

Proposed 
Method 

55~59 1.987 0.433 8.968 0.108 0.088 0.086 0.096 0.374 

60~64 2.746 4.949 1.78 0.167 0.163 0.149 0.177 0.47 

65~69 64.29 9.303 39.46 0.381 0.364 0.328 0.357 1.513 

70~74 58.69 0.099 1.337 0.545 0.436 0.463 0.501 1.517 

75~79 2.441 0.918 4.051 0.953 0.752 0.754 0.781 1.547 

80~84 7.150 6.570 44.63 2.516 2.268 1.620 1.653 1.55 

85~89 237.7 28.03 21.11 3.205 3.205 2.413 2.490 1.641 

90~94 303.2 1211 1710 38.81 26.30 8.165 9.475 1.761 

Average 84.78 157.66 228.92 5.84 1.75 1.75 1.94 1.29 

Table 2: Average CPU time (sec) per glycan pair is shown for each case. Bold text 

indicates the best results for each case and the highlighted cell indicates the worst 

results for each case 

We performed a scalability test by varying the BOM data set of different size 

reporting the CPU time and memory usage. Figure 4(c) reveals that the method is 

able to provide the O(n2) complexity, confirming the theoretical complexity analysis. 

The memory usage does not change with the increased data size, as the proposed 

method just needs to keep a pair of trees in the memory at a time. 

Performance on the Glycan Structures: We used the Glycan data for comparing 

scalability of the proposed method with the state-of-the-art similarity measure 

methods such as CliqueEdit, UwCliqueEdit, and DpCliqueEdit [124]. It is to be 

noted that none of these available methods empirically analysis their accuracy. They 

conduct the CPU time analysis to show the complexity. We compare our proposed 

method based on CPU time with these methods. For analysis, tree pairs are selected 

randomly from the data set with a specified range of the total number of nodes (i.e., 

sum of the numbers of nodes in two trees) and the average CPU time per pair is 

measured. 

Results in Table 2 show that our proposed method performs well for almost all 

sizes of trees. Although the proposed method does not give best result for the smaller 

tree node sizes, between the ranges of 55~59 and 75~79, but several other methods 

perform worse than our method. After reaching the range 80~84, our method 

outperforms others due to the use of optimal traversal. Overall the average 
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performance of all subsets of datasets (the last row) indicates that our method 

outperforms all methods, some with very large margin. The CliqueEdit, 

UwCliqueEdit, and DpCliqueEdit [124] methods implement several heuristics to cut 

the CPU expense, but provides no results about accuracy of the matching process. 

We provide the accuracy test for our proposed method on the BOM dataset. Results 

ascertain that the proposed method is able to achieve high accuracy and polynomial 

complexity. 

4. CONCLUSION 

The unordered tree data represents information inherent in many domains 

naturally. This presses the need of developing an efficient method of measuring 

similarity between trees especially when we are living in the big data era. This paper 

proposes an efficient method of measuring similarity between unordered trees. The 

proposed method introduces an augmented adjacency matrix structure for modeling 

the tree data. The matrix representation enables efficient computation of pair of trees 

for finding similarity. An optimal traversal of the tree is obtained using a line of 

balance optimisation problem. The encoding values of the nodes with this optimal 

traversal are utilised in representing the tree with the matrix structure.  

Empirical analysis shows that the proposed method is able to achieve improved 

complexity in comparison to existing methods even for large datasets. Results also 

showed that an improved complexity is achieved with high accuracy. The proposed 

method is able to achieve polynomial complexity whereas the existing methods for 

calculating similarity amongst unordered trees suffer from the high computational 

complexity.  

Our future plan is to work on the detail of the optimal traversal approach to 

improve the overall performance. We plan to apply heuristics to improve the 

scalability further. We also plan to do more experiments to analyze effectiveness and 

versatility of the proposed method. 
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Abstract: Calculating similarity between trees is an elementary task in many 

applications. Tree edit distance is a commonly used method for performing this task. 

However, for unordered trees, this problem is known to be intractable, i.e., NP-hard 

and MAX SNP-hard. Apparently, the challenges in such manipulation come from the 

complex mapping inherent in unordered tree structures. This paper introduces an 

encoding scheme for unordered trees using a novel tree traversal algorithm that is 

proposed by reducing the traversal problem to a simple assembly line balancing 

problem - a well-known optimisation problem in the operations research paradigm. 

By minimising traversing cost, this algorithm achieves an optimal traversal path of 

an unordered tree and allows a new encoding embedded matrix representation of the 

unordered tree data. We propose a similarity measure based on this representation. 

Empirical analysis shows that the proposed method requires significantly less 

computational time than the baseline methods, without compromising the accuracy 

of output. 

Keywords: Unordered tree, Optimisation, Tree traversal, Matrix 

representation, Similarity measure. 

1. INTRODUCTION 

Due to the unique capability of portraying topological and relational 

characteristics, the dominance of tree structured data presentation can be seen in a 

diverse range of real-life applications. Typical examples of tree structured data are 

XML data and weblogs in web intelligence; DNA and glycan data in bioinformatics; 

bill of material (BOM) documents in manufacturing; phylogenetic trees in 

evolutionary science and many others [33, 168, 169]. Tree matching is fundamental 

to the core operation of many data manipulation tasks such as clustering analysis, 

nearest-neighbour classification, data integration, data cleansing and data querying 

[60, 81]. 

Much research in this area concentrates on the ordered type of trees (i.e., trees 

in which the left-to-right order among siblings is fixed). However, important 

problems in the research fields of genetics, bioinformatics and web intelligence 

emphasise the need for developing efficient methods of manipulating unordered 

trees. For example, (i) in genealogical studies, various genetic diseases need to be 

diagnosed based upon the pattern of ancestry trees that are unordered; (ii) in 
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bioinformatics representing glycan structures as unordered trees will ease the way of 

knowledge mining [21]; (iii) in the manufacturing industry, BOM documents can be 

depicted as rooted unordered trees [23]; (iv) in evolutionary science, the unordered 

tree data is used for finding the set of species that have a common ancestor for 

modelling their evolution [113]; and (v) in the web domain, the generated semi-

structured data is mostly represented as unordered trees in order to capture the 

common patterns and irregularities [29]. 

The structure of a tree plays an important role in differentiating the data. The 

dependencies inherent in a structure need to be captured efficiently for data 

manipulation [46]. The expression of hierarchical dependencies in unordered trees is 

different (i.e., less constrained) from the ordered trees, which means there is a 

demand for an efficient data representation for capturing them. Apparently the lack 

of efficient equivalent representation raises the complexity in tree mapping as well as 

increasing the computational complexity of executing tree manipulation algorithms. 

A variety of methods based on nodes, paths, number of cliques, and subtree 

representations have been proposed to solve the unordered tree matching problem 

[42, 102, 167]. However, the majority of these methods have shown this problem to 

be NP-complete, even MAX SNP-hard, which means unless P = NP there is no 

polynomial time approximation scheme for this problem [45, 47]. Because of the 

high complexity yielded by existing methods, measuring similarities of unordered 

trees is still an open problem. 

To address this challenge, we developed a new representation based similarity 

measure method for unordered trees. Using the optimisation theory, we developed a 

novel tree traversal algorithm called Balanced-Optimal-Search (BOS) that encodes 

unordered trees by ensuring an optimal traversing order. The idea is to reduce the 

traversing problem to the Simple Assembly Line Balancing (SALB) problem - a 

well-studied optimisation problem in operations research [65, 157]. An optimisation 

model is formulated for solving the traversing problem, which consists of feasibility 

constraints and an objective function for minimising the computation time of 

traversal. The solution of this formulation leads towards an optimal traversal order as 

well as an efficient encoding of the unordered tree. An approximate numerical matrix 

representation called Augmented Adjacency Matrix (AAM) is then presented by 

embedding this encoding along with other tree structural information for the tree 
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data. Finally, we modified the vector cosine similarity metric to make it compatible 

with matrix computation for calculating similarity between a tree pair. 

The proposed method is evaluated using several real life datasets and 

benchmarked against several recent methods [79, 124] for finding similarities 

between unordered trees. Empirical analysis shows that the proposed method 

significantly reduces the computation time, even for datasets that include large trees. 

The proposed method gives only O(n2) complexity, which is an achievement, as the 

existing methods show the problem of finding similarity between unordered trees as 

intractable. In this paper, an application of our proposed similarity measure to 

clustering is also presented with the accuracy analysis. 

Summarising, the contributions of our paper are as follows: 

1. Introduced a novel tree traversal algorithm BOS by reducing traversal 

problem to the SALB optimisation problem. By minimising computation 

cost of traversing, BOS gives an optimal traversing sequence without 

relying on a fixed left-to-right order among siblings, unlike existing 

traversal algorithms. 

2. Developed a method with polynomial complexity that is comprised of a 

new matrix representation AAM and uses a modified cosine similarity 

metric for quick matrix pair comparison.  

The rest of the paper is organised as follows. In Section 2 we provide the back-

ground and an overview of the related work. Section 3 presents the proposed 

traversal algorithm BOS with its complexity analysis. Section 4 details the proposed 

method for finding similarity. We report experimental results and a clustering 

application of this similarity measure in Section 5. Finally, we conclude our work in 

Section 6. 

2. BACKGROUND AND RELATED WORK 

Unless otherwise stated, all trees we consider in the paper are rooted labelled 

and unordered. 

2.1 Preliminary and Notations 

A rooted labelled unordered tree has a unique root node and preserves the 

ancestor-descendant or parent-child relationships among nodes. All nodes are 
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labelled in the tree. Unlike ordered trees, there is no fixed left-to-right order or any 

other order among siblings. Let T = (V, E, L) be a rooted labeled unordered tree, 

where V(T), E(T), L(T) denote the set of nodes, edges and node labels (In this thesis, 

we do not consider the edge label) that are constructed as 

V(T) = {v0, v1, v2, …, v|T|}, v0 = root, |T| = Tree size (Total of tree nodes), 

E(T) = {(vi, vj) | vi, vj ∈ V} = {e1, e2, e3, …, e|T|},   

L(T) = {lab0, lab1, lab2, …, lab|T| | Φ: V → L }, Φ = mapping function.  

Each node vi has a unique path from its position to root v0. The parent of vi (and 

vi ≠ v0), denoted as Pvi, is the adjacent node of vi in that unique path to v0. The 

ancestors of vi, denoted as Avi, are all the other nodes in that unique path except vi 

itself. The children of vi are the immediate follower nodes of vi, the number of the 

children is also known as fan-out, denoted by fi. The descendants of vi are the list of 

all follower nodes of vi, denoted as Dvi.  

The ancestral constraint (constanc) poses a partial order 𝜌𝜌 among the nodes of 

an unordered tree. The ‘≺’ symbol represents ‘precedes’, e.g., if vi is ancestor of vj 

then this relation is denoted by vi ≺ vj. It is defined as: 

constanc = {vi 𝜌𝜌 vj iff vi ≺ vj, vi ∈ Avj, vj ∈ Dvi} 

A distinctive fundamental property between ordered and unordered trees is the 

sibling constraint that can be presented as 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = {vj τ vk ≇ vk τ vj iff Pvj = vi = Pvk, vj ≠ vk} 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = {vj τ vk ≅ vk τ vj iff Pvj = vi = Pvk, vj ≠ vk} 

where τ denotes an order between two sibling nodes (i.e. left-to-right). We can 

assume that changing the position of sibling nodes vj and vk of an unordered tree 

from left to right will not change any fundamental structure of that tree.  In this 

paper, n denotes the number of nodes in a larger input tree, n = max{|T1|, |T2|} where 

T1 and T2 are input trees. 

2.2 Unordered Tree Matching 

Although the focus of this paper is not arguing against the ordered tree 

matching, this section highlights the superiority of using unordered tree matching in 

data manipulation. A substantial difference between ordered and unordered tree 
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matching is that the order of sibling nodes can be exchanged in unordered trees, and 

trees with those nodes can still be considered matched. This flexibility makes 

unordered tree matching advantageous from various aspects. In the era of big data, 

the existence of diverse data sources is increasing, and analysing inconsistent and 

overlapping data becomes challenging. Unordered tree matching can provide 

accurate insight of data even in the presence of inconsistency or irregularity. Let us 

consider the following examples. 

Image Movie Book Journal

Place Title Year Place Year YearTitleYear Place Writer Writer Place

Image Movie Book Journal

Place Title Year Place Year YearTitleYear Place Writer Writer Place

(a)

(b)  

Figure 1: Possible mappings considering ordered trees (a) and considering unordered 

trees (b) 

In a query system  when searching for an element person with the sub elements first 

name and last name (possibly with specific values), ordered matching would give 

less relevance to the cases in which the order of these nodes, first name and last 

name, is reversed. However, in reality, changing the order of first and last names 

usually does not make any difference. The way to solve this problem is to consider 

the query subtree as unordered, in which only the ancestral constraint is preserved 

and the sibling order is ignored. The query can be posed and answered without being 

concerned about the sibling order. 

In a heterogeneous domain comparison between documents that are part of different 

sources is challenging. The documents may portray the same information, but, in 

different structural order. Consider Figure 1 that shows a fragment of heterogeneous 

data that contain four tree structures. Considering these trees as ordered gives the 

possible mapping among nodes based on structural similarity as shown in Figure 1(a) 
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that derives higher similarity between “Movie” and “Book” due to the sibling 

constraint. The matching between nodes is done by keeping the order of sibling 

nodes under the root node in consideration. In reality, “Journal” and “Book” should 

have higher similarity and so does “Image” and “Movie”. In this case, only 

unordered representation (as shown in Figure 1(b)) allows necessary mapping and 

results in accurate and flexible matching as desired. 

2.3 Unordered Tree Representation 

Similarity computation is known as the dual problem of distance computation, 

hence these two terms (i.e. similarity and distance) have often been used 

interchangeably [60]. Trees are complex in structure and any kind of manipulations 

using the tree structure format is a non-trivial task [11]. To enable efficient 

computation, trees are often represented as vector or matrix forms. In the vector or 

matrix representation of trees, the nodes are encoded with a traversal algorithm. Tree 

traversing is a systematic approach of visiting each node in the tree only once. This 

process returns a list containing the node sequence traversed along the way as the 

output. Traversal approaches adopting the breadth-first-search (BFS) and depth-first-

search (DFS) have been used extensively for encoding both ordered and unordered 

trees [62]. 

Figure 2 shows an example of two trees (Figure 2(a) & Figure 2(c)) of identical 

properties except the varied order between sibling nodes (dotted rectangles) and their 

DFS and BFS encodings accordingly. It is clearly visible that both DFS and BFS 

traversals visit the sibling nodes by preserving an order from left-to-right, which 

supports the properties of being an ordered tree. However, for an unordered tree 

these two schemes encode two similar unordered trees (only varied by sibling order) 

differently, which may result in calculating a false distance measure. The example in 

Figure 2 shows the distinct encodings for tree 1 (Figure 2(a) & Figure 2(b)) and tree 

2 (Figure 2(c) & Figure 2(d)) provided by both DFS and BFS traversals, which is 

desirable for ordered tree representation. For unordered tree representation the 

encoding should be the same, but the DFS and BFS traversals encode them 

differently, which creates the need for developing an alternative unordered tree 

encoding scheme without relying on left-to-right sibling order. 
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Figure 2: DFS & BFS traversal (dotted arrows indicate the traversing direction) 

2.4 Related Works 

A myriad of tree mining methods have been developed for finding similarities 

between tree pairs. The majority of them are applicable for ordered trees, and very 

few are available for unordered trees due to the complexities involved with 

unordered tree processing. Among various similarity methods, the most commonly 

used method is tree edit distance [42]. It measures the distance between two trees by 

the minimum cost required to transform one tree into another through several edit 

operations such as deletion, insertion and substitution. The complexity of edit 

distance problem for ordered tree data is O(n3), whereas the edit distance problem for 

unordered tree is NP-hard [48]. Furthermore, the problem was shown as MAX SNP-

hard [45, 47]. 

To overcome the complexity problem, researchers have developed algorithms 

constrained to conditions such as tree size and other tree properties; however they 

result in compromising on accuracy. Akutsu et al [112] introduced an algorithm 

under fixed parameters, which exhibited improved complexity of O(2.62k.poly(n)), 

however, it performs poorly when comparing non-similar trees. A few methods have 

been developed by reducing the tree edit distance problem to a clique problem [108]. 

For example, Fukagawa et al [40] proposed a method of computing maximum clique 

in which an instance of tree edit distance is directly transformed into an instance of 

the maximum vertex weighted clique problem, and then it is solved using a clique 

solver [170]. This method can work efficiently on moderate sized trees, but it will be 

slow for the large sized trees. This method is further improved with using dynamic 

programming that repeatedly solves instances of the maximum vertex weighted 

clique problem as subproblems [124]. However, this method still suffers from high 
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complexity for large tree structures. Some similar reductions [128, 129] and methods 

of variants of the tree edit distance problem [107] have been proposed, however none 

of them exactly solves the formal tree edit distance problem for unordered trees. 

Apart from tree edit distance, other examples of unordered tree matching 

methods are tree pattern matching [102], maximum agreement subtree [168], 

smallest common supertree and largest common subtree [131]. Most of these 

methods suffer from high complexity problem. An efficient method for computing 

tree similarity has been proposed using tree level information by counting the 

common nodes in the corresponding levels of two trees and giving different weights 

for different levels, but this fails to preserve the child-parent relationship among tree 

nodes [72]. Higher order models such as the Tensor Space Model (TSM) have also 

been used for representing tree data and finding similarities, though these techniques 

suffer from a high dimensionality problem [134].  

In summary, existing methods provide unfavourable results for unordered tree 

data and result in yielding high computational complexity. Different from these 

methods, we propose a novel optimisation based traversal technique that allows an 

efficient and equivalent matrix representation of the tree. To our best knowledge this 

is the only method that uses optimisation for representing unordered tree data in 

order to calculate similarity. The optimisation technique allows us to achieve the 

polynomial time complexity and the representation from tree to matrix facilitates fast 

computation. 

3. THE BALANCED-OPTIMAL-SEARCH (BOS) ALGORITHM 

We reduce the tree traversal problem to the optimisation problem inherited 

from the “Operations Research” paradigm called simple assembly line balancing 

(SALB) [65, 157], and propose a new order independent traversal algorithm. SALB 

is a combinatorial optimisation problem that chooses an optimal path for a network 

by avoiding exhaustive searching. In literature, SALB has been used to solve 

networks in manufacturing problems that are represented by a predecessor digraph, 

i.e., a graph holding all properties of unordered trees. We conjecture that SALB can 

propose an optimal path for an unordered tree-like network. The tree traversal 

problem can be treated as an assignment problem as approached in SALB. This 

motivates us to reduce the unordered tree traversal problem to the SALB problem. 
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3.1 Simple Assembly Line Balancing (SALB) Problem 

We first define the preliminaries of SALB. In the manufacturing domain, an 

assembly line is a sequence of p linearly ordered stations that are linked by a 

conveyor belt. A station performs the same set of tasks repeatedly during each cycle 

of the assembly line. The set of tasks J, processed by p stations within one cycle time 

c, is fixed. The time required to complete a task is termed as the process time t. The 

sum of the process time of all tasks assigned to a station is called the work content of 

that station. Since a cycle time is c, the set of tasks is available to a station for only c 

time units. Therefore, the work content of a station should not exceed c in order to let 

the line operate smoothly with no delays. The tasks cannot be assigned to the station 

arbitrarily because of the sequencing requirement. These factors, called as 

precedence relation, define a partial order on the set of tasks. 

The objective of SALB is to find an optimal balance of the assembly line in 

such a way that the total slack (i.e. the sum of the idle times of all the stations along 

the line) is minimum. For a fixed cycle time, this can be attained by minimising the 

number of stations. If the tasks can be grouped such that all the work contents are 

exactly equal, the line will have a perfect balance. The aim of the SALB optimal 

model becomes finding the minimum number of stations that can complete a 

sequence of tasks with the minimum delay. The solution yields the optimal sequence 

of these stations.  

Let a predecessor digraph G = (J, A) with nodes J and edges A define a 

partially ordered set of tasks J = { j1, j2, …,  jz}. If the set of tasks J are assigned to 

station Sk, k ∈ {1, 2, …, p}, where p ≤ z then the SALB problem can be defined as 

follows: 

Definition 1 (The SALB Problem) Assignment br: the set of tasks J = {j1, j2, …, ju, 

jw,…, jz} (1 ≤ u < w ≤ p) to p ordered set of stations {S1, S2, …, Sp} is balanced, if the 

following conditions are held. 

1. Assignment br does not violate the partial order given by predecessor 

digraph G = (J, A), i.e., inclusion (a, b) ∈ A implies that task ja is assigned 

to a station Sk and task jb is assigned to Sl such that, 1 ≤ k ≤ l ≤ p. 
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2. Cycle time c is not violated for station Sk, i.e., sum of the processing time 

of all the tasks assigned to a station should be within cycle time c. 

3. Assignment br assigns all tasks to a minimum possible number of stations 

p for the fixed cycle time c. 

3.2 Reduction of the Tree Traversal Problem to SALB 

Traversing a tree involves iterating over all nodes in the tree following a 

traversal strategy. We first give the basic definition of the tree traversal problem and 

then define the Balanced-Optimal-Search (BOS) traversal approach and its 

associated properties. 

Definition 2 (Tree Traversal) Tree traversal is a function tr: T→T* that iterates over 

the tree, listing all nodes that are met along the way. T* is a n-dimensional vector, 

representing the list of nodes in the order of traversal according to the traversal 

strategy, (v0, v1, …, v|T|) = V ∈ T*. Let I = (i0, i1, …, i|T|) be the set of iterations 

required to traverse a tree. Under each iteration a tree node will be traversed. 

Definition 3 (BOS Traversal) BOS traversal is an order independent traversal that 

adopts optimisation as a strategy for traversing all nodes of a tree.  

Definition 4 (Equivalent Nodes): Two nodes vi and vj are called equivalent nodes, 

denoted by vi ≅ vj; if they have the same label (labi = labj & labi, labj ∈ L), they are 

originated from the same labelled parent node (Pvi = Pvj), and they have the same 

labelled child nodes. 

 

Figure 3: A fraction of an unordered tree (a) in which the dotted rectangles show the 

equivalent nodes (assuming that node vq has the same labelled child node) (b) Using 

weighted nodes, a condensed tree representation 
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Definition 5 (Weight of a Node): Weight of a node vi (vi ≠ v0), is defined as the total 

number of its equivalent nodes. 

A condensed representation of tree is possible by applying the Definition 4 and 

5. For instance, Figure 3(b) shows the condensed tree with weights obtained by 

collapsing equivalent nodes.  

According to the properties of unordered trees we have lemma 1. 

Lemma 1: Weight of the root node v0 is always zero, w0 = 0. For each node vi ∈ V (vi 

≠ v0), the weight wi (wi ≠ w0) should always have a minimum value of one. 

PROOF: 

1. According to tree structure schema, no equivalent nodes of a root node are 

possible as the parent and ancestors are undefined for a root node. The 

weight of a root will always be zero (In the rest of the paper for displaying 

tree structure the zero root weight is omitted).  

2. Each node vi (vi ≠ v0) of a tree T should have at least one equivalent node 

otherwise vi does not exist in the tree. Hence the minimum weight of the 

node is one, wi = 1. For node vi, wi > 1 if the node has more than one 

equivalent nodes. 

Definition 6 (Candidate Node): Node vi is called the candidate node if all of its 

ancestor nodes have been traversed and it is yet to be traversed. A candidate node is 

considered eligible for traversing in the next iteration. There can be multiple 

candidate nodes available for traversing in the next iteration. The set of candidate 

nodes is denoted by Vcan = {vi,... ,vj} where {Pvi,… ,Pvj} are labelled as traversed. 

The weight and fan-out for a set of candidate nodes are denoted as wcan and fcan. 

Mapping: Using the metaphor of assembly line for an unordered tree, we explain the 

mapping process. A tree node can be considered as a task in the assembly line. The 

node weight is equivalent to the processing task time. The rationale is, as the weight 

can generate from the accumulation of several equivalent nodes, often a node (i.e., 

with weight greater than one) is not just a single node but rather, a multiple number 

of similar nodes. Therefore, we treat weight as an equivalent term of processing time, 
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which allows us to assume that a higher weighted node will require more time to 

traverse than a lower weighted node. An iteration involved in traversing a tree node 

can be considered a station for a task completion. The objective of the SALB optimal 

model for tree traversal is visiting all nodes of the tree within the minimum possible 

traversing time. Each iteration involved in traversal yields a different execution time, 

due to the variations in sorting and storing time of nodes, i.e., there exists a different 

candidate node set at each iteration. Some nodes must be deferred after applying the 

heuristics and stored for later visits. The overall traversal time is equivalent to the 

total iteration time. Minimising the total iteration time will minimise the total 

traversal time. 

Lemma 2: A BOS traversal neither violates the ancestral constraint nor allows the 

sibling constraint during traversing an unordered tree. If vi ≺ vj then node vi is 

traversed in iteration ia and node vj is traversed in iteration ib, such that 1 ≤ a ≤ b ≤ 

|T|. 

PROOF: In the SALB problem, the precedence relationship is strictly followed for a 

task assignment (i.e. before assigning a task its immediate predecessor task must be 

processed); therefore a BOS traversal also follows the ancestral constraint by 

confirming that a node is visited only after traversing its parent node. On the other 

hand the sibling constraint can be proved by saying that BOS uses optimisation for 

completing traversal where no left-to-right order among sibling nodes is kept, which 

means this traversal process does not keep the sibling constraint for encoding an 

unordered tree. 

Lemma 3: For each iteration of BOS traversal, the upper bound of computation time 

is the maximum value of node weight for the tree.  

PROOF: It can be proved by using the second condition of the SALB definition. For 

reducing the traversal problem to SALB, weight of a node is regarded as the traversal 

time of the corresponding node. Therefore, the node weight under each iteration 

should be within the maximum weight of the considered tree. 

Lemma 4: BOS traversal ensures the complete enumeration i.e. all nodes will be 

visited for traversing a tree. 
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PROOF: The SALB problem is aimed at processing all tasks along the assembly 

line. For reduction, we consider tree nodes as tasks. Hence the BOS traversal aims to 

visit all nodes of a tree and ensures the complete enumeration. 

3.3 The Optimisation Model Formulation 

This section details the optimisation modelling of the BOS traversal. For 

simplicity of modelling, only i is used for representing the i-th node denoted as vi, 

likewise for iterations. xij is introduced as the decision variables for this mathematical 

model; xij is 1 if node i is traversed at iteration j, otherwise it is 0. Let cj be the 

traversing time needed to complete iteration j. Based on these variables, the 

mathematical model is formulated as follows: 

                    𝑀𝑀𝑀𝑀𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀 =  ∑ ∑ 𝑐𝑐𝑗𝑗𝑥𝑥𝑠𝑠𝑗𝑗
|𝑇𝑇|
𝑗𝑗=1𝑠𝑠∈𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐                                                          (1) 

 Subject to  ∑ 𝑥𝑥𝑠𝑠𝑗𝑗 = 1|𝑇𝑇|
𝑗𝑗=1                           ∀𝑀𝑀 ∈ 𝑉𝑉                                                   (2) 

                  ∑ 𝑤𝑤𝑠𝑠
|𝑇𝑇|
𝑠𝑠=1 𝑥𝑥𝑠𝑠𝑗𝑗 ≤ 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚               ∀𝑗𝑗 ∈ 𝐼𝐼                                                    (3) 

                    𝑥𝑥𝑠𝑠𝑖𝑖 ≤ ∑ 𝑥𝑥ℎ𝑠𝑠𝑖𝑖
𝑗𝑗=1                         𝑘𝑘 ∈ 𝐼𝐼 𝑎𝑎𝑐𝑐𝑎𝑎 ∀𝑀𝑀 ∈ 𝑉𝑉 𝑎𝑎𝑐𝑐𝑎𝑎  ∀ℎ ∈ 𝐴𝐴𝐴𝐴𝑠𝑠        (4) 

                    𝑥𝑥𝑠𝑠𝑗𝑗 𝑀𝑀𝑐𝑐 {0,1}                             ∀𝑀𝑀 ∈ 𝑉𝑉 𝑎𝑎𝑐𝑐𝑎𝑎 ∀𝑗𝑗 ∈ 𝐼𝐼                               (5) 

Eq (1) represents the objective function and Eqs (2) to (5) represent constraints 

of the model. Eq (2), the occurrence constraint, guarantees that each node is assigned 

to an iteration, consequently, all the nodes are traversed in the whole process. Eq (3), 

the upper bound constraint, guarantees that the time required for an iteration is at 

most the pre-specified upper bound time. Eq (4), the ancestral constraint, preserves 

the topological sequencing, which is required for a tree to be an unordered tree. If xik 

= 1, i.e., if node i is traversed under iteration k, then the RHS of (4) must assume a 

positive value (for each ancestor h of i), i.e., each ancestor h is traversed before 

traversing of node i starts. If on the other hand, xik = 0, i.e., if node i is not traversed 

under iteration k, then the RHS of (4) may not be positive, i.e., ancestor h of i may or 

may not be traversed at the first k iteration. Eq (5), the non-divisibility constraint, 

guarantees that each variable assumes only a value of 0 or 1, thus a node cannot be 

split among two or more iterations. 
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Solving this model by standard optimisation techniques for finding an optimal 

solution is not a realistic choice as it will yield high complexity like NP hard [65, 

171]. To cope with this complexity, we propose to apply two heuristics based on 

priority rules to restrict the enumeration process of the tree, which guarantees an 

approximate solution closer to true optimum. Consequently, it gives only polynomial 

time complexity. These heuristics are applied in the order given. Heuristic-1 assists 

in identifying a potential node during the traversal process. However, if many 

potential nodes are found, heuristic-2 is applied to breaking the tie among equivalent 

nodes. 

Heuristic-1 Using this heuristic, the node for traversing next can be prioritised from 

the set of candidate nodes. We explain the steps and definitions necessary for the 

application of heuristic 1 as follows. 

Candidate Node Generation:  At the beginning of the traversing algorithm, the 

whole tree is scanned for finding the upper bound of an iteration time, denoted by 

UB. The maximum possible value of UB is the highest weight of the tree nodes. This 

is considered as the initial limit of UB. For each next iteration, the value of UB is 

updated by subtracting the weight of the recent traversed node from the initial value 

of UB. If the updated value of UB is found negative or less than a candidate node 

weight, the initial limit is set as UB of that iteration. The set of candidate nodes is 

formed by the following: 

Node vi → Vcan iff vi ∈ V & vi ≠ v0 & vi is not labelled as traversed & Pvi is 

labelled as traversed.  Now, any node vi ∈ Vcan will be deferred for traversing in the 

next iteration iff wi ≥ UB. 

Prioritising a Candidate Node: After sorting the candidate nodes, the next node for 

traversing will be prioritised based on the following condition: 

For3 Vcan = {vi, vj, …} with {wi, wj, …} ≤ UB, vi will be selected for traversing 

iff 
max

{ , ,...}i j iw w w→∫  

3 In this thesis, 
max
∫ and 

min
∫  respectively are referring the maximum and minimum value of a set. 
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Figure 4: An example of implementing heuristics 1 and 2 

In the case of multiple potential nodes, heuristic 2 is applied to rank the 

traversing order. 

Heuristic-2 For Vcan = {vi, vj, …} where {wi, wj, …} ≤ UB, if the number of 

maximum weighted nodes > 1 then the traversing order will be ranked based on the 

nodes with the largest number of child nodes or highest fan-out. Two nodes {vi, vj}∈ 

Vcan where wi = wj then vi will be chosen for traversed iff fi > fj. 

Heuristic-3 For Vcan = {vi, vj, …} with {wi, wj, …} ≤ UB, if multiple nodes exist with 

maximum weight and children count, the minimum lexicographically ordered label 

will be used to prioritise their traversing. Two nodes {vi, vj} ∈ Vcan where wi = wj and 

fi = fj, then vi will be chosen for traversal due to having minimum lexicographical 

label.  

An Example: In Figure 4 we consider the same tree from Figure 3, where 

numerical values alongside the nodes present their corresponding weights. For the 

first iteration the upper bound, UB is 2. After labelling root node v0 as traversed, 

nodes Vcan = {vm, vi, vk} because their parent node v0, is labelled as traversed and 

none of them have been traversed yet (Figure 4(a); dotted rectangle). Moreover, all 

of their weights are ≤ UB. Following heuristic 1, vk is chosen and traversed next as wk 

> {wm, wi}. For the next iteration, the updated value of UB becomes 0, therefore, the 

current UB is set as the initial value, 2. For this iteration, Vcan = {vm, vi} (Figure 4(b); 

dotted rectangle). Since wm = wi, heuristic-2 will be applied and node vm will be 

chosen as fm > fi. 

So, the BOS traversal is not keeping any left-to-right order among siblings 

while traversing a tree, which leads us to claim that the representation issue incurred 

by the previous DFS and BFS traversals has been resolved 
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Algorithm Time Complexity: Algorithm 1 (Figure 5) provides the pseudo 

code of the BOS algorithm. We discuss the complexity of this algorithm using the 

following lemma. 

Algorithm 1: BOS Traversal 

Input: Unordered tree, T(V); V = {v0, v1,  v2, …, v|T|}; w = {w1, w2, …, w|T| } 

Output: Optimal node traversal sequence return as vector ℝ|T| = (r1, r2, …, r|T|) 

1. ℝ|T| ←  { };  
2. r1 ← v0; 
3. Label v0 as traversed; 
4. for each x = 2 to |T| do 
5. construct Vcan using definition of candidate node; 
6. Traverse (Vcan, wcan, fcan, UB) = rx; 
7. Update (UB, wcan); 
8. end for 
9. return ℝ|T|; 

 

Functions 

Traverse (Vcan, wcan, fcan, UB) 
1. for all y ∈ Vcan 

2. if wy > UB 
3. Vcan ← Vcan \ vy; 
4. end 
5. end  

6. if 
max

count( ({ , ,...} )) 1i j canw w w∈ =∫ then         

7. r ← vi  ← corresponding node of
max

({ , ,...} )i j can iw w w w∈ →∫ ; 

8. else  

9. sort (fan-out) ← corresponding nodes of 
max

({ , ,...} )i j canw w w∈∫ ; 

10. if 
max

count( ({ , ,...} )) 1i j canf f f∈ =∫  

11. r ← vi  ← corresponding node of 
max

({ , ,...} )i j can if f f f∈ →∫ ; 

12. else 
13. r ← vi  ← corresponding node that has lexicographically minimum label; 
14. end   
15. end 
16. Label vi as traversed;   
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Update (UB, wcan) 

1. UB ← UB – Weight of the recent traversed node; 

2. if UB = 0 then 

3. UB ←
max

( , ,... )i Tj ww w∫ ;   

4. else  UB <
min

({ , ,...} )i j canw w w∈∫     

5.  UB ←
max

( , ,... )i Tj ww w∫ ;  

6. else 

7. continue 

end  

Figure 5: High level pseudocode of the BOS algorithm 

Lemma 5: The BOS traversing algorithm has time complexity O(|T| log |T|), where 

|T| is the number of nodes the tree has. 

PROOF: Implementing any of the heuristics of BOS traversal for sorting nodes will 

give a possible time complexity of O(|T| log |T|). Assuming there are |Tj| nodes in 

iteration j of the tree traversal, it will give O(|Tj| log |Tj|) complexity to sort these 

nodes. The total complexity after considering all possible iterations for traversing the 

whole tree (i.e., all j iteration) is  log ( )j j
j
O T T∑ , which is O(|T| log |T|). 

4. PAIR-WISE SIMILARITY COMPUTATION WITH BOS TRAVERSAL 

We propose a method for finding the similarity between unordered tree pairs 

by using the BOS traversal algorithm. The BOS traversal algorithm provides us the 

encoding of tree nodes. Using the tree node encoding and incorporating the tree 

structure information, we introduce an Augmented Adjacency Matrix (AAM) that 

provides accurate representation of tree structured data. A cosine similarity measure 

is then used to calculate the similarity between unordered tree pairs represented as 

AAMs. This method consists of the following steps: 

1. Generate the BOS encoding sequence of each tree in the dataset. 

2. Construct an equivalent augmented adjacency matrix for each tree. 
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3. Measure pair-wise similarity using cosine similarity. 

4.1 Step1: Encoding the tree nodes using BOS traversal algorithm 

Definition 7 (BOS Encoding): BOS encoding of a tree T labels the nodes with their 

position in the BOS traversal sequence order. 

Let node vi be traversed next after root node v0 in tree T using the BOS 

traversal. If the position of vi is changed with its sibling node, it would still be 

traversed at position 2. The BOS traversal does not necessarily give a sequence by 

following a left or right order, so the position would follow BOS order rather than its 

position in the tree. The BOS encoding ensures a distinct identity to a tree node 

regardless of its position in the tree. 

Example Continues: Consider the tree from Figure 4, using BOS traversal the 

traversing sequence will be v0-vk-vm-vq-vp-vi, thus following definition 7 the encoded 

values of the nodes, v0, vk, vm, vq, vp and vi become 1, 2, 3, 4, 5 and 6 respectively.  

4.2 Step 2: Constructing augmented adjacency matrix  

Trees or graph structures have been widely represented as matrices for 

simplifying computation of tree or graph mining algorithms [62]. Using other 

representation such as the list of edges or the adjacency list can be cumbersome if 

there are many edges in a tree. the adjacency matrix is the most commonly used 

matrix representation of a tree [159]. 

Definition 8 (Adjacency Matrix): For tree T = (V, E), the adjacency matrix A ∈ R|T|×|T| 

= [aij] is a binary matrix, where 0 < j ≤ i ≤ |T|. 

&1           
0      

i j
ij

if an edge exist between v v
a

otherwise


= 


     (6) 

The adjacency matrix representation of a tree directly depends on the encoding 

scheme. There can be |T|! different adjacency matrices of a tree, T using different 

permutations of the set of nodes [160]. Therefore, it is not possible to get a unique 

adjacency matrix representation for the same unordered tree using any of the DFS 

and BFS traversal based encoding, as their encodings rely on siblings order. We 

overcome this shortcoming of adjacency matrix representation by using the BOS 
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encoding. A BOS encoding-driven adjacency matrix will ensure unique identity of a 

same unordered tree by giving a total order among all adjacency matrices. 

A major problem with an adjacency matrix representation is that it only 

encodes the adjacent links in a tree, whereas, a tree structure contains other 

information such as implicit relationships (i.e. ancestor-descendent and parent-child), 

level information, weights and so on. To overcome these limitations, we propose a 

new matrix representation AAM. 

Definition 9 (Augmented Adjacency Matrix): Consider tree T = (V, E), where nodes 

are encoded using the order driven by BOS traversal. The augmented adjacency 

matrix A' of T, with respect to this ordering of the nodes, is |T| × |T| matrix where 

each diagonal entry of 1 is referring the entry of a node and each off-diagonal non-

zero entry is referred to as entry of adjacent node or descendent node of the entered 

node in the corresponding diagonal. The off-diagonal non-zero entry is either level 

information or the summation of level information and node weight. Since node 

weight is carrying the quantity information of a node under its parent therefore only 

those off-diagonal entries include the weight value for which the corresponding 

nodes are adjacent. 

Populating values in AAM: For entry of each node, value 1 is inserted into the 

diagonally positioned element of AAM, which represents the existence of the 

corresponding node on that tree. To capture the structural information more 

accurately, the off-diagonal non-zero values are added in AAM. These values give 

the information regarding ancestor-descendant and parent-child relationship of the 

corresponding diagonal node entry. They have two components. The first 

component, level information, is incorporated to show the ancestor-descendant or 

parent-child relationships. The second component, weight value, is added to include 

the number of descendent or child nodes under the ancestor or parent node. 

Level information is calculated using the level of each node in a tree. We 

define two rules for incorporating level information in populating a'ij: 

1. If an ancestor-descendant or parent-child relationship exists between two vi 

and vj, the level information of element a'ij  of that matrix is calculated as

( ,  )
( ,  )

j

i

Lv T v
Lv T v

. 
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2. If no such relationship exists between two nodes vi and vj, then the level 

information of element a'ij is 0. 

The (i, j)th entry, a'ij of the augmented adjacency matrix A' ∈ R|T|×|T|, where 0 < j 

≤ i ≤ |T|, can be formulated as: 

 

where Lv(T, vi) is denoted the level of node vi in tree T. 

 

Figure 6: Augmented adjacency matrix (AAM) 

Example Continues: Figure 6 presents the equivalent AAM representation of the 

tree. It shows the level of each node as the way it is considered in constructing AAM. 

The root node of a tree is positioned at the highest level and rest of the node levels 

are specified accordingly. Let’s calculate the value of cell12. An ancestral relation 

exists between v0 and vk. Hence, following the first rule, the level information of 

cell12 is 2/3, where 2 and 3 are the level value of v0 and vk respectively. After adding 

the weight of vk, the final value of cell12 becomes 2/3+ 2. 

The AAM presentation provides a unique identity to its equivalent unordered 

tree, which can be efficiently used in pair-wise similarity computation. The definition 

and description of AAM give us the following lemma: 
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Lemma 6: The AAM is a canonical matrix representation of an unordered tree. 

PROOF: Following the BOS traversing order, tree nodes are encoded and the row 

and columns of an AAM are arranged. This order is unique for a distinct unordered 

tree. Whatever permutation is carried out within the nodes of a tree as long as the 

structure and content of trees are same, the AAM will remain the same. 

Consequently, this new matrix form can be considered as canonical matrix 

representation of its corresponding unordered tree. 

Algorithm 2: Constructing Augmented Adjacency Matrix 

Input: Unordered trees T; {v0, v1, v2, …, v|T|}, {w0, w1, w2, …, w|T|} and  Lv(T, V) 

Output: Augmented Adjacency Matrices A´ of T. 

1. Construct initial adjacency matrix A'∈ ℝ|T|× |T| using the BOS traversing order; 
2. for each p ∈ |T| 
3. for each q ∈ |T| 
4. if  vp = Pvq then 

5. apq ← 
( , )
( , )

q

p

Lv T v
Lv T v

; 

6. apq ← apq + wq; 
7. else if vp ∈ Avq then 

8. apq ← 
( , )
( , )

q

p

Lv T v
Lv T v

; 

9. else if vp = vq  then 
10. apq = 1; 
11. else 
12. apq = 0; 
13. end if 
14. end for 
15. end for 

Figure 7: High level pseudocode of the AAM constructing algorithm 

4.3 Step 3: Measuring Similarity 

Cosine similarity is computed with two AAMs to find similarity between a tree 

pair. Cosine similarity is designed to be applied on vectors, whereas AAM is a 

matrix format, a modification is needed. 

Definition 10 (Cosine Similarity Measure for Matrices): Let A' and B' be two 

augmented adjacency matrices of trees T1 and T2 respectively. If the sizes of the two 

trees are not same, additional columns and rows with zero elements are added to the 
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smaller matrix for making the size of both matrices equal. These two square matrices 

can be considered as two |T|×|T| (where |T| = 1 2

max

( ,  )T T∫ ) dimensional vectors. The 

value of each element of a matrix can be seen as a dimension of the vector. Starting 

from the first row to the end row, a |T|×|T| dimensional vector is found and the cosine 

matrix similarity between trees T1 and T2, denoted by SCos (T1, T2) is: 

𝑆𝑆𝐶𝐶𝑐𝑐𝑐𝑐 (𝑇𝑇1,𝑇𝑇2) = cos(𝐴𝐴′,𝐵𝐵′) =  
∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥𝑐𝑐

𝑥𝑥=1
𝑐𝑐
𝑥𝑥=1 𝐵𝐵′𝑥𝑥𝑥𝑥

�∑ ∑ 𝐴𝐴𝑥𝑥𝑥𝑥 
′2𝑐𝑐

𝑥𝑥=1
𝑐𝑐
𝑥𝑥=1 �∑ ∑ 𝐵𝐵′𝑥𝑥𝑥𝑥 

2𝑐𝑐
𝑥𝑥=1

𝑐𝑐
𝑥𝑥=1

                                         (6) 

Algorithm 2 (Figure 7) and Algorithm 3 (Figure 8) show the process of 

constructing an augmented adjacency matrix and the final similarity score 

computation using pseudo codes. The complexity of the overall pair-wise similarity 

measure method can be calculated as follows: 

Algorithm 3: Similarity Computation 

Input: T1 and T2 in form of A' and B'; their AAM representations respectively 

Output: Similarity value SCos (T1, T2) 

1. if |T1| > | T2| then 
2. Add rows and columns of zero to B' to equalise the size of two matrices; 
3. else 
4. Add rows and columns of zero to A' to equalise the size of two matrices; 
5. end if 
6. Calculate SCos (T1, T2) using equation 6; 

Figure 8: High level pseudocode of the AAM constructing algorithm 

Complexity Analysis: The overall similarity measure calculation results in a 

polynomial-bounded algorithm. The proposed method consists of three steps: (1) 

BOS encoding of each tree of a pair; (2) AAM Construction of each tree of a pair; 

and (3) Similarity calculation. The complexity of generating BOS encoding is 

exactly the same as BOS traversal, which is O(|T| log |T|) as detailed in subsection 

3.3. For a tree pair (T1, T2) the maximum possible complexity for this step will be 

O(n log n), where n = max {|T1|, |T2|}. The complexity of AAM construction is 

known to be O(|T|2) based on the adjacency matrix construction complexity, 

therefore, the overall complexity of constructing AAM for a tree pair in Step 2 will 

be O(n2). Again, the complexity of the final step (i.e., similarity computation) is 
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O(n2), because of the computing dot product for every pair of row vectors. So, the 

final complexity of the proposed pair-wise similarity measure method is O(n2). 

5. EXPERIMENTAL RESULTS 

In this section we describe the experimental results of our proposed method. 

Several real life datasets are used for comparing the performance of the proposed 

method against the relevant baseline methods. The detailed description of the 

datasets, evaluation criteria, benchmarking methods and the experimental set-up are 

included below. 

5.1 Datasets 

We have used two real-life datasets of diverse characteristics (as shown in 

Table 1) in our experiments. The first data set consists of Bill of Material or BOM 

documents collected from the manufacturing domain [23]. BOM is a hierarchical 

portrayal of an end product comprising useful information regarding parts or 

components, raw materials, quantity and manufacturing process. A BOM document 

can naturally be depicted as an unordered tree [23]. The second dataset is CSLOGS 

that consists of Log Markup Language (LOGML), a compact way of structurally 

expressing the contents of the web log file information using XML [38]. Each user 

session extracted from the log file is expressed as a tree containing both structure and 

content information. Both of these datasets are labelled and have been used by 

researchers [23, 124] in similar experiments. 

DB No of 
Trees 

Total 
Nodes 

Unique 
Nodes 

Max 
D 

Min 
D 

Max 
B 

Min 
B 

Avg 
D 

Avg 
B 

BOM 404 50,000 12,000 8 4 10 6 7 4 
CSLOGS 59,691 716,263 13,209 25 3 28 2 10 6 

Table 1: Summary of used datasets 

5.2 Evaluation Criteria 

Precision (P), Recall (R) and FScore (F) are calculated to measure the accuracy 

of the proposed tree matching algorithm in the following manner: 

1

1

( )
j

j
j

j
j j

j

TP
Precision P

TP FP
=

=

=
+

∑
∑

                             (7) 
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=

+
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∑ ∑
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                          (9) 

Where, TP, FP, and FN denote true positive, false positive and false negative 

respectively. A tree pair matching in the dataset is regarded as positive if the 

similarity score is greater than a given similarity threshold, γ; otherwise it is regarded 

as negative. The value of γ is tuned before accuracy analysis. 

A second evaluation metric, NMI is used [172] to evaluate our clustering 

experimental results alongside FScore. 

The computational complexity is checked by computing CPU expense or run 

time and the sensitivity analysis is conducted by tuning various tree parameters like 

breadth, depth and size to check the effect in performance. 

5.3 Experiment Design and Benchmarks 

We have used three sets of experiments. Firstly, we evaluate the proposed 

method with its variants created by changing one of the three steps included in the 

method:  (1) changing BOS encoding to other preorder traversal (e.g. BFS or DFS) 

driven encoding; (2) using a different matrix representation (e.g. Adjacency Matrix); 

and (3) using a different similarity metric (e.g. Dise coefficient, Euclidean, Jaccard 

coefficient). When changing one component, all other components were kept exactly 

the same. 

Secondly, we compare the proposed method against relevant baseline methods: 

CliqueEdit [112], UwCliqueEdit [79], and DpCliqueEdit [124]. These methods 

employ the commonly used similarity measure, tree edit distance [42]. To the best of 

our knowledge, the considered baselines are recent methods for precisely computing 

the unordered tree edit distance. CliqueEdit reduces a tree edit distance problem to a 

maximum vertex weighted clique problem, and an off-the-shelf maximum clique 

solver was used for getting the solution afterward. Further, in UwCliqueEdit, the 
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maximum vertex weighted clique problem was reduced to maximum clique problem 

to improve the performance [79]. Later in the DpCliqueEdit method, a dynamic 

programming approach was combined with the clique-based method [112] and  some 

other heuristics were used to reduce the computation time and labelled as 

DpCliqueEdit-A, DpCliqueEdit-B, DpCliqueEdit-C and DpCliqueEdit-D [124]. 

Lastly, we evaluate the performance of the similarity measure through its 

application in clustering. The similarity matrix illustrating pair-wise comparison 

between all pairs of trees is determined by the proposed method, and clustering is 

performed using this matrix. All experiments have been conducted on a 2.8GHz Intel 

Core i7 PC with 8GB main memory running the windows operating system. All 

algorithms are implemented in MATLAB R2013b. 

5.4 Results: Comparison with Variants 

5.4.1 Effect of Encoding Schemes 

To have a meaningful comparison between various encoding schemes, we have 

tuned the similarity threshold, γ for all methods. The results of the first row in Figure 

9 validate that over BOM data, all methods achieve stable performance when γ ∈ 

[0.7, 1] and the last row shows that the stability is achieved when γ ∈ [0.5, 1] over 

CSLOGS. These different value ranges of γ admit the presence of a high percentage 

of homogeneous trees in BOM data and trees with large structural difference in 

CSLOGS data (Table 1). 

For comparing various schemes we set the similarity threshold as γ = 0.7 and γ = 0.6 

for BOM and CSLOGS data respectively. If we check the results from Figure 10, 

encoding using the BOS traversal ensures better results in every aspect when 

compared to other traversal based encodings. The BOS traversal achieves higher 

recall and a fair value of precision. Precision is often referred to as the predictive 

power of an algorithm, whereas recall assesses the effectiveness of an algorithm on a 

single class. The results demonstrate that BOS traversal has good predictive power 

with high efficiency. The other schemes often treat similar unordered trees 

differently due to considering left-to-right sibling order, therefore the efficiency of 

these schemes are not as high as BOS. 
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Both BFS and DFS traversals have O(n) complexity, however the presence of 

adjacency matrix construction in all of these methods exhibits the same 

computational complexity, O(n2). Therefore, the run time comparison is skipped. 

 

Figure 9: Precision (P), Recall (R) and FScore (F) curves with respect to γ over 

BOM and CSLOGS data 

 

Figure 10: Performance of various traversal encodings over BOM and CSLOGS data 

5.4.2 Matrix Representation 

To check the effect of AAM in our overall similarity measure, we have 

considered a variant comprised of AM with BOS-driven encoding. The threshold 

values are tuned in a same way as before and set as γ = 0.7 and γ = 0.6 for BOM and 

CSLOGS data respectively (Figure 11). 
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Figure 11: Precision (P), Recall (R) and FScore (F) curves with respect to γ over 

BOM and CSLOGS data 

 

Figure 12: Performance of AAM and AM representations over BOM and CSLOGS 

data 

Figure 12 shows the precision, recall and FScores for the BOM and CSLOGS 

data. It is evident that the AAM representation yields a better performance than the 

AM representation. The recall value of AM is just as high as AAM, as both of them 

are using BOS-driven encoding, which ensures the unique identity of each distinctive 

unordered tree, therefore all relevant examples are being retrieved in both cases. 

The accuracy of a similarity measure method largely depends on how the 

intermittent steps are capturing the information of input objects that are being 
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compared. AAM captures extra important features for representing a tree, and 

therefore it is able to outperform the basic AM representation. 

5.4.3 Performance with Other Similarity Metrics 

Several similarity metrics are available for Vector Space Model (VSM) 

representation; most of them can easily be applied to matrix representation by 

undertaking a simple modification. Cosine measure, Jaccard coefficient, Dice 

coefficient and Euclidean distance can be defined for matrices as: 

𝑆𝑆 𝐶𝐶𝑜𝑜𝑠𝑠(𝑇𝑇1,𝑇𝑇2) = cos(𝐴𝐴′,𝐵𝐵′) =  
∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥𝑐𝑐

𝑥𝑥=1
𝑐𝑐
𝑥𝑥=1 𝐵𝐵′𝑥𝑥𝑥𝑥

�∑ ∑ 𝐴𝐴𝑥𝑥𝑥𝑥 
′2𝑐𝑐

𝑥𝑥=1
𝑐𝑐
𝑥𝑥=1 �∑ ∑ 𝐵𝐵′𝑥𝑥𝑥𝑥 

2𝑐𝑐
𝑥𝑥=1

𝑐𝑐
𝑥𝑥=1

                                           (6) 

Where, SCos is used for Cosine measure. 

𝑆𝑆𝐽𝐽𝑚𝑚𝐽𝐽 =
∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥𝐵𝐵′𝑥𝑥𝑥𝑥

|𝑇𝑇|
𝑥𝑥=1
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|𝑇𝑇|
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𝑥𝑥=1

|𝑇𝑇|
𝑥𝑥=1

                                                     (10) 

Where, SJac is used for Jaccard coefficient. 

𝑆𝑆𝐷𝐷𝑠𝑠𝐽𝐽𝑜𝑜 =
2∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥𝐵𝐵′𝑥𝑥𝑥𝑥

|𝑇𝑇|
𝑥𝑥=1

|𝑇𝑇|
𝑥𝑥=1

∑ ∑ 𝐴𝐴′𝑥𝑥𝑥𝑥2
|𝑇𝑇|
𝑥𝑥=1

|𝑇𝑇|
𝑥𝑥=1 +∑ ∑ 𝐵𝐵′𝑥𝑥𝑥𝑥2

|𝑇𝑇|
𝑥𝑥=1

|𝑇𝑇|
𝑥𝑥=1

                                                                                    (11) 

Where, SDice is used for dice coefficient. 

𝐷𝐷𝐸𝐸𝑢𝑢𝐽𝐽𝐸𝐸𝑠𝑠𝑜𝑜𝑜𝑜𝑚𝑚𝑢𝑢 = �∑ ∑ �𝐴𝐴′𝑚𝑚𝑥𝑥2 −𝐵𝐵′𝑚𝑚𝑥𝑥2 �𝑢𝑢
𝑥𝑥=1

𝑢𝑢
𝑚𝑚=1                                                                              (12) 

Where, DEuclidean is representing the distance between two matrices, now using 

this distance the similarity score, SEuclidean between a tree pair is calculated as follows: 

𝑆𝑆𝐸𝐸𝑢𝑢𝐽𝐽𝐸𝐸𝑠𝑠𝑜𝑜𝑜𝑜𝑚𝑚𝑢𝑢 = 1 −  𝐷𝐷𝐸𝐸𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐
max (𝐷𝐷𝐸𝐸𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐)

                                                                                         (13) 

The accuracy comparison in Figure 13 shows that cosine gives better precision 

than other measures. The cosine measure usually performs well when documents of 

varied length exist. Since both datasets include trees of diverse sizes, the cosine 

measure outperforms others. 
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Figure 13: Performance of various measures over BOM and CSLOGS datasets 

5.5 Results: Comparison with Tree Edit Distance Methods 

5.5.1 Quality Comparison 

Figure 14 shows that the proposed method (labelled as BOS+AAM) has 

achieved a minor improvement in accuracy over state-of-the-art tree edit distance-

based methods. In this figure, CliqueEdit, UwCliqueEdit and DpCliqueEdit are 

abbreviated as CE, UCE and DCE respectively. All these methods perform similarly 

as they are developed over the similar concept. For both BOM and CSLOGS 

datasets, our method has a better FScore than the other methods. For, CSLOGS data 

the FScore difference with other methods is not very high as this dataset contains a 

tree with large structural variation; therefore any trivial method can distinguish 

between similar and non-similar trees, whereas BOM contains mostly homogeneous 

data and needs a sophisticated method to get accurate results. Our method considers 

intra structural relationships like hierarchical dependencies and optimal encoding, 

and hence achieves better results. 

In reality, the tree edit distance methods are known to achieve high accuracy 

but they suffer from high computational complexity [42]. Achieving better accuracy 

than the tree-edit methods assures us that the proposed method does not compromise 

on accuracy when addressing the computational complexity problem. Let us see the 

runtime analysis next. 
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Figure 14: Accuracy performance of various tree edit distance based in comparison 

to the proposed method 

 

Figure 15: Run time comparison of all considered tree edit distance based methods vs 

proposed method over BOM and CSLOGS datasets 

5.5.2 Running Time 

The main contribution of the proposed method is that it can compute the 

similarity between unordered trees within polynomial time complexity, O(n2) 

whereas other methods have shown this problem to be intractable [45]. The 

benchmarking methods have also been designed to address this problem by ensuring 

fast computation. The runtime is reported as the average run time or CPU time per 

pair for all pairs within a specific tree size (maximum size among the tree pair) in the 

given datasets. 
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Results in Figure 15(a, b) reveal that the proposed method runs consistently 

faster than the existing methods. It displays polynomial complexity even for the trees 

of large size. In the BOM dataset (Figure 15(a)), all of the baseline algorithms show 

exponential complexity after reaching a tree size in the range of 60 ≅ 65 nodes. 

When the proposed method was showing very short runtime (less than a second), 

benchmarking methods were showing the runtime exceeding 3600 seconds for large 

sized trees. From the zoom view (Figure 15(c)), we can see the proposed method is 

able to achieve results within 0.5 seconds for all the considered ranges for BOM. In 

CSLOGS dataset (Figure 15(d)), the baseline methods exceed the 3600 seconds limit 

for trees of 30 ≅ 36 nodes in size, except DpCliqueEdit-C, which gives polynomial 

complexity up until the tree size reaches 55 nodes, whereas our method produced a 

solution within 1 second. Incorporating optimal navigation and matrix calculation 

into the proposed method allowed for the saving of a significant amount of 

computation time. 

In summary, the proposed method achieved a small improvement in accuracy, 

however a very significant improvement in runtime over the existing tree edit 

methods. 

5.5.3 Sensitivity Analysis 

In the previous section, we observed that the runtime performance of the 

proposed method varies for different tree sizes as well as showing different runtimes 

for the same sized trees coming from different datasets. This indicates that the 

proposed method may be sensitive to some tree parameters. A series of sensitivity 

analyses is conducted with varied breadth, depth and size of the trees to find the 

reason of this uncertainty in output. Figure 16 and 17 display the performance of the 

proposed method by measuring runtime consumption (shown as the lines in graphs) 

with varied tree breadth, depth and size. Some subsets of the main data were created 

by varying a particular parameter while keeping other parameters constant. These 

figures also show the percentage of distribution of each case retrieved by varying a 

particular parameter in all over data (bar chart). So in a way, the number of trees of 

that particular parameter existing in the dataset can be known.   

For testing the effect of tree breadth, the tree depth is fixed at 7 and tree size 

range is kept between 20 ≅ 29 nodes. For testing the effect of tree depth, the tree 
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breadth was fixed at 4 and tree size was fixed at 20 ≅ 29 nodes. For testing the effect 

of tree size, the tree depth and breadth are fixed at 7 and 4 respectively. The reason 

behind choosing these parameters is because these are average parameters of the 

whole dataset. Besides, each of these cases reflects the majority distribution of the 

whole data.  

 

Figure 16: Sensitivity analysis over BOM Data 

 

Figure 17: Sensitivity analysis over CSLOGS Data 

For the CSLOGS dataset, a similar configuration is done using the following 

parameter values; depth = 10, breadth = 6 and tree size range = 30 ≅ 40 nodes. 

Figure 16 and 17, show that the proposed method is insensitive to tree depth, but 

slightly sensitive to tree breadth and when the values of the tree size increase, the 
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time required for the computation of the similarity increases quadratically (line 

chart). 

 

Figure 18: Clustering performance using the proposed similarity measure over BOM 

and CSLOGS datasets 

5.6 Performance on a Similarity Measure Application 

Clustering, classification, data integration and retrieval problems are some of 

the real-life applications of the proposed similarity measure method. To show one of 

these real-life applications, in this paper we have conducted clustering analysis on 

the pair-wise similarity matrix generated using the proposed method.  

A clustering task on the tree data, like LOGML, BOM or XML, involves 

grouping them based on their similarity without any prior knowledge. Clustering has 

been frequently applied to group data based on the similarity of their content. 

However, tree data contains structural information with content that makes the 

clustering process more challenging [162]. The structure information is showed by 

the hierarchical relationship between the elements at various levels, which has been 

preserved while calculating pair-wise similarity in the proposed method. The 

majority of the existing algorithms utilise the tree-edit distance to compute the 

structural similarity between each pair of objects. This may lead to incorrect results, 

as the calculated tree-edit distance can be large for very similar trees. 

The similarity matrix is fed to a partitional clustering algorithm such as k -way 

clustering [164]. The k-way clustering solution computes clustering by performing a 

sequence of k -1 repeated bisections. In this approach, the matrix is first clustered 
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into two groups, and then one of these groups is chosen and bisected further. This 

process of bisection continues until the desired number of groups is reached. We 

chose partitional clustering because the incremental clustering technique for a given 

clustering threshold often generates a large number of clusters. 

The k -way clustering algorithm option in CLUTO [164] is used to group both 

datasets to the required number of clusters. We varied the number of clusters k and 

recorded the value of evaluation metrics for both BOM and CSLOGS datasets. 

Figure 18 summarises the results, which ensure the reasonable performance of our 

similarity method based clustering. BOM data consists of four prominent classes, 

therefore better clustering performance was achieved when the value of k was set to 

4, whereas for CSLOGS data the highest performance achieved was for when k = 2, 

as this dataset has two major classes. The results show that the similarity method 

proposed in this paper facilitates the final clustering solution of a data set. 

6. CONCLUSION 

Due to the strong representation capability of tree structured data, they have 

been commonly used in representing characteristics of real-life database applications. 

In this paper, based on optimisation, a novel tree traversal algorithm BOS has been 

proposed for unordered tree data. It is distinct from the existing approaches as it is 

order independent and ensures optimal traversing order for an unordered tree. This 

traversal order provides encoding of the nodes which enables us to represent the tree 

data with an efficient and equivalent matrix form, AAM. The BOS traversing and 

AAM representation facilitate the pair-wise similarity computation accurately and 

efficiently. 

Empirical analysis showed that our method was able to achieve higher 

accuracy with less computation time in comparison to existing methods, even for 

large data sets. It requires only polynomial complexity, O(n2), whereas existing 

methods for calculating similarity between unordered trees suffer from the problem 

of high complexity and the problem has shown mostly as NP-hard or MAX-SNP 

hard. In the future, we will work on further improving the efficiency and scalability 

of our proposed method. We may consider data from other domains such as 

bioinformatics to check the versatility of the proposed method. Further, we are 

planning to expand the applicability of our proposed method into the area of 
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information retrieval where the proposed method could be used in the filtering step 

or be used directly in a subtree query. 
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Abstract4: Identifying product families has been considered as an effective 

way to accommodate the increasing product varieties across the diverse market 

niches. In this paper, we propose a novel framework to identifying product families 

by using a similarity measure for a common product design data BOM (Bill of 

Materials) based on data mining techniques such as frequent mining and clustering. 

For calculating the similarity between BOMs, a novel Extended Augmented 

Adjacency Matrix (EAAM) representation is introduced that consists of information 

not only of the content and topology but also of the frequent structural dependency 

among the various parts of a product design. These EAAM representations of BOMs 

are compared to calculate the similarity between products and used as a clustering 

input to group the product families. When applied on a real-life manufacturing data, 

the proposed framework outperforms a current baseline that uses orthogonal 

Procrustes for grouping product families. 

Keywords: Product families BOM, frequent mining, matrix representation, 

and clustering. 

1. INTRODUCTION 

Agile manufacturing has resulted in mass customisation and product 

proliferation, which consequently increases the number of products and part 

variations extensively. Simultaneously the current business climate demands for 

moving a product quickly from concept-to-market by reducing the product 

development lead time. A key element of shortening this lead time is the ability to 

use existing knowledge and designs to generate new variations of existing products, 

which ensure a reduction in time-to-market [173]. Therefore, the concept of grouping 

product families has been introduced. Besides leveraging product development cost, 

this grouping can offer multiple benefits including reduction in new product 

launching risks, improved ability to upgrade products, and enhanced flexibility and 

responsiveness of manufacturing processes [174]. For example, if two products have 

45 out of 50 parts common, design of the similar parts can be reused and positioned 

4 Copyright (c) 2014, Australian Computer Society, Inc. This paper appeared at Australasian Data 
Mining Conference (AusDM 2014), Brisbane, 27-28 November 2014. Conferences in Research and 
Practice in Information Technology, Vol. 158. Richi Nayak, Xue Li, Lin Liu, Kok-Leong Ong, 
Yanchang Zhao, Paul Kennedy Eds. Reproduction for academic, not-for profit purposes permitted 
provided this text is included.    
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for assembly early so that the remaining five parts can be added to the assembly 

when an order for a specific assembly has arrived. Exploring similarity among 

products may lead to the redesign of some parts. 

Nowadays, with the advent of cheap storage and fast computer, a huge amount 

of data is generated during product design and development in a manufacturing 

system. The ability beyond human is required to process this huge amount of 

complex data into useful knowledge such as common product family information. 

The identification of product families is a non-trivial task due to the volume and 

complexity of the available data. A well-known historical approach of grouping 

product families is Group Technology (GT) [175, 176]. However, the practical 

acceptance of GT has been limited in modern manufacturing [23, 177], as it requires 

enormous effort to do groupings due to the involvement of manual intermittent steps 

for developing a “coding system” to summarise the key design and other attributes.  

Some efforts have been made towards automation [178], but acceptable performance 

is not reached yet, especially for situations where the sheer volume of data becomes 

overwhelming for both human and systems. 

Data mining techniques have been specifically designed to deal with massive 

amount of data automatically (i.e. without human intervention) and to identify 

meaningful patterns and dependencies hidden behind the data. However, due to the 

complex nature of the data generated in product design domain, existing data mining 

algorithms require modifications. Although data mining algorithms have been 

specifically written to effectively analyse large datasets, the product design data 

often cannot be simply “plugged in” to these programs  [179].  

Bill of Materials (BOM) is a common product design data used in various 

domains like mechanical, electrical, electronic and civil/infrastructure. BOM is a 

hierarchical, structured representation of the products that details information such as 

parts descriptions, raw materials, quantities, manufacturing details, production times, 

etc. [23]. Researchers and practitioners have started using BOM specifications more 

commonly to represent their data [180]. It has become essential to propose similarity 

measures for BOM data to determine similarity between product designs, which will 

eventually lead to find effective groupings of product families.  

For BOM data, the critical information lays in the recursive parent-child 

relationships between the end item, its components or subassemblies, and the raw (or 
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purchased) materials they contain. This information can naturally be depicted in 

rooted labelled unordered tree format. In this paper we represent BOM data as 

unordered trees and introduce a novel matrix form called Extended Augmented 

Adjacency Matrix (EAAM) for equivalent tree representation. This representation 

facilitates search for similar designs and thus reduces the time consumption between 

concept and product launch. Our approach is to utilise the data mining techniques 

like frequent mining and clustering for ensuring efficient similarity calculation and 

reducing the search space for finding similar groups. Using frequent mining allows 

finding frequent structural dependencies like parent-child in a particular database, 

which gives the list of most occurred BOM parts or components relations. This 

information is then used with other content and topological information such as 

optimal part encoding, hierarchical position or level, and part quantity, in clustering. 

Using EAAM representations of BOM data, cosine similarity measure is used to 

generate a similarity matrix that becomes input to a clustering algorithm for 

identifying the product families. 

When applied on a real-life manufacturing data, the proposed framework 

including the BOMs similarity measure method has proven to excel in solving the 

problem of grouping product families automatically. The results are also compared 

with a current baseline that uses Orthogonal Procrustes [77] for finding the product 

families and the proposed framework clearly outperforms. 

Road map: In the following section, the related work is discussed. In Section 3, the 

background knowledge is presented. In Section 4, the proposed method for BOM 

similarity measure and the framework for identifying product families are given. The 

results are discussed in Section 5. In Section 6, the conclusion is drawn. 

2. RELATED WORKS 

Many efforts have been made for grouping the product families based on 

similarity schemes with emphasis on the different design areas and manufacturing. 

Most of them have focused on the historical approach of grouping individual parts 

into families, called as Group Technology (GT) [175, 176]. The practical acceptance 

of GT has remained limited due to the expensive coding system development for 

summarising the key product design and manufacturing attributes for doing the 
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grouping. The main limitation of GT is the manual coding system. Though some 

efforts have been made towards automation, still more improvements are needed. 

Later, Authors in [181] used a back-propagation neural network based method for the 

product family grouping, but kept the existing GT classification and coding system. 

Another automated retrieval and ranking process for finding similar parts was 

proposed by authors in [178], but again based on GT coding. Authors in [182] 

employed genetic algorithm to form the families, however, this approach also 

required to use the existing classification and coding scheme. 

Instead of using information derived from a fixed GT code; some methods 

proposed similarity based on product functional features. Authors in [183] used the 

Adaptive Resonance Theory neural network to develop a functional feature-based 

similarity method for grouping product families. Authors in [184] introduced another 

functional similarity-based combinatorial design method to produce a variety of 

products that satisfy various customer requirements in time. However, these 

functional feature-based schemes did not consider the hierarchical product design 

features. Authors in [77] attempted to calculate the similarity between BOMs 

considering the shape or geometrical structure, where a matrix representation and 

orthogonal Procrustes method were used to calculate the similarity score for 

grouping the product families. But BOMs are very flexible in shape, since there is no 

common rule or template to follow for generating them, therefore looking for 

geometrical or exact shape difference may give false similarity score. Emphasis 

should be put on the significant structural dependencies, hierarchical positions and 

other important contents during similarity calculation. The proposed framework in 

this paper focuses on the above for identifying the product families. To our best of 

knowledge, this is the first work on BOM data to determine product families using 

data mining. 

3. BACKGROUND KNOWLEDGE 

3.1 Bill of Materials (BOMs) 

BOM represents hierarchical relations between various product parts with 

necessary details of manufacturing a particular product. It is a structural 

representation of a product including its required subassemblies, components and 
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parts at various levels of production [185]. To understand the proposed framework, 

following definitions need to be considered. 

Definition 1 (End Items): The entities that are sold directly to the customer without 

any further value added manufacturing step. End items usually contain several 

subassembly parts and raw materials and appear at the top of the BOM hierarchal 

position. 

Definition 2 (Subassemblies): These are the entities that cannot be sold to the 

customer. Subassemblies may contain manufactured or purchased part or other 

subassemblies, and therefore, are appeared at a level of BOM hierarchy which is 

positioned neither at the top nor at the bottom. 

Definition 3 (Purchased Parts): The raw materials which are the initial entities for 

finishing a final product. Purchased parts are positioned at the bottom level of the 

BOM structure. 

Definition 4 (Quantity Representation): In BOM, repeated subassemblies or parts are 

represented by a quantity per value. This value is the number of the part required per 

one unit of the part’s parent. 

Definition 5 (Part Number): This is an alphanumeric string that uniquely identifies 

an end item, subassembly and a purchased part. Each number corresponds to a 

specific item with specific characteristics. 

Office Chair A

P(1) Q(2) R(1) S(1)

W(1) V’(1)T(1) U(1) V(1)

X(1) Y(4)

Nodes meanings: P=Seat, Q=Elbow rest, R=Lumbar support, S and S’=Back variation, 
T and T’=Under frame variation, U=Seat frame, V and V’=Upholstery variation, 
W=Back frame, X =Standard, Y=Wheel, Z=Footrest

Office Chair B

P(1) S’(1)

T’(1) U(1) V(1) W(1) V’(1) R(1)

X(1) Y(4) Z(1)

 

Figure 1: Variants of office chair 
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Properties of BOM: BOM structures can be different for the identical end items, as 

each end item may be designed by a different company. Moreover, the product 

design is the result of human made input and developed completely based on 

individuals’ understandings of how the product is manufactured or assembled. 

Similar BOMs may have different structures with same parts appearing at different 

level. However they will share similar components or parts and, most importantly, 

the structural dependencies among them will be usually kept same (Figure 1). BOMs 

substructures are unordered which means that the order of components is not 

significant. For instance, it does not matter if we say a chair has a seat, elbow rest 

and wheel, or a chair has a wheel, seat and elbow rest. In this paper we depicted 

BOM as rooted labelled unordered tree.  

Definition 6 (Unordered Tree): A rooted labelled unordered tree has an identical 

root node and preserves only ancestor-descendant or parent-child relationships 

among nodes. There is no left-to-right order among the sibling nodes. 

3.2 Data Mining Techniques Used 

To satisfy the need of mass customisation and agile manufacturing, we need to 

apply techniques that will extract implicit, previously unknown, potentially useful 

and understandable pattern from a large database [1], thus the product design and 

manufacturing system will have substantial improvement. Using data mining 

techniques in advance manufacturing is becoming popular [7]. In the proposed 

framework, we have used frequent mining and clustering, two well-known data 

mining techniques for finding similarities between products and grouping them into 

families. 

Frequent mining is used to extract interesting patterns from a database using a 

specified support [57, 58]. Support determines how often a pattern is applicable to or 

appears to a given data set. It represents the probability that a database instance 

contains that pattern. 

BOM consists of structural dependencies like parent-child and ancestor-

descendant relations between the end item, its components or subassemblies, and the 

raw (or purchased) materials they contain. The main challenge in BOM data analysis 

is dealing with the flexibility in its representation. It is very hard to put BOM data 

into a common format, thus the accurate analysis like similarity comparison can be 
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carried out. Apparently, in BOM no other information keeps constant except the 

structural dependencies. So, instead of considering geometrical structure and shape, 

understanding structural dependencies is crucial for BOM similarity comparison. We 

utilise frequent mining to extract common structural dependencies in a database, 

which can be used as important representational component of the BOM data. These 

common structures can be input to clustering along with other information about the 

BOM data. 

Clustering is an unsupervised data mining technique that can group objects 

based on their common characteristics, without the presence of any prior information 

about classification [162, 163]. Without using domain knowledge and GT coding 

based classification, the identification of product families can be possible using 

clustering. Clustering is now commonly used in manufacturing domain for doing 

unsupervised grouping [186].  To apply clustering, a similarity measure value needs 

to be calculated based on commonality of the features. In this work, we utilise cosine 

similarity [133] to determine a similarity matrix based on the equivalent Extended 

Augmented Adjacency Matrix (EAAM) of a BOM dataset. 

4. PROPOSED BOM SIMILARITY FRAMEWORK FOR IDENTIFYING 

PRODUCT FAMILIES 

In this section a method of similarity measure between two BOM data 

instances is presented. A framework is then proposed integrating the similarity 

measure for identifying product families. 

 

Figure 2: Data pre-processing steps 
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4.1 Data Pre-processing 

To begin with our approach it is necessary to pre-process BOM data in order to 

make it useful for knowledge discovery. Figure 2 shows the tasks, which are used in 

this process. 

4.1.1 Final Data  

A company’s database generally consists of a lot of data records. Only those 

records that correlate closely with the mining purpose are taken into account. Mostly 

BOM records are found in a tabular form, which typically contains the part name, 

part no, part revisions, part manufacturing description and the quantities required 

building a product assembly (as shown in Figure 3). Usually, the BOM input is given 

by human in spreadsheet, that can be formatted however one likes, but as anyone can 

format them, it often results in inconsistencies across a company’s BOMs. Hence for 

mining BOM data, these inconsistencies need to be removed. Moreover not all of the 

information comprised by BOMs is necessarily mined for knowledge discovery. 

Therefore, once received the raw data through integration of multiple databases, the 

final data sets should be identified involving such data cleaning and filtering tasks as 

removal of noises, handling of missing data files, etc. 

4.1.2 Unordered Tree Representation 

After identifying final BOM data, tree modelling is done to support the EAAM 

construction.  This modelling is carried out by using unordered tree structure scheme 

as template, where only parent-child and ancestor-descendent relationships are 

important. The BOM data can naturally be represented as unordered tree. By 

considering the parent-child and ancestor-descendant relationships between end item, 

subassemblies and purchased parts, a mapping can be derived.  

Table 1 shows a general mapping that can be used to represent the BOM data 

as unordered tree. The end item, or finished product, can be considered a root of the 

tree; manufactured or assembled components can become the nodes; purchased parts 

or raw materials can be the leaf nodes. For example, in Figure 3 the tabular or 

indented BOM of an ABC Lamps Product-LA01 [187] is given, where the lamp is 

the end product, and the parts given under first column are different subassemblies 

and purchased parts. For constructing a tree from this BOM only the relationships 

among various parts are important, such as B100, S100 and A100 are the children of 
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the end item; 1100, 1200, 1300, 1400 are the children of B100, representing 

descendants of the end item. 

Unordered Tree BOM data 

Root node End item 

Parent or ancestor node End item and subassemblies 

Child or descendant node  Subassemblies and purchased parts 

Leaf node Purchased parts 

Parent-child or, ancestor-
descendant relationships 

End item-subassembly or, end item-purchased part or, 
subassembly-purchased part relationships 

Node label Part number 

Table 1: Considered mapping for BOM to unordered tree representation 

For node labelling, part numbers are used. If we compared two BOMs of 

product Lamp, using part numbers as labels, two BOMs would only match where the 

part numbers were exactly the same. For instance, suppose part S-14 is a shade with 

I.D. = 14” (inch). Part S-18 is a shade with I.D. = 18” (inch). These two shades 

would not be matched because of the unique part numbers. However, we are 

interested in finding BOMs of similar nature even if they do not share exact content 

and topology. For this reason, we replace the part numbers with general node labels 

derived from the part characteristics and types. In the case of these two parts, we 

would replace the unique part labels with a single label S for the class of shades. 

 

Figure 3: ABC lamps product-LA01 [187] 
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4.2 Finding Frequent Structural Relationship 

The objective of the proposed framework is to form the product families based 

on the existing product models (BOMs). Due to the vast flexibility in BOM data, 

characterizing structural relationships based on frequent occurrence is essential to 

include in the global similarity calculation as in some cases, frequent-infrequent 

decision are used as a scale to measure the importance of the structural relations [49]. 

We consider these relationships as a representational component for the BOM 

dataset. We explain next how these relationships are derived. 

4.2.1 Tree Traversal  

Prior to implement frequent subtree mining algorithm, an optimal traversal 

[155] algorithm is used to ensure unique identity or canonical form [188] of each 

product model, which is in unordered tree form. Optimal traversal is included as it 

ensures optimality by providing unique encoding within minimum computation time 

[155] 

4.2.2 Frequent Mining Algorithm 

Once the canonical form is built, the frequent mining can now be applied that 

permits not only to explore the relationships and dependencies but also to handle a 

huge amount of data in an optimal way [57, 58]. However, such algorithms are 

sometimes limited to the memory because of its size and calculations that they 

perform. The candidate frequent subtrees generation can be exponential in large 

databases [49]. 

We propose to apply the BOSTER algorithm [57] which allows setting the 

subtree length equal to 1 and retrieves only single relationships exhibiting between 

parent-parts. This algorithm has proved to be memory efficient and exhibits limited 

computational complexity [57].  A support threshold is needed for frequent subtree 

mining process. A minimum support is set by trial and error, as it is a data specific 

parameter that prunes the infrequent subtree. 

4.2.3 Characterizing Structural Relationships 

Based on the result of the frequent subtree mining algorithm the structural 

relationships are characterized. If a subtree is frequent then the inherent parent child 

relation is considered as mandatory. Once all mandatory parent-child or ancestor-
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descendant relationships are identified, the remaining relationships are classified as 

optional. During the EAAM representation a weighted value of 1 and 0 are used to 

represent the mandatory and optional relationship respectively. The structural 

relationship importance weight is denoted as fw, which contains binary variable. 

4.3 Extended Augmented Adjacency Matrix (EAAM) Representation 

In this paper a new matrix representation called EAAM is introduced. 

Although, EAAM is an extension of Augmented Adjacency Matrix (AAM) 

representation [155], but to our best knowledge, this is the first matrix, where the 

frequent structural relationship is included as one of the representational components. 

The rest of the components are: 

− Optimal part sequence of BOM using optimal traversal. 

− Part level information from BOM interface. 

− Quantity representation (q) representing the number of the part required 

per unit of the part’s parent. 

An adjacency matrix of a tree is based on the ordering chosen for the nodes 

[160]. For EAAM the ordering is achieved using optimal traversal [155] which 

ensures unique encoding of BOM represented in unordered tree form. For populating 

the cell of EAAM mainly structural relationship importance weight, level 

information and quantity representation are used. 

Let a BOM, B is depicted as a rooted labelled unordered tree B = (I, R), where I 

= {i0, i1, i2, …, in} denotes the set of items with i0 as end item, and other set elements 

as subassembly and purchased items,  R = {(i1, i2)|i1, i2 ∈ I} = {r1, r2, …, rn-1}. The 

number of each item is given as {q0, q1, q2, …, qn}. For B, the EAAM representation 

can be formulated in which a cell, acd is populated as follows: 

𝑎𝑎𝐽𝐽𝑜𝑜 =  

⎩
⎪⎪
⎨

⎪⎪
⎧

1                                                                if 𝑀𝑀𝐽𝐽 is a node of 𝐵𝐵 
𝐿𝐿(𝐵𝐵, 𝑀𝑀𝑜𝑜)
𝐿𝐿(𝐵𝐵, 𝑀𝑀𝐽𝐽) + 𝑞𝑞𝑜𝑜 + 𝑓𝑓𝑤𝑤                                    if 𝑀𝑀𝐽𝐽 is a  parent of 𝑀𝑀𝑜𝑜

   
𝐿𝐿(𝐵𝐵, 𝑀𝑀𝑜𝑜)
𝐿𝐿(𝐵𝐵, 𝑀𝑀𝐽𝐽) + 𝑓𝑓𝑤𝑤                                           if 𝑀𝑀𝐽𝐽 is an ancestor of 𝑀𝑀𝑜𝑜

                                      
0                                                                           otherwise

 

These four components are explained as follows:  
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1. To represent the presence of each part in a BOM, each diagonal cell is 

populated with 1. 

2. If the part is parent of the other respective part, then the cell is populated 

with level information (fraction of level of corresponding two nodes), 

weight information (quantity of the child node) and structural relationship 

importance weight value of 1 or 0 depending on the frequent or infrequent 

status of the parent-child relation in the respective database. 

3. If the part is ancestor of the other respective part, then the cell is populated 

with level information (fraction of level of corresponding two nodes), and 

structural relationship importance weight value of 1 or 0 depending on the 

frequent or infrequent status of the ancestor-descendant relation. 

4. If none of these are true, then the cell receives a value of 0. 
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Figure 4: EAAM construction 

Example: From Figure 1, we consider the first example BOM of product 

model “office chair A” to explain the EAAM construction. Consider a BOM database 

that only consists of two BOM trees given in Figure 1, and the minimum support is 

two. It means that if a subtree appears twice or more in the database, it will be 
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considered as a frequent sub-tree. Based on this, A-Q, A-R, A-Z, T-Z and S-R are 

found infrequent relationships and considered as optional. The order of the nodes for 

constructing EAAM is derived using optimal traversal. Consider the cell between 

nodes A and Q. For this BOM tree, A is the parent of part Q, therefore the level 

information is added as 3/4, where the level of A is 4 and the level of Q is 3. For the 

child part Q, the quantity representation value is 2, which is added after the fraction 

of level into that cell. Finally, the frequent parent-part relation adds a value 1 to 

indicate the mandatory relationship. The overall calculated value for this cell is 

3/4+2+1 (Figure 4). The rest of the cell values are calculated following the same 

way. 

4.4 BOM Similarity Measure 

After constructing EAAMs, we use cosine similarity for matrix comparison for 

measuring the similarities between a BOM pair [155] as follows: 

cos(A, B) =  
∑ ∑ A𝑚𝑚𝑥𝑥

𝑢𝑢
𝑥𝑥=1

𝑢𝑢
𝑚𝑚=1 B𝑚𝑚𝑥𝑥

�∑ ∑ A𝑚𝑚𝑥𝑥 
2𝑢𝑢

𝑥𝑥=1
𝑢𝑢
𝑚𝑚=1 �∑ ∑ B𝑚𝑚𝑥𝑥 

2𝑢𝑢
𝑥𝑥=1

𝑢𝑢
𝑚𝑚=1

 

Where, A and B are two (n×n) matrices. 

 

Figure 5: The flow chart of calculating similarity 

If sizes of the two BOM trees are not same, then additional columns and rows 

with zero elements are padded to the smaller matrix for making the size of both 
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matrices equal, this is called the augmentation of matrix. These two square matrices 

can be considered as two |B|×|B| (where |B| = max {B1, B2}; B1, B1 are two BOM 

trees) dimensional vectors. The overall procedure for similarity measure is given in 

Figure 5 using a flow chart, where matrix is represented as Ra×a, where a is the size 

of that matrix representing the number of the components or parts in a BOM tree. 

 

Figure 6: Framework for product family design 

4.4 The Proposed Framework 

The proposed framework for grouping product families has three main phases 

as shown in Figure 6. In the first phase data pre-processing is done. BOM has 

different storage under different enterprises; some of them store BOM data in 

database, some in files like XLS file. Some enterprises use part table/relationship 

table to express BOM, and some enterprises use a single table. All these variations 

need to save in memory as a BOM generating interphase, from this node the pre-
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processing will carry out in next. Next phase covers the EAAM construction where 

all necessary steps (dotted blue boxes) are implemented for populating the feature 

weights. In the third and final phase, the pairwise similarity is calculated using the 

EAAM comparison and a similarity score is calculated between BOM pairs where a 

similarity score of 0 means completely dissimilar and a score of 1 means exactly 

similar. Using this similarity values a similarity matrix is constructed which is then 

employed as an input to a clustering algorithm. Table 2 shows an example of the 

similarity matrix. We used a well-known clustering algorithm, Repeated Bisection 

Partitioning [189], for grouping the BOMs into families. This algorithm divides trees 

into two groups and then selects one of the larger groups according to a clustering 

criterion function and bisects further. This process is repeated until the desired 

number of clusters is achieved. During each step of bisection, the cluster is bisected 

so that the resulting 2-way clustering solution locally optimises a particular criterion 

function. Other clustering algorithms can also be applied. Finally from the cluster 

result, the product families will be identified. 

 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 

B1 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44 

B2 0.40 1.00 0.43 0.47 0.40 0.49 0.37 0.40 0.40 0.42 0.32 0.43 0.32 0.54 0.39 

B3 0.43 0.43 1.00 0.65 0.43 0.53 0.43 0.43 0.43 0.45 0.39 0.44 0.39 0.52 0.33 

B4 0.57 0.47 0.65 1.00 0.57 0.70 0.60 0.57 0.57 0.71 0.50 0.35 0.50 0.63 0.34 

B5 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44 

B6 0.50 0.49 0.53 0.70 0.50 1.00 0.62 0.50 0.50 0.71 0.65 0.34 0.65 0.71 0.35 

B7 0.61 0.37 0.43 0.60 0.61 0.62 1.00 0.61 0.61 0.58 0.56 0.33 0.56 0.58 0.41 

B8 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44 

B9 1.00 0.40 0.43 0.57 1.00 0.50 0.61 1.00 1.00 0.64 0.41 0.30 0.41 0.58 0.44 

B10 0.64 0.42 0.45 0.71 0.64 0.71 0.58 0.64 0.64 1.00 0.56 0.31 0.56 0.72 0.39 

B11 0.41 0.32 0.39 0.50 0.41 0.65 0.56 0.41 0.41 0.56 1.00 0.25 1.00 0.47 0.31 

B12 0.30 0.43 0.44 0.35 0.30 0.34 0.33 0.30 0.30 0.31 0.25 1.00 0.25 0.42 0.31 

B13 0.41 0.32 0.39 0.50 0.41 0.65 0.56 0.41 0.41 0.56 1.00 0.25 1.00 0.47 0.31 

B14 0.58 0.54 0.52 0.63 0.58 0.71 0.58 0.58 0.58 0.72 0.47 0.42 0.47 1.00 0.31 

B15 0.44 0.39 0.33 0.34 0.44 0.35 0.41 0.44 0.44 0.39 0.31 0.31 0.31 0.31 1.00 

Table 2: BOM similarity matrix 

5. EVALUATION OF THE PROPOSED FRAMEWORK 

We implemented the proposed framework on a real manufacturing data to 

evaluate the performance. This data is collected from a manufacturer of nurse calling 
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devices [68]. It consists of 404 BOMs with four major product families. From this 

data set we randomly generated four samples, consisting 100 BOMs each and named 

them as Data 1, Data 2, Data 3 and Data 4. We used all these four datasets for 

empirical analysis.  

For benchmarking we consider a method that used the orthogonal Procrustes 

problem to find the orthogonal matrix for two given matrices that will closely map 

one matrix to another and used this as a geometrical similarities between BOMs and 

then clustered them into families [77]. For the benchmark method we used the same 

clustering algorithm, but we used the orthogonal Procrustes based similarity measure 

as input and performed the product grouping. Finally we checked the clustering 

results with the known product family information and compared the performances. 

 
(a) Data 1 

 
(b) Data 2 

 
(c) Data 3 

 
(d) Data 4 

Figure 7: Accuracy performance over Data 1(a), Data 2(b), Data 3(c) and Data4 

(c) 

The main contribution of this paper is the similarity measure method of product 

BOMs. An efficient grouping of product families largely depends on an efficient 
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similarity measure method. We evaluated our similarity measure approach using the 

well-known evaluation metrics including precision, recall and F1 score [190] and 

performed on all four data samples. For these metrics, the value close to 1 is 

considered as an indication of better performance. From Figure 7, we can see for all 

four data sets our proposed similarity measure method gives higher accuracy in 

comparison to the benchmark method. This good accuracy performance should also 

reflect during the clustering process, as we used this similarity method as an input for 

an off-the-self clustering algorithm for doing the product family grouping. Table 2 

gives a partial view of the similarity matrix generated by our proposed BOM 

similarity measure method. For clustering we used this similarity matrix for 

identifying product families. 

Table 3 reports the clustering performance results, where we mainly included 

the number of mis-clustered product BOM for each data by the proposed method and 

the benchmarked method. The proposed framework outperforms the baseline 

method. 

Method Data 1 Data 2 Data 3 Data 4 

Proposed Framework 2 5 5 6 

Baseline Method 19 21 25 35 

Table 3: Number of Mis-Clustered BOMs for Different Data Sets 

6. CONCLUSION 

A product family is a group of related products based on a product platform, 

facilitating mass customisation by cost-effectively providing a variety of products for 

different market segments. In this paper we present a data mining approach based 

framework for grouping various products into families. We introduced a similarity 

measure method for a common product data type, BOM that can be used to cluster 

products into families. The benchmarking results confirm the efficiency of the 

proposed work. 

In future work, we intend to expand the study on unifying the families into a 

single Generic Bill of Material (GBOM) [191] group. 
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Chapter 5: Frequent Subtree Mining 

Frequent subtree mining is one of the major contributions of this thesis. Three 

efficient algorithms for mining frequent subtrees from databases of labelled 

unordered trees are proposed, which utilise the novel canonical representation 

BOCF. Each of these algorithms is published as a separate publication. The first 

paper presents the BOSTER algorithm, which is designed for mining frequent rooted 

unordered induced subtrees. The second paper presents the BEST algorithm, which is 

designed for mining frequent rooted unordered embedded subtrees. The third paper 

presents the algorithm FreeS for mining frequent free induced subtrees. All of these 

algorithms work toward achieving an optimal candidate generation process with a 

good growth strategy as well as avoiding the generation of false candidate trees, with 

a focus on a specific frequent subtree mining problem. Empirical analysis in these 

papers shows that these algorithms have proven their efficiency in dealing with the 

isomorphism and automorphism problem which is a pressing issue in the process of 

frequent rooted unordered and free subtree mining. Empirical analysis of each 

method also shows its superiority in efficiency of generating patterns in comparison 

to the corresponding state-of-the-art benchmarking methods. 

Algorithm Input Tree type Output Subtree type 

BOSTER Rooted Unordered Tree Induced Subtree 

BEST Rooted Unordered Tree Embedded Subtree 

FreeS Free Tree Induced Subtree 

 
Table 5.1: A general overview of the proposed frequent subtree mining algorithms 

Table 5.1 presents the general overview of the proposed frequent subtree 

mining algorithms in this chapter. This table mainly includes the information of input 

tree type and subtree type for which each of these algorithms is specially designed 

and the input database on which these algorithms can be applied.  

This chapter is organised based on three papers that introduce the proposed 

algorithms and follow the sequence of Paper 4 on BOSTER, Paper 5 on BEST and 

Frequent Subtree Mining 153



 

Paper 6 on FreeS. Before presenting each paper in its original form, a brief overview 

of each method is provided along with some of materials that were excluded from the 

papers due to space restrictions enforced by the publishers.  

5.1 BOSTER: AN EFFICIENT ALGORITHM FOR MINING FREQUENT 
UNORDERED INDUCED SUBTREES 

This paper focuses on designing, developing and testing the BOSTER 

algorithm for mining frequent induced subtrees from a database of labelled 

unordered trees. This paper first introduces the novel BOCF canonical form for 

representing the rooted unordered trees. To the best of our knowledge, this is the first 

tree mining algorithm that does not require additional isomorphism and 

automorphism checking during frequency counting. To ensure optimal enumeration, 

a tree structure, guided scheme-based enumeration tree is proposed for candidate 

generation. This enumeration approach uses tree weight, level and fan-out 

information to guide the candidate generation process. The enumeration tree is 

expanded with patterns using the extension and join operations defined to support 

BOCF and the structure guided enumeration. In order to limit the number of 

candidates, the growth rules are introduced that control the availability of right most 

nodes to be used in extension for candidate generation. Consequently, by using this 

approach of candidate generation, BOSTER is able to generate only valid subtrees, 

which results in saving time and memory by avoiding the generation of invalid 

subtrees and then pruning later on. Most of the existing algorithms spend a fair bit of 

time on checking whether the generated candidate subtrees are in considered 

canonical form or not, in order to remove the invalid subtrees. The modified 

occurrence list based frequency counting method is used to improve the efficiency.  

BOSTER is evaluated with both the synthetic data and real life data. The real 

life data CSLOGS is used, which is a most commonly used data set for evaluating 

frequent subtree mining algorithms [34, 36, 49, 70, 192]. The two most relevant and 

state-of-the-art algorithms - UNI3 and HybridTreeMiner (HBT) - are used for 

benchmarking. BOSTER proved its scalability and efficiency in most cases. It 

particularly works efficiently (takes less computation time) when a dataset is more 

likely to have isomorphic trees. 

Due to the space constraints, some of the results were not part of the published 

article and the results presented in the paper focused on showing the scalability of 
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BOSTER. Figure 5.1 shows the impact of using the BOCF canonical form when the 

datasets include isomorphic trees. In addition to benefitting BOSTER, this provides a 

greater benefit to the BEST algorithm for finding embedded subtrees from the 

unordered tree data, as well as to the FreeS algorithm for finding induced subtrees 

from the free tree data. As in these two algorithms, the problem of isomorphism and 

automorphism has greater impact, due to dealing with more flexibility in 

trees/subtrees. 

5.1.1 BOSTER Handling Isomorphism  

 BOSTER uses the BOCF canonical form for tree representation, which makes 

it efficient to deal with the isomorphism problem. To empirically evaluate this 

statement, a synthetic dataset is generated based on the following parameters where 

Zaki’s tree generator [38] is used:  

− The number of labels (N) = 50,  

− The number of nodes (M) = 1,000,  

− The maximum depth (D) = 5,  

− The maximum fan-out of a node (F) = 5,  

− The total number of trees in the dataset (T) = 10,000. 

Due to the setting of node labels to very small with large number of nodes and 

trees, this data will have a high probability of getting a huge number of isomorphic 

trees. This would cause the presence of a large number of overlapping trees in the 

dataset, and a tree mining method would have to deal with this issue. 

In this isomorphism test, the results are compared against two benchmarking 

algorithms UNI3 [98] and HybridTreeMiner (abbreviated as HBT) [96], which are 

also designed to mine frequent rooted unordered induced subtrees. As shown in 

Figure 5.1. BOSTER consumes the least runtime followed by UNI3. HBT has to be 

aborted due to high runtime for smaller support thresholds. HBT needs an exclusive 

isomorphism test for avoiding overlapping trees and, therefore, requires high 

runtime. UNI3 deals with the isomorphism problem by creating a separate 

embedding list, which allows saving runtime in comparison to HBT, but BOSTER is 

still the fastest one because of using BOCF canonical form. Since BOCF does not 
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allow generation of isomorphic trees, no additional checking test is carried out. This 

result ascertains that BOSTER is robust to the problem of isomorphism. 

 

Figure 5.1: Runtime in presence of isomorphism 

5.2 BEST: AN EFFICIENT ALGORITHM FOR MINING FREQUENT 
UNORDERED EMBEDDED SUBTREES 

This paper contains the detail of the BEST algorithm, which mines frequent 

embedded subtrees from a database of labelled unordered trees. The BEST algorithm 

utilises the BOCF canonical form for representing the rooted unordered trees. In this 

paper, distinct properties including lemmas and proofs of balance optimal canonical 

form are presented.  

Mining embedded subtrees can be considered as a generalised problem of 

mining induced subtrees, but the difficulty level of this problem is higher than the 

induced subtree mining problem [49, 97]. Embedded subtree mining requires 

examining several levels within a tree to identify an embedded subtree. BEST 

incorporates level conditions during candidate generation that are represented in 

BOCF forms and the enumeration operations are defined accordingly. The structure 

guided enumeration tree allows avoiding invalid candidate subtree generation, which 

makes BEST more time and memory efficient than the existing benchmarking 

algorithms like SLEUTH [70] and U3 [97]. BEST holds the downward closure 

lemma during its processing and avoids generation of pseudo frequent [154, 192] 

subtrees, which SLEUTH fails to do. Therefore during the test, SLEUTH extracted 

the higher number of subtrees as frequent in comparison to U3 and BEST. Both 

synthetic and real life datasets are used for evaluating this algorithm. BEST ensures 

0
100
200
300
400
500
600
700
800
900

1000

s30 s27 s25 s20 s18 s15

HBT

UNI3

BOSTER

R
un

ni
ng

 T
im

e 
(s

ec
) 

Minimum Support 

aborted 

156 Frequent Subtree Mining 



  

the least runtime consumption on a real life dataset for a support (1.5%) without 

missing any frequent patterns. For the synthetic datasets, BEST also shows the 

competitive performance. 

5.3 FREES: A FAST ALGORITHM TO DISCOVER FREQUENT FREE 
SUBTREES USING A NOVEL CANONICAL FORM 

This paper presents the FreeS algorithm for mining frequent free induced 

subtrees from a database of labelled free trees. The BOCF tree representation is 

extended for distinctively representing free trees despite the presence of 

isomorphism. The BOCF of a free tree is generated by identifying a root node 

uniquely, which is called normalisation. FreeS uses a tree structure guided scheme-

based enumeration for generating the candidate of free subtrees. This scheme 

includes a set of conditions that conforms generation of candidate free subtrees in 

their canonical forms. Required lemmas and respective proofs are provided in this 

paper. For growing the enumeration trees, both the extension and join operations are 

used which are defined to support the generation of candidate free subtrees. For 

counting frequency, a modified occurrence list based support is used. Finally, the 

performance of FreeS is checked against the state-of-the-art free tree mining 

algorithms FreeTreeMiner [63] and HBT [96]. Empirical analysis confirms that 

FreeS is faster and computationally efficient.  

In this thesis only the frequent free induced subtree mining problem is 

addressed, and the frequent embedded subtree mining problem is not studied due to 

time constraints. The frequent embedded subtrees can be extracted by adding new 

conditions in the enumeration tree, which will allow generation of candidate 

embedded subtrees only. To the best of the authors’ knowledge, there is no available 

work on mining frequent free embedded subtrees, so the evaluation process will be 

challenging in terms of benchmarking.  

NB: The reader may be found the published paper a bit different than the 

version of the paper added in this thesis. This is done to correct some confusing 

wordings, which does not change any core concept of the work. 
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Abstract5: Extracting frequent subtree from the tree structured data has 

important applications in Web mining. In this paper, we introduce a novel canonical 

form for rooted labelled unordered trees called the balanced-optimal-search 

canonical form (BOCF) that can handle the isomorphism problem efficiently. Using 

BOCF, we define a tree structure guided scheme based enumeration approach that 

systematically enumerates only the valid subtrees. Finally, we present the balanced 

optimal search tree miner (BOSTER) algorithm based on BOCF and the proposed 

enumeration approach, for finding frequent induced subtrees from a database of 

labelled rooted unordered trees. Experiments on the real datasets compare the 

efficiency of BOSTER over the two state-of-the-art algorithms for mining induced 

unordered subtrees, HybridTreeMiner and UNI3. The results are encouraging.  

Keywords: Web mining, frequent subtrees, labelled rooted unordered trees, 

induced subtrees, canonical form, enumeration approach. 

1. INTRODUCTION 

In order to improve the Web-based applications, finding frequent patterns is a 

common task in Web usage mining that discovers useful information from the Web 

data. The web usage data, the sequences of accesses pursued by users, can be easily 

represented as trees [193]. The frequent subtree mining task can be used in 

distinguishing various users according to their common browsing behaviour [50].  

In this paper we study the problem of finding frequent subtrees from the 

database of unordered trees. 

Unordered trees have shown the capability of identifying interesting relations 

due to not being constrained by sibling order (i.e. no fixed left-to-right order among 

sibling nodes) [29]. However, this distinct property makes the process of mining 

frequent unordered subtrees more challenging in comparison to ordered trees. 

Exponential candidate generation with redundancy is the main problem in mining 

frequent unordered subtrees. It is critical to determine a “good” growth strategy as 

there can be many possible ways to extend a candidate subtree due to not having 

sibling order constraint. Moreover, high computation and memory expense are 

5 B. Benatallah et al. (Eds.): WISE 2014, Part 1, LNAI 8786, pp. 146–155, 2014. 
© Springer International Publishing Switzerland 2014 
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always an issue for mining tree data. Many algorithms have been proposed to 

overcome these challenges where they use a canonical form, and extend the 

candidates only that conform to the canonical form. Several canonical 

representations based on sorted pre-order string [93], depth-first traversal [90-92] and 

breadth-first traversal [96] have been proposed. These canonical forms need an 

additional isomorphism test for avoiding redundancy problem. Besides, the existing 

algorithms use extension and join operations for candidate enumeration [53, 96], 

which produce a large number of candidates including invalid subtrees. Authors in 

[98] have developed an enumeration approach using underlying tree structure 

information that generates only valid subtrees, but, the method suffers from extensive 

memory usage. 

We have previously proposed an optimal tree traversal algorithm for traversing 

a rooted unordered tree [155] and finding similarity amongst tree data. In this paper, 

we extend this traversing algorithm by introducing a new heuristic that leads towards 

a new definition of canonical form for representing unordered trees, called the 

balanced-optimal canonical form (BOCF). The BOCF can alleviate redundancy 

problem as it is able to represent unordered trees uniquely even in the presence of 

isomorphism. Using BOCF, we specify an optimal enumeration approach to 

systematically enumerate all frequent subtrees based on underlying tree structure 

information. This enumeration approach is efficient as it restricts the search, by only 

generating the unambiguous and valid subtrees using the underlying tree structure 

information. Finally, the balanced optimal search tree miner (BOSTER) algorithm is 

proposed for mining frequent induced unordered subtrees from a database of labelled 

rooted unordered trees. Empirical analysis carried out using a real data has shown the 

effectiveness of BOSTER over the two state-of-the-art algorithms, HybridTreeMiner 

[96] and UNI3 [98]. 

2. PRELIMINARIES 

Let T = (V, E, L) be a rooted labeled unordered tree, where V = {v0, v1, v2, …, 

vn} denotes the set of nodes with v0 as root node, E = {(vi, vj)| vi, vj ∈ V} = {e1, e2, …, 

en-1} denotes the set of edges and L denotes the set of labels. The label is given by a 

function Φ: V → L which maps nodes with unique labels. An unordered tree has no 

ordering relationship among the nodes except ancestor-descendent or parent-child. 
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The ancestor-descendent relationship between two nodes is denoted by vi ≺ vj, i.e. vi 

is ancestor of vj, the ‘≺’ symbol represents ‘precedes’. The level of a node vi in a tree 

T is denoted as Lv(T, vi) and the height of a tree T is denoted as H(T). 

Definition 1 (Induced Subtrees): A tree T´(V´, L´, E´) is an unordered induced 

subtree of a tree T (V, L, E) iff: (1) V´ ⊆ V , (2) E´ ⊆ E, (3) L´ ⊆ L and the labelling 

of V´ in T is preserved in T´ (4) ∀vi´ ∈ V´, ∀vi ∈ V and vi´ is not the root node, then 

parent of vi´= parent of vi, and (5) no left-to-right ordering among the siblings in T is 

preserved among the corresponding nodes in T´. 

Definition 2 (Equivalent Node): If two nodes vi and vj of a tree T, have the same 

label originated from the same labelled parent node (parent of vi = parent of vj) and 

have the same labelled child nodes then they are called equivalent nodes, denoted by 

vi ≅ vj. 

Definition 3 (Weight of Node): Weight of a node vi (vi ≠ v0) is defined as the total 

number of its equivalent node and denoted by wi (Figure 1).  

According to the properties of unordered trees we have Lemma 1. 

Lemma 1 Weight of the root node v0 is always zero, w0 = 0. For each node vi ∈ V (vi 

≠ v0), the weight wi (wi ≠ w0) should always have a minimum value of one.  

PROOF: 

1. According to the tree structure schema no equivalent node of a root node is 

possible as its ancestors are undefined. Hence, the weight of the root is always 

zero. 

2. Each node vi (vi ≠ v0) of tree T should have at least one equivalent node, otherwise 

vi doesn't belong to that tree. Hence, the minimum weight of the node is one, wi = 

1. For node vi, wi > 1 if the node has more than one equivalent node. 

Definition 4 (Mining Unordered Induced Subtree): Let Tdb denotes a database where 

each transaction is a labelled rooted unordered tree. The task of frequent induced 

subtree mining from Tdb is finding all induced subtrees that have minimum support s. 
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Definition 5 (Support): Support s of a tree T´ in database Tdb is defined as the 

number of trees, T that has at least one occurrence of T´ as an induced subtree in its 

structure. 

 

Figure 1: The highlighted nodes are the equivalent nodes (a) and the numerical 

values are the weights of the respective nodes (b), for simplicity only label is used to 

represent a node 

 

Figure 2: Four rooted ordered trees obtained from the same rooted unordered tree 

3. OPTIMAL CANONICAL FORM 

A canonical form (CF) of a tree is a representative form that can consistently 

represent many equivalent variations of that tree into one standard [90, 188]. The 

canonical forms for ordered and unordered subtrees are different. Due to having no 

sibling order, several ordered variations are possible from an unordered tree. 

Definition 6 (Equivalent Ordered Trees): Two distinct ordered trees T1 and T2 are 

equivalent trees if they represent the same unordered tree T, denoted by T1 ≅ T2. 

An example of equivalent ordered trees is given in Figure 2, where four 

ordered trees can be derived from an unordered tree. We propose to represent these 

ordered variations by a single canonical form following an optimal traversal so that 

the same unordered tree is derived from each of them. 

3.1 Balanced Optimal Canonical Form 

We have earlier developed an optimal tree search traversal algorithm [155] by 

reducing the traversing problem to an optimisation problem called “simple assembly 
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line balancing” [65]. Unlike existing traversal algorithms [188], our algorithm [155] 

works based on optimisation instead of fixing left-to-right order among siblings. We 

propose heuristics that are applied recursively for setting the rules of traversing the 

whole tree. Heuristic 1 identifies a potential node during the traversal process. 

Heuristics 2 and 3 select the best node if multiple nodes are identified as candidates 

for traversal. Induction of heuristics will result in the optimal traversal balanced. 

Heuristic 1 After traversing the root node, the enumeration of available nodes 

satisfying the ancestral relationship (vi ≺ vj) will be prioritized based on their 

weights. 

Heuristic 2 If there exist two or more nodes with maximum weight, the node with 

maximum number of children will get priority for traversing next. 

Heuristic 3 In case of existence of multiple nodes with equal weight and children 

count, the minimum lexicographical order will be used to prioritize their traversing. 

Consider the example tree in Figure 1, following this traversal scheme, root 

node va will be traversed first. Next eligible nodes for traversing will be ve, vc, vb as 

their parent node has been traversed. Node vc will be chosen following heuristic 1. 

Heuristic 3 will need to be applied to choose between ve and vb, as the other two 

heuristics fail to prioritize the order. vb will be traversed accordingly. Node ve will be 

traversed next using heuristic 2. The final sequence for traversing the whole tree will 

be va, vc, vb, ve, vd, vc, vf, that is not restricted by depth-first or breadth-first order. 

We propose a balanced-optimal canonical form for a tree represented in the 

optimal order obtained by this traversal. BOCF is a string representation of a tree 

along with four unique symbols, +1, -1, +2 and -2, that are used to represent the 

breadthwise movement from sibling to sibling and the depth-wise movement from a 

child to its parent. We use +1 and -1 for forward and backward travel towards depth, 

and +2 and -2 for forward and backward travel towards breadth respectively. We 

assume that none of these symbols are included in the alphabet of node labels. 

Definition 7 (BOCF String Representation of Unordered Tree): The BOCF string 

representation of the rooted unordered tree is achieved by a guided record of sibling 
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nodes. When a new node appears under its parent node, only the breadthwise 

movement from the existing rightmost sibling node is permitted. 

Consider the trees in Figure 2. The optimal order of the equivalent trees in 

Figure 2 is: va, vb, vc, vd, vc, vf. Using definition 7, the unique BOCF string 

representation of these four trees is 0va, +1, 2vb, +1, 2vc, -1, +2, 1vd, +1, 2vc, -2, 1vf. It 

should be noted that all equivalent ordered trees is represented by a unique standard 

form. It indicates that they all are originated from the same unordered tree. This 

greatly benefits unordered tree mining. The optimal traversal poses a total order on 

all variants of an unordered tree which guarantees the uniqueness of BOCF for a 

labelled rooted unordered tree. 

3.2 Dealing with the Isomorphism and Automorphism Problem 

A main challenge in defining a canonical form for unordered trees is faced 

when two trees are found isomorphic. If a bijective mapping exists between the set of 

nodes of two trees T1 and T2, which preserves and reflects the tree structures, then 

these trees are called isomorphic to each other, denoted as T1≅T2. The term 

automorphism corresponds to isomorphism of a tree to itself. It is necessary to 

identify which of the ordered subtrees forms an automorphism group of an unordered 

subtree. During candidate generation, each subtree encoding should uniquely map to 

a single subtree only. Existing research addresses this problem by choosing one of 

the trees from the automorphism group as the representative of the group, and then 

all other isomorphic subtrees are ordered according to the representative of the 

automorphism group during candidate generation [90, 96]. This ensures that, for a 

particular unordered subtree, its occurrences are correctly counted so that the 

frequency can be easily determined. However, a checking is always required to find 

the presence of isomorphism in a tree. This causes an additional memory and time 

consumption for keeping the record of the representative tree and for doing 

isomorphism testing. 

As shown earlier, the proposed BOCF encodes an unordered tree (including all 

of its ordered variants which are actually isomorphic to each other) uniquely. In other 

words, BOCF provides a unique representation to all isomorphic trees. This ensures 

that trees encoded with BOCF representation will be correctly grouped and counted. 

Unlike other canonical forms, BOCF does not require a record of representative trees 
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or, an extra checking during candidate generation for dealing the isomorphism 

problem. Moreover, BOCF can naturally handle the automorphism problem. For 

applying the optimal traversal, the trees need to be pre-processed so that a concise 

tree representation can be derived by combining equivalent nodes. Consequently the 

weight of each node under its parent node is calculated. It is to be noted that the 

equivalent nodes (i.e. same labelled sibling nodes having the same child) should not 

be treated as distinct nodes. The order between them is not important, but, only the 

occurrences are important. This process allows us to avoid the isomorphism of a tree 

to itself, i.e. solving the automorphism problem. Consider the following example in 

Figure 3(a) where the dotted area is showing a case of automorphism problem for the 

considered tree. However, the BOCF representation is derived based on the weighted 

tree as shown in Figure 3(b) where automorphism can no longer exist. 

 

Figure 3: Automorphism problem 

4. MINING FREQUENT LABELLED UNORDERED INDUCED 

SUBTREES 

We define an enumeration tree that lists all induced unordered subtrees in Tdb 

according to their BOCF strings. We used the right-path extension and join 

operations for growing the enumeration tree. Previous research has shown that the 

right-path extension produces a complete and non-redundant candidate generation 

[38, 90, 96]. The use of extension alone for growing enumeration tree can be 

inefficient because the number of potential growth may be very large, especially 

when the cardinality of the alphabet for node labels is large. This shortcoming 

necessitates of using a join operation [90, 96]. However, a join operation often 

generates invalid subtrees. We propose using a tree-structure guided schema for 

enumeration which allows the generation of valid subtrees only. In the proposed tree 

structure guided enumeration approach, the underlying level and fan-out information 

of nodes are utilised during candidate generation. 
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Operations on the Enumeration Tree: The basis of our enumeration tree is as 

follows. An unordered N-tree (i.e. a tree with N number of nodes) BOCF is formed 

from the unordered (N+1)-tree BOCF by removing the right-most path (i.e. the right-

most node along with its edge) at the bottom level.  

For growing the enumeration tree we define extension and join operations 

using the BOCF string and the tree-structure guided schema. 

Definition 8 (BOCF-extension): For a node vi (fan-out ≠ 0) of the BOCF T1, 

extension is possible to apply using every frequent label vj having level Lv(T1, vi)-1. 

This extension operation will result in a new BOCF T2 in the enumeration tree where 

vj will be the child of vi. If T1 is a N-tree BOCF, then the resultant new BOCF T2 will 

be a (N+1)-tree with height H(T1) +1. Further extension is possible from this new 

right-most node vj. 

Before giving the definition of BOCF-join operation, we define equivalent 

groups. 

Definition 9 (Equivalent Group): If two N-node trees T1 and T2 have height H(T1) = 

H(T2) and share first N-1 node (along with labels and weights) in common, they are 

considered as equivalent group, denoted by T1≅T2. 

Definition 10 (BOCF-join): Join operation is a guided extension between two 

BOCFs, T1 and T2, from an equivalent group, T1≅T2. Assume, vi and vj are the 

corresponding right-most node of T1 and T2, where wi>wj or, wi=wj with vi 

lexicographically sorts lower than vj. By joining vj in T1 at the position of Lv(T1, vi)-1 

will result in a new (N+1) node BOCF, denoted by T1 ⨀ T2, of the same height as 

tree T1. 

Growth Rules: Candidate trees can have a large number of potential nodes to get a 

right-path extension. In order to restrict this growth, heuristics can be employed 

using BOCF definition. This will result in reduction of the number of candidates 

generated as well as in the reduction of the number of isomorphic subtrees. These 

rules support the basic formation principle of the enumeration tree, i.e. keeping the 

N-tree BOCF unchanged with the newly generated (N+1)-tree BOCF. 
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Rule1: Among all the nodes at the bottom level, the node with the maximum weight 

will be chosen for BOCF-extension. 

Rule2: If there are more than two maximum weighted nodes then the node with 

maximum children will be chosen for BOCF-extension.  

Rule3: If more than two maximum weighted nodes with the same number of children 

exist then the node that sorts lexicographically lower will be chosen for BOCF-

extension. 

Consider an example database in Figure 4(a). We compare our enumeration 

tree (Figure 4(b)) with the enumeration tree (Figure 4(c)) generated by following the 

HybridTreeMiner method [96] (abbreviated as HBT here). HBT also uses the right-

path extension and join operations for  growing the enumeration tree, but, these are 

defined using a different canonical form (BFCF) [90], whereas we use BOCF and the 

tree-structure guided schema for growing the enumeration tree. The dotted rectangles 

in (Figure 4(c)) are showing the generation of invalid subtrees in HBT. We did not 

show the full enumeration tree for HBT. If we continue it will grow in a much bigger 

size, resulting in much higher numbers of invalid subtrees. But, for our method, 

Figure 4(b) is the complete enumeration tree of the considered database.  

 

Figure 4: Comparison between the proposed and existing enumeration techniques 

considering minimum support 1 and the dotted rectangles indicate invalid subtrees 

It can be clearly seen that our enumeration tree generates much less candidates 

in comparison to HBT enumeration tree because of producing only valid subtrees. 
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Generation of several invalid subtrees causes extra memory space and, then, pruning 

of these subtrees causes additional computational cost for HBT. Moreover, our 

enumeration approach is more robust to the isomorphism problem. In Figure 4(c) the 

enumeration tree produces two candidate trees T3 and T4, which are isomorphic. For 

counting the exact support these two should consider as same candidate. In that case 

an extra checking method is needed to count isomorphic trees; but our enumeration 

approach avoids growing any isomorphic tree. For example, in Figure 4(b); only tree 

T3 exists, tree T4 can't be generated. According to BOCF-join, join is supported only 

from T1, “0va +1 2vb” to T2, “0va +1 1 vd” as wb > wd. 

BOSTER Algorithm 

Input: a database Tdb consisting of labelled rooted unordered trees represented as BOCF 
strings, a dictionary containing level and fan-out information of each node, a user defined 
minimum support (min_sup). 

Output: All frequent induced subtrees. 

1. Result ←∅; 
2. F1 ← the set of all frequent nodes; 
3. for all tk ∈ F1 do 
4. if fan-out(tk) = 0 
5.  continue 
6.  end if 
7. Grow_Enum (tk, level, weight, fan-out ); 
8. end for 
9. return Result; 

Grow_Enum (Ck, level, weight, fan-out) 

1. for all f ∈ Ck do 
2. Select the right-most node of Ck  using Growth rules; 
3. Generate candidate Ck+1 by adding f;  //using BOCF-extension;  
4. if support (Ck+1) ≥ min_sup then 
5. Result ← Result ∪ Ck+1; 
6. end if 
7. Grow_Enum (Ck+1, level, weight, fan-out ); 
8. end for 
9. for all Ck´ such that Ck ≅ Ck´ do 
10. Ck+1 ← Ck ⨀ Ck´; //using BOCF-join; 
11. if support (Ck+1) ≥ min_sup then 
12. Result ← Result ∪ Ck+1; 
13. end if 
14. Grow_Enum (Ck+1, level, weight, fan-out ); 
15. end for 

Figure 5: High level pseudo code of BOSTER algorithm 
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Figure 5 lists the pseudocode of the BOSTER algorithm. The process of 

frequent subtree mining is initiated by scanning the tree database, Tdb, where trees are 

stored as BOCF strings along with weight, level and fan-out information of each 

node. The candidate generation method Grow_Enum is called recursively for 

growing the candidates. The frequency of every resultant candidate tree is computed 

according to the method used in [90, 96]. This is basically an apriori based frequency 

counting which gives us the exact frequent subtree list. In order to improve 

computational efficiency, we stop counting of a subtree as soon as the tree count 

reaches the minimum support value. 

5. EXPERIMENTAL EVALUATION 

We have performed experiments to evaluate the efficiency of the proposed 

algorithm on real application data. All experiments have been conducted on a 

2.8GHz Intel Core i7 PC with 8GB main memory and running the UNIX operating 

system. Two state-of-the-art unordered tree mining algorithms, HBT [96] and UNI3 

[98] are used for benchmarking. We recorded the run time and memory usage of 

each algorithm and compared their performances. 

In line with other research and to show scalability, three variations of the real 

weblog data, CSLOGS [38, 50], are used. (1) CSLOG1 - data generated from the 

first week web log usage consisting of 8,074 trees. (2) CSLOG12 - data generated 

from the first two weeks usage consisting of 13,934 trees. (3) CSLOGS - the entire 

data covering all weeks consisting of 59,691 trees, 716,263 nodes and 13,209 unique 

node labels. 

Figure 6(a, b, c) and Figure 7(a, b, c) compare the runtime and memory 

comparison of BOSTER against HBT and UNI3 respectively. For both runtime and 

memory comparison, BOSTER significantly outperforms HBT in all cases. 

However, UNI3 gave better memory consumption than BOSTER over CSLOG1 and 

CSLOG12. On the entire set of CSLOGS, BOSTER started to outperform UNI3 for 

support value less than 100. After this support value, UNI3 could not perform due to 

extensive memory usage (Figure 7(c)). We allocated about 15GB memory to run 

UNI3, but, it still failed to execute results. UNI3 includes a large number of extra 

data structure to hold intermittent information for the mining process. These 

additional structures cause the out of memory problem when mining the large data 
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with small support values. Moreover, both HBT and UNI3 keep record of 

representative trees for performing an isomorphism test that causes additional time 

and memory expense, but BOSTER can avoid this extra cost using BOCF string 

representation.  

 

(a) 

 

(b) 

 

(c) 

Figure 6: Runtime comparison over CSLOG1 (a), CSLOG12 (b), full CSLOGS (c) 
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In real-life applications, memory usage can have a significant impact on the 

application’s usability from the perspective of performance, interactivity, etc. 

BOSTER is able to consume less memory with yielding efficient time complexity, in 

comparison to the benchmarked algorithms, even in the presence of large data 

 

(a) 

 
       (b) 

 

(c) 

Figure 7: Memory comparison over CSLOG1 (a), CSLOG12 (b), full CSLOGS (c) 
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6. DISCUSSION 

In this paper, we presented a novel canonical form, and developed a new 

method of finding frequent induced subtrees from the dataset of labelled rooted 

unordered trees.  We empirically evaluated the efficiency of the proposed algorithm, 

BOSTER, against the well-known algorithms in the literature, over real life datasets. 

In future we will extend the proposed algorithm to find condensed 

representations like frequent closed patterns and we also will explore the scope for 

extending our canonical form to represent free trees in order to mine frequent 

patterns from them.  
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Abstract6: This paper presents an algorithm for mining unordered embedded 

subtrees using the balanced-optimal-search canonical form (BOCF). A tree structure 

guided scheme based enumeration approach is defined using BOCF for 

systematically enumerating the valid subtrees only. Based on this canonical form and 

enumeration technique, the balanced optimal search embedded subtree mining 

algorithm (BEST) is introduced for mining embedded subtrees from a database of 

labelled rooted unordered trees. The extensive experiments on both synthetic and real 

datasets demonstrate the efficiency of BEST over the two state-of-the-art algorithms 

for mining embedded unordered subtrees, SLEUTH and U3. 

Keywords: Frequent subtrees, labelled rooted unordered trees, embedded 

subtrees, canonical form, enumeration approach.  

1. INTRODUCTION 

The problem of finding frequent subtrees from the tree structured data has 

important applications in diverse areas including web mining, XML mining, 

computer vision, network routing and bioinformatics. From the tree structured data, 

frequent subtree mining discovers important patterns in the tree form showing the 

distinct features of the data. For example, in [50] frequent subtree mining is used in 

web log data to distinguish users according to their browsing behaviours on web. It 

also facilitates other data mining tasks such as association rule mining, classification 

and clustering. 

The tree structured data is often represented in ordered form in which parent 

and siblings relationships (i.e., fixed left-to-right order) are preserved. However, in 

practice, the ordering among siblings is not always of great importance to users and 

is not always available [126]. Unordered trees have shown the capability of 

identifying interesting relations due to not being constrained by sibling conditions 

[29, 35]. This distinct property of unordered trees, however, makes the process of 

mining frequent subtrees more challenging in comparison to ordered trees. A huge 

number of candidate generation occurs where subtrees with similar structure are 

included. Besides, it is non-trivial to determine the “good” growth strategy and avoid 

6 D.-N. Pham and S.-B. Park (Eds.): PRICAI 2014, LNAI 8862, pp. 459–471, 2014. 
© Springer International Publishing Switzerland 2014 
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redundancy, as there can be many possible ways to extend an existing pattern in a 

tree format, due to not having an order constraint in sibling nodes. Moreover, high 

computational and memory expense are an ongoing issue for mining tree structured 

data. 

Two possible types of subtrees, Induced and Embedded, can be mined from the 

tree data, preserving parental and ancestral relationships respectively. Mining 

embedded subtree can be seen as a generalisation task of mining induced subtree that 

is essential to mine interesting relational information inherent within deeply 

embedded data objects in the tree database. It is a more difficult problem than 

induced subtree mining as it requires examining several levels within a tree to 

identify an embedded subtree [70]. 

In this paper we present an algorithm for mining unordered embedded subtrees. 

Distinct from existing tree traversal methods [188], we have previously proposed an 

optimal tree traversal algorithm for traversing a rooted unordered tree without 

enforcing an order among sibling nodes [155]. We extended this traversing algorithm 

by introducing a new heuristic that leads towards a new definition of canonical form 

for representing unordered trees, called the balanced-optimal canonical form (BOCF) 

[57]. The BOCF is able to represent unordered trees uniquely even in the presence of 

isomorphism. 

In this paper we study some properties of the BOCF and design an optimal 

enumeration tree using BOCF that systematically enumerates all frequent embedded 

subtrees based on the tree structure guided scheme. This enumeration approach is 

efficient as it restricts the search by only generating the unambiguous and valid 

subtrees using the underlying tree structure information. For growing the 

enumeration tree as well as generating candidates, we define extension and join 

operations. Finally, the balanced optimal search embedded subtree miner algorithm 

(BEST) is proposed for mining embedded subtrees from a database of labelled rooted 

unordered trees. Empirical analysis carried out using both real and synthetic data has 

shown the effectiveness of BEST over the two state-of-the-art algorithms, SLEUTH 

[70] and U3 [97]. 
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2. RELATED WORKS 

For finding unordered frequent tree patterns, most of the proposed algorithms 

use a canonical form and extend only candidates that are in the canonical form. A 

sorted pre-order string canonical form that can be obtained in linear time was first 

defined by [94]. A few more similar canonical representations based on depth-first 

traversal and breadth-first traversal have been defined  [90-92]. The proposed 

method BEST uses the optimal traversal based canonical form (BOCF) that is robust 

to isomorphism problem due to its order independence and use of optimisation. 

Using BOCF, we proposed a tree structure guided scheme based enumeration 

technique that uses both right-path extension and join to grow for mining unordered 

embedded subtrees. None of the above state-of-the-art methods used similar structure 

guided enumeration process. HybridTreeMiner uses extension and join operations for 

growing the enumeration tree like BEST using the BFCF canonical form, but for 

mining induced subtrees. Whereas, SLEUTH [70] is designed to mine embedded 

subtrees and also uses extension and join operations for growing the enumeration 

trees but the join is scope-list join via the descendant and cousin tests. More recent 

methods UNI3 [98] and U3 [97] also proposed a tree model guided enumeration 

where they used embedded level information, but we incorporated much more tree 

information including level, fan-out and a new tree parameter called weight for 

proposing the tree structure guided enumeration. Moreover they used only right path 

extension for growing the enumeration tree and used depth-first traversal based string 

representation which requires additional processing for tackling isomorphism. The 

unordered embedded subtrees [142, 194] mining algorithm, Treefinder, can miss 

some patterns especially for a lower support and others have been designed for 

mining maximal embedded subtrees [142, 194]. 

3. MINING EMBEDDED FREQUENT SUBTREES 

We present the balanced-optimal canonical form, BOCF. We describe the tree 

structure guided scheme based enumeration approach and the proposed BEST 

algorithm. 

3.1 Preliminaries 

Unless otherwise stated, all trees considered in the paper are rooted, labelled, 

and unordered. Let T = (V, E, L) be a rooted labeled unordered tree, where V = {v0, 
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v1, v2, …, vn} denotes the set of nodes with v0 as root node, E = {(vi, vj)| vi, vj ∈ V} = 

{e1, e2, …, en-1} denotes the set of edges and L denotes the set of labels. The label is 

given by a function Φ: V → L which maps nodes with unique labels. The size of a 

tree is denoted as |T| which is the number of nodes |V|.  An unordered tree has no 

ordering relationship among the nodes except ancestor-descendent or parent-child. 

The ancestor-descendent relationship between two nodes is denoted by vi ≺ vj, i.e., vi 

is ancestor of vj, the ‘≺’ symbol represents ‘precedes’. The level of a node vi in a tree 

T is denoted as Lv(T, vi) and the height of a tree T is denoted as H(T). 

Definition 1 (Embedded Subtrees): A tree T´(V´, L´, E´) is an unordered embedded 

subtree of a tree T (V, L, E) iff: (1) V´ ⊆ V, (2) E´ ⊆ E, (3) L´ ⊆ L and the labelling of 

V´ in T is preserved in T´ (4) ∀vi´ ∈ V´, ∀ vi ∈ V and vi´ is not the root node, then 

ancestor of vi´= ancestor of vi, and (5) no left-to-right ordering among the siblings in 

T is preserved among the corresponding nodes in T´. 

Definition 2 (Equivalent Node): In a rooted labelled unordered tree T, if two nodes vi 

and vj have the same label (labi = labj & labi, labj ∈ L), originated from the same 

labelled parent node (parent of vi = parent of vj) and has the same labelled child nodes 

then they are called equivalent nodes, denoted by vi ≅ vj. 

Definition 3 (Weight of Node): Weight of a node vi (vi ≠ v0) is defined as the total 

number of its equivalent node. For tree T, weight of node vi is wi such that wi = total 

number of equivalent nodes of vi. 

Definition 4 (Mining Unordered Embedded Subtree): Let Tdb is a database, where 

each transaction is a labelled rooted unordered tree. The task of mining frequent 

unordered embedded subtree from Tdb is finding all embedded subtrees that have 

minimum support s. 

Definition 5 (Support): Support s of a tree T´ in Tdb is defined as the number of trees, 

T that has at least one occurrence of T´ as an embedded subtree in its structure. 

3.2 Balanced Optimal Canonical Form (BOCF) 

We first describe the balanced optimal canonical form (BOCF) for a rooted 

ordered tree [57, 155]. A canonical form (CF) of a tree is a representative form that 

can consistently represent many equivalent variations of that tree into one standard 
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[90, 188]. The canonical forms for ordered and unordered subtrees are different. A 

main difference is the possibility of having several subtrees showing different orders 

between sibling nodes, even though, the information contained within the structure 

remains essentially the same. Several ordered variations can be formed from a unique 

unordered tree. This leads us to define Equivalent ordered trees [57]. 

Definition 6 (Equivalent Ordered Trees): Two distinct ordered trees T1 and T2 are 

equivalent to each other if they represent same unordered tree T, denoted by T1 ≅ T2. 

An example of equivalent ordered trees is given in Figure 1, where four rooted 

ordered trees can be derived from a rooted unordered tree. We propose to represent 

these ordered variations by a single canonical form following the optimal tree 

traversing so that the same unordered tree is derived from each of them. 

The canonical form, BOCF is defined by using the order obtained by traversing 

the tree optimally [155]. BOCF is a string representation of a tree that records label 

of each node along with its weight following the optimal order [57, 155]. This string 

also includes four unique symbols, +1, -1, +2 and -2, to represent the breadthwise 

movement from sibling to sibling and depth-wise movement from a child to its 

parent. The symbols +1 and -1 are used for depth-forward and depth-backward travel 

respectively. The symbols +2 and -2 are used for breadth-forward and breadth-

backward travel respectively. It is assumed that the alphabet of node labels includes 

none of these symbols. 

 

Figure 1: Four rooted ordered trees obtained from the same rooted unordered 

tree. Different equivalent nodes are shown as highlighted; weights of nodes are 

calculated accordingly 

An Example: In Figure 1 the string encoding using BOCF of the four ordered trees 

are  (a) “0va, +1, 2vc, +1, 2vd, -1, -2, 1ve, +1, 1vd, -2, 1vf”; (b) “0va, +1, 2vc, +1, 2vd, -

1, -2, 1ve, +1, 1vd, +2, 1vf”; (c) “0va, +1, 2vc, +1, 2vd, -1, +2, 1ve, +1, 1vd, -2, 1vf”; (d) 

“0va, +1, 2vc, +1, 2vd, -1, +2, 1ve, +1, 1vd, +2, 1vf”. 
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We prove that there exists a one-to-one correspondence between a labelled 

rooted ordered tree and its BOCF. 

Lemma 1: Each labelled rooted ordered tree corresponds to a unique balanced 

optimal canonical form. Each valid balanced optimal canonical form corresponds to 

a unique labelled rooted ordered tree. 

PROOF: Since the traversing path of a tree is determined using an optimisation 

model, each ordered tree from an equivalent group for that unordered tree actually 

represents the same network. Consequently, the optimal traversal gives the same 

traversing order to all equivalent ordered trees. BOCF is defined using this optimal 

order along with some unique symbols to capture the sibling constraints for the 

different ordered trees. As a result, each labelled rooted ordered tree will be 

represented by a unique BOCF. 

The second statement of the aforementioned lemma is proved by the induction 

on the number of nodes N in a labelled rooted ordered tree. For the base case, when 

N = 1, the valid string representation of BOCF is of the form 0labi, where labi (labi ∈ 

L) is the label of the single node vi; weight 0 indicates a root node. In this case, the 

corresponding labelled rooted unordered tree is a single node, which is unique. 

For simplicity of this proof we group all unique symbols of representing the 

sibling constraints; let C be the group containing all the unique symbols for 

representing constraints where C ∉ L and {-1, +1, -2, +2} ∈ C. So incorporating this 

notation the string representation, S of BOCF can be represented as “S = “w0, lab0, C, 

wi, labi, …”. For the induction step, we assume that, for each BOCF string 

representation Sn with N = n nodes, there is a unique labelled rooted ordered tree in 

corresponding to it. A valid BOCF string representation Sn+1 with N = n + 1 nodes is 

of the form “Sn . . . C, wn+1, labn+1”. Sn determines a unique labelled rooted ordered 

tree with n nodes. In addition, the last node (with label labn+1) becomes the rightmost 

child of node n. As a result, the labelled rooted ordered tree Nn+1 corresponding to 

Sn+1 is determined uniquely. 

Consider the example in Figure 1, for a rooted unordered tree, different rooted 

ordered trees and the corresponding BOCFs are obtained by assigning different 

orders among the children of internal nodes. The BOCFs of equivalent ordered trees 
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only vary in terms of breadth movement, which shows the order of siblings for 

different trees that can be ignored for portraying the unordered tree. The BOCF 

string representation of the rooted unordered tree is defined by a guided breadthwise 

movement while forming the string of ordered trees. The rest of the ordering that 

reflect ancestor descendent relationship is kept unchanged. 

Definition 7 (BOCF String Representation of Unordered Tree): The BOCF string 

representation of the rooted unordered tree is achieved by a guided record of sibling 

node. When a new node is recorded under its parent node, only the breadthwise 

movement from the existing rightmost sibling node is permitted. 

By doing so, all equivalent ordered trees will be represent by a unique standard 

form, which will be advantageous for unordered tree mining. Consider again the 

example of Figure 1, using definition 7 the string representation of all four equivalent 

ordered trees are: (a) “0va, +1, 2vc, +1, 2vd, -1, +2, 1ve, +1, 1vd, +2, 1vf”; (b) “0va, +1, 

2vc, +1, 2vd, -1, +2, 1ve, +1, 1vd, +2, 1vf”; (c) “0va, +1, 2vc, +1, 2vd, -1, +2, 1ve, +1, 

1vd, +2, 1vf”; (d) “0va, +1, 2vc, +1, 2vd, -1, +2, 1ve, +1, 1vd, +2, 1vf”, which are same 

and represent the fact that they are originated from the same unordered tree. 

Lemma 2: The BOCF construction procedure for unordered trees has time 

complexity O (|T| log |T|). 

PROOF: The optimal traversal algorithm gives O(|T| log |T|) time complexity where 

|T| is the number of nodes in a tree. Implementing any of the three heuristics [57] of 

optimal traversal for sorting nodes will give a possible time complexity of O(|T| log 

|T|). Assuming there are |Tj| nodes in recursion j of the tree traversal for j =1, 2, …n, 

it will take O(|Tj| log |Tj|) comparisons to sort nodes at recursion j. The total number 

of comparisons for normalising the whole tree is  log ( )j j
j
O T T∑ , which is O(|T| 

log |T|) (note that  log ( )j j
j

T T∑  ≤  log ( )j
j

T T∑  = |T| log |T|). BOCF is driven 

using the exact ordering of optimal traversal, therefore its construction complexity is 

also O (|T| log |T|). 

It can be noted that all equivalent ordered trees is represented by a unique 

standard form and indicate that they are originated from the same unordered tree. 

This greatly benefits unordered tree mining. The optimal traversal poses a total order 
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on all variants of the same unordered tree which guarantees the uniqueness of BOCF 

for a labelled rooted unordered tree. 

 

Figure 2: Automorphism problem 

Handling the Isomorphism and Automorphism Problems: Two trees T1 and T2 

are isomorphic to each other if a bijective mapping exists between their sets of nodes, 

which preserves and reflects their structures, denoted as T1≅T2. If isomorphism 

exists within a tree, then it is called automorphism. It is necessary to identify which 

of the ordered subtrees belongs to an automorphism group of an unordered subtree in 

order to ensure the exact count of its occurrences as well as the frequency. Therefore, 

canonical form should be defined in a way that will uniquely map each subtree to a 

single subtree during candidate generation. Existing research addresses this problem 

by choosing one of the trees from the automorphism group as the representative of 

the group, and then all other isomorphic subtrees are ordered according to the 

representative of the automorphism group during candidate generation [70]. 

However, a checking is always required to find the presence of isomorphism in a 

tree, which causes additional memory consumption for keeping the record of the 

representative tree during the candidate generation phase, thus, the exact ordering 

can be followed for generating other isomorphic subtrees. 

Proposed BOCF addresses this problem [57] as follows. It gives a unique 

representation to all isomorphic trees without requiring any representative tree record 

or, any extra checking during candidate generation. Moreover, it naturally handles 

the automorphism problem by using the concept of weights (Definition 3) to 

represent equivalent nodes (Definition 2). The equivalent nodes for an unordered tree 

should not be treated distinctively since their occurrences are important for mining, 

not the inherent ordering between sibling nodes. Consider the following example 

where the dotted area shows a case of automorphism problem for the considered tree. 
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The proposed canonical form is derived based on the weighted tree as shown in 

Figure 2 where automorphism can no longer exist. 

 
Figure 3: Valid and invalid subtrees following tree structure guided scheme 

3.3 The Enumeration Tree 

In this section we define an enumeration tree that enumerates all embedded 

unordered subtrees in Tdb according to their BOCFs. We used both right-path 

extension and join operation for growing the enumeration tree. Previous research has 

shown that the right-path extension produces a complete and non-redundant 

candidate generation [195]. Due to the large number of potential growth,  only using 

extension for growing an enumeration tree can be inefficient, especially when the 

cardinality of the alphabet for node labels is large [70, 90]. This emphasises the need 

of using a join operation; however, it often generates invalid subtrees. Since we use a 

tree structure guided scheme for enumeration, this generates valid subtrees only. 

Tree Structure Guided Scheme Based-Enumeration: This enumeration is a 

bottom-up approach that generates non-redundant candidates [55]. A candidate 

generation technique can generate valid frequent and infrequent candidates as well as 

invalid frequent and infrequent candidates. It is desirable to enumerate valid frequent 

subtrees only to save memory and computational expense, instead of generating all 

possible candidates and prune invalid and infrequent subtrees later. 

To illustrate this, we show a simple tree structure as an example database in 

Figure 3. We also show some possible valid and invalid subtrees that can be 

generated from this example tree. The subtree that does not follow the available tree 

structure information (i.e., the position of various nodes at various levels, ancestor-

descendent or parent-child relationship, number of child nodes under parent node, 

etc.) is considered invalid. In our proposed tree structure guided scheme based 

enumeration, we utilise underlying level and fan-out information of nodes during 
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candidate generation to make the approach structure guided. For efficiently growing 

the enumeration tree we define the extension and join operations using BOCF and 

the tree structure guided scheme. 

Definition 8 (Extension): From a node vi (fan-out ≠ 0) of the BOCF tree T1, 

extension is possible by adding a frequent label vj having a level > Lv(T1, vi). This 

will result in a new BOCF tree T2 in the enumeration tree where vj will be the child of 

vi. If T1 is a N-tree then the resultant new BOCF tree T2 will be a (N+1)-tree with a 

height H(T1)+1. Further extension will be possible from this newly added right-most 

node vj. 

Before giving the definition of join operation, we define equivalent groups. 

Definition 9 (Equivalent Group): If two N-node trees T1 and T2 have height H(T1) = 

H(T2) and have the first N-1 nodes (along with labels and weights) common, they are 

considered as equivalent group, denoted by T1 ≅ T2. 

Definition 10 (Join): Join operation is a guided extension between two BOCF trees 

T1 and T2 from an equivalent group, T1 ≅ T2. Assume vi and vj are the corresponding 

right-most nodes of T1 and T2 respectively, where wi > wj or wi = wj with vi 

lexicographically sorts lower than vj. By joining vj in T1 at the position of Lv(T1, vi)-1 

will result in a new (N+1) node BOCF tree, denoted T1 ⨀ T2, of the same height as 

BOCF tree T1.  

Growth Rules: Candidate trees can have a large number of potential nodes to get a 

right-path extension. In order to restrict this growth, heuristics can be employed. This 

will result in reduction of the number of candidates generated as well as in the 

reduction of the number of isomorphic subtrees. These rules support the basic 

formation principle of the enumeration tree, i.e., keeping the N-tree BOCF 

unchanged with the newly generated N+1- tree BOCF. 

Rule1: Among all the nodes at the bottom level, the node that has the maximum 

weight will be chosen for applying an extension. 

Rule2: If there are more than two maximum weighted nodes then the node that has 

the maximum children will be chosen for applying an extension.  
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Rule3: If more than two maximum weighted nodes exist with the same number of 

children then the node that appears lexicographically lower will be chosen for 

applying an extension. 

 
Figure 4: Comparison between the proposed and an existing enumeration technique 

considering minimum support 1 and the dotted rectangles indicate invalid subtrees 

An Example: We compare the enumeration tree generated by BEST with 

another enumeration tree generated by SLEUTH [70] using an example database in 

Figure 4(a). Considering all labelled nodes as frequent, the SLEUTH enumeration 

tree grows as Figure 4(c), where the extension and join operations are defined using 

another canonical form (Figure 4(c)) and are not following tree structure guided 

scheme. In Figure 4(b), the proposed BOCF and the tree structure guided scheme 

based BEST enumeration tree is shown, which is the complete enumeration tree for 

the given database, whereas the state-of-the-art enumeration tree cannot be 

completed due to limited space. If we continue, it will grow more. The dotted 

rectangles in Figure 4(c) show an example of generated invalid subtrees in SLEUTH. 

Figure 4(c) only shows some, a lot more is generated during the process, whereas no 

invalid subtree is generated by BEST. It can be noted that the BEST enumeration tree 

generates much less candidate trees in comparison to SLEUTH because the former 

only produces valid subtrees. Consequently, a lot of memory space and additional 

computational time can be saved that will be required to prune these invalid subtrees 

afterwards. Empirical analysis ascertains these claims.  
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BEST Algorithm 

Input: a database Tdb consisting of labelled rooted unordered trees in their BOCFs, a 
dictionary containing level and fan-out information of each node, a user defined 
minimum support (min_sup). 
Output: All frequent embedded subtrees. 
 
1. Result ←∅; 
2. F1 ← the set of all frequent nodes; 
3. F2 ← ∅; 
4. while  F1 ≠ ∅ do 
5. for all tk ∈ F1 do 
6.  if fan-out(tk) = 0 
7.    continue 
8.  end if 
9.  Ext_can ← Enum (tk, level, weight, fan-out ); 
10.  for all tk+1 ∈  Ext_can do 
11. if support (tk+1) ≥ min_sup then 
12.       F2 ← F2 ∪ tk+1; 
13. end if 
14. end for 
15. end for 
16. F1← F2; 
17. Result ← Result ∪ F1; 
18. F2 ← ∅; 
19. end while 
20. return  Result 

 

Enum 

Input: candidate Ck, level, weight, fan-out 
Output: all (k+1) extensions of Ck  
1. out ←∅; 
2. for all frequent label f do 
3. Select the right-most node of Ck  using Growth rules; 
4. Generate candidate Ck+1 by adding f;   //using definition 8;  
5. out ← out ∪ Ck+1; 
6. end for 
7. for all Ck´ such that Ck ≅ Ck´ do 
8. Ck+1 ← Ck ⨀ Ck´;    //using definition 10; 
9. out ← out ∪ Ck+1; 
10. end for 
11. return out; 

 

Figure 5: High level pseudo code of BEST algorithm 
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3.4 The BEST Algorithm 

The overall BEST algorithm is presented in Figure 5. The process of frequent 

subtree mining is initiated by scanning a database, Tdb, where trees are stored as 

BOCF strings along with weight, level and fan-out information of each node. The set 

of frequent labels (frequent subtrees of size 1) is generated and larger sized subtrees 

are generated by calling the Enum function recursively. In Enum (Figure 5), a subtree 

is extended if the right-most node of the tree supports any of the three rules of 

growing strategy. For implementing extension, the level difference of the right-most 

node of the considered tree is checked with the frequent label and the new candidate 

subtree is generated if the condition is met. Frequency of every resultant candidate 

tree is computed according to the method used in [90]. This is an apriori based 

frequency counting which gives us the exact frequent subtree list. In order to 

improve computational efficiency, we stop counting of a subtree as soon as the tree 

count reaches the minimum support value. Throughout the BEST algorithm the 

downward-closure lemma [140] is hold; each N-subtree of a frequent N+1-subtree 

has to be frequent. In the Enum function, we also used join for generating candidates 

from equivalent groups that support the join operation and the frequency of each 

subtree is calculated for further processing. 

4. EXPERIMENTAL EVALUATION 

We have performed extensive experiments to evaluate the efficiency of the 

proposed BEST algorithm on real application data as well as on synthetic data. All 

experiments have been conducted on a 2.8GHz Intel Core i7 PC with 8GB main 

memory and running the UNIX operating system. SLEUTH [70] and U3 [97], used 

for benchmarking, are designed for mining unordered embedded subtrees and are 

most relevant to our proposed method. 

Performance on Real Application Data - CSLOGS: In our experiments, we used 

the CSLOGS dataset a real weblog data that consists of 59,691 trees, 716,263 nodes 

and 13,209 unique node labels  [70, 195]. This data set has been largely used to 

evaluate various frequent subtree mining algorithms [70, 97]. 
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(a) 

 

(b) 

Figure 6: Comparison over CSLOGS data based on runtime (a) and no of frequent 

subtrees (b) 

For evaluating the performance we consider the runtime and candidate 

generation for all three algorithms. For CSLOGS dataset, BEST consistently 

outperformed SLEUTH and U3 (Figure 6(a)). Although SLEUTH performs almost 

same as BEST, but after a certain value of minimum support (1.5%) it took longer 

time than the other two algorithms. For SLEUTH the number of candidate subtrees is 

higher than the other two algorithms, i.e., it includes a lot of invalid subtrees during 

enumeration, therefore, spends more time on candidate generation and pruning 

afterwards. Besides, both SLEUTH and U3 require a canonical form test to avoid 

isomorphism and take longer processing time than BEST.  
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From Figure 6(b), it can be observed that SLEUTH generated more frequent 

subtrees in comparison to BEST, as it uses the opportunistic pruning technique which 

does not fulfil the downward closure lemma and may generate pseudo frequent 

subtrees [55]. 

Performance on Synthetic Data: Zaki’s tree generator [38] is used for generating a 

synthetic data using following parameters: the number of labels N = 100, the number 

of vertices in the master tree M = 10,000, the maximum depth D = 10, the maximum 

fan-out F = 10 and the total number of subtrees T = 100,000. We used three synthetic 

datasets: D10 had all default values, F5 had all values set to default except for fan-

out F = 5, and for T1M we set T = 1,000,000, with remaining default values. These 

are used for doing scalability and sensitivity analysis. 

In Figure 7(a) for D10 dataset, U3 performed better than the other two, but the 

results for U3 are reported here for level difference one, otherwise the algorithm was 

aborted due to very high memory expense. As we restricted the level difference value 

to one, so the list of embedding subtrees is not completed and accordingly required 

less time, whereas both SLEUTH and BEST retrieved all of the embedding subtrees 

within reasonable time and memory expense.  

For F5 dataset, we can see in Figure 7(b) BEST outperformed both SLEUTH 

and U3. Here U3 results are again reported based on restricted level difference, still 

BEST performed slightly better. Finally for T1M dataset we can see again BEST 

performed a little better than SLEUTH for lower and higher support values. Again, 

we only managed to run U3 for extracting embedded subtrees for level difference = 

1, hence, it is not reporting the real time for extracting all embedded subtrees.  

From these results we notice that both SLEUTH and U3 are sensitive to 

breadth, for small breadth value (small tree width), these baseline algorithms took 

high run time, as shown by F5 dataset (the fan-out number is less than D10 and T1M 

datasets). When SLEUTH and U3 performed over F5, the runtime increased about 8 

and 2 times respectively in comparison to runtime over D10 and T1M.  BEST seems 

not sensitive to this parameter and gives a consistent performance. It can be ascertain 

that BEST is a robust and efficient algorithm in comparison to existing state-of-the-

art algorithms for mining embedded subtrees. It can tackle isomorphism using BOCF 
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canonical form and generates only valid subtrees using the tree structure guided 

enumeration. These allow BEST to save reasonable amount of time and memory. 

 

(a) 

 

(b) 

 

(c) 

Figure 7: Comparison over D10 (a), F5 (b) and T1M (c) synthetic datasets 
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5. CONCLUSION 

In this paper, we presented a novel method for finding frequent embedded 

subtrees, using an optimal canonical form, from the dataset of labelled rooted 

unordered trees. We empirically evaluated the efficiency of the proposed method and 

benchmarked with the well-known algorithms in the literature, over both real and 

synthetic datasets.  

Although finding the condensed representations of frequent patterns has found 

more interest in recent years, developing efficient algorithms for finding frequent 

patterns is still important. The efficiency of the algorithms for finding condensed 

representations depends on the efficiency of the base, i.e., frequent pattern mining 

algorithms. In future we will extend the proposed algorithm to find condensed 

representations.
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Abstract7: Web data can often be represented in free tree form; however, free 

tree mining methods seldom exist. In this paper, a computationally fast algorithm 

FreeS is presented to discover all frequently occurring free subtrees in a database of 

labelled free trees. FreeS is designed using an optimal canonical form, BOCF that 

can uniquely represent free trees even during the presence of isomorphism. To avoid 

enumeration of false positive candidates, it utilises the enumeration approach based 

on a tree-structure guided scheme. This paper presents lemmas that introduce 

conditions to conform the generation of free tree candidates during enumeration. 

Empirical study using both real and synthetic datasets shows that FreeS is scalable 

and significantly outperforms (i.e. few orders of magnitude faster than) the state-of-

the-art frequent free tree mining algorithms, HybridTreeMiner and FreeTreeMiner. 

Keywords: Web data, free tree, canonical form, enumeration approach 

1. INTRODUCTION 

 In the Web domain, graphs and trees are commonly used data structures for 

modelling information with complex relations. Free trees - the connected, acyclic and 

undirected graphs - have become popular for presenting such data due to having 

unique properties [54, 63, 64, 96]. For obtaining useful structural information, free 

tree mining provides a good compromise between the more expressive but 

computationally harder general graph mining and the less expressive but faster 

sequence mining. As a middle ground between these two extremes, free trees have 

been widely used for representing and mining data in diverse areas including web, 

bioinformatics, computer vision and networks. For example, in analysis of molecular 

evolution, an evolutionary free tree, called phylogeny, can describe the evolution 

history of certain species [196]. In bioinformatics various useful patterns can be 

treated as free trees during pattern mining [54]. In computer networking, multicast 

free trees have been mined and used for packet routing [197]. Web access trees 

treated as free trees give interesting insight about the browsing behaviour since they 

do not take the point of entry into consideration [49].  

7 J. Wang et al. (Eds.): WISE 2015, LNAI 9418, pp. 123–137, 2015. 
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The process of finding frequent subtrees incurs high cost due to the inclusion 

of expensive but unavoidable steps like frequency counting and candidate subtrees 

generation. Frequency counting step often requires subtree isomorphism checking 

which is computationally hard, even known as NP-complete problem in graph 

mining algorithms [54]. Exponential and redundant candidate generation is another 

problem. During candidate generation, determining a “good” growth strategy is 

critical as there can be many possible ways to extend a candidate subtree. These 

problems become worse in free trees, due to being less-constrained structurally, in 

comparison to other tree forms such as ordered and unordered. With these 

complexities involved, only a few free tree mining algorithms are available in the 

literature. Chi et al. developed an apriori-like algorithm FreeTreeMiner [90] as well 

as an enumeration tree based algorithm HybridTreeMiner [96] to discover frequent 

free subtrees in a database of free trees. Rückert et al. [54] and Zhao et al. [64] have 

proposed algorithms for mining frequent free trees from a graph database. These 

algorithms generate large number of false positives (i.e., invalid candidate subtrees) 

during enumeration that need to be pruned in the frequency counting step. This 

causes high processing time. Moreover, the necessity of performing isomorphism 

checking to avoid redundant candidate tree generation and false frequency counting 

causes additional computational complexity.  

In this paper, we propose an algorithm, FreeS which is a fast and accurate 

method for mining frequent free induced subtrees in a database of labelled free trees. 

First, we propose a unique representation of free trees by introducing a new order-

independent balanced optimal canonical form (BOCF) that can effectively handle 

the subtree isomorphism problem. We introduce conditions to conform free tree 

candidate generation in their BOCFs for which the necessary proofs are also 

provided. Second, we propose a tree-structure guided scheme based enumeration 

approach that only generates valid candidate subtrees. To the best of our knowledge, 

FreeS is the first algorithm that uses the underlying tree-structure information to 

avoid invalid subtree generation while mining frequent free subtrees. Because of 

using the optimal canonical form and tree-structure guided scheme based 

enumeration, FreeS does fast processing. Our experiments with both synthetic and 

real-life datasets confirm that FreeS is faster by few orders of magnitude than two 
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leading free tree mining algorithms, HybridTreeMiner and FreeTreeMiner 

(abbreviated as HBT and FTM respectively). 

2. PRELIMINARIES 

Let a graph constitute a set of nodes V = {v1, v2, …, vn} and a set of edges E = 

{(vi, vj)| vi, vj ∈ V} = {e1, e2, …, en-1}. A labelled graph has a set of labels Σ, where a 

function L: V ∪ E → Σ maps nodes with unique labels. A graph is connected but 

acyclic when it has at least one node that is connected to the rest of the graph by only 

one edge, which is leaf. For our purposes, the class of connected acyclic labelled 

graphs is of special interest, which is also called free tree, an unrooted unordered 

tree-like structure. In this paper, we denote a free tree with n nodes as n-free tree.  

Let two free trees be t and T. t is a subtree of T if t can be obtained from T by 

repeatedly removing one degree nodes from its structure. Free trees t and T are 

isomorphic to each other if a bijective mapping exists between their set of nodes that 

preserves node labels, edge labels and also reflects the tree structures.  

 

Figure 1: Equivalent nodes and the condensed weighted representations of free trees8 

Let Tdb be a database where each transaction is a labelled free tree. The 

problem of frequent free tree mining is to discover the complete set of frequent free 

subtrees. If tree T ∈ 𝑇𝑇𝑜𝑜𝑠𝑠 has a subtree isomorphic to subtree t, that indicates T has an 

8 Tree nodes are represented using labels and the edge labels are ignored in this paper. 

Paper 6: FreeS: An Efficient Algorithm for Mining Frequent Unordered Embedded Subtrees 199 

                                                 
 



 

occurrence of t in its structure. Formally we define the support of subtree t in Tdb 

using the concept of occurrence as follows, 

Occurrence (t, T) = �1           𝑀𝑀𝑓𝑓 𝑐𝑐 𝑀𝑀𝑥𝑥𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐 𝑀𝑀𝑐𝑐 𝑇𝑇
0                    𝑐𝑐𝑐𝑐ℎ𝑀𝑀𝑒𝑒𝑤𝑤𝑀𝑀𝑐𝑐𝑀𝑀

                                      (1) 

Support (t, Tdb) = ∑ 𝑂𝑂𝑐𝑐𝑐𝑐𝑂𝑂𝑒𝑒𝑀𝑀𝑐𝑐𝑐𝑐𝑀𝑀(𝑐𝑐,𝑇𝑇) 𝑇𝑇∈𝑇𝑇𝐸𝐸𝑑𝑑                                       (2) 

The subtree t is called frequent if Support (t, Tdb) ≥ minsup where minsup is 

user-defined minimum support threshold. 

In this paper, in a free tree, two adjacent nodes vi and vj with same label are 

defined as equivalent nodes, denoted by vi ≅ vj. The weight of a node vi is defined as 

the total number of its equivalent nodes and denoted by wi (as shown in Figure 1). 

Using weights, we represent free trees of a database in a concise manner for further 

processing. Figure 1 shows an example of two free trees and their corresponding 

weighted representations by combining equivalent nodes (highlighted using different 

color patterns). 

3. CANONICAL FORM FOR LABELLED FREE TREES 

A Canonical Form (CF) of a tree is a representative form that can consistently 

represent many equivalent variations of that tree into one standard form [90, 188]. 

Several CFs have been proposed for rooted tree representations using traversing 

algorithms such as depth-first-search (DFS) or breadth-first-search (BFS) [90]. 

However, defining CF for free trees is non-trivial as it requires handling the vast 

variants that a free tree can have, i.e., the isomorphism problem. Due to the inherent 

structural flexibility (e.g., undefined root node and no direction among sibling 

nodes), there are more ways to represent a free tree than that of a rooted tree. A 

canonical form is critical for appropriate representation and efficient processing of 

free trees, because it ensures finding a common pattern amongst free trees. Before we 

define CF of free trees, we explain the process for unordered rooted trees and extend 

it to free trees. 

3.1 Why Canonical Form Is Needed For Free Trees? 

A rooted tree has a distinguished root node. A rooted tree that preserves order 

among the sibling nodes is called rooted ordered. This type of trees can easily be 

represented uniquely by using either the depth-first or the breadth-first string 
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representations [90]. They do not face isomorphism. Two ordered trees will be 

similar iff all of its properties are identical; no variation is possible in similar rooted 

ordered trees [63]. Whereas, two similar unordered trees can have different orders 

among sibling nodes and these trees are called isomorphic trees. A free tree is also an 

unordered tree. The chance of having isomorphic trees in a database of free tree is 

very high due to the flexible property of being unrooted and unordered. Representing 

free trees using a systematic approach is non-trivial but critical to ensure its proper 

indexing for further processing and knowledge discovery. 

Optimal Order: we will now briefly describe the concept of optimal order that is 

the basis of the proposed canonical form. An optimal order of a tree is an order 

obtained by the balance optimal tree search (BOS) algorithm [155] that traverses a 

rooted labelled tree uniquely, without the presence of sibling order information. 

Unlike existing traversal strategies [188], this algorithm works based on optimisation 

instead of enforcing a left-to-right order among siblings. Three heuristics are applied 

recursively in this traversing algorithm to find out the optimum traversing path of a 

tree. Heuristic 1 identifies a potential node during the traversal process. Heuristics 2 

and 3 select the best node if multiple nodes are identified as candidates for traversal. 

Heuristic 1 After the root node traversal, the children of the root node, i.e., {vi, vj, 

…,vk} with weights {wi, wj, …,wk} become eligible for traversing. The traversal 

order of these eligible nodes will be prioritized according to their ascending weights. 

The node with the highest weight is chosen first.  

Heuristic 2 If two or more nodes {vi, vj, …,vk} have the same maximum weight (i.e. 

maximum weight = MAX{wi, wj, …,wk}), the next node in the traversal order is 

selected based on the maximum number of their children (i.e., fan-out). 

Heuristic 3 If two or more nodes hold the maximum weight with equal number of 

children, the traversal order will be prioritized using the minimum lexicographical 

order. 

The optimal order is unique even for trees that are isomorphic. This property is 

advantageous for mining frequent labelled free trees. For a free tree, several rooted 

ordered tree variations are possible only by changing the position of root node and 
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the order among sibling nodes. An example can be seen in Figure 2, where a free tree 

is treated as rooted unordered tree with root node “va” (Figure 2a). Considering va as 

root node, several ordered variations of this free tree are shown in Figure 2(b, c, d, e). 

 
Figure 2: Four rooted ordered trees obtained from the same rooted unordered tree 

According to the BOS algorithm [155] the unique optimal traversal order of all 

these equivalent ordered trees will be “va, vb, vc, vd, vc, vf”. In contrast, the BFS or 

DFS traversal [90] will provide different traversing order for each equivalent ordered 

tree because of its structure dependent strategy. It is desirable to obtain a unique 

canonical form of an ordered tree representation; however, it is absolutely critical to 

obtain a single canonical form for all equivalent variations of a free tree to allow 

efficient indexing for further processing. The proposed optimal traversal strategy is 

based on optimisation and is not sensitive to the structural changes. It gives the same 

optimal traversing order for all equivalent ordered trees that originate from a same 

free tree. 

3.2 Balanced Optimal Canonical Form of Free Labelled Trees 

If we can uniquely define root node of a free tree, then the optimal order can be 

used to define its canonical form. In this paper, we propose a two-step process for 

defining the canonical form of free trees. First, we normalise a free tree into the 

rooted unordered tree by fixing a root node and then we define the canonical form as 

well as canonical string.  

Normalisation: This step includes a systematic approach to define a root node in a 

free tree. Following the commonly used technique [63, 64, 96], all the leaf nodes 

along with their incident edges in the free tree are removed at each step until a single 

node or two adjacent nodes are left. The tree with a single remained node is called a 

central tree and, the tree with a pair of remaining nodes is called a bicentral tree 

[96]. With the remaining single node, this node becomes the root of the free tree. 
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With the remaining two nodes, we apply heuristic 3 to obtain the root; therefore the 

node with minimum lexicographically ordered label becomes the root node.  

The overall normalisation takes O(|T|) time, where |T| is the number of nodes in 

the free tree. Figure 3 shows the process of obtaining the root node from the free 

trees. 

 
Figure 3: Process of finding a root node in free trees 

Canonical Form and String: After the free tree is normalised to a rooted unordered 

tree, the balanced optimal canonical form can be defined as follows: 

Definition 1 (Balanced Optimal Canonical Form): For a rooted labelled unordered 

tree, the balanced optimal canonical form is its optimal order of node labels along 

with corresponding weights. 

A canonical string representation for labelled trees is equivalent to, but 

simpler than, canonical forms which facilitates frequency counting of trees in a 

database. For a balanced optimal canonical string encoding, we introduce four unique 

symbols +1, -1, +2 and -2 to specify directions on depth and breadth. More 

specifically, +1 and -1 are used to represent forward and backward travel towards 

depth between child and parent nodes; +2 and -2 are used to represent forward and 

backward travel towards breadth between sibling nodes respectively. We assume that 

none of these symbols are included in the alphabet of node labels. The canonical 

string representation of the rooted unordered tree is achieved by a guided record of 

sibling nodes,–“under a parent node, a new node will always be recorded in a 

breadthwise direction from the existing rightmost sibling node.”   
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Figure 4: Balanced optimal canonical form of free tree 

Example: For all the equivalent trees in Figure 2 with the unique optimal order “va, 

vb, vc, vd, vc, vf , the balanced optimal string representation of these trees will be “1va, 

+1, 2vb, +1, 2vc, -1, +2, 1vd, +1, 2vc, -2, 1vf”. Similarly, the optimal canonical string 

of the free tree in Figure 4(a) will be “1vc, +1, 2vd, +2, 1va, +2, 1vb, +1, 2va, -1, -2, 

+1, 1va, +2, 1vc” and for the tree in Figure 4(b) will be “1va, +1, 2vb, +2, 2va, -2, +1, 

2vc, -1, +2, +2, 1vb, +1, 1va, +2, 1vc, +2, 1va, -2, -2, +1, 1vc, -1, +2, +1, 1vd”. 

The isomorphic free trees can be successfully tracked because of having the 

same balanced optimal string representation. This ensures correct frequency counting 

for the processing of frequent subtrees. During the mining process, tree structural 

information such as level, weight, fan-out is stored that allows to differentiate the 

same alphabet appearing in different position. For sorting the optimal order it 

requires O (|T| log |T|) complexity, where |T| is the number of nodes in a tree. 

The balanced optimal canonical forms of free tree and rooted unordered tree 

embrace an interesting relationship which is described under Lemma 1. This relation 

is a fundamental step for growing the enumeration tree of free trees 

Lemma 1: Balanced optimal canonical form of a free tree is always the balanced 

optimal canonical form of a rooted unordered tree; however, the reverse is not true.  

PROOF: Consider a free tree T, with v1, v2, …,vn nodes, with its balanced optimal 

canonical form tv1 that has a normalised root v1. The n-number of different rooted 

unordered trees can be derived in their balanced optimal canonical forms tv1; tv2; …; 
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tvn by changing the position of root in T. Only one of the balanced optimal canonical 

forms of these rooted unordered trees will have the same balanced optimal canonical 

form as the free tree, e.g. tv1. 

Prior to detailing our FreeS algorithm, we add following two lemmas that 

introduce important conditions which are essential to hold true during candidate free 

subtree enumeration through the balanced optimal canonical form representation. 

Fist we give the definitions of tree dimensions including depth, height and level [84]. 

Definition 2 (Depth, Height, Level of Node): For node vi of a tree T, depth is the 

length of the unique path from that node towards the root node, denoted by d(T, vi). 

The height h(vi) of node vi is the longest path from that node to a leaf. The height H 

of a tree is the height of root node, h(v0). The level of a node vi in a tree T is defined 

as Lv(T, vi) = H - d(T, vi). 

Lemma 2: Balanced optimal canonical form of a rooted unordered tree T with two 

nodes is balanced optimal canonical form of a free tree iff the root node has 

lexicographically minimum label. 

PROOF: T is a rooted unordered tree with two nodes, where v0 is root and v1 is its 

child. The optimal canonical form will be generated based on its optimal order, i.e., 

“v0, v1”. Let us consider case 1, where root node v0 has lexicographically minimum 

label. In this case treating T as free tree will end up having same canonical form as 

the rooted unordered tree, since a free tree considers the node with lexicographically 

minimum label as the center. Now consider case 2, where label of root node v0 is 

higher than v1. In this case the canonical form of free tree will be different than the 

rooted unordered tree, since v1 will be the center instead of v0. 

Lemma 3: Balanced optimal canonical form of a rooted unordered tree, T with 3 or 

more nodes and height H is balanced optimal canonical form of a free tree iff the 

following conditions hold: 

1. The root has at least 2 children; 

2. The root node has lexicographically smaller label than the labels of its children; 

and 
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3. One branch or subtree induced by a child of the root has a leaf node, vi positioned 

at level Lv(T, vi) = 0 (bottom level of the tree) and at least another branch or one 

subtree induced by another child of the root has a leaf node, vj  positioned at level 

Lv(T, vi) ≤ 1 (at most one level up than the last level).  

PROOF: For a rooted unordered tree T in its balanced optimal canonical form, we 

denote the root of T by v0 and the children of v0 by v1; …; vm. Let us consider case 1. 

Tree T has 3 or more nodes and v0 has only one child. It indicates that the rest of the 

nodes are appeared in that tree as child nodes of the immediate child of the root node. 

The node v0 will be removed in the first step of finding center/bicenter. 

Consequently, v0 cannot be the center or one of the bicentres. Therefore condition 1 

will be held in this case. Let us consider case 2 when the root node v0 has more than 

one child. This indicates that the leaf node of a subtree induced by one of v1; …; vk is 

at the bottom level of tree T. Assume this child to be vj. If none of the subtrees 

induced by other child node of v0 has a leaf node at the bottom level or second last 

level of tree T, then v0 cannot be the center or one of the bicentres. This is because 

the center (or the bicenter) must be a node (or nodes) of the subtree induced by vj. 

Without the loss of generality, we assume the subtree tv1 induced by v1 has a leaf 

node at the bottom level of tree for which the path from root is H. The subtree tv2 

induced by v2 has a leaf node either at the last level or second last level. Therefore 

the path of that leaf node from root is either H or H-1. Now 2H or 2H-1 will be the 

length of path considering from the bottom-level leaf of tv1 to the bottom-level leaf of 

tv2 which makes v0 as the center or one of the bicenters of the free tree. Therefore, 

condition 3 holds. Besides in case 2, it is essential to hold the condition 2 true, when 

T turns out to a bicentral tree and v0 will only become the center if it has 

lexicographically minimum label.  

4. FREQUENT FREE SUBTREE MINING ALGORITHM: FREES 

FreeS consists of two main steps: (1) candidate subtree generation using the 

enumeration tree; and (2) frequency counting to determine frequent subtrees. 

4.1 Candidate Subtree Generation using Enumeration Tree  

Using the proposed balanced optimal canonical form of free trees and other 

tree structural information from a database, we define an enumeration tree that lists 
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all subtrees in Tdb, in their balanced optimal canonical forms. Since the underlying 

tree structure information is used for defining the enumeration tree, it is called tree-

structure guided scheme based enumeration. To the best of our knowledge, FreeS is 

the first algorithm where this enumeration approach is used to generate candidate 

free trees. 

Tree-Structure Guided Scheme based Enumeration Tree: The task here is 

enumerating a complete and non-redundant list of candidate subtrees from a given 

database. A candidate enumeration technique can generate both valid and invalid 

candidates. A candidate subtree is called valid if it exists in the considered database 

[58]. It is desirable to enumerate only the valid subtrees in order to reduce the 

computational efforts, instead of generating all possible candidates and prune invalid 

subtrees later. The tree-structure guided scheme based enumeration allows invalid 

subtrees, which will never be significant in spite of being frequent, to be excluded 

from counting the number of candidate trees. It utilises the tree structural information 

such as level, weight and fan-out of nodes, which are learned from a given database, 

in determining a valid subtree. This information is obtained after the free trees are 

normalised to rooted unordered trees. Instead of testing whether a tree actually exist 

in the database that is computationally expensive, a subtree is considered valid if it 

conforms to the tree structural information 

Extending the Enumeration Tree: The right-path extension and join operations 

have been used to grow the enumeration tree. Previous research has shown that the 

right-path extension produces a complete and non-redundant candidate generation 

[38, 90, 96]. However, the use of extension alone for growing enumeration tree can 

be inefficient because the number of potential growth may be very large, especially 

when the cardinality of alphabets for node labels is large [90, 96]. This shortcoming 

necessitates of using a join operation; however, it often generates invalid subtrees. 

FreeS controls it by using the tree-structure guided scheme based enumeration. The 

basis of growing the enumeration tree of free trees is as follows: By removing the last 

leg (node along with edge), i.e., the rightmost leg at the bottom level, of a (n+1)-free 

tree BOCF will result in the BOCF for another n-free tree. The definitions of two 

operations for extending the enumeration tree are as follows. 
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Figure 5: Sample database of labelled free trees (a), enumeration tree for free trees 

using tree structure guided scheme in FreeS (b) enumeration tree using the approach 

from HBT algorithm (c) (the dotted line with arrow is showing the candidates that 

are generated using join operations in HBT, and the dotted rectangle is showing the 

invalid candidate tree) 

Definition 3 (FreeS-extension): For node vi (fan-out ≠ 0) of a n-free tree in its 

balanced optimal canonical form tv, an extension is possible by applying every 

frequent node label vj that has a level equal to Lv(tv, vi)-1. This extension operation 

will result in another balanced optimal canonical form tꞌv of a new (n+1)-free tree, 

with vj child of vi, in the enumeration tree iff conditions of Lemma 2 and 3 are held. 

Further extension is possible from this new right-most node vj iff conditions are 

fulfilled again. 

Before giving the definition of FreeS-join operation, we define equivalent 

group. 

Definition 4 (Equivalent Group): If two balanced optimal canonical forms tv and tꞌv 

of two n-free trees that have equal height H and common first n-1 nodes (along with 

labels and weights), they are considered as equivalent group, denoted by tv ≅ tꞌv. 

Only the nth node of each of these trees that appear last in their canonical forms are 

different.  
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Definition 5 (FreeS-join): Join operation is a guided extension between two free 

trees in balanced optimal canonical forms tv and tꞌv, that are members of an 

equivalent group, tv ≅ tꞌv. Assume, vi and vj are the corresponding right-most node of 

tv and tꞌv, where wi > wj or, wi = wj with vi lexicographically sorts lower than vj. By 

joining vj in tv at the position of Lv(tv, vi)-1 will result in a new (n+1) node balanced 

optimal canonical form of free tree, denoted by tv ⨀ tꞌv, of the same height as tree tv.  

The join operation does not change the height or the level position of leaf 

nodes of a newly generated candidate tree, therefore Lemma 2 and 3 are not 

considered. As in the tree-structure guided approach, the enumeration tree growth is 

guided by the prior learned tree structure information. Therefore only valid subtrees 

are expected to be generated as candidate trees.  

Consider an example database in Figure 5(a), where for minimum support 1, 

we compare the enumeration tree (Figure 5(b)) used by FreeS with the enumeration 

tree (Figure 5(c)) used by the HybridTreeMiner (HBT) method [96]. HBT also uses 

the right-path extension and join operations for growing the enumeration tree, but, 

these are defined using a different canonical form (Breadth First Canonical Form) 

[90], whereas we use BOCF and the tree-structure guided scheme for growing the 

enumeration tree. The dotted rectangles in (Figure 5(c)) show the generation of 

invalid subtrees in HBT. We only show a small part of the enumeration tree for HBT. 

If it is continued, it will grow in a much bigger size and will result in much higher 

numbers of invalid subtrees. In contrast, Figure 5(b) is the complete enumeration tree 

of the considered database for FreeS.  

It can be clearly seen that the FreeS enumeration tree generates much less 

candidates in comparison to HBT enumeration tree because of producing only valid 

subtrees. Generation of invalid subtrees causes extra memory space and then, 

pruning of these subtrees causes additional computational cost for existing methods. 

4.2 Frequency Counting 

For counting frequency we modified the method described in [90, 96], which is 

basically an apriori like frequency counting that gives the exact support measure of 

each candidate subtree by maintaining an occurrence list. We used a catching 

technique to make the process of keeping occurrence list more efficient, which is 
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“stopped counting tree when the ID counter reaches the min support”, therefore the 

occurrence list becomes smaller than usual.  

FreeS Algorithm 

Input: Balanced optimal canonical form strings of labelled free trees present in a database 
Tdb; level, weight and fan-out information of each node, minimum support (minsup) 
threshold. 
Output: All frequent free subtrees. 

1. Result ←∅;  
2. Frq1 ← the set of all frequent subtrees of size 1; 
3. Frq2 ←∅; 
4. while  Frq1 ≠ ∅ do 
5. for all c ∈ Frq1 do 
6.  if fan-out(c) != 0 
7.    Candidate ← Enumeration (c, Frq1, level, weight, fan-out ); 
8.  end if 
9.   for all Ɛ´∈ Candidate do 
10. if support (Ɛ´) ≥ minsup then 
11.       Frq2 ← Frq2 ∪ Ɛ´; 
12. end if 
13.   end for 
14. end for 
15. Frq1← Frq2; 
16. Result ← Result ∪ Frq1; 
17. Frq2 ← ∅; 
18. end while 
19. return Result 

Figure 6: High level pseudo code of FreeS algorithm 

Enumeration (lk, Frq1, level, weight, fan-out) 

1. Output ←∅; 
2. for all Ɛ ∈ Frq1do   
3. Enumerate candidate lk+1 by adding Ɛ;       /* Using FreeS-extension */  
4. Output ← Output ∪ lk+1; 
5. end for 
6. for all equivalent groups in Output do 
7. lk+2 ← lk+1 ⨀ l´k+1;                               /* Using FreeS-join and lk+1 ≅ l´k+1 */ 
8. Output ← Output ∪ lk+2; 
9. end for 
10. return (Output) 

Figure 7: High level pseudo code of candidate generation 
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Figures 6 and 7 list the overall enumeration approach and the FreeS algorithm. 

The process of frequent subtree mining is initiated by scanning the database Tdb, 

where free trees are stored as BOCF strings along with weight, level and fan-out 

information of each node. The set of frequent subtrees of size 1 is generated and the 

Enumeration method (in Figure 7) is called recursively for generating the candidates 

of larger sized subtrees. The frequency of every resultant candidate tree is computed. 

The full pruning is also performed to ensure downward-closure lemma [140]. But 

full pruning is expensive; therefore to accelerate this process we cease the frequency 

checking for a subtree belong to (K-1) set as soon as the K subtree is found frequent. 

5. EMPIRICAL ANALYSIS 

The efficacy of FreeS is shown by conducting systematic experiments using 

both real-life and synthetic datasets. FreeS is benchmarked with the most relevant 

and leading algorithms FreeTreeMiner (FTM) [90] and HybridTreeMiner (HBT) 

[96] which are designed to mine frequent free subtrees from a database of labelled 

free trees. All experiments have been done on a 2.8GHz Intel Core i7 PC with 8GB 

main memory and running the UNIX operating system. 

CSLOGS: This real-life dataset has been widely used in evaluating various tree 

mining algorithms. CSLOGS [38, 70] contains web access trees of the CS 

department of Rensselaer Polytechnic Institute during one month. There are a total of 

59,691 transactions and 13,209 unique node labels (corresponding to the URLs of the 

web pages). 

Figure 8(a) shows that FreeS can find the same amount of subtrees in 

significant lesser time than its counterparts. Results show that below a certain 

support threshold (0.25%) the number of frequent trees explodes that causes huge 

memory consumption for HBT and consequently, the software automatically aborts 

the process. For calculating support of free trees, HBT uses occurrence list that 

makes the process faster, but, it is responsible for high memory usage too. FreeS 

performs this step within the memory size even for smaller minimum support 

threshold such as 0.15% because of using modified occurrence list. FTM does not 

suffer from the memory exhaustion problem though; however the run time increases 
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drastically for smaller supports due to the lack of efficient frequency counting and 

inclusion of the expensive apriori candidate generation. 

 

(a) 

 

(b) 

Figure 8: Run time comparison (a) and completeness test (b) using CSLOGS data (a 

log10 scale is used in Y axis) 

The runtime performance of FreeS is few orders of magnitude better than HBT 

and FTM due to several reasons. (1) FreeS uses tree-structure guided based 

enumeration tree that allows enumerating only valid subtrees. (2) BOCF is defined to 

enumerate only one free tree for either of central or bicentral free trees, hence the 

occurrence list only keeps record of one tree. (3) A catching technique assists in 

keeping the occurrence list shorter. On the other hand, HBT can’t avoid generating 

invalid candidate subtrees during enumeration, which results in extra memory 

consumption. HBT may also enumerate two free trees from a bicentral tree because 

of the supplementary canonical form concept [96]. Consequently, it will keep record 

of both trees which increases the size of the occurrence list.  
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Results in Figure 8(b) show that FreeS extracts the same amount of frequent 

patterns as the other state-of-the-art methods. The tree model guided enumeration 

employed in FreeS does not generate any invalid trees but does not miss on any valid 

trees. All three algorithms satisfy the completeness property and do not miss any 

frequent patterns since they all used full pruning (downward closure lemma), not an 

opportunistic pruning. This shows the accuracy of FreeS in finding subtrees.  

 

(a) 

 

(b) 

Figure 9: Memory usage comparison using dataset D1 (a log10 scale is used in Y 

axis) 

Synthetic Data Sets: We conducted few more experiments using synthetic datasets 

with varied properties to support all of the above findings. The synthetic data sets 

were generated by a tree generator as described in [38]. The dataset called D1 is 

created using following parameters: the number of labels L = 10, the number of 

vertices in the master tree M = 100, the maximum depth D = 10, the maximum fan-

out F = 5 and the total number of subtrees T = 5000. Such characteristics reflect the 
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properties of web-browsing but not of very large databases. Result in Figure 9(a) 

shows that FreeS requires less runtime than HBT and FTM as expected. The memory 

consumption is also low for FreeS, whereas for being the small dataset the other two 

can also perform within the given memory size, Figure 9(b). 

The dataset called D2 is generated using high fan-out, F = 20 with low number 

of labels L =10 and a moderate size dataset T = 10,000. The rest of the parameters 

are kept the same. This makes D2 having wider trees than the deep trees. The 

isomorphic problem is known to occur more commonly when trees have several 

siblings at same label. This facet of experiment will support the claim that FreeS can 

handle isomorphism more effectively than any other algorithms due to the use of 

BOCF.  

 

(a) 

 

(b) 

Figure 10: Runtime (a) and memory (b) comparison using dataset D2 (a log10 scale is 

used in Y axis) 
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As shown in Figure 10, FreeS consumes much less processing time in 

comparison to other methods. It happens as FreeS does not generate a candidate tree 

multiple times because of using BOCF that ensures same identity for all isomorphic 

trees. Therefore, no additional test is required for checking the presence of 

isomorphism during frequency counting. In contrast, the state-of-the-art algorithms 

perform a mandatory isomorphism checking which makes them more expensive 

(Figure 10(a)). 

Figure 10(b) shows that HBT consumes larger memory space than FTM and 

FreeS, and it becomes worse for smaller support thresholds. As explained before, 

FTM does not use occurrence list for frequency counting but computes the 

occurrences of each free tree. Therefore, it saves memory but consumes additional 

computational time. The usage of occurrence list becomes a pressing concern in 

terms of memory for large data, especially when the support threshold is low, but 

allows fast and efficient frequency checking. The catching mechanism employed in 

FreeS makes it consume less memory as well as the enumeration strategy does not 

generate any invalid subtrees, therefore FreeS can offer a good trade-off between 

memory usage and runtime. 

6. CONCLUSION 

In this paper, we consider an important problem of mining frequent free 

subtrees from a collection of free trees. We proposed a computationally efficient 

algorithm FreeS to discover all frequent subtrees in a database of free trees. A novel 

balanced optimal canonical form is introduced that ensures unique identity of 

frequent free trees even in presence of isomorphism. Because of this canonical form 

the isomorphism problem can be handled, that is responsible for computational 

complexity in this process. Moreover, the proposed tree-structure guided scheme 

based enumeration enables FreeS to reduce the cost for candidate generation by 

enumerating only valid subtrees. We modified the efficient apriori like occurrence 

list based frequency counting method that ensures less memory consumption.  

Our empirical analyses show FreeS is scalable to mine frequent free trees in a 

large database of free trees with low support thresholds. In future we are planning to 

extend our algorithm for mining free trees in graph database. 
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Chapter 6: Conclusions 

The omnipresence of tree data is noticeable in multitudinous domains such as 

web, computational biology, pattern recognition, XML databases and computer 

networks [14, 17, 19, 22, 61]. Mining tree databases is non-trivial and arises many 

issues in discovering knowledge due to the presence of hierarchical relationships, 

structural flexibility and enormous data expansion. This thesis focuses on mining the 

databases of labelled unordered trees, which is more challenging than mining the 

popular ordered tree type databases. This is because the flexibility in unordered tree 

structure causes issues with their representation, which affects their further 

processing.  

The broad research objective of this study was discovering knowledge from the 

databases of labelled unordered trees in an efficient and scalable manner. In order to 

achieve the objective, this thesis presented algorithms for frequent subtree mining 

and tree matching, using novel and effective tree representation. 

6.1 SUMMARY OF CONTRIBUTIONS 

Based on the literature review as presented in Chapter 2, the following 

shortcomings were noted: 

− Lack of current tree representation methods including tree traversing, 

canonical form and adjacency matrix for rooted unordered and free trees.  

− Lack of an efficient and scalable tree matching algorithm for unordered 

trees. 

− Lack of efficient frequent rooted unordered subtree algorithms. 

− Lack of an efficient frequent free subtree mining algorithm.  

This thesis has aimed to overcome these shortcomings by proposing novel tree 

representations, frequent subtree mining and tree matching algorithms. Firstly, in this 

thesis a novel balance-optimal-search traversing algorithm is proposed that provides 

an optimal traversal order for trees without relying on sibling orders. The canonical 

string-based representation, called balanced optimal canonical form, is proposed for 
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rooted unordered trees and free trees. These canonical forms ensure one-to-one 

mapping between a labelled tree and a string by ensuring unique identity of 

isomorphic trees. This thesis also explored the matrix representation of trees and 

proposed two adjacency based matrix representations with information embedded in 

tree structures. These matrix representations ensure unique identity for the variations 

of the same unordered tree that is lacking in the traditional adjacency matrix 

representation.  

Secondly, a tree matching algorithm is proposed for finding similarities 

between unordered tree pairs. One of the algorithms uses the Augmented Adjacency 

Matrix (AAM) for representing unordered trees and a cosine similarity metric is used 

for calculating the pairwise similarity. The cosine metric is modified for making it 

compatible with matrix computation. The other algorithm uses Extended Augmented 

Adjacency Matrix (EAAM)-based comparison for measuring similarities between 

trees. The EAAM matrix uses not only the embedded tree information along with 

adjacency but also uses knowledge of the considered database for representing the 

tree data. The similarity scores obtained by the matching algorithm based on each 

representation are utilised in clustering the unordered tree data. Empirical analysis 

shows the efficacy of this algorithm in clustering and establishes that the matrix-

based comparison method is more computationally efficient than the traditional edit 

string operation based method, i.e., tree edit distance-based method. 

Thirdly, algorithms for mining frequent subtrees for databases of labelled 

unordered and free trees are introduced, based on the canonical form BOCF. 

BOSTER is a tree structure guided scheme-based enumeration tree for systematically 

enumerating all frequent rooted unordered induced subtrees. BEST is a frequent 

rooted unordered embedded subtree mining algorithm using the tree structure guided 

scheme-based enumeration tree with the extension and join operations defined with 

changed level conditions of nodes. FreeS has been designed to extract frequent 

induced subtrees from the databases of free trees. Considering the literature review, 

FreeS is the first algorithm that has used the tree structure guided scheme-based 

enumeration for mining frequent free trees. These algorithms have addressed three 

different frequent subtree mining problems focusing on different tree types as inputs 

and different types as subtrees. The extensive experimental studies have been 

218 Conclusions 



  

conducted to demonstrate the performance of the proposed algorithms as well as to 

compare the performance with the state-of-the-art algorithms. 

6.2 SUMMARY OF FINDINGS 

This section presents the main findings derived from this thesis: 

− In response to Research Question 1, an optimisation-based tree traversal 

approach, new canonical forms and adjacency matrices are proposed in this 

thesis and the main findings are the following:  

o The BOS traversal ensures identical encoding of isomorphic rooted 

unordered and free trees. Unlike the BFS and DFS traversal, BOS is 

using optimisation for traversing trees, therefore the structural 

flexibilities (i.e. sibling ordering) does not impact the traversing order 

as well as encoding. 

o The AAM and EAAM adjacency matrices ensure identical 

representation for all variations of an unordered tree. Moreover, these 

matrices include more tree structural information in addition to 

adjacency information. With the proposed tree matching algorithm, 

these matrices showed improved accuracy performance over the 

traditional adjacency matrix in finding the trees pairwise matching 

(16% improvement in the value of FScore). 

o  BOCFs ensure a common identity to a rooted unordered tree or a free 

tree in the presence of isomorphism without performing an expensive 

operation for finding the representative canonical form of the 

isomorphic trees from the sorted BFCF or DFCF string encodings. 

This unique characteristic of BOCFs allows it to save a significant 

amount of time during processing of the frequent unordered and free 

subtree mining algorithms. 

o An optimisation based representation that does not depend upon the 

sibling ordering can produce better results in any further manipulation 

like tree matching and frequent subtree mining.   

− In response to Research Question 2, the proposed tree matching algorithm 

uses a matrix (e.g., AAM and EAAM)-based comparison instead of string 
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edit operations for measuring similarities. The following findings can be 

summarised.  

o The proposed AAM matrix-based tree matching algorithm requires 

significantly less computational time than the tree edit distance based 

methods, without compromising the accuracy of output. Incorporating 

optimal encoding and matrix calculation into the proposed method 

allows saving a significant amount of computation time. Any matrix-

based computation is very fast and requires almost no time for 

processing, which motivated to represent trees in equivalent matrices 

and avoid the expensive edit string operation for calculating the 

approximate similarity score between a pair of trees. The optimal 

order allows the proposal of a matrix form that ensures identical 

representation of isomorphic unordered trees; also the additional tree 

information in AAM form offers more accuracy while processing the 

similarity calculation. The baseline algorithms [79, 112, 124] showed 

exponential complexity after reaching a tree size in the range of 

60~65 nodes, while the proposed method yields a fraction of second 

runtime to determine pairwise similarity. 

o The proposed EAAM-based similarity measure method led to more 

accurate clustering results than the benchmark methods [77] through 

incorporating additional database specific knowledge in tree 

representation. A tree database, in which hierarchical relations of tree 

structures are frequent, can be found using a frequent subtree mining 

algorithm; adding this piece of information during the representation 

of tree structured data ensures more accuracy in its further 

manipulating processes, like tree matching and clustering. The results 

show that the proposed algorithm gives more accurate (on an average 

10-15% improvement in FScore value) tree matching than the 

baseline as well as ensuring better clustering output. 

− In response to Research Question 3, the proposed frequent subtree mining 

algorithms use the BOCF canonical form and an effective tree structure 

guided scheme-based enumeration tree for improving computational 

efficiency. All of these algorithms are compared against the popular and 
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relevant benchmark algorithms using both synthetic and real life datasets. 

The experimental results indicate the following findings.  

o All these algorithms can handle isomorphism issues more effectively 

than the state-of-the-art methods due to using BOCF representation. 

For example, while performing on a synthetic dataset with presence of 

isomorphic trees, the BOSTER algorithm is able to save 73.55% 

runtime in comparison to the UNI3 [98] algorithm for a small support 

threshold of 0.15%, while the HBT [96] algorithm could not even 

perform due to high memory usage. BEST has also been shown to 

save reasonable amounts of time and memory because of using 

BOCF. In FreeS algorithm, significant runtime improvement is 

achieved with reasonable memory use while performing on a 

synthetic dataset that has high probability of the presence of 

isomorphic trees. 

o The BOSTER algorithm has shown consumption of less memory and 

less runtime for mining frequent rooted unordered induced subtrees, 

in comparison to the benchmarks, even in the presence of large data. 

Using the CSLOGS data, BOSTER is able to extract all induced 

subtrees a lot faster and with one order of magnitude less memory 

consumption than HBT [96], whereas UNI3 [98] could not even finish 

extracting the complete list of frequent subtrees due to excessive 

usage of memory. 

o BEST outperforms SLEUTH  and U3 algorithms [70, 97] in terms of 

runtime and memory usage without missing any frequent subtree 

generation. The tree structure guided scheme-based enumeration tree 

of BEST uses both join and extension operations to grow, which 

ensures faster computation compared to other algorithms. BEST also 

successfully avoids generating invalid subtrees as well as it does not 

need to save an additional data structure (e.g., embedding list) for 

checking isomorphism like U3. These improvements allow BEST to 

perform computations in memory. 
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o FreeS is the first algorithm that utilises a tree structure guided 

scheme-based enumeration tree for its candidate generation. This 

enumeration approach allows shortening the list of candidate trees, 

resulting in less memory utilisation in processing. FreeS has been 

found very fast using both real and synthetic datasets. It outperforms 

HybridTreeMiner [96] and FreeTreeMiner [63] by reducing the 

runtime expense (few orders of magnitude) without missing any 

frequent subtrees. The algorithm has also performed in memory for a 

large real life data while the other benchmark algorithms show an out 

of memory problem. The usage of a scalable enumeration approach, 

BOCF and modified occurrence list allows saving a lot of memory for 

FreeS.  

o The runtime of FreeS in comparison to BOSTER and BEST with their 

corresponding benchmarking is found much lower. This may indicate 

that the optimal order is more beneficial for less constrained trees9.  

6.3 FUTURE WORKS 

There is always room for work to be done to improve the scalability of existing 

methods. Besides working in this direction, some of the most promising other 

directions for future research relate to concise subtree mining; frequent subgraph 

mining; social network analysis and clustering. This section provides some hints and 

brief descriptions of these potential future research areas, which can be built upon 

from the base research that has been carried out in this thesis. 

A. Further Scope of Improving The Proposed Method 

The sensitivity behaviours of the proposed frequent subtree mining algorithms 

across various tree parameters are not completely known yet. This discovery will 

help to make these algorithms more generic. The scalability performance of an 

algorithm may vary depending upon various domain properties. An extensive 

sensitivity analysis can be considered for making the algorithm more efficient, 

regardless of any domain.  

9 This may be just a coincidence, as the research in the area of free tree mining is still underway and 
the state-of-the-art benchmarking algorithms are not that efficient as other benchmarking algorithms 
of rooted unordered tree.   

222 Conclusions 

                                                 
 



  

Although the proposed algorithms performed well with large datasets in 

regards to both runtime and memory usage in comparison to benchmarking methods, 

the space efficiency of these algorithms can be improved further by improvising the 

data structures. For example, the possibility of proposing a more compact 

representation than AAM and EAAM can be checked, which will maintain the same 

level of accuracy performance but within reduced usage of space. 

Further, the possibility of adding some new conditions to support free 

embedded candidate tree generation can be checked for the frequent free subtree 

mining algorithm, which may lead to proposing a new algorithm for mining frequent 

free embedded subtrees. 

B. Concise Subtree Mining 

Due to the large number of frequent subtrees generated, several researchers 

have focused their attention on finding the condensed representations of frequent 

patterns such as concise subtrees (e.g., closed and maximal subtrees). The efficiency 

of the algorithm for finding a condensed representation depends largely on the 

efficiency of the base algorithms that have been addressed in this thesis. The frequent 

concise subtree mining algorithms can be developed for mining patterns from 

unordered and free trees based on the efficient base algorithms as proposed in this 

thesis. For extracting these subtrees, the candidate generation process should be 

designed according to their definitions based on the BOCF canonical forms and 

incorporating pruning conditions. The tree structure guided scheme based-

enumeration tree has rarely been used in designing frequent concise subtree mining 

algorithms in the literature. The enumeration process can be implemented in this area 

to improve performance. If it can be ascertained that the BOCF representation would 

be advantageous, in finding concise subtrees, this will be advantageous as this is an 

area that still requires an efficient algorithm to be developed.  

C. Graph Mining 

Since this thesis has presented an algorithm for mining frequent free trees, 

which can be seen as an acyclic version of graph data, therefore this algorithm can be 

helpful in the research field of graph mining. The proposed canonical form can be 

extended in order to deal with the graph data. In future this research can be carried 

out to check whether is it is possible to come up with other canonical forms tailored 
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to graph morphisms like homomorphism or bisimulation, in the spirit of classic Web 

graph query languages like WG-log [198]. 

D. Implementation in Other Application Domains 

Some important application domains like Social Network Analysis (SNA) and 

process mining in Business Process Management (BPM) can be considered as a 

future study. In some of these areas, the proposed contributions have direct 

implementation or have scope to evolve further in a way that could be useful in 

analysing these domains. Besides, the applicability of available SNA techniques in 

mining tree data especially in finding frequent free trees can be investigated, such as 

using the method of finding betweenness centrality, can be used in finding the root 

node for a free tree. 

Lastly, evidence was given in Paper 3 included in this thesis that the 

knowledge gained from frequent subtree mining and from the tree matching can be 

combined for a better outcome; an effective integration would be an interesting 

avenue for future exploration. 
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