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Abstract 

 

This paper proposes a new multi-stage mine production timetabling (MMPT) model to 

optimise open-pit mine production operations including drilling, blasting and excavating 

under real-time mining constraints.  The MMPT problem is formulated as a mixed integer 

programming model and can be optimally solved for small-size MMPT instances by IBM 

ILOG-CPLEX.  Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm 

based on the extended disjunctive graph is developed to solve large-size MMPT instances in 

an effective and efficient way.  Extensive computational experiments are presented to 

validate the proposed algorithm that is able to efficiently obtain the near-optimal operational 

timetable of mining equipment units.  The advantages are indicated by sensitivity analysis 

under various real-life scenarios.  The proposed MMPT methodology is promising to be 

implemented as a tool for mining industry because it is straightforwardly modelled as a 

standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly 

expanded by adopting additional industrial constraints.  
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1. Introduction 

 

Nowadays, mining activities take place all over the world and become a major source of a 

country’s natural wealth and economic income, especially for Australia.  Due to abundance 

of mineral resources and mining booms in 2000-2010, “the mining industry’s contribution to 

total goods exported from Australia is increased from 32% in 2004 to 51% in 2009” [1].  

Australia’s economy growth is mainly dominated by mining industry which is the fastest 

growing sector of the economy accounting for 13.5 percent of total GDP in 2014 [2].   

 

Mining methods are mainly divided into two groups: surface mining and underground mining.  

The time horizons to operate a large mine can be quite varied.  Surface mining comprises a 

wide range of mining methods including open pit mining, strip mining, auger mining, 

mountaintop removal mining, and etc.  This paper is mainly concerned about open pit mining.  

As a standard convention, they are usually classified into long-term (strategic-level), mid-

term (tactical-level) and short-term (operational-level) time horizons.  In a long-term or 

strategic-level time horizon, mining industry practitioners are interested in making strategic 

decisions whether to explore a mine and how to determine the mine contour to maximise the 

value of an orebody in its mine life (several years).  In a mid-term or tactical-level time 

horizon, mining industry practitioners commonly need to meet production targets by 

sequencing the selected blocks that are to be mined over periods (months) for satisfying mid-

term demands at the tactical level.  A mid-term time or tactical-level horizon typically has a 

time frame of several months in which the length of one tactical period is one month (or one 

fortnight).  From a tactical viewpoint, mine practitioners should focus on satisfying the 

production targets and demands over tactical periods subject to critical resources’ capacity 

constraints.  In comparison, short-term horizons usually have no more than one month ahead 

and are subject to the tactical targets.  The decisions made in a short-term horizon are 

operational decision making, such as allocation of mining equipment units, timetables of 

mining equipment units (e.g., drills and excavators), maintenance scheduling, shift 

scheduling, etc.  As such, these operational decisions tend to be of the very specific focus on 

narrow entities (e.g., excavating operations) over relatively short time intervals (days or 

hours).  At the operational level, mine practitioners should aim to minimise the makespan 

(throughput) or minimise the idle times of mining equipment units at various operational 

stages.  
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However, most papers in the literature mining optimisation dealt with the problems only at 

the strategic and tactical level.  In this sense, this paper would be a ground breaking to 

optimise the operational open-pit mine production process using a multi-stage mine 

production timetabling methodology.  To justify the contribution of this work, in terms of 

this time-horizon classification, a related brief literature review on open-pit mining 

optimisation problems is presented in the following.   

 

In a long-term or strategic-level time horizon, the vital objective is to determine the ultimate 

pit limit or orebody contour that yields the maximum total value based on the exploration 

block model with estimated geological information.  In mining community, this fundamental 

problem type is called Ultimate Pit Limit (UPIT) or Mine Design Planning (MDP).  As 

pioneers, Lerchs and Grossmann [3] presented to the mining community the well-known 

Lerchs-Grossmann approach for long-term open-pit mine design.  Caccetta and Giannini [4] 

and Underwood and Tolwinski [5] proposed several mathematical theorems to reinforce the 

Lerchs-Grossmann approach.  Hochbaum and Chen [6] presented a push-relabel heuristic 

algorithm for MDP based on the network flow graph theory.  Epstein et al. [7] extended the 

long-term open-pit MDP model to design an underground and open-pit sharing copper 

deposit by a capacitated multi-commodity network flow formulation.  Asad and 

Dimitrakopoulos [8] implemented a parametric maximum flow algorithm to solve an extend 

MDP problem with uncertain supply and demand.  Meagher et al. [9] presented a 

comprehensive review on the open pit mine design, pushbacks and the gap problems to 

mining community.  Topal and Ramazan [10] developed a linear programming model based 

on the network analysis to efficiently optimise the strategic mine plan with the objective of 

maximise the net present value.   After the determination of the ultimate pit contour, the next 

widely-studied mining optimisation problem type is to determine when the selected blocks 

should be extracted over time periods so that the total net present value is maximised.  In 

mining community, this problem type is called Mine Production Scheduling (MPS) [11,12], 

or Open Pit Block Sequencing (OPBS) [13], or Constrained Pit Limit (CPIT) [14,15].  For 

convenience, the term “MBS” is used to call this problem type throughout the paper.  The 

following leading papers contribute to MBS in the mining optimisation literature.  Caccetta 

and Hill [12] proposed a branch-and-cut algorithm with LP relaxation to solve MBS.  Due to 

software commercialisation and confidentiality agreements, they only summarised some 

important features and thus full details of all aspects of their proposed algorithm were not 
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provided in this paper.  Ramazan [16] proposed a method to aggregate a subset of blocks as 

branched trees, which are able to reduce the number of integer variables and number of 

constraints required within the MIP formulation.  Boland et al. [17] developed a LP-based 

relaxation approach to solve large-size MBS instances.  Bley et al. [18] relaxed the MIP 

formulation by adding inequalities through combining the precedence and production 

constraints.  Many researchers indicated that the MIP formulation is computationally 

intractable for large-size MBS instances, thus leading to the development of numerous 

heuristic algorithms.  Kumral and Dowd [19] developed a simulated annealing metaheuristic 

combined with Lagrangian relaxation for solving MBS.  Ferland et al. [20] modelled the 

MBS problem as a resource-constrained project scheduling problem, which was solved by a 

particle swarm optimisation metaheuristic algorithm.  Myburgh and Deb [21] reported an 

application of an evolutionary algorithm in which an initial feasible sequence of blocks 

represented as a chromosome is iteratively improved by genetic operators such as crossover 

and mutation.  Cullenbine et al. [22] developed a sliding-time-window heuristic for MBS 

under a decomposition framework.  Chicoisne et al. [11] developed an advanced heuristic 

algorithm based on topological sorting techniques to efficiently solve large-size MBS 

instances.  Lamghari et al. [23] developed a hybrid approach based on linear programming 

and variable neighbourhood search for solving MBS efficiently.  Liu and Kozan [15] 

developed two advanced graph-based algorithms without relying on any MIP optimiser to 

solve large-scale benchmark instances from MineLib [14].  Jélvez et al. [24] recently 

reported a block-aggregation heuristic algorithm for MBS and also validated its performance 

based on benchmark instances from MineLib.  Nanjari and Golosinski [25] extended the 

MBS model by considering time value of money and mining restrictions.  Mousavi et al. 

[26,27] developed an extended model to optimise the block sequencing by incorporating 

more real-life constraints such as blending, stockpiling and processing requirements.   

Nowadays, the MDP and MBS optimisation methodologies based on the 2D (3D) block 

graphic interfaces have been commonly developed by most off-the-shelf commercial mining 

software packages and implemented in Australian mine sites (e.g., Whittle Gemcom on 

strategic mine planning; XPAC on mine block sequencing).  

 

After the determination of ultimate pit limit at the strategic level and the block sequence over 

mid-term periods at the tactical level, mining industry practitioners need to determine how 

and when different mining resource units with non-identical operating capacities (e.g., Drills, 

Mobile Processing Units, or Excavators) at various operational stages should be allocated to 
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perform specific operations (e.g., Drilling, Blasting or Excavating operations) over a short 

time interval in a synchronised way.  As the main resource at blasting stage, it is noted that 

Mobile Processing Units (MPUs) provide the service of adding explosive, exploding and 

subsequent marking on the blasted blocks.  According to above literation review and recent 

comprehensive literature survey [28,29] on the applications of Operations Research 

approaches to mining industry, state-of-the-art multi-stage timetabling methodologies have 

not been applied to mine production at the operational level.  In Australia, mining companies 

are keen to minimise the operational costs and maximise productivity of mining equipment 

by the adoption of advanced mining management software.  For example, it was recently 

reported by Stringer [30] that “Rio Tinto, one of the world’s biggest mining companies, spent 

$370 million on its 730-person technology and innovation unit in 2013 according to its 

annual report.  Australia’s mining industry alone spends about A$4 billion ($3.7 billion) a 

year on research and development according to the country’s Bureau of Statistics”.  In this 

context, the requirement from Australia’s mining industry has incentivised the researchers in 

mining optimisation to develop more advanced and industry-oriented optimisation 

methodologies for mining industry [31–37].  To meet the industrial requirement, a new 

operational-level Multi-stage Mine Production Timetabling (MMPT) model is proposed for 

open-pit mining industry to optimise drilling, blasting and excavating operations.  As a 

contribution to mining industry, this paper is the pioneering study to develop a multi-stage 

mine production timetabling model to optimise drilling, blasting and excavating operations at 

the operational level.  This paper also fills the gap between theory and practice due to the fact 

that the advanced multi-stage scheduling theory has not been widely studied and applied to 

mining industry yet.  

 

The remainder of this paper is organised as follows.  In Section 2, we define the MMPT 

problem and develop a mathematical programming model of MMPT.  In Section 3, a 

heuristic algorithm based on an extended disjunctive graph is developed to efficiently solve 

MMPT.  In Section 4, computational experiments are reported based on the real-world case 

study.  Finally, we conclude the contribution and significance of this research in the last 

section.  
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2. MMPT Formulation 

 

The geometry of a typical open-pit mine is depicted in Figure 1 and described in the 

following.  According to the SME Mining Handbook [38], main considerations in the design 

of open-pit mine geometry are to accommodate mining equipment (e.g., shovels and trucks).  

Benches, which are divided into working benches and inactive benches, are the most critical 

geometry features of an open pit.  In the operational mine production process, working 

benches are under being excavated while inactive benches are the remainder of working 

benches left to maintain pit-slop stability.  Usually, the height of a bench is about 15 metres 

for an iron ore mine. 

 

In a block model generated for exploration and mine design at the strategic level, the smallest 

element is termed as a strategic-level block (or a block unit in some literature), of which its 

size is 10*10*15 (10 meters in width, 10 meters in length and 15 meters in height) in this 

study.  Note that the size of a block may be a little bit different (e.g., 20*20*12 or 15*15*15) 

in different mine sites with various ore types.  The smaller a block’s size is, the more 

accurate a block’s material property is.  Ultimate pit limit is the contour of an open pit that 

maximises the long-term value based on a strategic-level 2D or 3D block model in which the 

slope constraints (i.e., precedence relationships between blocks) are defined and the values of 

blocks are estimated.  Nested pit shells (pits within pits) are usually generated by repeating 

the mine design planning process while adjusting the values of key parameters (e.g., either 

ore price or mining cost) in a specific (updated) block model in a rolling time horizon.  A 

pushback is an incremental expansion of a pit outline and regarded as an aggregation of 

several nested pit shells.  Pushbacks are often selected by balancing the strip ratios (the waste 

volume : the ore volume) throughout the mining phases.  For example, a 10:1 strip ratio 

implies that excavating one cubic meter of ore would require removing ten cubic meters of 

waste during a mining phase.  To meet grade control targets, blocks with different grade 

properties in different benchers or different pushbacks will be selected to be mined in each 

tactical-level period.  A parcel is the set of strategic-level blocks which are both on the same 

bench and in the same nested pit shell.  To provide enough working space for large mining 

equipment (e.g., shovel or excavator), some blocks have to be aggregated at the operational 

level.  Consequently, an operational-level mining job is defined as an aggregate subset of 

blocks in the same grade group on the same bench in the same pushback so that the blocks in 
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a mining job can be drilled, blasted, excavated at the same production rate.  Note that the 

term “a mining job” is particularly defined in our MMPT model; and thus it is important to 

be distinguished from the term “a block” that is used as the smallest unit of a strategic-level 

block model.   

A Pushback A Pushback 

Mining job 1 Mining job 1 

A nested pit shellA nested pit shell Bench LevelBench Level

Bench 
Height

Bench 
Height

Slope AngleSlope Angle

(a)(a) (b)(b)

(c)(c) (d)(d)

Mining job 2 Mining job 2 

BenchesBenches

  

Figure 1: Schematic open-pit mine geometry: a-b) cross-section views of an open-pit with 

several benches; c) plan view of an open-pit; d) a bench geometry. 

 

To comprehend the relationship among strategic-level MDP, tactical-level MBS and 

operational-level MMPT, the first important thing is to understand the operational mining 

jobs, each of which is an aggregate subset of smallest elements (i.e., blocks termed in the 

strategic-level block model) and such an aggregation is based on the output of tactical MBS 

model.  The difference between a block and a mining job should be recognised, because in 

some real-world operational schedules from our cooperated mine site, the term “block” is 

always misused as a mining job (e.g., 60m*60m*15m) which is actually equivalent to 36 

strategic-level blocks (36 times 10m*10m*15m).  Moreover, the mining jobs in our MMPT 

model are usefully independent and accessible to be drilled, blasted and excavated in an 

operational-level time window, because various mining jobs are on different benches or in 

different pushbacks or from different pits.   

 

With the cooperation with a large Australian iron ore mine site, the flow process of some 

critical operational stages is analysed as follows.  In an operational time horizon, a mining 
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job needs to be processed through several stages such as drilling (for blasting purpose), 

blasting and excavating.  In the drilling stage, the blocks in a mining job are drilled for the 

purpose to collect the samples or to load the explosives to fragment the rock.  The critical 

resource in the drilling stage is drill equipment.  Note that the holes in this drilling stage are 

not for geostatistical modelling at the strategic exploration stage.  Instead, the drilling 

samples (especially for metallic ores) are tested for achieving better blasting effects at the 

operational level.  Collected ore samples are tested for ore properties such as ingredients and 

density.  To achieve a good fragmentation during blasting, the sampling results are used to 

determine blasting pattern such as the strength and volume of explosives.  At the excavating 

stage, blasted blocks in each mining job are extracted by excavators (shovels or front-end-

loaders) and then simultaneously delivered to various destinations (mills, waste dumps or 

stockpiles) by a fleet of mine trucks.  Note that the mine truck haulage optimisation model is 

beyond the scope of this paper and will be reported in another paper.  

 

Based on the above analysis, a generic MMPT mixed integer programming model is 

developed to optimise the drilling, blasting and excavating operations at the operational level.   

 

Indices and Parameters: 

  number of independent mining jobs.  

  index of a mining job,        .  

  number of operational stages.  

  index of an operational stage,        . 

   number of equipment units used at stage  . 

  index of an equipment unit at stage  ,         . 

    ready time of equipment unit   at stage  .   

     setup time for mining job   by equipment unit   at stage  .  

    workload for mining job   at stage  ; for example, the workload of a mining job at 

drilling stage is the total drilling metres of holes; the workload of a mining job at 

blasting stage is the surface measured in square metres; the workload of a mining job at 

excavating stage is the volume measured in cubic metres.  

    operating capacity of equipment unit   at stage  ;  for example, at drilling stage the 

operating capacity of a drill equipment unit is 50 meters per hour.  Thus, if a mining 

job’s total drilling workload is 1200 metres, then the operational time of this mining 
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job at drilling stage is calculated as 24 hours if this drill equipment unit is assigned to 

this mining job’s drilling operation.   

    workload weighting factor (e.g., harness, density or swell factor) of mining job   at 

stage  , determined by its material property (e.g., high-grade, low-grade, or waste).  

  a constant large value. 

 

Decision Variables: 

    completion time of mining job   at stage  ;  

it is a semi-continuous timing variable;                 . 

     1, if job   is assigned to a machine unit   at stage  ;  

0, otherwise; it is a binary variable;                            . 

       1, if mining job    precedes mining job   on the     equipment unit at stage  ;  

           0, otherwise; it is a binary variable;                                   . 

 

MMPT MIP Model 

Objective: 

          (       )         (1) 

Equation (1) defines the objective function of minimising the makespan which is equivalent 

to maximising the efficiency of mining equipment units at various stages.  This is because the 

smaller completion times of mining equipment units leads to the earlier release times for the 

use in the next timetabling horizon.  

 

Subject to: 

    ∑     
  
       ∑       

      

   
     

  
   ,      

                    (2) 

Equation (2) requires that the completion time of the first operation of each mining job 

should be greater than or equal to the ready time of the assigned equipment unit plus its setup 

time and processing time at the first stage depending on the assignment of an equipment unit.  

 

           ∑       
      

   
     

  
   ,       

                       (3) 
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Equation (3) satisfies the processing route of each mining job through several stages, that is, 

the completion time of a mining job at a stage should be greater than or equal to its 

completion time at the immediate previous stage plus its setup time and processing time at 

the current stage.   

 

∑     
  
     ,           

                         (4) 

Equation (4) restricts that one equipment unit at each stage is allocated to only one mining 

job at a time.   

∑       
  
     ,          

                             (5) 

∑       
  
     ,          

                             (6) 

∑       
  
     ∑       

  
     ,         

                             (7) 

                          ,        

                                     (8) 

Equations (5-8) guarantee that the sequencing relationship between each pair of mining jobs 

on any assigned equipment unit at each stage should be exclusive.  

 

         ∑       
      

   
     

  
    (∑       

  
     )   ,    

                             (9) 

         ∑        
 

   
 

   

   
      

  
    (∑       

  
     )   ,    

                             (10) 

Equations (9-10) satisfy the timing relationship between each pair of mining jobs on the 

assigned equipment unit at each stage.  Here, the implication on assignment decisions of 

different resource units at a stage is illustrated.  For example, the processing time of such a 

drilling operation is 12 (          =1.2*200/20=12) hours.  On the other hand, if the 

capacity (    ) of another drill equipment (indexed by   ) at drilling stage (indexed by  ) is 

25 m/hr, then the model may choose it and thus the drilling time may be reduced to 9.6 

(           =1.2*200/25=9.6) hours.  The processing time depends on the workload (   ) 

of an operation, the workload weighting factor (   ) related to ore properties, and the 



 

11 

 

operating capacity of assigned equipment unit (   ).  In addition, the implementation of 

equipment units with different operating capacities is due to real-world mining requirements.  

For instance, a large excavator processes the corresponding excavating operation in a shorter 

extraction time.  However, a small front-end loader is also needed for a limited-space 

working bench.  

 

The mathematical formulation model is essential to ensure that critical constraints are 

satisfied.  Although a MIP exact solver (e.g., IBM ILOG-CPLEX) can exactly solve the 

MMPT MIP model for small-size instances, it is intractable (time-consuming and memory-

demanding) for solving industry-scale instances due to strong NP-hardness.  This implies that 

no polynomial-time algorithms could be developed to exactly solve this problem type and it 

is better to take efforts in developing an approximation algorithm [39].  In practice, mining 

industry practitioners need to make a rapid response in real-world scenarios.  Such 

requirements inspire us to develop an efficient shifting-bottleneck-procedure (SBP)-based 

algorithm to efficiently solve MMPT by taking advantage of MMPT’s properties in terms of 

an extended disjunctive graph [40–45].  

 

 

3. Heuristic Approach 

In this section, an improved shifting-bottleneck-procedure (SBP) algorithm based on an 

extended disjunctive graph is developed to solve MMPT.   

 

Extended Disjunctive graph for MMPT 

An extended activity-on-the-vertex disjunctive graph            particularly devised for 

MMPT is shown in Figure 2. 

 

In           , the set of all vertices is defined as   and the number of potential actual 

vertices (operations) is equal to       ∑   
 
   , where   is the number of mining jobs,   

is the number of operational stages,    is the number of equipment units at stage  .  In 

addition, two virtual vertices (source and sink) with zero processing time and setup time are 

added to  .  Each directed arc has a distance value that equals the processing time plus the 

setup time of the predecessor of this arc.  In           ,   is the set of conjunctive arcs 

which denote the fixed precedence relationships between each pair of potential operations 
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belonging to the same mining job as well as the directed arcs for connecting the virtual 

source (sink) vertex with the first (last) operation of each mining job.  In           ,   

is the set of disjunctive arcs, each of which represents the undecided sequencing status 

between any pair of potential operations if they are performed by the same equipment unit at 

a stage.   

 

 

Mining

Job 1
……...

Drilling 
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Job 3
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O3
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MPU Unit 1

MPU Unit 2

Excavator Unit 1

Excavator Unit 2

Excavator Unit 3

Excavator Unit 4

 

Figure 2: An extended disjunctive graph for 3-stage MMPT  

 

On each stage in the extended disjunctive graph, the vertices surrounded by a dot-line 

rectangle represent the potential operations that are processed by an equipment unit at a stage.  

For example, operations    
  and    

  are highlighted by superscripts 1 and 2 for indicating 

Unit 1 and Unit 2 of equipment type   for Mining Job 3.  Note that the relationship between 

operations    
  and    

  are exclusive, that is, only one of them is existing because it is 
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supposed in our MMPT model that one mining job is allocated to only one equipment unit at 

each stage.   

 

A conjunctive arc (e.g.,    
     

 ) connects two existing actual vertices    
  and    

 , 

which implies that operation    
   should be processed before operation    

 .  For example, 

for Mining Job 3 that has a fixed processing route through drilling, blasting and excavating 

stages, the subset of conjunctive arcs for three operations of this mining job may be listed as: 

   
     

     
 , if    

  is an existing operation that is associated with equipment unit 1 of 

equipment type   (i.e., Drill Unit 1) at the drilling stage for Mining Job 3;    
  is an existing 

operation that is associated with equipment unit 2 of equipment type   (i.e., MPU Unit 2) at 

the blasting stage for Mining Job 3;    
  is an existing operation that is associated with 

equipment unit 4 of equipment type   (i.e., Excavator Unit 4) at the excavating stage for 

Mining Job 3.  

 

The number of disjunctive arcs on a single-equipment-unit stage        is          , 

where         is the number of mining jobs that are actually processed on stage     The 

properties of disjunctive arcs on a multiple-equipment-units stage        is much more 

complicated, as the number of disjunctive arcs is equal to             
  in this case.  

With the above analysis, the set of total disjunctive arcs   can be divided into   subsets, i.e., 

               , where                denotes the subset of disjunctive arcs at 

stage  .  In a sense, the determination of a MMPT schedule is transformed to decide the 

direction for each pair of disjunctive arcs and discarding the redundant arcs in   ⋃   
 
   .  

After such a determination, let   
  denote the subset of directed disjunctive arcs at stage   

and let    ⋃   
   

    denote a corresponding compound set of directed disjunctive arcs at 

all stages.  Then, the directed disjunctive graph denoted by              represents a 

MMPT schedule.  A feasible MMPT schedule requires that              should be 

acyclic while satisfying all of the constraints.  

 

Based on the above extended disjunctive graph, the detailed procedure of an improved SBP 

algorithm for MMPT is presented as follows.   

 

Improved SBP Algorithm for MMPT 
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Step 1: Set the initial partial directed disjunctive graph            which contains all 

of conjunctive arcs but no disjunctive arcs.  

Step 2: Initialise the list of unscheduled stages   (       and the list of scheduled stages 

as empty:     .   

Step 3: While    : 

3.1: Determine the topological sequence of vertices based on the current     .   

3.1.1: Based on the current PDDG, set the list of current immediate 

predecessors and successors of each vertex. 

3.1.2: Compute the in-count value (i.e., the number of immediate 

predecessors) of each vertex in the graph.   

3.1.3: Decrease the in-count value for each of the immediate successor of the 

selected vertex by one after determining the current topological vertex. 

3.1.4: If none of the undetermined vertices have a zero in-count value, stop 

running algorithm as the given graph model is cyclic (infeasible); else, 

select any of the undetermined vertices having a zero in-count value 

and put this vertex as the next candidate in the topological order.  

3.1.5: Repeat Steps 3.1.1-3.1.4 until all vertices are determined.  

3.2: Compute the head time (i.e., the longest distance from the virtual source to a 

vertex) and the tail time (i.e., the longest distance from a vertex to the virtual 

sink) of each vertex in terms of the topological sequence.  

3.3: Generate a single-equipment-unit scheduling subproblem with release dates 

(head times) and delivery times (tail times) of mining jobs at stage  , if 

    ; otherwise, generate a multiple-equipment-unit scheduling subproblem 

with release dates and delivery times.  

3.4: For each subproblem generated above: 

3.4.1: If it is a single-equipment-unit scheduling subproblem, then solve it by 

the following procedure:  

3.4.1.1: Initialise   that is the list of unscheduled mining jobs and 

     that is the list of scheduled mining jobs in the 

subproblem. 

3.4.1.2: Set the current time point:           , where    is the 

release date (head time) of mining job   in the subproblem.  

3.4.1.3: At the current time point  , set the starting time       of a 

selected mining job   , under the condition       and 

              , where    is the delivery time (tail time) 

of mining job  ;  

3.4.1.4: Update       ,      ⋃    and            

              where     is the processing time of selected 

mining job    in the subproblem.  

3.4.1.5: If    , go to Step 3.4; otherwise, go to Step 3.4.1.2.  
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3.4.2: Else if it is a multiple-equipment-unit scheduling subproblem, then 

solve it by the following procedure: 

3.4.2.1: Initialise   that is the list of unscheduled mining jobs and 

     that is the list of scheduled mining jobs in the 

subproblem.  

3.4.2.2: Initialise the available times of all machines (equipment 

units) in the subproblem:              .  

3.4.2.3: Choose the earliest available equipment unit    

              
  .  

3.4.2.4: Set a list of candidate mining jobs:    ⋃   if          

 .  

3.4.2.5: If    , set the selected job:                and its 

starting time:        ; else, set the selected job:    

            and its starting time:        . 

3.4.2.6: Update       ,      ⋃    and            . 

3.4.2.7: If    , go to Step 3.4; otherwise, go to Step 3.4.2.3.  

3.5: Based on the obtained solutions of decomposed subproblems, determine the 

critical stage:               , where    is the makespan of one 

subproblem at stage  .   

3.6: Update      ⋃  ,        and           ⋃   
 

     .  

 

4. Case Study 

The proposed MMPT methodology was applied in an industrial project with the cooperation 

of an Australian mining company.  In this section, a case study established based on the real-

world mining data is conducted to justify the applicability of the MMPT methodology.  

 

Data Analysis in Case Study 

In this case study, a number of varied-size mining jobs (i.e., from 5 mining jobs to 55 mining 

jobs in different time windows) with different combinations of equipment units at various 

stages under different MMPT instances will be scheduled.  Each mining job will be 

processed consecutively through several stages such as drilling, blasting and excavating.  

Note that all time elements are measured in hours in this MMPT case study.  The critical 

equipment at drilling stage is drill equipment with two available units in this case study.  The 

potential drilling time of each mining job is determined by the total drilling meter and the 

operating rate of a drill.  The critical resource unit at blasting stage is Mobile Processing Unit 

(MPU) with two available units.  A blasting operation actually consists of several tasks 



 

16 

 

including sampling, explosive adding, exploding, clearing and marking.  The sampling times 

are dependent on the sizes of mining jobs and regarded as various setup times at a blasting 

stage.  At blasting stage, the blasted areas are not allowed to be entered immediately due to 

safety requirements and the need of subsequent clearing and marking for blasted blocks.  

Thus, the processing time of a blasting operation is not only dependent on the surface size (in 

square metres) of each mining job but also on safety requirements.  At excavating stage, 

excavators are critical equipment with two to eight available non-identical excavators 

(shovels or front-end-loaders) that have different extraction rates.  The excavating time 

depends on the volume (m
3
) of a mining job and the extraction rate (m

3
/hr) of the allocated 

excavator.  The input data items of a MMPT instance are presented in Tables 1-2, in which 

some technical factors are obtained from our industry partners and referred to the SME 

mining engineering handbook [46].  

 

Table 1: Data of resources at drilling, blasting and excavating stages in a MMPT instance* 

Stage Name Equipment Type Measurement Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 … 

Drilling Drills m/hr 50 60 NA NA NA …… 

Blasting MPUs m
2
/hr 300 450 NA NA NA …… 

Excavating Excavators m
3
/hr 600 700 800 900 1000 …… 

*NA: Not-Available 

 

Table 2: Data of mining jobs in a MMPT instance with 55 mining jobs* 

Mining  

Job ID 

Tonnes  

(t) 

Drilling Metre  

(m) 

Surface  

(m
2
) 

Volume 

(m
3
) 

Number of 

Blocks 

Material Property** 

(grade) 

1 97656 768 2170 32552 22 Hg 

2 175780 1382 3906 58593 39 Lg 

3 117187 921 2604 39062 26 Hg 

4 259440 1994 5765 86480 58 Lg 

5 466992 3590 10377 155664 104 Hg 

6 311328 2393 6918 103776 69 W 

7 302019 2233 6712 100673 67 Lg 

8 543635 4019 12081 181212 121 Hg 

9 362423 2679 8054 120808 81 Hg 

10 373895 2640 8309 124632 83 Hg 

11 673010 4752 14956 224337 150 W 

12 448673 3168 9971 149558 100 W 

13 416945 3112 9266 138982 93 Lg 

14 750501 5601 16678 250167 167 Hg 

15 500334 3734 11119 166778 111 Hg 

16 419868 3187 9331 139956 94 Lg 

17 755762 5736 16795 251921 168 Hg 

18 503842 3824 11197 167947 112 Hg 
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19 384422 3140 8543 128141 86 Lg 

20 691960 5652 15377 230653 154 Lg 

21 461307 3768 10251 153769 103 Hg 

22 385224 2993 8561 128408 86 Hg 

23 693402 5387 15409 231134 154 Hg 

24 462268 3591 10273 154089 103 Lg 

… …… …… …… …… …… …… 

… …… …… …… …… …… …… 

55 392486 2813 8722 130829 87 Hg 

*Due to confidentiality agreement, values of some data items are relatively modified in the case study.  

**Hg: high grade; Lg: low grade; W: waste.  

 

Solution representation of one MMPT instance  

The proposed MMPT methodology was coded in Visual C#.  After inputting the data of one 

MMPT instance from an Excel Workbook file and then running either of two solution 

approaches (either ILOG-CPLEX or the improved SBP algorithm), the MMPT timetable is 

obtained and saved to an output file into an Excel Workbook.  For instance, the solution 

representation of a 55-job 2-drill 2-MPU 5-excavator MMPT result (see Instance MMPT_47 

in Table 4) is shown in Figure 3-5, in which Figure 3 displays the timetable of all 55 mining 

jobs through drilling, blasting and excavating stages; Figure 4 shows the timetable of 30 

mining operations by Drill Unit 1 at drilling stage; Figure 5 shows the timetable of 10 mining 

operations by Excavator Unit 5 at excavating stage.  

 

 

Figure 3: Timetable of 55 jobs under one MMPT solution 
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Figure 4: Timetable of Drill Unit 1 under one MMPT solution 

 

 

Figure 5: Timetable of Excavator Unit 5 under one MMPT solution 

 

Solution analysis of small-size MMPT instances by CPLEX 

Table 3 presents the optimal results (except Instance MMPT_21) of small-size MMPT 

instances solved by ILOG-CPLEX.  In Table 3, the first column (Instance ID) indicates the 

index of each MMPT instance.  The second column (MMPT Problem Size) defines the 

problem size (e.g., number of mining job; number of drills at drilling stage; number of MPUs 

at blasting stage; number of excavators at excavating stage).  The third column (MMPT MIP 

Model Size) shows the complexity of MMPT MIP models for various instances (e.g., number 
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of variables; number of constraints; number of nodes in CPLEX modelling).  The last three 

columns respectively give the objective function value, the ILOG-CPLEX CPU time and 

solution status.  Note that for most of small-size MMPT instances, the solution status of 

ILOG-CPLEX is optimal.  For the last instance (i.e., MMPT-21) in Table 3, however, the 

CPLEX solution status is still feasible even after running over 3600 seconds with evaluation 

of over 10 million nodes.  Computational results in Table 3 validate that only small-size 

MMPT instances can be exactly solved by the MIP solver in a reasonable CPU time.   

 

Table 3: Computational results of small-size MMPT instances by CPLEX* 

            

*Exs: Excavators; Vars: Variables; Cons: Constraints.  

 

Solution analysis of large-size MMPT instances by SBP 

To evaluate the solution quality, a tight lower bound (LB) computed by the following 

equation is used in the third column (Lower Bound).   

Instance 

ID 

MMPT 

Problem Size 

MMPT 

MIP Model Size 

Objective 

Value 

CPU 

Time 

(s) 

Solution 

Status 

MMPT_1 5Jobs_2Drills_1MPUs_2Exs 141 Vars; 255 Cons; 111 Nodes 1745.41 0.219 Optimal 

MMPT_2 5Jobs_2Drills_1MPUs_3Exs 166 Vars; 275 Cons; 948 Nodes 1312.78 0.265 Optimal 

MMPT_3 5Jobs_2Drills_2MPUs_2Exs 166 Vars; 275 Cons; 123 Nodes 1709.03 0.203 Optimal 

MMPT_4 5Jobs_2Drills_2MPUs_3Exs 191 Vars; 295 Cons; 2423 Nodes 1271.18 0.203 Optimal 

MMPT_5 6Jobs_2Drills_1MPUs_2Exs 199 Vars; 372 Cons; 6735 Nodes 2160.63 1.123 Optimal 

MMPT_6 6Jobs_2Drills_1MPUs_3Exs 235 Vars; 402 Cons; 6190 Nodes 1531.69 1.077 Optimal 

MMPT_7 6Jobs_2Drills_2MPUs_2Exs 235 Vars; 402 Cons; 2447 Nodes 2136.05 0.375 Optimal 

MMPT_8 6Jobs_2Drills_2MPUs_3Exs 271 Vars; 432 Cons; 6587 Nodes 1474.15 1.076 Optimal 

MMPT_9 7Jobs_2Drills_1MPUs_2Exs 267 Vars; 511 Cons; 11809 Nodes 2537.71 2.808 Optimal 

MMPT_10 7Jobs_2Drills_1MPUs_3Exs 316 Vars; 553 Cons; 16906 Nodes 1765.15 2.528 Optimal 

MMPT_11 7Jobs_2Drills_2MPUs_2Exs 316 Vars; 553 Cons; 9395 Nodes 2530.98 3.229 Optimal 

MMPT_12 7Jobs_2Drills_2MPUs_3Exs 365 Vars; 595 Cons; 17004 Nodes 1743.79 2.902 Optimal 

MMPT_13 8Jobs_2Drills_1MPUs_2Exs 345 Vars; 672 Cons; 55393 Nodes 2921.68 15.880 Optimal 

MMPT_14 8Jobs_2Drills_1MPUs_3Exs 409 Vars; 728 Cons; 96339 Nodes 1998.30 13.167 Optimal 

MMPT_15 8Jobs_2Drills_2MPUs_2Exs 409 Vars; 728 Cons; 21392 Nodes 2920.05 10.561 Optimal 

MMPT_16 8Jobs_2Drills_2MPUs_3Exs 473 Vars; 784 Cons; 83695 Nodes 1963.09 11.654 Optimal 

MMPT_17 9Jobs_2Drills_1MPUs_2Exs 433 Vars; 855 Cons; 192341 Nodes 3355.12 105.192 Optimal 

MMPT_18 9Jobs_2Drills_1MPUs_3Exs 514 Vars; 927 Cons; 963948 Nodes 2246.87 168.216 Optimal 

MMPT_19 9Jobs_2Drills_2MPUs_2Exs 514 Vars; 927 Cons; 138463 Nodes 3338.78 67.814 Optimal 

MMPT_20 9Jobs_2Drills_2MPUs_3Exs 595 Vars; 999 Cons; 290322 Nodes 2222.70 54.975 Optimal 

MMPT_21 10Jobs_2Drills_2MPUs_3Exs 
731 Vars; 1240 Cons; 10012612 

Nodes 
2434.49 3600.052 Feasible 
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Computational results of 27 large-size MMPT instances (i.e., Instances MMPT_22 to 

MMPT_48) obtained by the improved SBP algorithm are presented in Table 4.   

 

Table 4: Computational results of large-size MMPT instances by SBP 

Instance 

ID 

MMPT 

Problem Size 

Lower 

Bound 

Objective 

Value 

CPU Time 

(s) 

Deviation 

(%) 

MMPT_22 15Jobs_2Drills_1MPUs_3Exs 3766.98 4048.97 0.093 6.96 

MMPT_23 15Jobs_2Drills_1MPUs_4Exs 2788.63 3084.39 0.089 9.59 

MMPT_24 15Jobs_2Drills_1MPUs_5Exs 2240.56 2679.31 0.065 16.38 

MMPT_25 20Jobs_2Drills_2MPUs_3Exs 4394.01 4631.55 0.215 5.13 

MMPT_26 20Jobs_2Drills_2MPUs_4Exs 3204.54 3401.87 0.225 5.80 

MMPT_27 20Jobs_2Drills_2MPUs_5Exs 2538.17 2819.58 0.185 9.98 

MMPT_28 25Jobs_2Drills_2MPUs_3Exs 4663.63 4858.23 0.282 4.01 

MMPT_29 25Jobs_2Drills_2MPUs_4Exs 3384.84 3613.93 0.281 6.34 

MMPT_30 25Jobs_2Drills_2MPUs_5Exs 2668.39 2950.23 0.286 9.55 

MMPT_31 30Jobs_2Drills_2MPUs_3Exs 5057.72 5435.36 0.432 6.95 

MMPT_32 30Jobs_2Drills_2MPUs_4Exs 3648.13 3947.69 0.412 7.59 

MMPT_33 30Jobs_2Drills_2MPUs_5Exs 2858.36 3321.36 0.415 13.94 

MMPT_34 35Jobs_2Drills_2MPUs_3Exs 5447.14 5910.02 0.731 7.83 

MMPT_35 35Jobs_2Drills_2MPUs_4Exs 3908.30 4390.31 0.735 10.98 

MMPT_36 35Jobs_2Drills_2MPUs_5Exs 3046.08 3451.97 0.736 11.76 

MMPT_37 40Jobs_2Drills_2MPUs_3Exs 5786.69 6180.21 1.209 6.37 

MMPT_38 40Jobs_2Drills_2MPUs_4Exs 4135.22 4629.67 1.189 10.68 

MMPT_39 40Jobs_2Drills_2MPUs_5Exs 3209.86 3588.94 1.184 10.56 

MMPT_40 45Jobs_2Drills_2MPUs_3Exs 6176.98 6646.90 1.235 7.07 

MMPT_41 45Jobs_2Drills_2MPUs_4Exs 4395.97 4929.96 2.216 10.83 

MMPT_42 45Jobs_2Drills_2MPUs_5Exs 3398.01 3853.75 2.212 11.83 

MMPT_43 50Jobs_2Drills_2MPUs_4Exs 4647.66 5219.69 2.313 10.96 

MMPT_44 50Jobs_2Drills_2MPUs_5Exs 3579.62 4133.86 3.309 13.41 

MMPT_45 50Jobs_2Drills_2MPUs_6Exs 3119.51 3532.44 3.328 11.69 

MMPT_46 55Jobs_2Drills_2MPUs_5Exs 3753.48 4361.50 3.306 13.94 

MMPT_47 55Jobs_2Drills_2MPUs_6Exs 3264.39 3744.44 3.318 12.82 

MMPT_48 55Jobs_2Drills_2MPUs_7Exs 2915.04 3305.12 3.311 11.80 

 

The average deviation away from lower bound values is less than 10%, implying that high-

quality MMPT solutions could be obtained in few seconds by the improved SBP algorithm.  
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Sensitivity analysis under different usages of equipment units 

Based on sensitivity analysis of MMPT results as shown in Figure 6, the proposed 

methodology is able to quantitatively evaluate the usage performance of equipment units at 

each stage and then identify the bottleneck stage.   

 

 

Figure 6: Sensitivity analysis of MMPT results under different usages of excavators 

 

In practice, knowing the availability and effectiveness of mining equipment units at each 

mining stage at all times is essential to running a smooth operation and reducing the cost of 

mining resources (i.e., mining equipment units and labours).  For example, comparing 

between Instances MMPT_40 (with 45 Mining Jobs; 2 Drills; 2 MPUs; 3 Excavators) and 

MMPT_42 (with 45 Mining Jobs; 2 Drills; 2 MPUs; 5 Excavators), if the number of 

excavators is increased from 3 to 5 while other input data remain the same, the makespan can 

be significantly reduced from 6646.90 to 3853.75.  Due to huge expenditure on mining 

equipment, the implementation of the proposed methodology would bring significant benefits 

to mining industry practitioners on optimal decision making about whether to further 

improve productivity by purchasing additional equipment units at the bottleneck stage or to 
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cut the operational cost by decreasing the number of redundant equipment units at some non-

bottleneck stages.  

 

Sensitivity analysis for identifying the bottleneck resource type 

In mine production systems, it is important to identify the bottleneck resource type.  The 

proposed MMPT methodology is able to determine the bottleneck resource type, as reflected 

in Step 3.5 of the proposed SBP algorithm.  For instance, the first bottleneck stage in a list of 

scheduled stages (denoted by     of this case study is the drilling stage.  Then, this means 

that the drill equipment for drilling operations is the most critical resource type.  After 

identifying the bottleneck resource, the efficiency of a short-term mine production timetable 

is able to be significantly improved if the number of resource units for the identified 

bottleneck stage is augmented.  Due to the importance of identifying bottleneck resource type, 

the MMPT methodology can be implemented as a useful decision-making tool for mining 

industry practitioners on decision making whether it is needed to purchase additional 

resource units to significantly improve production efficiency.  

 

 

5. Conclusion 

 

This paper presents a pioneering study to propose a multi-stage mine production timetabling 

problem to optimise drilling, blasting and excavating operations at the operational level. A 

generic MMPT problem is defined and formulated using mixed integer programming (MIP).  

Due to strong NP-hardness, the MMPT MIP model is intractable to be solved by exact MIP 

solver (e.g., ILOG-CPLEX) for large industry-scale instances.  Thus, based on an extended 

disjunctive graph, an improved SBP algorithm is developed to obtain the high-quality 

solution in an efficient and effective way.  The optimality performance of the proposed 

algorithm is evaluated by extensive computational experiments.  A real-world case study is 

presented for illustrating the implementation of the proposed MMPT methodology to iron ore 

mining industry.  A sensitivity analysis of MMPT results under different usages of mining 

equipment units as well as for identifying the bottleneck resource type is conducted to 

provide better decision making in mining implementation.   

 



 

23 

 

In practice, the availability of mining resources is essential due to huge expenditure.  For 

instance, a large excavator used in open-pit iron ore mining industry costs several millions.  

With the application of the proposed MMPT methodology, mining industry practitioners are 

able to algorithmically generate the near-optimal operational timetable of mining equipment 

units at various operational stages and to bring the following potential benefits in practice: 

 quantitatively evaluate the usage performance of mining equipment units at each 

stage, which is shown in Figure 6 by a sensitivity analysis of MMPT results under 

different usages of equipment units;  

 identify the bottleneck stage in terms of mining jobs versus mining equipment units at 

each stage, which is validated by a sensitivity analysis of MMPT results for 

identifying the bottleneck resource type; and 

 maximise the productivity of the whole mining process in an integrated way, which is 

achieved by the MMPT’s objective function of minimising the makespan.   

 

Therefore, the potential implementations of the proposed MMET methodology at a mine site 

include the rapid generation of the operational-level mine production timetable by the SBP 

algorithm; the intelligent decision making on the best number of mining equipment units; and 

the identification of the critical resource type at a bottleneck stage.   

 

Regarding future research directions, to extend the proposed methodology, more research 

works need to be conducted to investigate important uncertain characteristics such as 

equipment maintenance activities, arrivals of new mining tasks and unexpected breakdown 

events by the development of dynamic-version MMPT models.  Moreover, the proposed 

MMPT model will be integrated in a whole mine supply chain optimisation model for iron 

ore mining industry [47,48].  
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