
Profile-based Application Management
For Green Data Centres

A THESIS SUBMITTED TO

THE SCIENCE AND ENGINEERING FACULTY

OF QUEENSLAND UNIVERSITY OF TECHNOLOGY

IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Meera Vasudevan

School of Electrical Engineering and Computer Science

Science and Engineering Faculty

Queensland University of Technology

2016

Profile-based Application Management
For Green Data Centres

A THESIS SUBMITTED TO

THE SCIENCE AND ENGINEERING FACULTY

OF QUEENSLAND UNIVERSITY OF TECHNOLOGY

IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Meera Vasudevan
Supervisors: Prof. Yu-Chu Tian, Dr Maolin Tang and Prof. Erhan Kozan

School of Electrical Engineering and Computer Science

Science and Engineering Faculty

Queensland University of Technology

2016

ii

Copyright in Relation to This Thesis

c© Copyright 2016 by Meera Vasudevan. All rights reserved.

Statement of Original Authorship

The work contained in this thesis has not been previously submitted to meet requirements for an

award at this or any other higher education institution. To the best of my knowledge and belief,

the thesis contains no material previously published or written by another person except where

due reference is made.

Signature:

Date:

iii

11/08/2016

QUT Verified Signature

iv

To my family

v

vi

Abstract

Data Centres are essential to modern society, making the technologies we use everyday possible.

This has led to the proliferation of data centres around the world. The increasing number of

people and organizations using these data centres has resulted in rising energy consumption and

consequent increase in electricity bills and carbon footprint. As a result, research on “green”

initiatives that reduce energy consumption whilst maintaining performance levels of data centres

is pressing. Application management on virtualized data centres have become an important

technique for researchers due to its flexibility, ease of implementation and compatibility with

other data centre energy measures. However, inefficient application assignment to virtual ma-

chines (VMs) adversely affects the Quality of Service (QoS) such as resource utilization and

workload balance of data centres. Therefore, this research explores application management

methods for reducing energy consumption whilst maintaining performance-efficiency.

This thesis presents a profile-based application management framework for energy-efficient

(“green”) data centres. Profiles provide prior knowledge of the run-time characteristics of ap-

plications, VMs and servers. This is used to inform static and dynamic application assignment,

and consolidation of applications. Static application assignment to VMs assume perfect future

knowledge of workload, whereas dynamic application assignment to VMs consider real-time

variable workload. Consolidation strengthens profile-based application management framework

by assigning applications onto reduced number of active VMs.

The thesis first explores the concept and building of profiles such that future workload

can be predicted and assignments can be planned in advance. Next, a Repairing Genetic

Algorithm using profiles is developed for the implementation of static application assignment.

Then, a profile-based dynamic application assignment that handles real-time applications and

workload is developed. Finally, application consolidation is implemented by a Local Search

Optimization heuristic. The profile-based application assignment framework is integrated into

vii

a three-layer energy management system incorporating VM placement to derive actual energy

savings. Experiments are conducted to demonstrate the effectiveness of the proposed profile-

based application management framework.

viii

Keywords

Data Centre, Application Assignment, Virtual Machine, Energy Efficiency, Resource Schedul-

ing, Optimization, Evolutionary Algorithm, Genetic Algorithm, Static Assignment, Dynamic

Assignment, Consolidation

ix

x

Acknowledgments

PhD is and always will be the first amazing opportunity that I have embarked on towards a

brighter future. The journey has been tough at times and exciting at others. Through it all, I

have learned many things about my work and more importantly about myself. I am truly happy

to have had a chance to experience it. It would not have been possible without the people who

helped me along the way and will always be a part of my achievements. Firstly, I would like

to express my sincere thanks to my principal supervisor, Professor Glen Tian who gave me the

incredible opportunity to undertake my PhD and constantly provided invaluable guidance and

advice throughout my candidature. I would like to express my gratitude to associate supervisor,

Dr Maolin Tang for his valuable support and expert advice, especially on genetic algorithms. I

would also like to thank associate supervisor, Prof. Erhan Kozan for his patience, kindness and

guidance on mathematical optimizations and operations research. I would also like to extend

my thanks to my fellow graduate students in the Data Science department for their friendship

and support.

My heartfelt thanks to my beautiful family for the immeasurable love, immovable support

and patience shown to me. Dad, thank you for teaching me, supporting me in my endeavours

and being patient with me. Mom, words cannot express how much you mean to me. Thank

you for being the beautiful soul that you are. My beautiful sister, thank you for being my

best friend and bringing me brownies when I spent days writing this thesis. I would also like to

thank my grandmother and grandfather for their love and support. Grams, your funny anecdotes

brightened up even my darkest days. I love you all dearly and thank you for making my life

filled with joy and happiness.

xi

xii

Table of Contents

Abstract vii

Keywords ix

Acknowledgments xi

List of Figures xviii

List of Tables xx

1 Introduction 1

1.1 Research Background . 2

1.2 Statement of the Research Problem . 5

1.3 Research Significance and Motivation . 5

1.4 Main Contributions of this Research . 8

1.5 Thesis Organization . 10

1.6 Research Articles from PhD Research . 10

2 Literature Review 13

2.1 Data Centre Energy Optimization Strategies 14

2.1.1 Classification of Green Strategies . 15

2.1.2 Green IT Management Strategies . 17

2.2 Profiles in Energy-Aware Data Centres . 19

2.2.1 Application Assignment Models . 20

xiii

2.3 Static Application Assignment . 22

2.3.1 Static Resource Provisioning . 22

2.3.2 Evolutionary Algorithm based Assignment 25

2.4 Dynamic Application Management . 26

2.4.1 Dynamic Resource Provisioning . 27

2.4.2 Dynamic Application Scheduling and Assignment 28

2.5 Consolidation Strategies . 30

2.6 Technological Gaps and Motivation . 32

3 Profiling and Profile Building 37

3.1 The Concept of Profiles . 39

3.2 Profile Building . 41

3.2.1 Physical Machine Profiles . 41

3.2.2 Virtual Machine Profiles . 42

3.2.3 Application Profiles . 44

3.3 Formulation of Problem Elements . 46

3.4 Profile-based Application Assignment Model 50

3.5 Penalty-based Profile Matching Algorithm . 51

3.6 Experimental Studies . 53

3.6.1 Feasibility . 57

3.6.2 Scalability . 57

3.6.3 CPU Utilization Efficiency . 58

3.6.4 Energy Efficiency . 59

3.6.5 Further Discussions on Experimental Studies 63

3.7 Summary of the Chapter . 63

4 Repairing Genetic Algorithm 65

4.1 Static Assignment Problem Formulation . 66

xiv

4.2 Genetic Algorithm Case Studies . 69

4.3 Repairing Genetic Algorithm . 72

4.3.1 High-Level Description of RGA . 72

4.3.2 LCFP-Generated Initial Population 72

4.3.3 Infeasible-solution Repairing Procedure 76

4.4 Experimental Studies . 79

4.4.1 Scalability of RGA . 81

4.4.2 Energy Efficiency and Computing Efficiency 81

4.4.3 Quality of Solutions . 83

4.5 Summary of the Chapter . 85

5 Profile-based Dynamic Application Assignment 87

5.1 Dynamic Assignment Problem Formulation 88

5.1.1 Characterizing Application Dynamics 88

5.1.2 Characterizing Virtual Machine Dynamics 90

5.1.3 Formulation of Profile-based Dynamic Assignment 91

5.2 Profile-based Dynamic Application Management Framework 92

5.2.1 Dynamic Application Assignment . 93

5.2.2 Dealing with Infrequent Applications 94

5.3 Repairing Genetic Algorithm . 96

5.4 Experimental Studies . 98

5.4.1 Energy Efficiency . 99

5.4.2 Quality of Solutions . 101

5.5 Summary of the Chapter . 103

6 Application Consolidation 105

6.1 Consolidation Problem Formulation . 106

6.1.1 Formulation of Application Consolidation 107

xv

6.1.2 VM Placement . 108

6.2 Application Consolidation Procedure . 109

6.2.1 Local Search Optimization (LSO) . 109

6.2.2 Improved-Repairing Genetic Algorithm 110

6.2.3 Three-tiered Energy Management . 113

6.3 Experimental Studies . 113

6.3.1 Energy-Efficiency . 115

6.3.2 Quality of Solution . 117

6.4 Summary of the Chapter . 118

7 Conclusions and Recommendations 119

7.1 Summary of the Research . 119

7.2 Limitations and Future Recommendations . 122

Literature Cited 140

xvi

List of Figures

1.1 Three-layer data centre architecture. 4

1.2 Data Centre World Distribution . 6

1.3 Thesis Organization. 10

2.1 Analysis of data centre energy consumption 15

2.2 Analysis of problem size . 34

3.1 The behaviour pattern of physical server PH015. 43

3.2 Profile data structure of randomly chosen five VMs in interval 10.00-11.00. . . 44

3.3 Profile data structure of randomly chosen five applications. 46

3.4 Power consumption versus CPU utilization 50

3.5 Profile-based linear programming model. 52

3.6 Application assignment for Scenario 2 of Test Setup 1. 57

3.7 Average CPU utilization efficiency over 24 hours for Scenario 1 of Test Setup 1. 59

3.8 Energy consumption of a server using PPMA and HA. 60

3.9 Total energy consumption for Test Setup 1 scenarios. 60

3.10 Comparisons of execution time for General, Workload History and Profiling

approaches. 62

3.11 Comparisons of energy-efficiency for General, Workload History and Profiling

approaches. 62

4.1 Scalability of the Genetic Algorithm. 70

xvii

4.2 GA energy consumption and solution time for 30 configurations of each test

problem set. 70

4.3 Resource utilization efficiency of GA vs. Greedy. 71

4.4 Value encoding, uniform crossover using binary mask and mutation by selection

and exchange of two genes . 74

4.5 Data structure used in the Infeasible-solution Repairing Procedure. 77

4.6 Scalability of the Repairing Genetic Algorithm. 81

4.7 Resource utilisation efficiency of RGA vs. GA. 84

4.8 Makespan performance due to initial population. 85

5.1 Average energy consumptions over seven days for four strategies 100

5.2 VM resource utilization of static-RGA vs. dynamic-RGA. 101

5.3 Makespan of dynamic RGA. 102

5.4 Estimated finishing time performance. 103

6.1 Application Consolidation Process. 109

6.2 Three-tiered energy management. 113

6.3 Energy consumption of static-consolidated assignment. 116

6.4 Energy consumption of dynamic-consolidated assignment. 117

6.5 Average resource utilization of active VMs. 118

xviii

List of Tables

3.1 Description of notations used in Chapter 3. 38

3.2 Server performance detail report . 42

3.3 Two test setups with different scenarios for Chapter 3 experiments. 54

3.4 Comparisons of solution time of PPMA and HA 58

3.5 Average CPU utilization efficiency of PPMA vs. HA 58

3.6 Energy-efficiency and execution time from Test Setup 2. 61

3.7 Overview of general, workload history and profiling approaches 62

4.1 Description of notations used in Chapter 4. 66

4.2 Energy and solution time performance of GA vs. Greedy. 71

4.3 Parameter settings for applications and VMs. 79

4.4 Problem test sets for Chapter 4 experiments. 80

4.5 Energy-efficiency and computing efficiency of GA and RGA 82

4.6 T-test of the solutions by GA and RGA. 83

4.7 Comparisons of GA and RGA with regard to convergence. 84

5.1 Description of notations used in Chapter 5. 89

5.2 Genetic operator settings. 97

5.3 Daily energy consumption of the data centre: static-RGA vs. dynamic-RGA. . 101

6.1 Description of notations used in Chapter 6. 107

6.2 Problem test sets for static-consolidation experiments. 114

6.3 Energy consumption per active server for static-consolidated and static methods. 116

xix

xx

Chapter 1

Introduction

Data centres are critical computing infrastructures that have become essential to modern society

through services like cloud computing, big data and the Internet of Things. However, the

proliferation of data centres with inefficient application management results in high energy

consumption and carbon footprint [Dayarathna et al., 2016]. The cost associated with energy

consumption claims a large portion of the total operational costs of a data centre [Markets and

Markets, 2015]. However, implementation of green strategies is capable of reducing energy

consumption and cost by 40% [Whitney and Delforge, 2014]. This thesis develops a profile-

based application management framework for energy-efficient (“green”) data centres.

To achieve this objective, the methods of application assignment and Virtual Machines (VM)

placement in data centres play a significant role. Many research activities on energy-efficient

data centres have been focused more on VM placement and less on application assignment.

Existing technologies implemented in data centres do not consider the dynamic characteristics

of applications and VMs. Without such knowledge, assigning applications to VMs with energy-

efficiency degrades performance such as resource utilization. However, this can be improved

if we have prior knowledge of run-time characteristics of applications and VMs. Profiles will

serve this purpose. They capture the main characteristics of applications, VMs and servers over

a period of time and gives sufficient information to estimate and allocate resources. With such

knowledge, application assignment to VMs can be made more energy-efficient.

Therefore, this thesis explores a concept of using Profiles for energy- and performance-

efficient application assignment to Virtual Machines (VMs). First, building of profiles using

real data centre workload logs is outlined. Then, using profiles in a three-layer data centre

1

2 CHAPTER 1. INTRODUCTION

architecture to implement static and dynamic application assignment, and application consolida-

tion strategies are discussed. Profile-based static application assignment assumes perfect future

knowledge and is used to design a Repairing Genetic Algorithm (RGA). Profile-based dynamic

application assignment considers real-time applications and variable workload. Application

consolidation considers VM workload fluctuations and re-assigns applications to reduce the

number of active VMs. The three developed strategies form the complete solution to profile-

based application management and are evaluated to demonstrate actual energy savings. The

complete three-tiered profile-based assignment solution results in greener data centres with high

Quality of Service (QoS).

This Chapter is organized as follows. Section 1.1 discusses the research background. Sec-

tion 1.2 presents the statement of the research problem. The research significance and moti-

vation is discussed in Section 1.3. Section 1.4 states the contributions made during the course

of this PhD. The thesis organization and list of research articles derived from this research are

presented in Sections 1.4 and 1.6.

1.1 Research Background

The cloud computing era caters to a rapidly growing online population and the subsequent

explosion of data. This has revolutionized the Information and Communication Technology

(ICT) industry. As a result, modern economy relies heavily on data centre and cloud systems for

computing, storage and network services to name a few. Data centres are facing an escalation

of services related to high-powered technologies such as artificial intelligence, IPv6, Remote

Direct Memory Access (RDMA), virtualizations and cloud solutions. The proliferation of

data-intensive applications and high performance computing (HPC) has resulted in large-scale

deployment of data centres around the world with rapidly increasing number of connected file

servers, database servers, storage servers, network components, and power and cooling systems.

The everyday usage of data centres by the growing number of Internet users leads to massive

amounts of energy consumption [Delforge, 2014]. Consequently, exorbitant operation costs

and high carbon footprint in the form of carbon dioxide (CO2) emissions are inevitable. The

electricity consumed by data centres is predicted to rise from 7% to 12% of the global electricity

consumption by 2017 according to Corcoran and Andrae [2013]. Overall, data centres consume

1.1. RESEARCH BACKGROUND 3

1.1% to 1.5% of the world’s total electricity consumption [Koomey, 2011]. More than 35% of

the current data centre operational expenses are accounted for by energy consumption. This

figure is projected to double in a few years [Vaid, 2010]. Buyya et al. [2013] confirm that

energy costs of powering a data centre doubles every five years. The Natural Resources Defense

Council (NRDC) released a report disclosing that 91 billion kWh of electrical energy was

consumed by data centres in 2013. This statistic is projected to increase by 53% by year

2020 [Whitney and Delforge, 2014].

The necessity for green measures has become very real and emerging according to Rafiei

and Bakhshai [2012]. Up to 40% of energy savings can be realized on deployment of energy-

efficient measures [Whitney and Delforge, 2014]. Le et al. [2009] concluded that deploying

green initiatives at data centres decreases the carbon footprint by 35% at only 3% cost increase.

According to the Greenpeace report by Cook and Pomerantz [2015]; hyper-scale companies

like Apple, Google and Facebook lead the charge in deploying green solutions to reduce energy

consumption and carbon footprint. Many small- and medium-scale data centres deploy virtual-

ization, however most are wary about initiating energy-efficient strategies [Nunez, 2014]. This

is due to risks involving data reliability and overhead of re-booting switched-off servers. The

Green Grid, a global consortium by means of multiple alliances with international organizations

have been established for the express purpose of addressing the rising energy consumption of

data centres. One of its alliances is with the Japan Data Centre Council (JDCC), established

in 2008, with the main objective of identifying and undertaking measures to combat the ever

increasing energy consumption of data centres. The Green Grid Japan Data Centre Award

[The Green Grid, 2013] is effective in encouraging numerous businesses and organizations to

implement energy efficient measures to their data centres. The Carbon Reduction Commit-

ment (CRC) energy efficiency scheme introduced in the UK aims at spreading awareness of

the harmful effects of carbon emissions and induces British based companies to adopt green

management strategies. The CRC energy efficiency scheme aims at reducing carbon emissions

by 60% over the next four decades [CarbonZone, 2010].

Data centre energy consumption is composed of fixed and variable parts. The fixed energy

consumption part depends on physical resources such as servers, communication network el-

ements, cooling systems and power supply. The variable energy consumption part depends

on the IT side of data centres such as application, VM and server resource usage [Huang

and Masanet, 2015, Orgerie et al., 2014]. Green measures to reduce fixed energy involves

4 CHAPTER 1. INTRODUCTION

hardware implementations such as deployment of fuel cells and renewable energy to power

data centres. However, such measures require a large proportion of time and money from

installation, execution and maintenance budget perspectives [Binkley, 2016]. Moreover, the

larger part of the energy supplied is consumed by the IT side of data centres [Outlook, 2014].

Green measures to reduce variable energy involves software implementations such as energy-

efficient application management and energy-aware resource management [Beloglazov et al.,

2011]. Consequently, software implementations provide a more logical and economical solution

in terms of ease of implementation, maintenance and modification, and associated costs. Due to

its flexibility and economical nature, these software energy-efficient strategies can be used by a

wide spectrum of large, medium and small data centres [Costa-Requena et al., 2014, McFarlane,

2015].

Figure 1.1: Three-layer data centre architecture.

Software energy management in data centres can be implemented at three layers: appli-

cation, virtual machine (VM) and server or physical machine (PM), as shown in Figure 1.1.

Server resource usage, ON/OFF operations, sleep cycles, cooling and dynamic voltage fre-

quency scaling (DVFS) are dealt with in the PM Layer. The VM layer is responsible for VM

management, including VM placement, sizing and migration. The application layer assigns

incoming applications requested by cloud consumers or data centre users to VMs for execution.

Energy-efficient IT solutions such as virtualization, resource scheduling, server consolidation,

application management etc. are deployed in one or more of these layers.

This thesis focusses on reducing the variable energy consumption of data centres through

implementation of a three-layered profile-based application management framework. Profiles

provide prior knowledge of the run-time workload characteristics and can be created with low-

computation overhead using readily available data centre workload logs.

1.2. STATEMENT OF THE RESEARCH PROBLEM 5

1.2 Statement of the Research Problem

The research objective of this thesis is to develop a profile-based application management

framework for energy-efficient data centres. Assignment to virtual machine will maintain a

trade-off between energy consumption and Quality of Service (QoS). (The term assignment

refers to application assignment throughout this thesis, unless otherwise specified.)

To achieve the objective, the following questions have to be answered;

1. Profiling Problem: What is the most computationally-efficient method of building pro-

files?

2. Static Assignment Problem: How to make use of profiles for application assignment to

VMs?

3. Dynamic Assignment Problem: How to implement profile-based assignment for real-

time applications with dynamic workload?

4. Consolidation Problem: How to consolidate profile-based assignment such that some

VMs can be emptied and shut down?

1.3 Research Significance and Motivation

High energy consumption results in substantial operational, maintenance and cooling costs of

data centre components. Data centres provide computational, processing and storage services

to business, scientific and consumer domains. However, these services continue to increase on

a daily basis, overrunning the existing infrastructure capacity and surpassing the current energy

requirements [Gates, 2015]. This contributes to excessive heat discharge which leads to the

reduced lifetime of IT components thereby adversely affecting the reliability of data centres.

Another important factor that has researchers attempting to find energy-efficient solutions for

data centres is the increase in carbon emissions with potential impacts on climate change

[Whitehead et al., 2014].

This research targets widely deployed small- to medium-density data centres. Hyper-scale

large data centres run by Internet giants such as Microsoft, Google, Dell, Facebook etc. make

up for only 5% global data centre energy usage as seen from Figure 1.2. The remaining 95%

6 CHAPTER 1. INTRODUCTION

is attributed to small- and medium-scale data centres operated by thousands of businesses, uni-

versities and government agencies. These data centres distinctly lack energy-efficient initiatives

when compared to well-managed hyper-scale large data centres [Whitney and Delforge, 2014].

Nunez [2014] lists the reasons for small- and medium-scale data centre energy inefficiency:

1) companies unaware that data centre claims 30-50% of company electricity bill; 2) lack of

resource and expertise and 3) data reliability risk involved in switching-off servers and overhead

time of rebooting servers (sleep cycles).

Figure 1.2: Data Centre World Distribution [Delforge, 2014].

Currently, there is a widespread awareness on developing energy-efficient measures with si-

multaneous maximum performance efficiency and minimum energy consumption [Dayarathna

et al., 2016]. Zhao et al. [2016] observed that there is a rapidly increasing number of computing

and data-intensive applications. Such applications have variable resource requirements based

on user demands and submission times. As such, it is a difficult task to minimize the energy

consumption while preserving the Quality of Service (QoS) in resource utilization and workload

balance. In most cases, deployment of an energy-optimized solution invariably degrades the

performance efficiency in terms of inefficient application assignment, resource provisioning

and load balancing.

Our research is significant because it aims to resolve the major issue of energy inefficient

application management by using a concept of profiles. Profiles provide prior knowledge of the

run-time characteristics of the workload. They are implemented in the decision making stage

of application assignment to VMs. The profiling technique makes the best use of the available

VM resources and minimizes application waiting times in queues. Application arrival times

1.3. RESEARCH SIGNIFICANCE AND MOTIVATION 7

and resource requirements can be analysed, recorded and used in the next (future) instance of

application arrival to execute prompt assignment decisions.

The research problems (Section 1.2) addressed in this thesis play a significant role in the

daily operations of a data centre. As such the challenges arising from developing a profile-

based application management scheme motivate the research. The challenges of addressing

each of the research problems include:

1. Maintain a trade-off between energy-efficiency and performance;

2. Develop a scalable, energy- and performance-efficient framework for application assign-

ment to VMs;

3. Model a real-time service quantitatively as a dynamic application management scheme

using profiles; and

4. Consolidate applications without performance degradation whilst maintaining load bal-

ance.

The methodology chosen to implement profile-based assignment is a Genetic Algorithm

(GA) based heuristic. For a typical medium-scale data centre, we assume there are 2,000 VMs

and 5,000 applications. Exhaustive search for optimal application assignment to VM will take

approximately

VMsapplications = 20005000 = 1016500 compilations

If we assume each compilation takes 1 nanosecond, then time taken to perform exhaustive

search is

1016500 compilations = 3.3× 1016483 years

This is infeasible and confirms that application assignment to VM is an NP-hard problem with a

very large solution space. As such a heuristic-based algorithm is required to solve the problem

by reducing the solution space. This thesis uses a GA-based heuristic due to its ability to give

a feasible solution on termination of the algorithm at any time. For example there may be a

scenario where the assignment solution is required in a short amount of time (on interruption)

8 CHAPTER 1. INTRODUCTION

or another scenario where assignment solution is obtained on the natural (without interruption)

termination of the algorithm. GA is well suited to both these scenarios. The GA parameters

also enable control of the solution search space, avoids becoming trapped in a local optima and

converges towards a global optima [Bajpai and Kumar, 2010].

This thesis introduces the concept and building of profiles for application assignment to

VM. A profile-based application assignment framework that addresses all the challenges dis-

cussed above is presented. To the best of our knowledge, an application assignment strategy

built on profiles has not been found in the literature. Another factor distinguishing the work

presented in this thesis is the three-tiered energy management framework. The framework

incorporates profile-based application assignment method to a First-Fit Decreasing (FFD) based

VM placement policy. This provides a complete working solution to energy-efficient profile-

based application management under QoS constraints. The following chapters of this thesis will

discuss the methodology of profile-based application management in more detail.

1.4 Main Contributions of this Research

This thesis has made main contributions in four aspects in response to the four research prob-

lems. The contributions are:

Contribution 1 to the Profiling Problem: A systematic approach for profile building.

Profiles are used to predict future workload and plan application assignment to virtual machine

(VM) in advance of actual application arrival. Application, VM and server profiles are sim-

ulated for testing and later employ real data centre workload logs. Experimental evaluation

demonstrates that the profiling approach is 22% more energy-efficient than the commonly

used (benchmark) general and workload history approach to application management. Profiles

have previously been used for pattern recognition, performance and behavioural analysis of

scheduling strategies. However, to the best of our knowledge, profiles have yet to be used in the

decision making stage of application assignment to VMs.

Contribution 2 to the Static Assignment Problem: A profile-based static application

assignment framework. As the problem size of assigning applications to VMs is large, a

genetic algorithm (GA) based heuristic is required to solve the NP-hard constrained optimiza-

tion problem. The GA is modified to improve solutions by designing a Repairing Genetic

1.4. MAIN CONTRIBUTIONS OF THIS RESEARCH 9

Algorithm (RGA) to implement the profile-based static application assignment framework.

RGA has two main components: 1) Longest Cloudlet Fastest Processor (LCFP) generated

initial population for faster convergence and minimized VM makespan (completion time of

all applications on the VM); 2) Infeasible-solution Repairing Procedure (IRP) that convert

infeasible solutions that violate resource usage constraints to feasible solutions by re-assigning

applications from a violated VM host to other VMs until the violations are null and the solution

fitness is satisfactory. The RGA is implemented with the assumption of a known (relatively

consistent) workload. It is experimentally evaluated at various stages with other application

assignment algorithms and proves to be energy and resource efficient under the investigated

scenarios.

Contribution 3 to the Dynamic Assignment Problem: A profile-based dynamic appli-

cation assignment framework. The RGA is implemented with varying (dynamic) workload.

Future workload is predicted using profiles and application assignment to VMs are planned in

advance, such that real-time applications are dynamically assigned to VMs. The problem is

modelled after a real data centre and problem size is larger. Finishing time of applications are

estimated using profiles to satisfy application deadline constraints and minimize waiting time

to application assignment. The dynamic approach exhibits robustness by addressing infrequent

scenarios such as new/random applications or failed/deactivated VMs. Incorporating First-Fit

Decreasing (FFD) VM placement policy with profile-based dynamic application assignment

demonstrates actual energy savings.

Contribution 4 to the Consolidation Problem: A profile-based application assignment

consolidation approach. Consolidation requires the number of active VMs to be scaled down.

This is implemented through a local search optimization (LSO) heuristic that empties out and

shuts down under-utilized VMs by re-assigning applications to other VMs. This ensures VM

resource-efficiency, further reduces server energy and maintains workload balance. The con-

solidation approach completes the final solution of energy-efficient profile-based application

management in data centres of this thesis. Experimental analysis of the three-tiered energy

management system using profiles demonstrates significant energy savings.

10 CHAPTER 1. INTRODUCTION

1.5 Thesis Organization

The thesis is organized around our four research questions and their solutions as the main

contributions. It begins with this introductory Chapter. This is followed by a comprehensive

literature review in Chapter 2. Chapters 3 through 6 present our main contributions, each solves

a research question. Finally, Chapter 7 concludes the thesis and discusses future work.

The core chapters of this thesis are structured as seen in Figure 1.3. Chapter 3 solves the

Profiling Problem and discusses building of profiles as Contribution 1. The Static Assignment

Problem discussed in Chapter 4 develops a Repairing Genetic Algorithm as Contribution 2.

Chapter 5 solves the Dynamic Assignment Problem for real-time applications to make Contri-

bution 3. Contribution 4, application consolidation presented in Chapter 6 solves the Consoli-

dation Problem to form a final solution.

Figure 1.3: Thesis Organization.

1.6 Research Articles from PhD Research

Six research articles have been derived from the PhD research presented in this thesis. Two of

them are presented in top-tier conferences. Three are under review in three journals. And a

further one is in preparation. These articles are listed below:

1. Vasudevan, M., Tian, Y.-C., Tang, M. and Kozan, E. Profiling an application assignment

approach for green data centers. In Proceedings of the IEEE 40th Annual Conference of

the Industrial Electronics Society, IEEE, Dallas, TX, USA, Oct 29 - Nov 1, 2014, pages

1.6. RESEARCH ARTICLES FROM PHD RESEARCH 11

5400-5406. (ERA Rank: A)

Relevant to Chapter 3, address Profiling Problem to make Contribution 1.

2. Vasudevan, M., Tian, Y.-C., Tang, M., Kozan, E., and Gao, J. Using genetic algorithm

in profile-based assignment of applications to virtual machines for greener data centers.

In Proceedings of the 22nd International Conference on Neural Information Processing,

Part II, Lecture Notes in Computer Science, Springer International Publishing, Istanbul,

Turkey, Nov 9-12, 2015, pages 182-189. (CORE Rank: A)

Relevant to Chapter 4, address Static Assignment Problem to make Contribution 2.

3. Vasudevan, M., Tian, Y.-C., Tang, M. and Kozan, E. Profile-based application assignment

for greener and more energy-efficient data centers. Future Generation Computer Systems.

In Press, accepted on 30 June 2016 (ERA Rank: A)

Relevant to Chapter 3, address Profiling Problem to make Contribution 1.

4. Vasudevan, M., Tian, Y.-C., Tang, M., Kozan, E. and Zhang, X. Repairing genetic al-

gorithm for profile-based application assignment for greener data centers. Submitted to

journal, Applied Soft Computing.

Relevant to Chapter 4, address Static Assignment Problem to make Contribution 2.

5. Vasudevan, M., Tian, Y.-C., Tang, M. and Kozan, E. Profile-based dynamic application

assignment for greener data centers. Submitted to The Journal of Supercomputing.

Relevant to Chapter 5, address Dynamic Assignment Problem to make Contribution 3.

6. Vasudevan, M., Tian, Y.-C., Tang, M. and Kozan, E. Application consolidation of profile-

based application assignment for greener data centers. In preparation of submission to

journal.

Relevant to Chapter 6, address Consolidation Problem to make Contribution 4.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

Currently, energy-efficiency is one of the most important issues in data centre management

[Maza, 2016]. Traditionally, the evolution of computing systems is marked by enhancement

of performance as per consumer demands. However, the Internet Age, has brought forward

a more pressing concern in the form of rising energy consumption, electricity costs and CO2

footprints. The work conducted in this research targets energy optimization of data centres.

This Chapter classifies and analyses the energy-efficient data centre approaches designed to

date. The Chapter concludes with a discussion on the research motivations following technical

gaps in the reviewed literature.

Data centres and cloud systems have become essential to modern society. They cater to the

explosive growth of connected users and networked devices. The unstable growth in data is due

to the proliferation of smart devices, IoT, big data, social media, high performance computing

and data intensive applications [TechNavio, 2015]. According to Evans [2011], there are more

internet connected devices than people on the Earth. The Internet of Things (IoT) is currently

marked at 22.9 billion connected devices as of year 2016. It is predicted to expand close to 50.1

billion connected devices by year 2020 [Statista, 2016].

Numerous research works have been conducted on developing energy-efficient measures for

data centres. According to Beloglazov et al. [2011], significant changes in energy consumption

can be effected by hardware efficiency, energy-aware resource management and efficiency of

applications. Bashroush et al. [2016] further claims that software architects have been faced

with challenges regarding energy-efficient design decisions that compromise user experience,

reliability and performance. This issue is more serious when considering large-scale distributed

13

14 CHAPTER 2. LITERATURE REVIEW

systems such as data centres.

To address this challenge, this thesis introduces the concept of utilizing profiles, which

provide prior knowledge of the run-time characteristics of the workload, as an energy- and

performance-efficient application management approach. The primary goal of this research is

to design a profile-based application management framework. A Repairing Genetic Algorithm

(RGA) is designed towards this objective. The RGA is incorporated with a three-tiered energy

management system to implement three strategies: static assignment, dynamic assignment and

application consolidation.

This Chapter reviews energy optimization strategies that are directly related to our research.

The following literature have been instrumental in developing our research theory and method-

ology. It is organized as follows. Section 2.1 discusses general energy optimization strategies

in data centre. Each of the following sections review literature directly related to the four

Research Problems discussed in Section 1.2 of Chapter 1. Section 2.2 addresses the Profiling

Problem and presents works using profiles for behavioural or performance analysis. Section

2.3 and Section 2.4 addresses the Static and Dynamic Assignment Problem respectively and

reviews static and dynamic energy-efficient application assignment techniques. Section 2.5

addresses the Consolidation Problem and discusses related works. The Chapter is concluded

with a discussion on the research motivations in Section 2.6.

2.1 Data Centre Energy Optimization Strategies

A data centre is composed of IT equipment such as servers, storage hardware, routers, switches,

racks and cables, and lighting, air movement, power and cooling infrastructure [Data Center

Huddle, 2016]. Figure 2.1 presents the approximate energy distribution amongst the data centre

components and further energy distribution of the data centre IT equipments [Barroso et al.,

2013, Melis, 2013]. The IT equipment draws half the energy (50%) required to power and

maintain a data centre. As a result, research and development on the energy optimization of

data centres focus on minimizing the energy draw of IT equipment. The servers draw the

majority of the IT energy consumption through CPU (42%), memory (12%) and disk storage

(14%). Therefore, energy-efficient strategies through server or virtual machine (VM) resource

2.1. DATA CENTRE ENERGY OPTIMIZATION STRATEGIES 15

allocation is a popular research field. Other areas of research into energy-efficient data cen-

tres include utilization of renewable energy, virtualization, cloud computing and management

strategies. Each of these strategies is briefly discussed below.

Figure 2.1: Analysis of data centre energy consumption [Melis, 2013] and energy distribution
of IT equipment [Barroso et al., 2013].

2.1.1 Classification of Green Strategies

Renewable Energy. The optimum use of renewable energy is an ongoing research problem.

The variability of such energy makes it a challenge to be used in place of uninterruptable power

supply (UPS). Many multinational companies aim to significantly reduce energy consumption

and carbon emissions by using renewable energy as an alternate power source. British Telecom-

munications Plc. utilize wind farm generated energy to successfully reduce carbon emissions

by 80% [RE100, 2016]. All of Apple’s data centres are powered by 100% renewable energy

such as solar power [Apple, 2016]. Both Google [2016] and Facebook [2016] currently runs on

35% renewable energy individually. They aim to follow Apple’s example of a fully renewable

energy powered data centre by addressing challenges associated with massive data operations.

Virtualization. One of the most energy-efficient and cost-effective methods for data centre

consolidation is virtualization [Bohrer et al., 2002]. This technology is necessitated by appli-

cations utilizing only a fraction between 11% and 50% of the server resources. This leaves

the remaining resources redundant. The concept of virtualization is to divide a single physical

component such as a server into one or more VMs. The VMs share the server resources between

16 CHAPTER 2. LITERATURE REVIEW

them. Therefore, virtualization does not require additional hardware. It also simplifies server

management and augments efficient resource utilization. Virtualization allows for either regular

or live migration of VMs in order to satisfy the load balancing policy (workload distributed

optimally across servers) and to ensure maximum resource utilization. Even though the virtu-

alization technology has been around for many years, it is only now that its importance to the

environment is becoming clear. Pretorius et al. [2010] conducted a critical comparison between

physical server data centre infrastructure and virtualized data centre infrastructure. Both the

infrastructures are modelled and analysed in terms of carbon emissions and energy savings.

The results clearly demonstrate that virtualization can reduce the carbon emissions by 30%.

Cloud Computing. The service of renting out data centre resources to users around the world

is known as cloud computing. The services rented out include websites, social media, applica-

tions and storage. Major companies like Google, IBM, Amazon and Facebook individually own

data centres to support their applications, resources, memory and file storage. A Service Level

Agreement (SLA) is created based on user requirements. The cloud providers must adhere to

this in order to provide their customers with reliable and efficient services. Cloud computing is

one of the most innovative technologies that can efficiently share data centre resources amongst

multiple users. It controls the need for more physical server installations at data centres, thereby

restraining higher energy consumption.

Management Strategies. Management strategies include assignment and scheduling strate-

gies applied to applications, VMs and resource. (In the reviewed literature the term task can

be applied to application.) Assignment strategies involve assigning applications to data centre

resources. Some of the factors considered in assignment schemes include application runtime,

server workloads, resource requirements or availability, energy consumption and performance

efficiency. Resource provisioning amongst VMs must be carried out in such a way that the

performance level must be maintained while minimizing the energy consumption [Hwang and

Pedram, 2016, Sun et al., 2015]. Dynamic scheduling can be classified as real-time scheduling

and batch scheduling [Hao and Liu, 2015, Mathew et al., 2014]. In real-time scheduling,

applications are allocated to servers as soon as they arrive. Minimum Completion Time (MCT)

[Santos et al., 2014], Minimum Execution Time (MET) [Kim et al., 2014] heuristics, Switching

Algorithm (SA) heuristics and k-percent best (KPB) heuristics are some real-time scheduling

heuristics. Batch scheduling involves collection of applications which is then assigned to servers

at particular intervals of time. Some examples of batch scheduling heuristics are Min-Min

2.1. DATA CENTRE ENERGY OPTIMIZATION STRATEGIES 17

heuristics, Max-Min heuristics and sufferage heuristics.

2.1.2 Green IT Management Strategies

Popular energy-efficient data centre management strategies include task scheduling, workload

prediction and application assignment. As such, a brief discussion on the work done in task

scheduling and workload prediction methods are given below. The rest of this Chapter delves

further into the work on energy-efficient application assignment to date.

Efficient scheduling of tasks or applications in computing systems ensures processing of

service requests within deadlines. Li et al. [2012b] consider a cyber physical system made

up of multiple wireless sensor networks (WSN). A polynomial three phase task scheduling

heuristic called HTPTS is implemented. In phase one the application deadline is divided into

sub-deadlines pertaining to the various tasks that make up the application. Phase two is an

adaptive task graph partitioning algorithm that allocates tasks to WSNs with the objectives

of minimizing energy consumption and maintaining workload balance. The third phase is a

scheduling algorithm to support the objectives of phase two. A common constrain in scheduling

heuristics such as this, is that application deadlines are unknown prior to execution. In our

project, the profiles enable awareness of application deadlines prior to assigning them to VMs.

An optimal application assignment accounts for variations in application resource demands

due to unforeseen events. These events include suspended tasks, high workload conditions or

change in system demands. Some papers [Campbell et al., 2008, Huang et al., 2011, Kontogian-

nis, 2005] have developed adaptive application assignment strategies for real-time demands. In

[Huang et al., 2011], the authors design an initial task schedule which adapts to new system

conditions or task demands through online periodic adjustments. This technique not only con-

tributes to the lifetime reliability improvement but also minimizes energy consumption. Another

technique uses Coloured Petrie Nets for adapting the task model to varying task demands

[Kontogiannis, 2005]. The simulation tool examines the effect of task demands, workload

variations and work organization schemes on system operation and human reliability. This

in turn helps in identifying different permutations of task and workload assignment. Campbell

et al. [2008] present an adaptive task allocation procedure. This method uses system history

to make non-greedy task assignments. In other words, a host node will have the freedom to

choose not to host a particular task if it is deemed not suitable by certain standards pertaining

18 CHAPTER 2. LITERATURE REVIEW

to individual host nodes.

There are many techniques for predicting the workload of a CPU. Some of the popular

methods are adaptive filtering [Sinha and Chandrakasan, 2001] and Kalman filtering [Bang

et al., 2009]. Hong et al. [2012] presents a linear prediction model to predict the workload of

WSN. Initially, the queued tasks are scheduled for deployment at the microprocessor. Once the

task arrives at the processor nodes, the CPU workload is computed over a specified observation

frame. This CPU workload data for individual tasks are used to build a workload history. The

workload history is then used to estimate the future workload. On the basis of this predicted

workload estimate, Dynamic Voltage Scaling (DVS) is applied to the microprocessor to adjust

its current workload. This cycle is similar to that of a feedback control loop.

Nagothu et al. [2010] claims that up to 80% of the energy reductions in cloud computing

can be achieved with the help of adaptive workload prediction and optimal task allocation.

Future workload prediction using advanced signal processing analysis enables identification

of unloaded microprocessors. These processors are then placed in low power sleep modes to

conserve energy. Doulamis et al. [2004] implements workload prediction employing both fuzzy

classification and neural network model to increase prediction accuracy whereas, Yang et al.

[2005] implements dynamic prediction using a self-adaptive load prediction model and mobile

agent technology.

Workload prediction for task allocation can be improved through modification of standard

heuristics like Min-Min. Xiao et al. [2009] proposes prediction based Min-Min heuristic (P-

MinMin) derived from the Min-Min heuristic and the application of latency prediction. A

weighting parameter determines the optimal task allocation solution by maintaining a trade-

off between latency and energy consumption. The efficiency of the heuristic is determined with

the help of Deadline Missing Ratio (DMR), which is the ratio between the number of simulation

runs with latency exceeding their deadlines to the total number of simulation runs. According

to the simulation results, the DMR of P-MinMin is lower and therefore more efficient than that

of the Min-Min heuristic.

In the papers discussed above, workload prediction is carried out on the basis of historical

workload data. This technique can be improved by using application, VM and server profiles

for building a more stable and reliable log of resource demands and availability as demon-

strated in the following chapters of this thesis. Incoming applications can be anticipated using

2.2. PROFILES IN ENERGY-AWARE DATA CENTRES 19

prior knowledge of application submission times in profiles. This facilitates faster energy and

performance aware assignment decisions.

2.2 Profiles in Energy-Aware Data Centres

Profiles have been used as a means of performance and behavioural analysis in data centre

management. Some of the most prominent work in energy-aware data centre strategies using

profiles are discussed below. In our research, profiles provide prior knowledge of the run-time

characteristics of the data centre workload.

Static profiling technique is discussed in [Mars et al., 2011, 2012] for prediction of per-

formance degradation in relation to multiple application assignment to a single machine. The

method of Bubble-Up and Bubble-Flux [Yang et al., 2013] is developed to accurately predict

the performance degradation incurred on allocating multiple workloads to servers for maxi-

mum utilization. Bubble-Up maintains a trade-off between machine utilization and Quality-of-

Service (QoS) degradation by setting a degradation threshold for each application. However,

it has limitations such as the requirement of workload knowledge, prediction inflexibility in

terms of load changes, and the incapability of predicting more than two co-running applications.

Those limitations are overcome with the Bubble-Flux management strategy. The Bubble-Flux

accurately manages the QoS to provide maximum utilization of servers. Servers are monitored

to observe shared resource fluctuations in real-time to predict the effect on the QoS of latency-

sensitive applications.

Profiles are used to study a number of variables such as energy consumption and workload

of data centres and cloud systems. Rethinagiri et al. [2015], developed ParaDIME, Parallel

Distributed Infrastructure for Minimization of Energy for data centres. This work included

power infrastructure and computing measures addressed at the software and hardware levels of

a data centre. Static energy profiles are used to indicate applications that can be run in low

energy mode. Subsequently, such applications are allocated low-performance VMs and limited

parallelization. Chen et al. [2013] profiled energy consumption with respect to computation,

data and communication intensive tasks to build an energy consumption model. The work is

extended in [Chen et al., 2014a] to present StressCloud for profiling the energy consumption

and performance of cloud systems. The tool successfully profiled varying task workloads and

20 CHAPTER 2. LITERATURE REVIEW

resource allocation. Chen et al. [2014b] uses online profiling to collect workload information of

tasks. A workload-aware frequency adjuster tunes the core frequencies using this information.

The tasks are allocated to the cores by the preference-based scheduler. This method uses profiles

to adjust frequencies prior to allocation. However, in our method, the profiles are directly used

to make actual allocation decisions.

Varying resource demands are commonly dealt with by migrating VMs. However, Do

et al. [2011] investigate the relationship between resource demands and application performance

metrics. They present an application profiling technique using Canonical Correlation Analysis

(CCA) method. The CCA analyses the performance efficiency of the applications in term of

their resource usage and builds application profiles. These profiles are then used to build a

performance prediction model. In [Baxter and Patel, 1992], the authors propose an application

migration algorithm based on the profiles created from the dynamic behaviour of the static

application allocation. These profiles are then used to determine the migration destination of

the applications. Similarly, our profile-based method implements a solution repairing and ap-

plication consolidation procedure that enables performance-efficient migration of applications.

The above works have made use of profiling for analysis of energy consumption and work-

load in data centres and cloud systems. However, to the best of our knowledge, profiling as a

decision making method for the assignment of applications to VMs has not been found in the

literature.

2.2.1 Application Assignment Models

Various mathematical optimization methods have been developed for modelling application

assignment. Implementing an energy aware application management framework begins with

building an optimization model. Many papers employ mathematical optimization techniques

such as linear programming and non-linear programming for application assignment. Some of

the most relevant papers to this research is reviewed here.

One of the optimization priorities, commonly approached by researchers is the assignment

of deadline-driven applications. To accurately surmise the feasibility region of applications with

deadlines involves complex calculations. Zeng and Di Natale [2013] approximate the feasibility

region and employs mixed integer linear programming method to identify sub-optimal solutions

for application assignment. Oxley et al. [2015] models the execution times of applications using

2.2. PROFILES IN ENERGY-AWARE DATA CENTRES 21

Gaussian distribution. This is used to calculate the probability of a deadline violation which

is used as a constraint for resource allocation. Hatime et al. [2013] uses branch and bound

deadline-driven allocation solution through two techniques: best-node and depth-first. The

best-node technique executes search level by level from top to bottom. Whereas, the depth-first

technique executes search branch by branch moving towards the bottom most node. This thesis

uses profiles with prior knowledge of application deadlines, recorded from previous instances,

to address deadline constraints. This avoids complex calculations.

Prompt execution of tasks or applications is crucial to the performance of a scheduling

algorithm. Liu et al. [2012] proposes an integer programming optimization model for task

scheduling with energy consumption and task execution time as problem constraints similar to

[Fanti et al., 2012], where a distributed algorithm aimed at minimizing task allocation costs is

presented. A trust model based task scheduling algorithm is proposed by Xu and Qu [2011],

that not only considers the transmission time of the data files but also the trust level of data file

host nodes. The Min-Min task scheduling algorithm is specifically designed for data intensive

tasks. Data intensive tasks require more than one data file stored in various nodes, which may

need to be accessed simultaneously for the successful execution of the task. The algorithm aims

to overcome the high probability of data loss and error usually associated with data intensive

tasks. However, it compromises on the task execution time. The work done in this thesis will

estimate the execution time of applications to ensure successful execution of tasks.

The application of a statistically based task allocation model in a dynamic computing system

environment is a viable approach. Singh and Kumar [2014] propose HABACO, a hybrid

optimization algorithm combining ant colony and artificial bee optimization heuristics. The

algorithm maintains server workload balance by live migration of VMs and applications. As

live migration of VMs acquires overhead for transferring memory/instructions and risks crash-

ing applications, Benbrahim et al. [2014] proposes a dynamic resource allocation model with

reduced VM migrations. From reviewing the above papers, adaption of a task model according

to real-time parameter variations can be improved by building dynamic profiles which updates

periodically. Also, workload balance can be maintained by application consolidation which

migrates applications from one VM to another instead of live migration of VMs.

22 CHAPTER 2. LITERATURE REVIEW

2.3 Static Application Assignment

Application assignment involves assigning computing tasks or applications to data centre re-

sources such as CPU and memory. The factors considered in assignment schemes include ap-

plication runtime, server workload, resource requirements or availability, energy consumption

and performance efficiency. Thus, a key issue is how to formulate and solve the application

assignment problem subject to various constraints.

Early attempts to discuss the classical assignment problem include [Ewashko and Dudding,

1971, Machol, 1970, Votaw and Orden, 1952] and [Lo, 1988]. The most common approach used

to solving these problems is to model the problem in linear programming and then solve the

problem with the Hungarian algorithm [Kuhn, 1955]. However, the Hungarian algorithm does

not perform well with large/increasing data sets or problem size i.e. it has low scalability. Thus

Hungarian algorithm is not suitable for large-scale application assignment problems as those in

modern data centres. Later, the authors of [Caron et al., 1999] discuss the assignment problem

of nurses qualified to carry out jobs in different units of a hospital with the side constraints

of seniority and job priority. They took into consideration absentee staff and unexpected work

overload. Since then, object-oriented assignment solutions has been applied to a number of real-

world problems including data centre application management. Some works on applications

resource provisioning and the use of evolutionary algorithms in assignment are discussed below.

2.3.1 Static Resource Provisioning

Resource provisioning ensures VM workload balance and allows switching-off machines to

reduce energy consumption. The EnergyFarm manager designed by Ricciardi et al. [2011]

switches off computational resources at periods of low workloads determined by a service-

demand matching algorithm and server job aggregation capabilities to maintain system perfor-

mance efficiency. This data centre energy manager is developed on the concept of an emergency

shutdown software, like PowerFarm developed by Doria et al. [2010] in case of power loss,

fire, flood or any natural disasters, which is inherent in every data centre. EnergyFarm data

centre manager is developed by modifying the PowerFarm software such that server workloads

and energy consumption are monitored by the manager in order to turn off idle servers. The

EnergyFarm manager achieves considerable resource allocation efficiency amid 20% to 68%.

2.3. STATIC APPLICATION ASSIGNMENT 23

A similar application and platform aware resource allocation framework for consolidated server

systems is proposed by Tembey et al. [2014]. The framework targeted multicore platforms and

scale-up server systems. Song et al. [2014a] used online bin packing for resource provisioning

while reducing number of servers and meeting application demands.

A popular method of provisioning resources involve prioritizing applications. High priority

applications, whose successful execution is more important than that of the low priority appli-

cations, are given first choice of resources. Some papers like [Song et al., 2008, 2009] have

proposed the concept of ensuring high performance of critical applications by compromising

on the performance of low priority applications when there is a high demand for resources at a

given time. Song et al. [2009] proposes a multi-tiered resource scheduling scheme consisting

of three schedulers, each at the application, local and global levels. The application level

scheduler assigns applications to VMs. The local level scheduler, [Song et al., 2008] monitors

the application priority levels and the resource utilization levels in order to control the resource

distribution amongst VMs. The global level scheduler acts as a controller that monitors the

overall VM resource flow. Although the scheme improves the overall QoS of the system, the

main constraint is that each of the applications have a pre-defined priority.

Weights can be used to set priorities for applications prior to resource allocation. Ergu

et al. [2013] proposes a rank-based task resource allocation model. The model weights tasks

according to a reciprocal pairwise comparison matrix and the analytical hierarchy process.

Sheikh and Khan [2005] generates timetables on a daily basis such that the resource allocation

of teachers to courses is optimal. This allows the best available teachers to teach their relevant

courses in the most optimal time slot. The authors use weighting based on the priority of courses

chosen by teachers to determine objective values. The problem that is addressed in this paper

is similar to our own research where the applications are assigned to the most suitable VMs.

Weighting, which is in the form of an energy cost matrix, derived from analysing both the

profiles of applications and VMs to minimize the objective function is used. In other words, the

weighting will ensure that only the best possible assignment will take place.

Application runtime is a performance metric in determining the efficiency of a resource

provisioning framework. In order to increase resource efficiency, Chiang and Huang [2011]

uses Task and Resource Allocation CONtrol (TRACON) framework. The TRACON framework

comprises of three important aspects; the interference prediction model, the interference aware

24 CHAPTER 2. LITERATURE REVIEW

scheduler and the task and resource monitor. Here, the interference term refers to the change in

runtime and performance. The authors claim that TRACON achieves upto 50% improvement

in application runtime. A different method using a speed scaling model for resource efficiency

is proposed by Han and Cai [2013]. The model deploys applications to resources based on

cooperative game theory.

Many existing resource provisioning solutions are deadline-driven and considers execution

times to increase resource computational efficiency [Calheiros and Buyya, 2014, den Bossche

et al., 2013, Moens et al., 2013]. Panda and Jana [2015] presents three task scheduling algo-

rithms, each focused independently on completion time, median execution time and makespan

for heterogeneous multi-cloud systems. Bhoi and Ramanuj [2013] develops an enhanced max-

min application scheduling algorithm for cloud systems. The algorithm is contingent on the

expected execution time rather than the more common runtime as a selection criteria. Fahim

et al. [2014] estimates the finish time of tasks prior to allocation to VMs. The allocation

objectives include minimizing the degree of imbalance of VMs and load balancing. In this

thesis, we use a similar approach to estimate finish time of applications using profiles in order

to satisfy deadline constraints whilst minimising energy consumption.

An issue with load-balanced resource allocation is the variation of runtime parameters

that easily disrupts the initial optimal allocation. This renders the performance of the system

unimpressive. Gertphol et al. [2002] overcome the need for dynamic reallocations in such

scenarios by using a performance metric called Maximum Allowable Increase in Load (MAIL).

The MAIL metric refers to the effectiveness of a resource allocation. This allows the resource

allocation with the highest MAIL value to be carried out. Pahlavan et al. [2012] employs a

variation aware chassis consolidation method for application assignment. According to the

performance results, this approach minimizes the energy consumption of the data centre by

addressing process variation through variability analysis of application assignment and chassis

consolidation.

Other popular methods for resource provisioning include machine learning and resource

allocation heuristics. Machine learning technology as a resource allocation method is effective

in handling varying workload [Berral et al., 2011, Grehant and Demeure, 2009]. Yuan et al.

[2012] makes use of the N:1 mapping visualization technology and reinforcement learning to

propose an energy efficient scheduling algorithm that has been proven to minimize the energy

2.3. STATIC APPLICATION ASSIGNMENT 25

consumption of energy unaware data centres by 40% along with maximising the resource

utilization. Energy-aware management of data centres for cloud computing is also investigated

through heuristic resource allocation [Beloglazov et al., 2012]. León and Navarro [2013] builds

a quantitative model to describe the problem of minimizing energy consumption for resource

allocation in data centres. All the above studies utilize different methods to achieve energy

savings, but none of them use the profiling concept on which our work in this thesis is based.

One of the technological gaps apparent while reviewing these papers is that estimating VM

resource availability at different time periods has not been considered. Discerning the resource

availability of a VM facilitates best possible assignment decisions. Accordingly, we build VM

profiles that contain resource data at different time periods which is then used in assignment

decisions.

2.3.2 Evolutionary Algorithm based Assignment

Implementation of evolutionary algorithms for application management is one of the most

energy-efficient techniques to maintain a trade-off between energy consumption and perfor-

mance [Kessaci et al., 2011]. Evolutionary algorithms such as genetic algorithm (GA) have

been successfully applied for application scheduling and resource provisioning in data centres

and cloud computing [Guzek et al., 2014].

Application scheduling in data centres is generally NP-complete. The main advantage of

using GA for NP-complete allocation problems is to allow faster convergence to a global optima

by searching the solution space in multiple directions [Bajpai and Kumar, 2010]. Wang et al.

[2014] presents a multi-objective bi-level programming model based on MapReduce for appli-

cation scheduling. The model considers server energy-performance association and network

to adjust job locality. Solutions are derived using GA enhanced with newly designed encod-

ing/decoding and local search operation. Pop et al. [2015] propose a reputation guided genetic

scheduling algorithm for autonomous tasks inter-clouds environment. Sindhu and Mukherjee

[2013] tests a GA-based application and VM scheduler for cloud systems with various initial

populations generated from heuristics. Among various methods, the Longest Cloudlet Fastest

Processor (LCFP) is shown to be the most efficient when considering a large number of pro-

cessing nodes. Therefore, LCFP is incorporated into our designed Repairing Genetic Algorithm

(RGA) for application assignment to VMs.

26 CHAPTER 2. LITERATURE REVIEW

Resource provisioning using evolutionary algorithm allows for multiple objectives such

as energy consumption, performance and scalability. Tao et al. [2014] uses a Pareto-front

and solution-based hybrid GA for energy-efficient resource allocation in cloud systems. The

model utilizes the crossover operator for multiple genes and a case library for initializations

by identifying case similarities. The concept of case library is similar to that of profiles.

While a case library considers only allocation information, profiles are more adaptable by

considering individual component information. Sharma and Reddy [2015] combine dynamic

voltage frequency scaling, bin packing and genetic algorithm to propose a hybrid energy-

efficient approach for resource provisioning. An energy-efficient resource allocation approach

using an open source GA framework called jMetal is designed by Portaluri et al. [2014]. The

allocation objectives include optimizing task completion times whilst satisfying computational

and networking task requirements. The method ensures scalability and performance efficiency

for a large number of tasks. Our research uses application and VM profiles to solve a penalty-

based GA for large problem sizes without compromising performance efficiency such as re-

source utilization efficiency.

It is worth mentioning that GA has also been used to solve VM placement problems,

which have been proven to be NP-complete. Wu et al. [2012] minimise the energy con-

sumption of servers and the communication network within the data centres using GA-based

VM placement. The work is extended in [Tang and Pan, 2015] to significantly improve the

energy and performance efficiency with an enhanced hybrid GA. A similar method of using

a GA-based repairing heuristic algorithm for workflow scheduling in cloud systems is also

discussed by Ghorbannia Delavar and Aryan [2014]. Considering the application management

layer, our work in this thesis also develops an infeasible-solution repairing procedure and then

incorporates the procedure distinctively into application assignment to VMs.

2.4 Dynamic Application Management

Dynamic application management schemes handle real-time workload and dynamically assign

applications to resources or processors. This thesis implements dynamic application manage-

ment by developing a Repairing Genetic Algorithm (RGA). Many dynamic schemes implement

various methods for energy saving. Some works on the methods of dynamic resource provision-

ing, application scheduling and assignment are discussed below.

2.4. DYNAMIC APPLICATION MANAGEMENT 27

2.4.1 Dynamic Resource Provisioning

Prediction is a popular method of handling workload variation. Dynamic workload can be

characterized by varying resource demands of incoming applications. Nguyen et al. [2013]

addresses this issue with an elastic distributed resource scaling framework called AGILE. It is

capable of handling dynamic workloads with minimum penalty in terms of resource constraints

incurred. It uses online profiling to model the constraint violation rate and carry out wavelet-

based prediction of resource demands. It further employs this prediction to handle variations

in workloads. In comparison with online profiling, offline profiling is used in an overdriver

framework to analyse the memory overload probability of VMs [Williams et al., 2011]. This

thesis initially builds profiles offline and then maintains them online by updating information

such as resource utilization, execution times and deadline to handle real-time workload.

Other methods for handling varying workload include stochastic optimization and machine

learning. Stochastic optimization techniques are effective in dynamic resource provisioning as

it allows for multiple objectives. Arroba et al. [2014] proposes an automatic multi-objective

particle swarm optimization method for dynamic cloud energy optimization that considers both

power consumption and server temperature to derive accurate server power model that can

later be used to predict short-term power variations in data centres. Machine learning can

be used to study workload behaviour and implement energy-efficient resource provisioning.

Bahrpeyma et al. [2015] develops an adaptive controller for dynamic resource provisioning

by using an Ink Drop Spread (IDS) method based on reinforcement learning. The controller

nullified application rejection rate and minimized energy wastage. Wang and Su [2015] presents

a dynamic hierarchical task resource allocation scheme. The tasks and nodes are classified into

levels based on power and storage using fuzzy pattern recognition. Incoming tasks can only

be hosted by nodes on the same level. The profiles used in this thesis offers a computationally

simpler method of studying workload in preparation of application assignment.

Constrained and data-intensive applications require more computational- and interference-

aware resource scheduling. Cress by Li et al. [2014] is a dynamic resource scheduling scheme

for constrained applications. Cress attempts to maintain a trade-off between resource utilization

and individual application performance. The scheme employs a conversion method to dynami-

cally adjust soft and hard constraints for fluctuating workloads. PIASA by Sampaio et al. [2015]

is a dynamic power and interference aware resource management mechanism. It is designed to

28 CHAPTER 2. LITERATURE REVIEW

handle different types of data-intensive application workloads in dynamic cloud environments.

It is worth mentioning some works on dynamic resource scheduling applied at the VM layer.

Buyya et al. [2010] proposes a dynamic resource scheduling algorithm and software technology

for the optimum energy management of data centres. Optimum VM-resource allocation is

carried out in two stages. The first stage of the VM allocation is deployed using a modified

Best Fit Decreasing (BFD) algorithm wherein the VMs are arranged in a decreasing order of

their utilization levels and allocated to the host server that will provide only the minimal increase

in energy consumption with regard to the allocation. The second stage consists of optimizing

the current allocation of VMs wherein the VMs to be migrated are selected and according to the

Modified Best Fit Decreasing (MBFD) algorithm are placed on host servers. The selection of

the VMs to be migrated are based on the upper and lower utilization levels of the host servers

such that if the utilization of the CPU exceeds or falls below the respective thresholds, the

related VMs will be live migrated. The performance efficiency results of the cloud computing

model, obtained with the help of the CloudSim toolkit, shows a significant gain on the basis of

response time and cost saving. CloudSim as described by Calheiros et al. [2011] is a modelling,

simulation and experimentation toolkit that can be used to model clouds, data centres and VMs.

It also allows for the implementation of resource allocation policies which can then be studied,

tested and modified.

2.4.2 Dynamic Application Scheduling and Assignment

Combining application assignment with another power conservation technique provides more

energy-efficiency. Generally an assignment heuristic is used in conjunction with frequency

scaling. Verma et al. [2008] presents the pMapper placement framework for the dynamic assign-

ment of applications in virtualized systems. The pMapper framework consists of performance,

power and migration manager along with an arbitrator. The performance manager deals with

QoS and SLA requirements and accordingly re-sizes the VMs. The power manager monitors

and controls the energy consumption by implementing Dynamic Voltage and Frequency Scaling

(DVFS) as discussed by Sueur and Heiser [2010] or CPU throttling described by Stoess et al.

[2007]. The migration manager is in charge of the live migration of VMs. The arbitrator

plays the part of a central controller which monitors the overall system and adjustments to

performance and power measures when necessary. This energy aware application placement

2.4. DYNAMIC APPLICATION MANAGEMENT 29

controller framework minimizes both the energy and migration costs of the resource provision-

ing and maintains the QoS. Zhang and Guo [2014] presents a static and dynamic sporadic task

low power scheduling algorithm for sporadic real-time tasks with the objective of minimizing

energy consumption. The algorithms use a combination of dynamic voltage scaling and power

management to adjust task delay and processing speed while maintaining deadline constraints.

In our research, we pair application assignment with VM placement to gain more energy savings

and consolidate the system.

Applications can be classified according to required server resources prior to assignment.

Zapater et al. [2012] proposes a technique for energy aware task scheduling and workload dis-

tribution for green data centres. The workload entering the data centre goes through a resource

manager which characterizes each task for every system resources. Then two optimization

approaches: static off-line data centre optimization and dynamic run-time allocation are applied.

The static off-line data centre optimization identifies the most suitable combination of resources

to tasks to build a heterogeneous data centre which has an acceptable performance and energy

efficiency. The dynamic run-time allocation optimization approach will then allocate tasks or

workload to the computing resources during run-time. However, this approach is only effective

in data centres with periodic workloads.

Dynamic assignment of applications at times leads to resource conflicts which arise due

to the increase in the application runtime. Shi et al. [2011] presents an application placement

framework (EAPAC) for data-intensive applications. The framework overcomes resource con-

flicts by ensuring that a mixture of applications with different resource requests are assigned to

individual servers. The EAPAC consists of an application level load balancer and an application

server manager. The load balancer assigns applications to server hosts while the server manager

monitors the resource provisioning amongst servers. The EAPAC is claimed to be able to

improve the task waiting time by 4 times as compared to Tang’s method presented in [Tang et al.,

2007] for dynamic application placement in data centres. However, the EAPAC is intended for

deployment in non-virtualized environments. In contrast the coupled application placement

framework, CPA by Korupolu et al. [2009] is deployed in virtualized data centres. In our work,

resource conflicts are avoided using automatically updating profiles.

Dynamic application scheduling can be energy-efficiently implemented using prediction.

Kong et al. [2011] tackles the challenge of optimal task scheduling on two levels. The first

30 CHAPTER 2. LITERATURE REVIEW

stage involves building a fuzzy prediction model of the workload and the second stage involves

implementation of the proposed on-line dynamic task Scheduling Algorithm based on Load-

balance and Availability Fuzzy prediction (SALAF). The SALAF algorithm aims to schedule

tasks by satisfying the task availability and response time requirements. According to the per-

formance results, the SALAF algorithm efficiently enhances the total availability of virtualized

data centres while sustaining good responsiveness. The initial optimal allocation of a task on

a parallel VM could prove to be ineffective due to the workload variation in individual server

hosts. Therefore, the workload is dynamically redistributed to improve system performance.

SGEESS, Smart Green Energy-Efficient Scheduling Strategy is developed by Lei et al. [2015].

SGEESS considers renewable energy supply prediction and dynamic electricity price for real-

time scheduling of application.

One of the limitations of the above papers is that whenever an application enters the data

centre, it undergoes placement processing regardless of the frequency of its execution. In

order to avoid the redundancy in application processing, we employ the profiling technique

that consists of data related to applications such as their resource requirements and duration

that saves on application processing time.

2.5 Consolidation Strategies

The basic concept of consolidation is to reduce the number of active servers or VMs of a data

centre, thereby minimizing energy consumption while maintaining load balance. Consolidation

targets underutilized machines (approximately below 20%) that in their idle states consume

50% of energy consumed at maximum utilization (approximately 80%) [Bohrer et al., 2002].

Consolidation can be implemented by various means including VM, resource, workload or

application consolidation. The strategy is one of the most efficient methods of saving energy.

Wang and Wang [2014] presents a performance controlled power optimization method for

multi-tier applications in virtualized data centres. The method reassigns CPU resources to

handle variations in workload. This is integrated with DVFS to provide server consolidation.

Artificial Intelligence (AI) is one of the most popular research areas in server consolidation.

Swarm intelligence is a form of AI and can represent a population of machines. Pop et al.

[2012] discusses a swarm-inspired data centre consolidation framework that maintains energy

2.5. CONSOLIDATION STRATEGIES 31

and workload performance efficiency. The framework is based on behaviour of birds flying in V-

formation. The leading birds represent active fully-loaded servers that are potential candidates

to be switched-off after workload execution. The middle of the V-formation is attributed to

servers with low workload. These servers are the primary choice for new incoming applications.

The end of the V-formation represents servers that are idle. These servers are candidates for

active states and incoming applications. Intelligent agents which are a part of servers collaborate

to arrive at decisions regarding resource provisioning, dynamic power management (on/off

states) and server placement in the V-formation.

Server consolidation in virtualized data centres can be implemented by VM migrations.

Hermenier et al. [2013] proposes BtrPlace, a flexible consolidation manager for multi-tier

applications. BtrPlace is created using constraint programming. There is provision to further

expand placement constraints as per custom demands of consolidation manager. BtrPlace

reassigns VMs to satisfy data centre viable configuration, such that the VM consolidation

satisfies all specified constraints. Most recently, Ye et al. [2015] presents an energy-efficient

server consolidation framework. It reduces the number of active physical servers and VM

migrations in data centres whilst maintaining workload performance. Profiles are used to

analyse performance losses of workloads during co-location and migration of VMs.

Queueing theory in application assignment can be used to predict waiting times to con-

solidate resource. Chen et al. [2012] proposes a queueing-theory based tool for multi-core

systems. The proposed tool predicts application scalability and resource demands; and provides

consolidation suggestions based on performance and resource usage. Desnoyers et al. [2012]

presents Modellus, an automated modeling of complex web applications in data centres. It uses

queueing theory, data mining and machine learning strategies to predict application resource

usage and dependencies between collaborating applications. The presented approach provides

high accuracy prediction of application behaviour. Li et al. [2012a] presents a resource consoli-

dation algorithm, Online Coloring First-Fit (OCFF), for heterogeneous applications. The OCFF

packs incoming applications into the minimum number of servers.

Workload consolidation can be resource-effectively carried out with machine learning. The

authors, Singh and Rao [2012] implement server workload prediction using an online ensemble

learning approach in large data centres for workload consolidation. Workload characterization

is carried out as a time-series based on the utilization of CPU. Subsequently, ensemble learning

32 CHAPTER 2. LITERATURE REVIEW

algorithm is developed through four phases. The first phase collects historical workload data to

create base workload learners. The second phase applies Weighted Majority (WM) algorithm

to form the final prediction. In the third phase, the weights of the base workload learners are

updated in terms of the accuracy of their individual predictions. The fourth and final phase

involves the application of dynamic weighted algorithm. According to evaluation results, the

ensemble learning algorithm achieves high accuracy in terms of server prediction. Workload

consolidation can also be carried out by prioritizing processors. Liu et al. [2013] targets parallel

applications and proposes a priority-based workload consolidation method. VMs are classified

according to high-low CPU priority tiers. Parallel applications are scheduled to a tier as per

execution times to increase resource utilization.

Implementation of consolidation often leads to resource contention. Han et al. [2016]

studies multiple distributed parallel applications for interference effects on multiple cluster

nodes. The authors then present a static profile-based model on interference and heterogeneity.

The profiles collect execution times of the distributed applications to conduct a sensitivity

analysis. Similarly, Prekas et al. [2015] addresses applications with low tail latency assigned

to dedicated servers. The strategy presented detects load changes and re-assigns flow groups of

latency critical applications without packet dropping. Pareto frontier static configurations are

used for resource provisioning, thereby consolidating workload. In our research, application

consolidation using a local optimization heuristic is implemented to reduce the number of active

VMs.

2.6 Technological Gaps and Motivation

Our literature review has helped us gain a clearer understanding of the existing strategies and

the work done on the energy optimization of data centres. After careful study of the various

energy aware measures, we have realized that developing an energy- and performance-efficient

application management of a data centre is a significant problem yet to be solved. After study of

the numerous energy-efficient measures for application assignment, the following technological

gaps are identified, which motivate the research of this thesis:

• On entering the data centre, every application undergoes placement processing regardless

of the frequency of its execution. The profile-based assignment strategy presented in this

2.6. TECHNOLOGICAL GAPS AND MOTIVATION 33

thesis, collects and reuses data such as resource demands and availability. This reduces

the waiting time for processing applications and allows the assignment algorithm to make

better energy and performance efficient decisions.

• Profiling has been previously considered for resource consumption pattern identification,

behavioural and performance analysis. This thesis presents an approach of using profiles

in the decision making stage of assigning applications to VMs for data centres.

• Application finish time is unknown prior to scheduling. In our research, the profiles

enable us to estimate the finish times of applications prior to assigning them to VMs.

Application assignment in many existing data centres use generic algorithms such as First-

Fit, Best-Fit or random assignment to VMs. Though these approaches maintain assignment

performance such as speedy execution times and resource utilization, they fail to deliver on

energy-efficiency. The profile-based approach presented in this thesis overcomes this problem

by capturing the run-time characteristics of applications, VMs and servers over a period of time.

Profiles use this information to assign application to VMs energy-efficiently.

In this thesis, we have chosen an improved genetic algorithm (GA) based heuristic to

implement profile-based application assignment. This is motivated by two aspects which are

discussed below: 1) Solution time of optimal application assignment methods; and 2) Time

Complexity analysis.

The optimal energy-efficient assignment of applications would require exhaustive or brute-

force search which enumerates all possible solutions and checks if each solution satisfies prob-

lem objectives such as minimum energy consumption [Stephens, 2013]. Another ideal algo-

rithm is the Hungarian Algorithm which is used to find optimal assignment solutions [Luis Bassa

and Gil-Lafuente, 2012]. Consider a medium-scale data centre with m = 2, 000 VMs and

n = 5, 000 applications. If we assume each compilation takes 1 nanosecond. The following are

the number of compilations and solution time required for:

1. Hungarian algorithm: n∗m = 107 compilations takes approximately 11 hours to compile;

2. Exhaustive search: mn = 1016500 compilations takes approximately 3.3 × 1016483 years

to compile.

34 CHAPTER 2. LITERATURE REVIEW

This is impractical and confirms that both Hungarian Algorithm and exhaustive search does not

perform well with large problem sizes. Figure 2.2 presents an analysis of the very large problem

size in terms of the number of compilations and corresponding exhaustive search solution

time. Figure 2.2 displays the required compilations, in plot (a) when constant number of 500

application is assigned to a range of 1 to 100 VMs; and plot (c) when a range of 10 to 2000

applications are assigned to a constant number of VMs. Assuming that one compilation takes 1

nanosecond, the solution time of the compilations are plotted in plots (b) and (d). As observed

from these plots, performing exhaustive search would take years to compile. Therefore, using

exhaustive search, results inmn ≈ ∞ compilations/operations which is not a feasible approach.

Figure 2.2: Analysis of problem size in terms of compilations and algorithm solution time
using exhaustive search for optimal application assignment solutions.

2.6. TECHNOLOGICAL GAPS AND MOTIVATION 35

The conclusion from the above calculations is that the problem of finding optimal assign-

ments for a set of applications is NP-hard. Therefore, there is no polynomial time algorithm that

can yield optimal solutions for large problems. This motivates us to design a heuristic-based

algorithm that is feasible, scalable and provide near-optimal (good) energy-efficient solutions

for the large problem size. There needs to be a trade-off between the optimality of assignment

solutions and time complexity (time taken to arrive at that solution) of the algorithm.

The motivation to use a heuristic-based algorithm can also be justified by time complexity

analysis. The time complexity of existing approaches is calculated from combining the com-

plexity inside and outside the loops (iterations). The time complexity outside the iterations is

assumed to be equal to the number of applications, i.e. O(n). To calculate the time complexity

inside the iterations, we consider two functions: A) estimated (possible) assignment function

and the B) actual assignment to VM function.

For the estimated assignment function, the number of execution is equal to the number of

applications n. Consider a set of unassigned applications Ā with sizei = n − i, 1 6 i 6 n.

Initially, Ā contains all the unassigned applications making sizei = n. During the course of

the algorithm, each application is assigned to a VM thereby decreasing sizei by one. When all

applications are assigned then sizei = 0. The time complexity for the estimated assignment

function is O(sizei ∗ logm) (m is the number of machines). The time complexity for the actual

assignment to VM function is assumed to be O(log sizei). Therefore, the time complexity

inside the iterations is calculated as:

O(sizei ∗ logm) +O(log sizei) (2.1)

O((n− i) ∗ logm) +O(log (n− i) ∵ sizei = n− i (2.2)

Since n >> m and O(n− i) > O(log (n− i)) (2.3)

Simplified as: O(n− i) (2.4)

The total time complexity of the algorithm combines time complexity inside iterations

O(n− i) and outside iterations O(n).

Total time complexity of algorithm ≈ O(n(n− i)) ≈ O(n2) (2.5)

36 CHAPTER 2. LITERATURE REVIEW

The total time complexity (O(n2)) means that as the number of applications (input) size (n)

increases, the time to solve the problem increases by n2. Therefore, a heuristic-based algorithm

is required to control the large solution space. This thesis uses GA-based heuristic due to its

ability to provide a feasible assignment solution on termination at any time. For example there

may be a scenario where the assignment solution is required in a short amount of time (on

interruption) or another scenario where assignment solution is obtained on the natural (without

interruption) termination of the algorithm. GA is well suited to both these scenarios. GA also

avoids becoming trapped in a local optima and converges towards a global optima [Bajpai and

Kumar, 2010]. That is, it provides good solutions in user specified amount of time. The GA

is modified to improve solutions in terms of energy and resource utilization by designing a

Repairing Genetic Algorithm (RGA).

The work done in this research presents a profile-based application assignment framework

for optimizing the energy of data centres while maintaining the Quality of Service (QoS). Pro-

files provide prior knowledge of the run-time characteristics of applications, VMs and servers

(PMs). Profiling approach follows the sequence: i) build profiles; ii) predict workload; and

iii) plan assignment in advance. That is profiles are used to predict future workload and

compile assignment solutions in advance, thereby reducing computational complexity. This

thesis breaks down the research problem of energy- and performance-efficient profile-based

assignment of applications to VMs into four smaller research questions: Profiling, Static As-

signment, Dynamic Assignment and Consolidation Problems. Depending on the problem, the

objective function and constraints vary. Therefore, the problems are formulated differently and

solved using different heuristics as discussed in the following chapters. Assignment solutions

are created by combining profiles with a heuristic-based algorithm such as Genetic Algorithm

(GA) (discussed in Chapter 4). To the best of our knowledge, an application assignment strategy

built on profiling for energy optimization of data centres has not been found in literature.

In the next Chapter, we discuss the development of a solution for the Profiling Problem

(Section 1.2) resulting in our first Contribution (Section 1.4).

Chapter 3

Profiling and Profile Building

This Chapter is dedicated to the first research problem of the thesis: the Profiling Problem.

Profiles provide prior knowledge of the run-time characteristics of the workload. The concept

of profiles and profile building for applications, VMs and servers are discussed here. The key

issue of profiling is to build profiles such that future workload can be predicted and assignments

can be planned in advance. A profile-based application assignment model is formulated as a

combinatorial optimization problem. The model is solved by a scalable Penalty-based Profile

Matching Algorithm (PPMA). Experimental studies of the profiling approach is demonstrated

to be feasible, scalable and up to 22% more energy-efficient when compared to benchmark

approaches.

Some of the work presented in this Chapter was published in our preliminary work [Va-

sudevan et al., 2014], which introduced profiling as an application assignment method. The

paper formulated application assignment as linear optimization with consideration of CPU

resources and demonstrated the feasibility and scalability of application assignment based on

fully synthetic profiles. This Chapter discusses the following aspects of the Profiling method:

• Profiles: The concept of profiles and profile building. Profiles record power consumption,

resource requirements and availability to determine energy cost of application assignment

to VM. They are built from the raw data of a real data centre for both VMs and Physical

Machines (PMs). Application profiles are built using a well-established workload model.

• Optimization Framework. A penalty-based linear optimization framework is formulated

for profile-based application assignment with consideration of memory constrains in ad-

dition to CPU resources.

37

38 CHAPTER 3. PROFILING AND PROFILE BUILDING

• Solution Algorithm. A penalty-based profile matching algorithm (PPMA) that uses some

heuristics is presented to solve the penalty-based optimization problem with considera-

tions of memory, CPU and performance constraints.

Comprehensive case studies are carried out to demonstrate the effectiveness of the profiling

method for application management. The experimental results are compared with the Hungarian

algorithm, benchmark general and workload history based application management methods.

This Chapter is organized as follows. The notations used throughout this Chapter are listed

in Table 3.1. Section 3.1 discusses the concept of profiles. Section 3.2 presents the methodology

of building profiles. The following three sections form a profile-based application assignment

framework. Section 3.3 models each aspect of the profile-based application assignment prob-

lem. This is formulated as a penalty-based constrained optimization problem in Section 3.4.

Section 3.5 provides an algorithm to solve the optimization problem. Experimental studies are

conducted in Section 3.6. Finally, Section 3.7 summarizes the Chapter.

Table 3.1: Description of notations used in Chapter 3.

Notation Description
αj Ratio of power consumed at max to min util of host Vj
Ai Application, i ∈ I = {1, · · · , n}
Cij Energy cost of Ai, i ∈ I , assigned to Vj, j ∈ J
ηcpu(j), ηmem(j) CPU utilization and memory allocation efficiency of Vj, j ∈ J
fr(i) Requested CPU of Ai, i ∈ I
fmaxvc (j) Max CPU Capacity of Vj, j ∈ J
i, j, k Subscripts or indices for applications, VMs and PMs,

respectively
I, J,K Integer sets I = {1, · · · , n}, J = {1, · · · ,m}, K = {1, · · · , l}
Ma(i) Allocated Memory of Ai, i ∈ I
Mr(i) Requested Memory of Ai, i ∈ I
n,m, l Total numbers of applications, VMs and PMs, respectively
pcpu(j) Penalty function for CPU utilization of Vj, j ∈ J
Pk Power consumed (Watts) of Sk, k ∈ K
Pmax
k , Pmin

k Power at respect max and min utilizations of Sk, k ∈ K
Sk Physical Machine (PM) or Server, k ∈ K = {1, · · · , l}
tc(i) Completion time of Ai, i ∈ I
tr(i) Runtime of Ai, i ∈ I , respectively
T Time Interval
Vj Virtual Machine (VM), j ∈ J = {1, · · · ,m}
xij Binary assignment decision variable

3.1. THE CONCEPT OF PROFILES 39

3.1 The Concept of Profiles

This Section describes the relevance and effectiveness of profiling for a deterministic application

assignment problem. With different purposes, various data centres contribute to the energy

consumption and carbon footprint differently. Hyper-scale large data centres are mainly used to

host public clouds with dynamic workload. Typical hyper-scale large data centres are those from

giant IT corporations like Microsoft, Google, Apple, Amazon, and Facebook. In comparison,

small- and medium-scale data centres are typically run by business companies, universities and

government agencies and form 95% of the world’s total data centres [Whitney and Delforge,

2014]. They generally provide services via private clouds or clusters/grids with virtualized

management. Therefore, they have relatively consistent workload. Energy management for

small- to medium-scale data centres is globally more significant than that for hyper-scale large

data centres with very dynamic workload. This research targets the widely deployed small- to

medium-scale data centres.

A nearly consistent workload trace from a real data centre was collected over a period of

14 days to build the VM and PM profiles offline. It is further observed that the pre-set VM

and PM parameters like CPU, VCPU, and memory are reviewed every 6-12 months and seldom

changed in small- to medium-density data centres. Therefore, the VM and PM profiles are

stable for application assignment. Applications are habitually processed over time with varying

instructions per cycle and memory. This is incorporated by the profiles on regular update,

thereby validating the application profiles for allocation. From our continuous monitoring of a

real data center over 14 days, only a very small number of new applications have been observed,

for which the profiles built offline have not captured. In other words, data centers managed by

universities, government agencies and corporate businesses have relatively consistent applica-

tions with varying parameters.

In our study of the workload, applications are categorized as web requests, data analyses,

media streaming, e-commerce, social network and others. Some applications are executed in

a single task whereas others like data analysis with MapReduce may consist of multiple tasks.

Each of the single-task applications has a single profile. For applications with multiple tasks,

each of the tasks in an application is treated as a sub-application with a profile. All profiles of

the sub-applications in the application share the same application ID.

40 CHAPTER 3. PROFILING AND PROFILE BUILDING

Occasional new applications whose profiles have not been captured previously will be han-

dled differently. There are three scenarios: 1) a completely new application, 2) an old applica-

tion with a different dataset for all parameters, and 3) an old application with a different dataset

for some of the parameters. For scenario 1, a new application profile is created. The application

is assigned to the first VM with low energy cost and available resources. For scenario 2, the

application is considered as new and undergoes the same process as scenario 1. Applications in

scenario 3 are treated differently. Here, the profiles are updated and the application is assigned

to the highest processing VM with low energy cost such that application resource demands are

satisfied. To maintain the performance efficiency of the application assignment, the profiles are

updated regularly.

Profiles are a set of well-organized information about specific data centre components and

their impact on energy consumptions. They provide prior knowledge of the run-time char-

acteristics of the workload. A profile is created initially for each of the applications, VMs

and PMs for the data centre. Application profiles include those data related to CPU, memory

requirements, actual submission and execution times of individual applications. VM profiles

include the data related to CPU processing and memory availability of each node corresponding

to interval hours. PM profiles represent the workload and energy consumption of the data centre.

Other performance metrics can also be easily integrated into the profiles. After these profiles

are created, they are used to create an energy cost matrix to identify the best possible application

to VM assignment. Profiling has been previously considered for behavioural and performance

analysis. However, to the best of our knowledge, applying profiles in the decision making stage

of applications assignment has not been investigated, and thus is a novel concept.

Typically, an extensive amount of data is readily available from the raw data logs of a

data centre to build these profiles off-line. Once the profiles are built, regular updates take

considerably less processing time. As a result the overhead of creating and maintaining profiles

is insubstantial. Application and VM profiles enhance the functions of the allocation manager

through 1) retrieval of resource requirements and availability information, and 2) prediction

of application arrival and VM workload. This enhancement helps make prompt decisions of

application assignment. Applications with profiles are mapped to VMs incurring the least

possible energy cost whilst maintaining a trade-off with CPU utilization efficiency, memory

and application completion time requirements.

3.2. PROFILE BUILDING 41

3.2 Profile Building

This Section discusses the process of building profiles for PMs, VMs and Applications. Build-

ing profiles requires the accumulation of a large amount of specific data such as energy, CPU,

memory, execution times and frequency, standard deviation and interval time. As this data is

collected offline from data centre workload logs, the overhead of creating profiles remain insub-

stantial. Initially, a completely synthetic workload was used to build all profiles. Subsequently,

VM and PM profiles are built using the workload trace of a real data centre. This is done to

make the profiles more realistic with VM and PM resources corresponding to actual data centre

workload. The application profiles are built synthetically by using a commonly used workload

model.

3.2.1 Physical Machine Profiles

PM profiles are directly derived from the raw data collected from a data centre. In industrial

practice, every data centre keeps logs of their usage and performance measures for various

purposes. Our research used the raw data of servers over a period of 24 hours for 14 days

(the 5th to 19th of May, 2014) from a real data centre. The observed data centre consists of

263 servers and 1282 virtual machines. The name of the data centre is omitted here due to the

commercial confidentiality.

Some of the raw data that have been collected include:

1. Power consumption counted multiple times in 5 minute intervals. The data centre uses

StruxureWare Data Center Expert which is a centralized monitoring software that collects

energy use on a server rack level amongst other physical infrastructure. This software

enables documenting and analysis of regular power consumption of all data centre com-

ponents.

2. Percent CPU and memory utilization (%) counted multiple times in 60 minute inter-

vals. The data centre contains Red Hat Enterprise Linux Servers and Microsoft 2008

R2 Enterprise Windows Servers. Table 3.2 presents an example of the performance detail

report produced by the monitoring software of all data centres. The minimum, maximum

and average percent utilization of the resources are displayed along with the standard

42 CHAPTER 3. PROFILING AND PROFILE BUILDING

deviations in utilization. The count represents the random number of times the monitoring

software retrieves server utilization data during the interval.

Table 3.2: Server performance detail report; hourly aggregation for Interval: 12/05/2014
1:00:00 AM

Server Name Component Count Min Average Max SD

RHEL6
% Used Memory 2016 16 17.61 23 0.717
% Used CPU 2016 0 5.28 23 5.090

RHEL6
% Used Memory 2014 37 39.91 42 0.279
% Used CPU 2014 2 25.85 80 7.521

Win2008
% Used Memory 809 33.16 37.21 45.2 0.892
% Used CPU 537 4.336 11.53 50.39 5.613

Win2008
% Used Memory 422 46.48 51.69 76 2.862
% Used CPU 436 0.8463 7.01 45.94 7.577

RHEL5
% Used Memory 2016 8 8.79 13 0.531
% Used CPU 2016 8 23.36 68 4.735

RHEL5
% Used Memory 2014 60 61.52 67 0.573
% Used CPU 2014 5 10.15 46 2.600

Win2003
% Used Memory 411 52.13 60.17 85.98 2.870
% Used CPU 417 0.5178 3.98 27.03 4.831

Win2003
% Used Memory 355 46.52 48.78 77.39 2.692
% Used CPU 411 1.007 5.74 49.01 8.660

An analysis of server behaviour for the PMs in the data centre was conducted. For a

randomly chosen physical server (server ID: PH015), Figure 3.1 displays the behaviour pattern

with respect to CPU utilization over a 24-hour period for four days. The standard deviation of

CPU utilization over 24 hours for PH015 is as low as 2.36. Similar analysis is carried out for

all servers with respect to minimum, maximum and average CPU utilizations per hour interval.

The results demonstrate low variance, therefore showing a near consistent workload to build

and utilise the PM and VM profiles for a reasonably realistic allocation strategy.

3.2.2 Virtual Machine Profiles

VM Profiles basically encapsulate the workload history of each of the VMs. The CPU and

memory statistics of virtualized physical servers are collected from a real data centre over a

period of 14 days. For initial test purposes, it is assumed that each server is capable of hosting

up to 15 VMs. The VMs have varying sizes in terms of the CPU and memory allocated to them.

The number of VMs per server and their sizes are pre-set during configuration.

3.2. PROFILE BUILDING 43

Figure 3.1: The behaviour pattern of physical server PH015.

The parameters of the VM profiles are explained as follows:

1. VM ID: Each VM has a unique identifier. For purposes of testing the feasibility, scalabil-

ity and efficiency of the profiling method; the maximum number of VMs considered in

this Chapter is 2000. Therefore, the VM ID ranges from 0 to 1999.

2. Physical Host: Each VM is hosted by a server. The server can host upto 15 VMs, a VM

can only be hosted by one server. This Chapter considers a maximum of 150 physical

servers.

3. Total resource capacity: The physical host determines the total resource capacity available

to the VM. These parameters can be modified during configuration. The CPU capacity

is measured in Million Instructions Per Second (MIPS) and the memory capacity is

measured in Bytes. The resource capacity of the VM is determined during the creation of

a VM and later modified according to user or application demands.

4. Interval: Represents the time period under consideration. For our experiments, we con-

sider an hourly interval.

5. Used Resource (%): Each VM has a CPU and memory utilization associated with the

corresponding time interval. This value represents the resource used by all the applica-

tions assigned to the VM. The remaining resource is calculated to determine whether a

new application can be assigned to the VM or not and the corresponding efficiency of the

44 CHAPTER 3. PROFILING AND PROFILE BUILDING

new assignment. These values also determine if the VM is under-loaded or over-loaded,

thereby affecting the performance efficiency. VM utilization below 20% is underloaded

and above 80% is overloaded.

6. Pointer: The pointer directs to a linked list consisting of all the applications allocated

to the VM under consideration. This also records the resource utilized by individual

application assigned by the VM during the time interval.

Figure 3.2 presents the profile data structure of 5 random VMs during the interval of 10.00 to

11.00. Each VM has a host ID, total CPU and memory capacity, percentage CPU and memory

used, and a pointer to the applications running on the VM associated with it. Example, VM 23

has CPU and memory utilization of 26% and 20% respectively. It hosts 3 applications: A1, A8

and A10.

Figure 3.2: Profile data structure of randomly chosen five VMs in interval 10.00-11.00.

3.2.3 Application Profiles

A data centre hosts hundreds of thousands of applications, which are also referred as to tasks.

Each application comes with a configuration file, which specifies the CPU, memory and disk

space requirements for task execution. In this research, the generated application profiles

consider CPU, memory, actual submission time and runtime parameters. While the PM and

VM profiles are generated directly from the data logs of the data centre, the data logs from the

data centre do not include all information for building application profiles directly. Therefore, a

commonly used synthetic workload model designed by Lublin and Feitelson [2001] is adopted

to build application profiles through some distributions. This is particularly for creating appli-

cation parameters such as submission time, runtime and resource requirements. For example,

the workload generation model uses a gamma distribution to generate application waiting times

for workload simulation.

3.2. PROFILE BUILDING 45

The application profile parameters are generated as follows for our workload simulation.

Initially, the number of applications is calculated for every hour using a cumulative distribution

function. The submission time, which is a random variable, is modelled with gamma distribu-

tion for each application (Algorithm 1) and is an input variable for our simulation experiments.

The approximate CPU percentage and memory required to run the application is calculated

using a two-stage uniform distribution. The application runtime is calculated using a hyper-

gamma distribution [Lublin and Feitelson, 2001] (Algorithm 2).

Algorithm 1: Application Submission Time
1 Calculate number of applications per hour using Cumulative Distribution Function;
2 for Each Application do
3 Generate random variable from gamma distribution;

4 Set submission time to generated random variable;

Algorithm 2: Application Runtime
1 Define parameters for gamma distributions 1 and 2, respectively;
2 Define relation probability between the two gamma distributions;
3 Generate a uniformly distributed random number between the range of 0.0 to 1.0;
4 if (Generated a random number ≤ Relation probability) then
5 Gamma distribution 1 is active;
6 else
7 Gamma distribution 2 is active;

8 Generate a random variable from the active gamma distribution;
9 Set runtime to the generated random variable;

It is worth mentioning that the runtime of workloads have been measured after an application

executes on a VM. But allocating an application to different VMs leads to different completion

times. However, before the runtime can be actually measured, the application must be allocated

to one of the VMs in terms of some criteria determined by a number of parameters including

an estimated runtime to maximize the optimization function. Therefore, an initial runtime of

workloads is derived using a distribution and is included in the application profiles initially.

In general, the VM where the completion time is closest to the initially generated runtime is

preferred.

Application profiles are generated using the workload model in C programming language.

Figure 3.3 shows the data structure of randomly chosen five application profiles with the fol-

lowing four parameters:

46 CHAPTER 3. PROFILING AND PROFILE BUILDING

1. Application ID: A unique identifier associated with each application. For our initial

experiments, 5000 applications are considered with the application IDs ranging from 0 to

4999.

2. Submission Time (s): The submission time represents the time instant in seconds at which

the application arrives at the data centre. Collecting the submission times of applications

allows us to segregate applications arriving at a certain time interval and utilize this record

to make energy-efficient assignment decisions.

3. Max Runtime (s): The runtime represents the maximum time duration (in seconds) in

which the application is active to successfully complete execution. The runtime of an

application varies with the VM host. Therefore, the maximum runtime of the application

determines if the current assignment of the application to a VM resulting in a current

runtime is efficient or not; i.e. current runtime is lower than the max runtime.

4. Requested CPU (%) and Memory (Bytes): The requested CPU and memory represent the

resource requirements to successfully execute the application. Any application assign-

ment decisions will be carried out only if the requested resources can be provided by the

VM considering resource availability.

Figure 3.3: Profile data structure of randomly chosen five applications.

After the application profiles are generated, a parser code is written in C++ programming

language to process and incorporate the Profile data into our heuristic algorithm for application

assignment.

3.3 Formulation of Problem Elements

With various profiles built in the last Section, this Section models each aspect of the profile-

based application assignment problem. In addition to energy saving, other objectives of the

3.3. FORMULATION OF PROBLEM ELEMENTS 47

framework include effective performance levels in terms of execution time and CPU utilization

efficiency. In essence, the framework aims to minimise the CPU energy of the physical node,

which hosts the VMs for the timely and successful execution of applications.

For model development, some notations are defined below. Let us denote:

• Application: Ai, i ∈ I = {1, · · · , n};

• Virtual Machine (VM): Vj , j ∈ J = {1, · · · ,m};

• Physical Machine (PM): Sk, k ∈ K = {1, · · · , l};

• Integer sets: I = {1, · · · , n}, J = {1, · · · ,m}, K = {1, · · · , l}; and

• Total numbers of applications, VMs and PMs, respectively: n,m, l.

A binary decision variable xij, i ∈ I, j ∈ J represents the assignment of an application Ai,

i ∈ I , onto a VM Vj , j ∈ J :

xij =

1 if Ai is allocated to Vj; i ∈ I, j ∈ J,

0 otherwise.
(3.1)

Furthermore, for an application Ai, i ∈ I , CPU and memory requirements are denoted by fr(i)

and Mr(i), respectively. If the application Ai, i ∈ I , is hosted by the VM Vj, j ∈ J , the actual

memory allocated from the Vj to theAi is represented byMa(i). The CPU capacity of Vj, j ∈ J ,

is denoted by fmaxvc (j).

A profile-based linear programming model has been designed to identify and carry out

near-optimal assignment of applications on VMs. The objectives include resource utilization

efficiency, application completion time within its deadline and minimised energy cost. This

will be discussed in more detail below.

CPU Utilization Efficiency.

The CPU utilization efficiency of a VM Vj, j ∈ J , is a ratio of the total CPU percentage in

use by the applications to the total CPU capacity of the VM. It is represented by ηcpu(j) ∈ [0, 1]

and derived at a time instance before application assignment as follows:

ηcpu(j) =

∑n
i=0 fr(i)xij
fmaxvc (j)

; i ∈ I, j ∈ J (3.2)

48 CHAPTER 3. PROFILING AND PROFILE BUILDING

where fr(i) represents the variable CPU requirement of the application Ai, i ∈ I; and fmaxvc (j)

is the total CPU capacity of VM Vj, j ∈ J , as defined previously.

A penalty function is introduced to encourage applications to be packed onto active VMs

such that the maximum CPU capacity is utilized. Higher the CPU utilization, lower the penalty.

If the CPU utilization efficiency falls below 0.5, then a penalty equal to the capacity of the

VM fmaxvc (j) is applied. When the utilization efficiency increases, the penalty decreases by half

fmaxvc (j)/2. The maximum CPU utilization efficiency incurs 0 penalty. The CPU utilization

efficiency constraint restricts overloading the VMs by considering any solution with ηcpu(j) > 1

as infeasible by assigning a high penalty of∞. Therefore, the penalty pcpu(j) for the different

values of ηcpu(j) is set as follows:

pcpu(j) =

fmaxvc (j), ηcpu(j) 6 0.5

fmaxvc (j)/2, 0.5 < ηcpu(j) < 1

0, ηcpu(j) = 1

∞, ηcpu(j) > 1

(3.3)

Memory Allocation.

When application Ai, i ∈ I , with memory requirement Mr(i) is hosted by VM Vj, j ∈ J ,

the memory assigned from Vj to Ai is denoted by Ma(i), as notationally defined previously.

The memory allocation efficiency ηmem(j) is the ratio of Ma(i) to Mr(i) as per the application

profiles:

ηmem(j) = Ma(i)/Mr(i), i ∈ I, j ∈ J (3.4)

Because Ma(i) > Mr(i), it follows from Equation (3.4) that ηmem(j) ≥ 1. The memory alloca-

tion constraint ensures that the application has the required memory to successfully execute.

Application Completion Time.

The application profiles include approximate average runtime tr(i) for application Ai,∀i ∈

I . In order to ensure application assignment efficiency, the actual completion time tc(i) taken

by the individual VM Vj, j ∈ J , to successfully execute the application Ai, i ∈ I , must fall

3.3. FORMULATION OF PROBLEM ELEMENTS 49

within a threshold value set at 1.5 · tr(i), i.e. the scope of tc(i) is expected to fall within 50%

more than tr(i).

tc(i) 6 1.5 · tr(i); i ∈ I, j ∈ J. (3.5)

This constraint is put in place to ensure that the execution efficiency of the application is

not compromised when producing energy-efficient assignment solutions. Every application has

discrete completion times corresponding to different VM hosts. The completion times depend

on the CPU availability, speed and memory available to a VM.

For example, an application assigned to VM V1 may have the smallest energy cost and a

long completion time. However, the same application executed in VM V2 results in a slightly

higher energy cost but shorter completion time. The latter provides a better solution in terms of

computing performance efficiency.

Energy Cost.

Energy efficiency of the presented profile-based application assignment approach for data

centres is the main objective of this research. It is modelled by minimizing the total energy cost

of the application assignment. Energy cost is directly proportional to the approximate power

required to carry out an application in a VM. Approximate power consumed by a physical

node is calculated from the power model defined by Blackburn [2008]. The power model

represents a linear relationship between the power and CPU utilization as graphically shown

in Figure 3.4. From this linear model, the energy cost, Cij , of executing application Ai, i ∈ I ,

on VM Vj, j ∈ J , is calculated as the product of the CPU requirement fr(i) of the application

Ai and a coefficient αj:

Cij = αj · fr(i) (3.6)

where the coefficient αj characterizes how energy-efficient the VM Vj is to host the application

Ai, and it is the ratio of power consumed at maximum and minimum utilizations.

50 CHAPTER 3. PROFILING AND PROFILE BUILDING

Figure 3.4: Power consumption versus CPU utilization [Blackburn, 2008].

3.4 Profile-based Application Assignment Model

The application assignment problem is formulated as a penalty-based constrained optimization

problem in this Section. The profile-based application assignment model seeks to make the

best possible use of the available resources for greener and more energy-efficient assignment

solutions.

The Profile-based Energy-Efficient Application Assignment Model is mathematically de-

fined as follows:

min z =
m∑
j=1

n∑
i=1

Cijxij +
m∑
j=1

pcpu(j) (3.7)

s.t. ηmem(j) > 1, ∀j ∈ J ;
n∑
i=1

fr(i)xij ≤ fmaxvc (j), ∀j ∈ J ;

tc(i) ≤ 1.5 · tr(i), ∀i ∈ I, j ∈ J ;
m∑
j=1

xij = 1, ∀i ∈ I;

xij = 0 or 1, ∀i ∈ I, j ∈ J.

The following are the constraints for our linear programming model:

• Constraint 1: Memory Allocation. The constraint ensures that the memory provisioned

3.5. PENALTY-BASED PROFILE MATCHING ALGORITHM 51

for applications assigned to a VM does not exceed the memory capacity of the VM

(Equation 3.4).

• Constraint 2: CPU Allocations. The total CPU required by all applications in a VM must

not exceed the maximum VM CPU capacity.

• Constraint 3: Application Completion Time as shown in Equation (3.5). The assignment

needs to consider the discrete completion time that individual applications take in distinct

virtual machines. These times are mainly dependent on the CPU speed and memory avail-

able to a virtual machine. Therefore, assignments that allow for application completion

time close to the overall average completion time should take place. This ensures that the

applications deadlines are met.

• Constraint 4: Each application Ai must be assigned to one virtual machine Vj only, in

order to avoid redundancy in the form of multiple virtual machines attempting to execute

the same application.

• Constraint 5: Binary Constraint as shown in Equation (3.1).

Figure 3.5 gives a flowchart for the working of the profile-based application assignment

framework. The model is solved using a Penalty-based Profile Matching Algorithm proposed

in the following subsection.

3.5 Penalty-based Profile Matching Algorithm

The Penalty-based Profile Matching Algorithm (PPMA) is designed to solve the profile-based

application assignment model in Equation (3.7). The primary objective of PPMA is to improve

energy efficiency with respect to application assignment problem in data centres. The side

constraints include CPU utilization efficiency, memory and application completion time as dis-

cussed in the previous Section. To address the issues of low computing efficiency and scalability

in deriving optimal solutions, PPMA aims to obtain near-optimal assignment solutions with

high computing efficiency and good scalability. Therefore, PPMA makes use of some heuristics

to derive solutions. Developing heuristics rather than employing conventional solution tech-

niques simplifies the problem-solving process, thus improving the scalability of the problem-

solving (discussed in Section 2.6). This is advantageous to conventional assignment algorithms

52 CHAPTER 3. PROFILING AND PROFILE BUILDING

Figure 3.5: Profile-based linear programming model.

such as Hungarian Algorithm, which obtains optimal solutions but has poor scalability [Chaobo

and Qianchuan, 2008, Vasudevan et al., 2014, Winter and Albonesi, 2008].

Algorithm 3 presents the pseudo-code for PPMA. The initial and most crucial element of

the algorithm is the deciphering of the Profiles. Once the necessary data have been retrieved, the

energy cost matrix [Cij]n×m is built. As the profiles are updated periodically, the energy cost of

allocation is also updated regularly. This allows real-time events to be taken into consideration,

3.6. EXPERIMENTAL STUDIES 53

Algorithm 3: Penalty-based Profile Matching Algorithm (PPMA)
1 Read energy cost [Cij]n×m data from profiles;
2 Read application CPU and memory requirements from profiles;
3 Set scope to number of applications to be allocated;
4 while Within Scope do
5 Initialise [xij]n×m and [Temp[i][j]]n×m as null matrices;
6 Copy matrix Eij to a temporary matrix Temp[i][j];
7 for Every Application do
8 Set Temp[i][1] as the minimum value;
9 for Every VM do

10 if Temp[i][j] is minimum then
11 Update Temp[i][j] as the minimum value;

12 Subtract minimum value from each value;

13 for Each matrix Temp value do
14 if Zero then
15 Calculate penalty;
16 Check memory allocation constraint;
17 Check application completion time constraint;

18 if Constraints are satisfied then
19 Confirm allocation as xij = 1;
20 break;
21 else
22 Set value Temp[i][j] to a large number;
23 goto step 7;

thus improving the efficiency of the allocation manager.

The assignment solution is verified in the algorithm by determining the CPU utilization,

memory efficiency and application completion time achieved. If all the conditions are satisfied,

the algorithm moves on to the next assignment. In case of assignment unsuitability, the next best

assignment is considered and the same process follows until a suitable assignment is achieved

and the matrix [Cij]n×m and penalty functions are modified accordingly.

3.6 Experimental Studies

This Section conducts experimental studies to demonstrate the profile-based application assign-

ment approach presented in this Chapter. The effectiveness of the approach is evaluated from

the following three aspects: feasibility, scalability, CPU utilization, and energy efficiency. The

Section begins with experimental setups followed by detailed experimental studies.

54 CHAPTER 3. PROFILING AND PROFILE BUILDING

Experimental Setups. The experimental studies are conducted using two different test

setups: Test Setup 1 and Test Setup 2. Originally investigated in our preliminary work [Va-

sudevan et al., 2014], Test Setup 1 is used to determine the feasibility and scalability of our

approach. Test Setup 2 is used to determine the efficiency of the profiling application manage-

ment approach over general and workload history approaches. As there are no benchmarks

available for application assignment to VMs, we assume General/Random Assignment and

Workload History based Assignment [Luo et al., 2013] as benchmarks to conduct evaluations

of the profile-based application assignment approach. Shown in Table 3.3, the two setups are

described below:

Table 3.3: Two test setups with different scenarios for Chapter 3 experiments.

Test Setup 1 (100 PMs)
Scenario 1 2 3 4 5
VMs 400 400 800 800 1000
Applications 500 1500 2000 2500 4000

Test Setup 2 (150 PMs)
Scenario 6 7 8 9 10 11
VMs 100 400 800 1200 1600 2000
Applications 500 1000 2000 3000 4000 5000

• Test Setup 1: A data centre consisting of 100 PMs with an average of four to ten VMs

each is considered. The total number of VMs ranges from 400 to 1000. The total number

of applications varies from 500 to 4000. The scenarios of Test Setup 1 are presented in

the first half of Table 3.3.

• Test Setup 2: A data centre consisting of 150 PMs is considered. Each server is capable

of hosting up to 15 VMs. For our evaluation, six different scenarios are considered where

the number of applications ranges from 500 to 5000 with corresponding number of VMs

as shown in the second half of Table 3.3.

In our experiments, a real-world system is investigated. Data logs are derived from a real

data centre to create realistic VM and PM profiles. The application profiles are synthetically

generated as in our preliminary work [Vasudevan et al., 2014].

All evaluations are carried out on a Windows platform of Intel(R) Core(TM) i7-2640M

CPU at 2.80GHz using C and Python programming. As there are no off-the-shelf products for

3.6. EXPERIMENTAL STUDIES 55

simulating test scenarios of application assignment in data centres, we have developed our own

simulation for all experiments.

Evaluation criteria for Test Setup 1. The results derived from PPMA will be compared

with those obtained from Hungarian Algorithm (HA). The HA is an ideal algorithm that pro-

vides optimal solutions in terms of energy-efficiency. However, HA is only feasible for small

problem sizes (discussed in Section 2.6, Chapter 2). Comparison with HA demonstrates the

proximity of our algorithm’s energy-efficiency to that of the optimal solution. Other factors

comprising the efficiency criteria include feasibility, scalability and CPU utilization efficiency.

A high-level description of Hungarian Algorithm is depicted in Algorithm 4, which is self-

explained.

Algorithm 4: Hungarian algorithm (HA).
1 Convert [Cij]n×m into square energy cost matrix using dummy values ;
2 for Each Row do
3 Identify and subtract minimum value from all elements;

4 for Each Column do
5 Identify and subtract minimum value from all elements;

6 while Solution matrix not complete do
7 if Column contains more than one ’0’ element then
8 Repeat step 2 forall columns ;

9 for Each Column do
10 Identify columns with negative elements ;
11 Select minimum value and add to each element ;

12 Flag rows and columns with ’0’ elements ;
13 Identify and subtract minimum value from unflagged elements ;
14 Add minimum value from unflagged elements to twice flagged elements ;

Evaluation criteria for Test Setup 2. The effectiveness of the Profile-based applica-

tion assignment approach in terms of execution time and energy-efficiency is evaluated with

comparison with benchmark general and workload history based assignment approaches. The

general application assignment is the simplest form of allocation and does not implement any

efficiency strategy. The applications are allocated at the time of their arrival to the first available

VM that fits the execution requirements in CPU, memory and runtime. Workload History

based application assignment utilizes the recorded logs of CPU cycles with corresponding

time of the VMs to make allocation decisions. This approach functions on the assumption

that workload behaviour of a data centre varies little during day-to-day operations. However,

56 CHAPTER 3. PROFILING AND PROFILE BUILDING

it only considers the VM information, whereas our Profiles are built for applications, VMs and

PMs. Moreover, workload history approach does not have the option of updating data unlike

the profiling approach.

All three approaches: General, Workload History and Profiling are implemented with a

simple First-Fit Decreasing (FFD) assignment algorithm in the three-layer energy management

(Figure 1.1). The application assignment problem resembles a bin-packing problem:

1. General Assignment - The applications arrive at the data centre. The CPU requirement

is determined. Applications are arranged in terms of decreasing CPU requirement. The

FFD is invoked and the application assigned to the first VM that can accommodate the

requirements. Algorithm 5 gives the process of this approach.

2. Workload History Assignment - During time interval T − 1, the VMs are arranged in

decreasing order of CPU availability as per the workload logs. Applications arriving at

the data centre during time interval T are assigned to the first suitable VM with the help

of FFD algorithm. Algorithm 6 represents the process of this approach.

3. Profile-based Assignment - During time interval T − 1, the energy cost of allocation of

each predicted application to a VM is retrieved. A VM yielding the lowest cost is selected.

At interval time T , the FFD allocates the application to the pre-selected VM with the

minimum energy cost incurred. Algorithm 7 describes the process of this approach.

Algorithm 5: General Application Assignment
1 for Each Application do
2 Determine CPU and memory requirement;
3 if Requirement satisfied then
4 Invoke FFD Algorithm (Allocate to first available VM);

Algorithm 6: Workload History Application Assignment
1 for Interval Time T-1 do
2 Workload Logs: VM arranged in decreasing order of CPU availability at Time T;

3 for Interval Time T do
4 for Each Application do
5 if Requirement satisfied then
6 Invoke FFD Algorithm (Allocate to first available VM);

3.6. EXPERIMENTAL STUDIES 57

Algorithm 7: Profiling-based Application Assignment
1 for Interval Time T-1 do
2 Profiles: Determine applications arriving at Time T;
3 Profiles: Retrieve associated energy cost of allocation of each application;
4 Profiles: Select best possible VM hosts SelectedVM = {VM1, V M2, ...};
5 for Interval Time T do
6 for Each Application do
7 if Requirement satisfied then
8 Invoke FFD Algorithm (Allocate to first available VM);

3.6.1 Feasibility

Test Setup 1 is used to validate the feasibility of the profile-based application assignment

framework. The application assignment results for Scenario 2 are presented in Figure 3.6.

Analysing the results shows that an average number of 15 applications are hosted by each

server through VMs, with a maximum of 32 applications hosted by a server. More than 25

applications are hosted by 15% of the servers individually. 11% of the total servers are idle and

can be switched off by the allocation manager. The proposed approach successfully solves the

penalty-based linear optimization model (Equation 3.7) and satisfies the resource constraints,

thereby supporting the feasibility of the presented Profile-based Assignment Model.

Figure 3.6: Application assignment for Scenario 2 of Test Setup 1.

3.6.2 Scalability

The scalability of the Penalty-based Profile Matching Algorithm (PPMA) is compared with that

of the Hungarian Algorithm (HA) described in Algorithm 4. Both algorithms are applied to

58 CHAPTER 3. PROFILING AND PROFILE BUILDING

the five scenarios of Test Setup 1 (Table 3.3). The solution time in seconds for each of the two

algorithms is obtained and tabulated in Table 3.4. The results demonstrate that as the numbers

of applications and VMs increase, the PPMA is capable of finding near-optimal solutions in

much lesser time than the HA. The HA gives optimal assignment solutions but compromises

heavily on the time taken to obtain the solution due to the large problem size. This demonstrates

that the presented PPMA scales well for large problem sizes.

Table 3.4: Comparisons of solution time (sec) of PPMA and HA for Test Setup 1.

Scenario 1 2 3 4 5
Hungarian Algorithm 4 27 41 72 248
PPMA 5 22 26 31 52

3.6.3 CPU Utilization Efficiency

This subsection demonstrates that the presented profile-based assignment framework makes the

best possible use of available resources such as the CPU of the server nodes. The scenarios

from Test Setup 1 (Table 3.3) are considered in this case study. There is a high variance in

PPMA and HA results for problems of smaller sizes. This is demonstrated in Figure 3.7 for the

CPU utilization efficiency variation graph over a 24 hour period for Scenario 1. However, as

the ratio of applications assigned to VMs increases with the problem size, the CPU utilization

efficiency also increases. The average CPU utilization efficiency of the presented PPMA and

HA for all scenarios of Test Setup 1 (in the first half of Table 3.3) is compared in Table 3.5. The

PPMA achieves results that are close in utilization efficiency to the HA. This is evidenced by a

decrease in variation from 19% to 1.1%.

Table 3.5: Average CPU utilization efficiency (ηcpu) for Test Setup 1.

Scenario 1 2 3 4 5
Hungarian Algorithm 0.486 0.531 0.545 0.578 0.702
This work (profile-based) 0.394 0.499 0.526 0.569 0.694

Although HA is more energy-efficient than PPMA, it compromises on the consistency

and scalability of the assignment solutions. The PPMA maintains consistent CPU utilization

efficiency with the increase in the scale of the assignment problems.

3.6. EXPERIMENTAL STUDIES 59

Figure 3.7: Average CPU utilization efficiency over 24 hours for Scenario 1 of Test Setup 1.

3.6.4 Energy Efficiency

This subsection demonstrates the energy efficiency of the profile-based application assignment

approach for Test Setups 1 and 2 implementations. Test Setup 1 (discussed in our previous

work [Vasudevan et al., 2014]) is used to compare the energy results derived by the PPMA and

the optimal HA. Test Setup 2 is used to validate the energy-efficiency of the Profiling appli-

cation management approach when compared with the commonly used General and Workload

application management approach.

Energy Efficiency in Test Setup 1

The energy-efficient solutions provided by the PPMA is compared with that of the optimal re-

sults provided by the HA. In order to evaluate the energy-efficiency, the average CPU utilization

is deduced after the application assignment using both algorithms. The energy consumption E

for the Test Setup 1 scenarios (shown in the first half of Table 3.3) is then calculated using the

following equations Blackburn [2008].

Pk =
(Pmax

k − Pmin
k) ∗ ηcpu(k)

100
+ Pmin

k , (3.8)

E =

∫ t1

t0

Pk(t)dt (3.9)

The power consumed for machine k at maximum and minimum utilization is given by Pmax
k

and Pmin
k , respectively. For calculation purposes, it is assumed without losing generality that

Pmax
k = 350W and Pmin

k = 200W. Total CPU utilization of the server is represented by ηcpu(k).

60 CHAPTER 3. PROFILING AND PROFILE BUILDING

Figure 3.8 demonstrates the energy consumption graph of a server in a 24 hour period

for both PPMA and HA. The average energy consumptions for the PPMA and HA are 286.5

Wh and 269.75 Wh, respectively. The results confirm that the PPMA is only 5.85% worse

in energy-efficiency than the ideal HA. In order to demonstrate the decrease in variation of

energy consumption results as the problem size increases, a bar graph displaying the total

energy consumption for all scenarios of Test Setup 1 is presented in Figure 3.9. The PPMA

results show a 11.8% to 0.4% variation from the HA solutions. This proves that the proposed

PPMA is sufficiently energy-efficient.

Figure 3.8: Energy consumption of a server using PPMA and HA.

Figure 3.9: Total energy consumption for Test Setup 1 scenarios.

Energy-Efficiency in Test Setup 2

The effectiveness of the Profile-based application assignment approach in terms of execution

time and energy-efficiency is evaluated with comparison with benchmark general and workload

3.6. EXPERIMENTAL STUDIES 61

history based assignment approaches. Test Setup 2, as seen in the second half of Table 3.3, is

used to compare the results obtained by the following three approaches:

• General Application Assignment;

• Workload History based Application Assignment; and

• Profile-based Application Assignment

The results of energy-efficiency and execution time for the six different test scenarios in Test

Setup 2 are presented in Table 3.6 for the general, workload history and profiling approaches.

Table 3.6: Energy-efficiency and execution time from Test Setup 2.

Profiling Workload History General

Scenario Energy
(Wh)

Time
(s)

Energy
(Wh)

Time
(s)

Energy
(Wh)

Time
(s)

6 25623 1.2 26186 1 27015 1
7 25948 1.9 26748 2.2 28975 1.5
8 26782 4.4 27493 4.8 32675 4.1
9 27835 5.7 30759 7.1 33402 8.3

10 28940 6.9 32472 7.9 37238 12.4
11 32752 8.6 35871 9.2 39478 14.7

Consider the execution time behaviour as seen in Figure 3.10. The General allocation

initially has the lowest execution time upto 1500 applications. However, as the number of

applications increases, there is a corresponding increase in the execution time. Both workload

history and profiling approaches have a steady, consistent, and linear increase with the number

of applications. On examination, the profiling approach is 5% more efficient than the workload

history approach in execution time.

Figure 3.11 shows the total energy consumption of the data centre with respect to the in-

creasing number of applications for all three approaches. The Profiling method is 22% and 10%

more energy-efficient than the benchmark approaches of General and Workload History based

application assignment. The General approach consumes the most energy as application-VM

allocations are not optimal due to the absence of energy cost constraints. The Workload History

approach is efficient upto 2000 applications, however increases significantly with the increase

in the number of applications. The Profiling approach outperforms the other two approaches in

energy consumption due to energy cost based allocations derived from the profiles.

62 CHAPTER 3. PROFILING AND PROFILE BUILDING

Figure 3.10: Comparisons of execution time for General, Workload History and Profiling
approaches.

Figure 3.11: Comparisons of energy-efficiency for General, Workload History and Profiling
approaches.

Table 3.7 provides an overview of the three different approaches considered in the experi-

mental evaluations. The standard deviations in terms of energy and execution time demonstrate

that our Profiling approach is consistent and more energy-efficient than the other approaches.

Table 3.7: Overview of the three approaches: general, workload history and profiling (
√

:
known; ×: unknown).

Data/Strategy General Workload History Profiling
Virtual Machine ×

√ √

Application × ×
√

Std Deviation - Energy 4735.38 3808.49 2639.53
Std Deviation - Exec Time 5.74 3.27 2.87

3.7. SUMMARY OF THE CHAPTER 63

3.6.5 Further Discussions on Experimental Studies

Experimental studies have been conducted on the feasibility, scalability, effectiveness, CPU uti-

lization efficiency and energy-efficiency of the proposed Profile-based Application Assignment

approach. The experimental results are summarized as follows:

• The PPMA is feasible and scalable within the tested range of 100 to 2000 VM nodes;

• There is a trade-off between scalability and CPU utilization efficiency for increasing

problem sizes;

• The Profile-based Application Assignment approach is up to 22% more energy-efficient

with steady execution times when compared to commonly used benchmark General and

Workload History assignment approaches; and

• The energy efficiency achieved from our profile-based approach is close to that of the

optimal Hungarian Algorithm solution.

It is worth mentioning that the overhead of the profile-based application assignment is mini-

mal for data centres with relatively consistent workloads considered in this Chapter. The profiles

of the data centres can be established offline. The un-profiled workload that requires online

processing is insubstantial. With the established profiles, static assignment of applications to

virtual machines can be scheduled in advance.

3.7 Summary of the Chapter

One of the significant research problems concerning data centres and cloud computing is how to

reduce the energy consumption whilst maintaining high performance efficiency. This Chapter

explores the concept of profiles and develops a systematic approach for profile building. Profiles

are built using readily available data centre workload logs. This allows the improved profile-

based assignment framework to achieve near-optimal assignment solutions without unduly in-

creasing the computational effort. The theory of utilising application, VM and PM profiles in

terms of energy-efficient application management is novel and as yet has remained unexplored.

The following aspects of profiling have been discussed: 1) Building of more realistic VM

and PM profiles by using real data centre workload trace, and building of application profile

64 CHAPTER 3. PROFILING AND PROFILE BUILDING

by using the workload model designed by Lublin and Feitelson; 2) An improved assignment

framework with a penalty-based optimization model and constraints of memory in addition

to CPU; and 3) A Penalty-based Profile Matching Algorithm for near-optimal solution by

using some heuristics. Comprehensive experimental studies demonstrate that profile-based

application assignment approach is up to 22% more energy-efficient with steady execution times

when compared to benchmark General and Workload History assignment approaches.

Profiles have been established as an efficient application assignment approach in this Chap-

ter. Therefore, the next few chapters discuss the use of profiles for architecture development of

profile-based system involving: 1) Static Assignment; 2) Dynamic Assignment; and 3) Consol-

idation. Chapter 4 addresses the Static Assignment Problem and discusses implementation of

Profiles for static application assignment to VM as our second contribution.

Chapter 4

Repairing Genetic Algorithm

This Chapter is dedicated to the second research problem of the thesis: Static Assignment

Problem. In Section 2.6, it has been indicated that the problem size (solution space) is too large

for the application assignment problem. Therefore, a heuristic-based algorithm is required to

solve the problem. This thesis uses Genetic Algorithm (GA) as the heuristic due to its ability

of providing a feasible assignment solution on termination of the algorithm at any time [Bajpai

and Kumar, 2010]. That is, the GA provides a feasible solution even on interruption of the al-

gorithm. The GA is modified to improve solutions by designing a Repairing Genetic Algorithm

(RGA) to solve the large-scale optimization problem. It enhances the GA by incorporating two

components: 1) the Longest Cloudlet Fastest Processor (LCFP) and; 2) an Infeasible-solution

Repairing Procedure (IRP). The LCFP generates initial population to minimize makespan and

maximize resource utilization. The IRP converts infeasible chromosomes into feasible ap-

plication assignment solutions. The RGA is integrated with First Fit Decreasing (FFD) VM

placement policy to form a complete energy management solution. Experiments are conducted

to demonstrate the effectiveness of the presented approach, e.g., 23% less energy consumption

and 43% more resource utilization in comparison with GA under investigated scenarios. Some

of the work presented in this Chapter has been published in our preliminary work on solving

the profile-based application assignment problem with simple GA [Vasudevan et al., 2015].

The Chapter is organized as follows. Table 4.1 lists the notations used throughout this

Chapter. Section 4.1 describes and formulates the static profile-based application assignment

problem. Some case studies on using Genetic Algorithm for application assignment is presented

65

66 CHAPTER 4. REPAIRING GENETIC ALGORITHM

in Section 4.2. The repairing genetic algorithm (RGA) is developed in Section 4.3. This is fol-

lowed by experimental studies in Section 4.4 to demonstrate our approach. Finally, Section 4.5

summarizes the Chapter.

Table 4.1: Description of notations used in Chapter 4.

Notation Description
Ai Application, i ∈ I = {1, · · · , n}
β1, β2 Coefficients in fitness function F (X)

Cij Energy cost of Ai, i ∈ I , assigned to Vj, j ∈ J
F (obj), F (X) Objective function, and fitness function, respectively
I, J,K Integer sets I = {1, · · · , n}, J = {1, · · · ,m}, K = {1, · · · , l}
IC(i) Instruction Count of Ai, i ∈ I
ICv(j) Number of instructions to be executed on Vj
Mmax

j Memory Capacity (MB) of Vj, j ∈ J
Mr(i) Requested Memory (KB) of Ai, i ∈ I
MIPS(j) MIPS rate of Vj, j ∈ J
n,m, l Total numbers of applications, VMs and PMs, respectively
P Total power consumption of the data centre
Pmin, Pmax Idle & peak server power consumption
PUE Power Usage Efficiency of the data centre
Sk Physical Machine (PM) or Server, k ∈ K = {1, · · · , l}
tc(j) Completion time of all applications on Vj, j ∈ J
te(i) Execution time of Ai, i ∈ I
Uavg
c Average CPU utilisation of all virtual machines

Vj Virtual Machine (VM), j ∈ J = {1, · · · ,m}
U tot
c (j), M tot

j Total resource requirements of all Ai on Vj
xij Binary assignment decision variable

4.1 Static Assignment Problem Formulation

The static assignment research problem is to design a profile-based application assignment

to Virtual Machine (VM) framework. The objective of the assignment is to reduce energy

consumption whilst maintaining high performance levels. The proposed solution is a profile-

based Repairing Genetic Algorithm (RGA). To form a complete solution with integration of our

profile-based RGA, a three-layer energy management strategy is implemented. It is developed

with the following components:

1) Application Assignment implements the proposed profile-based RGA; and

4.1. STATIC ASSIGNMENT PROBLEM FORMULATION 67

2) VM Placement implements the First-Fit Decreasing (FFD) algorithm

Application, VM and server profiles are built from workload traces of a real data centre.

The workload data include CPU and memory utilisation recorded multiple times in 60 minute

intervals along with energy consumption in 5 minute intervals.

The RGA utilizes profiles to obtain data related to energy, CPU, memory availability and

requirements in order to evaluate the following formulations. Unlike other approaches, profiling

helps estimate energy cost prior to assignment by collecting and reusing data. The data includes

instruction count requirement of a profiled application, the pre-set VM CPU capacity and the

server power usage range. The RGA exploits a Longest Cloudlet Fastest Processor (LCFP)

generated initial population to improve the makespan of the allocation. It also incorporates an

infeasible-solution repairing procedure to re-assign the applications that violate the constraints.

This converts infeasible solutions to feasible ones.

The application assignment problem is formulated as a linear optimization problem. The

assignment of an application Ai, i ∈ I , onto a VM Vj , j ∈ J is represented by a binary decision

variable xij, i ∈ I, j ∈ J . It incurs an energy cost of Cij , which is the product of the peak and

idle server power ratio and the execution time of application Ai on VM Vj . The total number of

instructions to execute application Ai is given by ICi.

xij =

1 if Ai is allocated to Vj; i ∈ I, j ∈ J,

0 otherwise.
(4.1)

Cij =
Pmax
Pmin

· ICi
MIPS(j)

. (4.2)

The assignment of a set of applications to VMs is given by a constrained combinatorial

optimisation model as:

F (obj) = min
∑m

j=1

∑n
i=1 Cij · xij (4.3)

s.t. ICv(j)/tc(j) ≤MIPS(j), ∀j ∈ J ; (4.4)∑n
i=1 xij ·Mr(i) ≤Mmax

j , ∀j ∈ J ; (4.5)∑m
j=1 xij = 1, ∀i ∈ I; (4.6)

xij = 0 or 1, ∀i ∈ I, j ∈ J. (4.7)

68 CHAPTER 4. REPAIRING GENETIC ALGORITHM

The constraints in Equations (4.4) and (4.5) ensure that the allocated resources are within the

total capacity of the VM. Constraint in Equation (4.6) restricts an application from running on

more than one VM. The binary constraint of the allocation decision variable xij is given by

Equation (4.7). ICv(j), the number of instructions to be executed on Vj, j ∈ J is calculated as:

ICv(j) =
n∑
i=1

xij · ICi. (4.8)

Makespan is the total length of time required for all applications in a VM to finish process-

ing. The makespan of the assignment is calculated as:

makespan = max(tc(j)) ; j ∈ J (4.9)

tc(j) = te(i) + CPUReadyT ime ; i ∈ I, j ∈ J (4.10)

where tc(j) is an iterative variable representing the total time required to execute all applications

assigned to the VM, Vj, j ∈ J . CPU ready time is the time at which the last application of

Vj, j ∈ J finishes processing. The execution time of the next applicationAi, i ∈ I is represented

by te(i).

Average CPU utilization of all VMs across the data centre for the time interval under

consideration is given by:

Uavg
c =

1

m

m∑
j=1

ICv(j)

tc(j)
· 1

MIPS(j)
(4.11)

The total power consumption associated with a data centre is:

P = l · [Pmin + (PUE − 1)Pmax + (Pmax − Pmin)Uavg
c], (4.12)

where Pmax and Pmin represent the power consumed at the maximum and idle server utilization,

respectively. The Power Usage Efficiency is represented by PUE. l represents the total number

of active servers in the data centre.

The profile-based application assignment problem has been formally formulated as a con-

strained optimization problem. The size of this problem is generally large with multiple con-

straints and consequently the problem is NP-hard. The following Section conducts some case

4.2. GENETIC ALGORITHM CASE STUDIES 69

studies on solving the optimization problem with genetic algorithm. This is then improved to

develop a Repairing Genetic Algorithm (RGA).

4.2 Genetic Algorithm Case Studies

The static assignment problem is a combinatorial optimization problem, which is NP-hard. A

simple steady-state genetic algorithm (GA) is first used to solve the problem prior to devel-

oping Repairing Genetic Algorithm (RGA). The GA case studies test/demonstrate scalability,

energy- and resource-efficiency of utilizing evolutionary computing to solve the profile-based

application assignment problem.

In our GA case studies, a data centre consisting of upto 2000 VMs is considered. Six

different scenarios are investigated where the number of applications ranges from 500 to 5000

with corresponding number of VMs:

Scenario 1 2 3 4 5 6

VMs 100 400 800 1200 1600 2000

Applications 500 1000 2000 3000 4000 5000

The implementation of GA is carried out with a pre-set population size of 200 individuals in

each generation. The termination condition is reached when there is no change in the average

and maximum fitness values of strings for 10 generations. The number of maximum generations

is set to be 200. The probabilities for crossover and mutation are configured to be 0.75 and 0.02,

respectively.

Scalability. The high scalability of the GA is established by solving the assignment problem

for up to 2000 VMs and 5000 applications. Figure 4.1 displays the algorithm solution time with

respect to the increasing problem size. As the test problem size [m ∗ n] increases, the solution

time of the GA increases linearly.

Energy Consumption The energy consumption of the GA is compared with that of a

greedy algorithm. The GA is stochastic in nature. The quality of solutions in terms of energy

consumption are assessed by using GA to solve 30 configurations of each of the test problems as

shown in Figure 4.2. The resulting mean of energy consumption and solution times is given in

70 CHAPTER 4. REPAIRING GENETIC ALGORITHM

Figure 4.1: Scalability of the Genetic Algorithm.

Table 4.2. According to the results, the GA produces 16% to 32% better solutions in terms

of energy consumption than the greedy algorithm. Although the solution times are higher

compared to the greedy approach for the increasing number of applications, the GA maintains

an efficient trade-off with energy consumption.

Figure 4.2: GA energy consumption and solution time for 30 configurations of each test
problem set.

A paired t-test is conducted for the two independent means provided by the GA and greedy

algorithm for each of the six test problems. The null hypothesis is that there is no difference

between the GA and greedy energy consumption means. The confidence interval is set at 95%

and a two-tailed hypothesis is assumed. The t-stat values are recorded in Table 4.2 and the

p-values are all significantly less than 0.05. The results show that the difference between the

means are significant and thus, the null hypothesis is rejected.

4.2. GENETIC ALGORITHM CASE STUDIES 71

Table 4.2: Energy and solution time performance of GA vs. Greedy (Energy unit: Wh; time
unit: sec).

Genetic Algorithm Greedy T-Test
Energy SD Time SD Energy Time t-stat std. err DF crit 2-tail

12878.47 1227.90 69 7.53 15017.28 2 -9.54 224.18 29 2.045
21379.27 2404.85 412 38.98 28234.01 6 -15.61 439.06 29 2.045
27113.47 1086.97 1189 50.39 33482.86 9 -32.091 198.45 29 2.045
32001.33 1264.83 3459 341.61 38416.58 18 -27.778 230.92 29 2.045
47149.83 3107.03 5412 276.58 56115.70 27 -15.81 567.26 29 2.045
65904.90 2104.70 6484 250.01 78025.54 40 -31.54 384.26 29 2.045

Figure 4.3: Resource utilization efficiency of GA vs. Greedy.

Resource Utilization. As shown in Figure 4.3, the average sum of CPU and memory

utilization efficiency of the penalty-based GA is 3% to 22% more efficient when compared

to the greedy approach. Also the variance of the CPU utilization of the GA (0.56) is lower

than that of the Greedy algorithm (0.90). This indicates the GA is more consistent in resource

allocation.

Therefore, the energy- and resource-efficiency of utilizing GA for the profile-based appli-

cation assignment have been established. The GA will now be improved with the addition of

LCFP-generated initial population and an infeasible-solution repairing procedure. The follow-

ing Section describes the development of the RGA.

72 CHAPTER 4. REPAIRING GENETIC ALGORITHM

4.3 Repairing Genetic Algorithm

This Section aims to solve the the linear optimization model (Equation 4.3) for the profile-

based application assignment problem in data centres. The previous Section explored solving

the model using a simple steady-state GA. However, due to the large data set of the optimization

problem, the performance of the classic GA is degraded due to imperfect, slow or no conver-

gence [Zhu et al., 2011]. Therefore, this Section improves the GA by developing a Repairing

Genetic Algorithm (RGA) to solve the static assignment problem. It aims to minimize energy

consumption and makespan whilst maximizing resource utilization.

4.3.1 High-Level Description of RGA

A high-level description of the RGA is given in Algorithm 8, which is self-explained. In

comparison with a simple GA, RGA incorporates Longest Cloudlet Fastest Processor (LCFP)

generated initial population (Lines 1 and 2) and an Infeasible-solution Repairing Procedure

(IRP) (Lines 8 to 10). This will be further discussed in detail in the following subsections.

4.3.2 LCFP-Generated Initial Population

The Longest Cloudlet Fastest Processor (LCFP) heuristic assigns the longest application to the

fastest processing VM. It considers the computational complexity of applications and the com-

puting power of processors to generate an initial population composed of a set of chromosomes.

This ensures that the lengthier applications finish quickly thereby minimizing makespan. For

faster convergence and better solutions, the initial population can be better chosen through

heuristics. Conversely, in a steady-state GA, the initial population is randomly generated as in

other general GA methods.

The LCFP heuristics pursue three main steps. The steps are:

1. Sort applications Ai, i ∈ I in descending order of execution time;

2. Sort VMs Vj, j ∈ J in descending order of processing power (MIPS); and

3. Pack sorted applications into fastest processing VM

4.3. REPAIRING GENETIC ALGORITHM 73

Algorithm 8: Repairing Genetic Algorithm
1 Find output of solutions generated by LCFP;
2 Initialize population with LCFP output;
3 Evaluate fitness of each candidate chromosome;
4 while Termination condition is not satisfied do
5 for Each Generation do
6 for Each chromosome do
7 Evaluate fitness;
8 if Chromosome is infeasible then
9 Apply Infeasible-solution Repairing Procedure;

10 Evaluate Fitness;

11 Parents selected using Roulette Wheel Selection;

12 for Parent chromosomes do
13 Apply uniform crossover as per Pc;
14 Mutate resulting offspring as per Pm;
15 Offspring chromosomes generated;

16 for Offspring chromosomes do
17 Evaluate fitness of new candidates;
18 Replace low-fitness chromosomes with better offspring;

19 for Each chromosome do
20 Select chromosomes for next generation;

21 Output the best fit chromosome as solution;

The initial population undergoes the encoding, selection, mutation and crossover as seen

from Figure 4.4. Once the LCFP-generated initial population is created, parent chromosomes

are selected from the pool. Figure 4.4 displays a set of applications {A1, A2, · · · , A9} and VMs

{V1, V2, V3}. Parent Chromosome 1 is selected from the pool using roulette wheel selection

such that VM V1 hosts three applications A1, A5, A8; V2 hosts A2, A6, A7, A9; and V3 hosts

A3, A4. Similarly, Parent Chromosome 2 is also selected. Value encoding is used to represent

Parent Chromosome 1 and 2 such that each box in the Figure represents an application and

the number inside represents the host VM ID (gene). For example, A1 is assigned to VM

V1 in Parent Chromosome 1 and V3 in Parent Chromosome 2. Keep in mind that the parent

chromosomes are possible assignment solutions and not the final assignment solution. A Binary

Crossover Mask is randomly generated and used to create crossover offspring. If the mask is 1,

then the corresponding genes in that specific position of both chromosomes are swapped with

each other. Crossover swaps the genes between two separate parent chromosomes. Whereas,

Mutation randomly selects two exact positions (A4 and A8 in Figure 4.4) and swaps the genes

within the chromosome.

74 CHAPTER 4. REPAIRING GENETIC ALGORITHM

Figure 4.4: Value encoding, uniform crossover using binary mask and mutation by selection
and exchange of two genes

The working of the genetic operators to produce a new population consisting of offspring

chromosomes is described as follows. Algorithm 9 presents the pseudocode of the working of

the genetic operators.

1. Encoding. The chromosomes are represented by value encoding. This allows individual

genes to be represented as positive integers derived from the actual VM numbers to build

chromosomes. Each chromosome consists of |n| genes. Each gene has a value ranging

from 1 to |m|.

2. Selection. The selection operator (Lines 1 to 11 in Algorithm 9) identifies and assigns

possible solution chromosomes as parents. The parent chromosomes are selected from

the mating pool with the help of roulette wheel selection, which is a fitness-proportionate

selection technique. The greater the fitness value of a chromosome, the more probability

of being selected as a parent. The parents chromosomes are then used to generate a

consequent population.

3. Crossover. Uniform crossover (Lines 12 to 23 in Algorithm 9) is applied to the parent

solutions to produce the offspring solutions. A binary crossover mask is randomly gen-

erated for each parent, where 1 and 0 indicate that the gene will be copied from the first

4.3. REPAIRING GENETIC ALGORITHM 75

Algorithm 9: Genetic Operators - Crossover, Mutation and Roulette Wheel Selection
1 Roulette Wheel Selection;
2 Evaluate constant Fitnesssum = total fitness of all chromosomes in the population;
3 Let variable itSum represent the iterative fitness sum;
4 Let variable Ch represent a chromosome;
5 Generate random number G ∈ [0, 1];
6 Set itSum← 0;
7 for Each Chromosome do
8 Evaluate Probability of Selection probCh ← fitness(Ch)/F itnesssum;
9 itSum← itSum+ probCh ;

10 if itSum < G then
11 Select chromosome Ch to be parent p;

12 Crossover;
13 Set length of chromosome, λ to number of applications to be allocated;
14 Parents : p(1) = g1

1, g
1
2, ..., g

1
λ and p(2) = g2

1, g
2
2, ..., g

2
λ;

15 Let Offspring : O(3) = g3
1, g

3
2, ..., g

3
λ and O(4) = g4

1, g
4
2, ..., g

4
λ;

16 for Length of chromosome do
17 Assign 0 or 1 randomly to individual genes of Mask;
18 if Mask is 0 then
19 g3

λ ← g2
λ;

20 g4
λ ← g1

λ;

21 else
22 g3

λ ← g1
λ;

23 g4
λ ← g2

λ;

24 Mutation;
25 Randomly select two numbers between 1 and λ and assign to A and B;
26 for Each Child do
27 temp← g3

A ;
28 g3

A ← g4
B ;

29 g4
B ← temp ;

and second parents, respectively.

4. Mutation. The mutation (Lines 24 to 29 in Algorithm 9) is carried out by selecting and

exchanging two genes from the offspring chromosomes. The mutation probability is set

to a low number, in order to control the search space.

5. Termination Condition. The termination condition specifies that the cycle is repeated

for each generation until a maximum number of generations is reached or an individual

is found which adequately solves the problem. Every iteration of the algorithm creates

a population consisting of a set of chromosomes,which represent a possible assignment

solution.

76 CHAPTER 4. REPAIRING GENETIC ALGORITHM

The fitness function determines the quality of the solution when compared to an optimal

solution. A lower energy cost and higher resource utilization result in a higher solution fitness.

Feasible solutions have a positive fitness value, whereas infeasible solutions incur a negative

fitness. The fitness function is derived as:

F (X) = β1 · ¯Fobj − β2 ·
1

m
·
m∑
j=1

(
F cpu
j + Fmem

j

)
. (4.13)

The weights [β1, β2] associated with the fitness function is currently set to [2, 1]. The multi-

plicative inverse of the objective function discussed in Equation (4.3) is represented by ¯Fobj . In

order to normalise and scale the objective function ¯Fobj to a range of [1, 10], we use:

¯Fobj =
Fworst − Fobj
Fworst − F ?

· F
?

Fobj
· range+ 1, (4.14)

where the range = 9. The best (minimized) and worst objective functions are represented by

F ? and Fworst, respectively. The functions to ensure higher CPU and memory utilizations by

penalizing constraint violations is given by:

F cpu
j =

0, if Uavg
c = 1

MIPS(j)/ICj, if 0 < Uavg < 1

2 if Uavg
c = 0

(4.15)

Fmem
j =

2 · (1− 1/γ) , if γ > 1

2, otherwise

, where γ =
Mmax

j∑n
i=1 xij ·Mr(i)

(4.16)

4.3.3 Infeasible-solution Repairing Procedure

The RGA incorporates an Infeasible-solution Repairing Procedure (IRP) to convert infeasible

chromosomes to feasible ones. An infeasible allocation of applications to VMs is charac-

terised by a negative fitness as a result of high penalty due to CPU and memory constraint

violations. The applications assigned to the infeasible VMs are re-assigned to other VMs

4.3. REPAIRING GENETIC ALGORITHM 77

until the violations are resolved. Consequently, the fitness becomes a positive value. To the

best of our knowledge, a solution repairing procedure has only been previously applied for

VM management problems and has not been implemented for application assignment to VM

problems.

Each VM in a chromosome is linked to a data structure. As shown in Figure 4.5, the data

structure consists of a violation indicator, total CPU and memory requirements of the applica-

tions allocated to the VM (U tot
c (j) & M tot

j), the VM’s CPU and memory capacity (MIPS(j)

and Mmax
j), and a pointer to a linked list to indicate the application id, CPU and memory

requirement of each application allocated to the VM. The violation indicator is set to 0 if

the application allocations do not violate the CPU and memory constraints, and is set to 1 if

otherwise.

violation =

0 if resource constraints are not violated

1 otherwise.
(4.17)

Total CPU and memory requirements of the applications on VM Vj is derived by:

U tot
c (j) =

ICv(j)

tc(j)
, M tot

j =
n∑
i=1

xij ·Mr(i). (4.18)

Figure 4.5: Data structure used in the Infeasible-solution Repairing Procedure.

With the help of the violation indicator, the data structure is used to identify the VMs that

78 CHAPTER 4. REPAIRING GENETIC ALGORITHM

violate the constraint. The constraint violation makes the chromosome infeasible. Once the

VM Vj, j ∈ J is identified, the CPU and memory availability of the next VM Vj′ , j
′ ∈ J

is calculated. If the resource availability is greater than the resource requirement of the first

application in the linked list of Vj, j ∈ J , the application is re-allocated to the new VM Vj′ , j
′ ∈

J . The process is repeated until the violations are fixed and the chromosome is feasible. For

example, in Figure 4.5 (a) VM V2 hosting four applications is violating resource constraints.

Therefore, IRP is applied and the first application A2 of VM V2 is re-assigned to VM V3. This

solves the violation which returns to 0 (Figure 4.5 (b)). The working of the infeasible-solution

repairing procedure is presented in Algorithm 10, which is self-explained.

Algorithm 10: Infeasible-solution Repairing Procedure
1 for j = 1 to Total number of VMs do
2 if Vj.violation = 1 then
3 select = Vj.pointer ;
4 Vj.pointer = Vj.pointer.next ;
5 fixed = false ;
6 j′ = j + 1 ;
7 availCPU = V [j′].U tot

c (j)− V [j′].CPUmax
j′ ;

8 availmem = V [j′].M tot
j − V [j′].MEMmax

j′ ;
9 while j′ 6= j do

10 if (availCPU ≥ select.aCPU)& (availmem ≥ select.amem) then
11 select.next = Vj′ .pointer ;
12 Vj′ .pointer = select ;
13 Vj′ .U

tot
c (j)+ = select.aCPU ;

14 Vj′ .M
tot
j + = select.amem ;

15 fixed = true ;

16 Set j′ = j′ + 1 ;

After the applications are allocated to the VMs using RGA, we have servers {S1, · · · , Sk, · · · , Sl}

and VMs {V1, · · · , Vj, · · · , Vm}. The FFD algorithm packs the VMs using as few servers as

possible. The FFD algorithm sorts the servers in decreasing order of resource capacity. Each

active VM is placed onto the first server with adequate space remaining. All active VMs are

eventually packed onto PM servers.

4.4. EXPERIMENTAL STUDIES 79

4.4 Experimental Studies

This Section conducts experiments to demonstrate energy-efficiency and quality of solutions of

profile-based application assignment using RGA. It begins with an introduction into experimen-

tal design. This is followed by a discussion of evaluation criteria. Then, experimental results

are presented.

Experimental Design

Profiles are created for every application, VM and PM from real data centre workload logs.

For building the profiles, the workload logs are collected over a period of seven days (the 12th to

19th of May, 2014). They include information about CPU, memory and energy utilizations. The

length of each application is determined by the Instruction Count (IC). The computing capacity

of each VM is in Million Instructions Per Second (MIPS). The application and VM parameter

settings are shown below.

Table 4.3 depicts application and VM parameter settings.

Table 4.3: Parameter settings for applications and VMs.

Parameter Value
IC [5, 10]× 109 instr
IPS [1, 2]× 109 instr/sec
Memory [1000, 5000] Bytes
Pmax 350 W
Pmin 150 W
PUE 2

In our experiments, a data centre with 100 PM servers that hosts upto 1000 VMs is con-

sidered. For the evaluation, 11 different problem test sets are considered where the number of

applications ranges from 20 to 5000 with corresponding number of VMs as seen in Table 4.4.

For the first five test sets, the number of VMs is kept constant while the number of applications

varies.

The three-layer energy management system integrating profile-based application assign-

ment with VM placement is implemented for evaluation of overall energy consumption. At

the application management layer, profile-based application assignment is implemented using

RGA. It incorporates LCFP-generated initial population and IRP. RGA is carried out with a

80 CHAPTER 4. REPAIRING GENETIC ALGORITHM

Table 4.4: Problem test sets for Chapter 4 experiments.

Test set VMs Applications
1 10 20
2 10 40
3 10 60
4 10 80
5 10 100
6 50 200
7 100 500
8 250 1500
9 500 2500

10 750 3500
11 1000 5000

pre-set population size of 200 individuals in each generation. It is terminated when there is no

change in the average and maximum fitness values of strings for 10 generations. The number

of the maximum generations is set to be 200. The probabilities for crossover and mutation

operations are configured to be 0.75 and 0.02, respectively. At the VM management layer, the

widely used First-Fit Decreasing (FFD) algorithm is implemented for VM placement to PM

servers.

Evaluation Criteria

In order to evaluate the quality and efficiency of the solutions for profile-based application

assignment to VMs, RGA presented in this Chapter is compared with the steady-state GA [Por-

taluri et al., 2014] which is assumed as a benchmark (there is no actual benchmark available for

application assignment and further evaluations on the RGA with existing assignment methods

are conducted in the following Chapter 5). Also, FFD is implemented for VM placement to

PMs, forming RGA-FFD for RGA, and GA-FFD for GA, respectively. The evaluation criteria

for testing RGA include the following:

1. Scalability

2. Energy efficiency and computing efficiency

(a) Energy consumption

(b) Solution time

(c) Statistical T-Test analysis

4.4. EXPERIMENTAL STUDIES 81

3. Quality of solutions

(a) VM resource utilization

(b) Speed of convergence

(c) Makespan performance with respect to initial population

4.4.1 Scalability of RGA

The high scalability of the RGA is demonstrated through solving the static assignment problem

for a problem size ranging from 200 to 5, 000, 000. Figure 4.6 shows the algorithm solution

time with respect to the problem size. As the test problem size [m ∗ n] increases, the solution

time of RGA increases linearly. A nearly linear increase in the solution time with respect to the

problem size well characterizes RGA’s good scalability. For test sets 1 to 5 where the number

of VMs is a constant of 10, the elapsed times for algorithm solution are small.

Figure 4.6: Scalability of the Repairing Genetic Algorithm.

4.4.2 Energy Efficiency and Computing Efficiency

In order to calculate the actual energy consumption and computing time for both genetic algo-

rithm (GA) and RGA, FFD is implemented as the policy for VM placement to PMs. The results

of energy efficiency and computing efficiency are tabulated in Table 4.5.

82 CHAPTER 4. REPAIRING GENETIC ALGORITHM

Table 4.5: Energy efficiency and computing efficiency of GA and RGA incorporating with FFD
(SD: standard deviation). For each of the test sets, the results are derived from 30 runs.

Test
VMs

PMs Total energy of all Daily energy Solution
set Required active servers (Wh) (KWh) time (sec)

GA SD RGA SD GA RGA GA RGA
1 10 1 219 35.79 194 13.85 5.26 4.66 0.8 0.6
2 10 1 247 41.69 222 14.48 5.92 5.32 2.8 2.3
3 10 2 409 42.06 315 28.76 9.82 7.57 6.0 4.7
4 10 2 425 46.26 337 30.12 10.19 8.09 6.4 5.2
5 10 2 432 50.47 398 34.90 10.37 9.56 15 12
6 50 5 1422 45.28 1308 39.41 34.12 31.38 162 134
7 100 11 2737 32.38 2249 38.70 65.70 53.97 1298 804
8 250 27 7027 69.87 5875 45.12 168.64 141.00 2293 1406
9 500 62 17127 63.91 13407 52.45 411.04 321.77 5127 2387

10 750 75 21093 53.94 17461 35.94 506.24 419.07 8004 3689
11 1000 100 27591 57.74 24605 58.35 662.19 590.52 13070 5999

The first observation from Table 4.5 is that RGA-FFD gives smaller energy consumption

than GA-FFD for all test sets. The energy savings of RGA-FFD in comparison with GA-FFD

are from 7.8% up to 23% for the considered test sets. For Test Set 11, which represents a

realistic size of a small data centre, both GA and RGA are respectively used to allocate 5000

applications to 1000 VMs, which are then placed by FFD to 100 active PMs. The resulting

daily energy consumption of the data centre is 662.59 KWh for GA-FFD and 590.52 KWh for

RGA-FFD, indicating an about 72 KWh daily energy saving.

The second observation from Table 4.5 is that the energy consumption results from RGA-

FFD show smaller average standard deviations than those from GA-FFD. This implies that RGA

is more stable than GA for deriving the results. This conclusion is drawn from 30 runs for each

the test sets.

For computing efficiency, as the problem size increases, GA-FFD takes up to twice as much

time as RGA-FFD does to solve the problem. This is clearly shown in average Solution Time

in Table 4.5. This means that RGA converges faster with better solutions than GA.

To demonstrate the confidence level of the experimental results, a paired t-test is conducted

for the two independent methods of GA and RGA for each test set. As GA and RGA are

stochastic in nature, both of them are individually run 30 times for each Test set. The null

4.4. EXPERIMENTAL STUDIES 83

hypothesis is that there is no difference between GA and RGA methods. The confidence interval

is set at 95% and a two-tailed hypothesis is assumed. The t-stat values are recorded in Table 4.6.

The two-tailed P-value is less than 0.0001 and is extremely statistically significant. The results

show that the difference between the two methods are significant, and thus the null hypothesis

is rejected.

Table 4.6: T-test of the solutions by GA and RGA.

Test set T-Value std. error t-crit df
1 -3.66 6.866 2.045 29
2 -3.15 7.888 2.045 29
3 -9.98 9.416 2.045 29
4 -8.04 10.901 2.045 29
5 -2.43 13.960 2.045 29
6 -11.25 10.139 2.045 29
7 -29.12 9.943 2.045 29
8 -56.87 16.726 2.045 29
9 -62.08 12.753 2.045 29

10 -60.11 11.841 2.045 29
11 -54.17 17.145 2.045 29

4.4.3 Quality of Solutions

The quality of solutions is determined by measuring resource utilization, convergence, and

makespan performance due to LCFP-generated initial population.

VM Resource Utilization. The results of VM resource utilization for both GA and RGA

are shown in Figure 4.7. It is clearly seen from Figure 4.7 that RGA uses VM resources more

efficiently than GA. Overall, RGA gives solutions that are 10.42% to 42.86% more resource

efficient than GA. The highest average VM resource utilization achieved by RGA is 70%, while

this metric is only 56% for GA. The initial steep incline in Figure 4.7 is a result of keeping

the number of VMs constant to 10 whilst increasing the number of applications from 20 to 100

for Test sets 1 to 5. This implies that for Test set 5, the VM resources are under maximum

utilization due to an approximate average of ten applications assigned per VM. The drop in

the figure indicates the increase in the number of VMs in Test set 6. The resource utilization

increases linearly with the gradual increase of both the number of VMs and applications.

84 CHAPTER 4. REPAIRING GENETIC ALGORITHM

Figure 4.7: Resource utilisation efficiency of RGA vs. GA.

Convergence. Table 4.7 tabulates the best results in terms of energy and the corresponding

genetic iteration for both GA and RGA. It is clearly seen from Table 4.7 that RGA gives better

solutions with much fewer iterations. With the increase in the problem size from Test Sets 1 to

6, the numbers of iterations from RGA are over three quarters fewer that those from GA. From

test sets 7 to 11, GA has reached the pre-set maximum number of iterations of 200, while RGA

achieves better solutions with less than half of the pre-set number of iterations. For Test set 11,

RGA uses 93 iterations to derive a better solution than GA with 200 iterations. All these results

show faster convergence of RGA than that of GA.

Table 4.7: Comparisons of GA and RGA with regard to convergence.

Test
set

GA - Best Result RGA - Best Result
Energy (Wh) Iteration Energy (Wh) Iteration

1 191 47 175 4
2 205 94 190 13
3 372 132 280 18
4 399 159 300 23
5 417 172 349 25
6 1398 197 1294 39
7 2719 200 2212 44
8 6998 200 5839 57
9 17098 200 13379 62

10 21038 200 17439 81
11 27554 200 24584 93

Makespan Performance due to Initial Population. Makespan is the maximum completion

time of all applications allocated to a VM. In our preliminary work [Vasudevan et al., 2015], GA

4.5. SUMMARY OF THE CHAPTER 85

is applied with random initial population. This Section will use random initial population and

LCFP-generated initial population for RGA. The overall average makespan for GA with random

initial population is denoted by GA-Rand. Similarly, use RGA-Rand and RGA-LCFP to denote

RGA with random and LCFP-seeded initial population, respectively. Figure 4.8 depicts the

makespan performance of GA-Rand, RGA-Rand and RGA-LCFP. With the increase of problem

size, the steep initial incline of all three strategies represent the solutions of Test sets 1-5, where

the number of VMs are constant whilst the number of applications varies from 20 to 100. It

is seen from the figure that both RGA-Rand and RGA-LCFP provide better solutions than

GA-Rand does. However, RGA-LCFP outperforms RGA-Rand in the sense that it generates

better solution with faster convergence. This is because the LCFP strategy seeds the initial

populations by assigning the longest application to the fastest processing (MIPS) VM. This in

turn minimizes the makespan and maximizes the CPU utilization.

Figure 4.8: Makespan performance due to initial population.

4.5 Summary of the Chapter

This Chapter addresses the Static Assignment Problem of using profiles for energy- and performance-

efficient application assignment to VMs. It makes the second contribution of our research: a

Repairing Genetic Algorithm (RGA). The RGA implements the profile-based static application

assignment framework. It improves the steady-state GA by incorporating the following two

main components:

86 CHAPTER 4. REPAIRING GENETIC ALGORITHM

1. Longest Cloudlet Fastest Processor (LCFP) generated initial population for faster conver-

gence and minimized VM makespan; and

2. Infeasible-solution Repairing Procedure (IRP) that convert infeasible solutions that vi-

olate resource usage constraints to feasible solutions. This is executed by re-assigning

applications from a bad VM host to other VMs until the violations are null and the solution

fitness is satisfactory.

The RGA is implemented at the top application management layer in the three-layer energy

management. In addition, for a complete energy management system, the First Fit Decreasing

(FFD) heuristic has been implemented at the middle VM management layer in the three-layer

energy management. Experiments have been conducted to demonstrate the effectiveness and

efficiency of the profile-based RGA. For the investigated scenarios, RGA has shown 23%

less energy consumption and 43% more resource utilization in comparison with steady-state

GA. The better solutions are achieved with faster convergence and shorter computing time

than GA. Therefore, the profile-based RGA is a promising tool for energy-efficient application

assignment to VMs in data centres.

The next Chapter 5 addresses the Dynamic Assignment Problem. It discusses implementa-

tion of Profiles for dynamic application assignment to VM as our third contribution.

Chapter 5

Profile-based Dynamic Application Assignment

This Chapter is dedicated to the third research problem of the thesis: the Dynamic Assignment

Problem. To solve this problem, a profile-based dynamic application assignment framework

is presented. The framework handles real-time applications and workload. The key issue of

this problem is to plan a response to sudden changes in the workload such as VM failure

and new applications. Experiments demonstrate the effectiveness of the dynamic approach

to application management. The dynamic approach produces 48% better energy savings than

existing application assignment approaches under investigated scenarios. It also performs better

than the static application management approach with 10% higher resource utilization efficiency

and lower degree of imbalance.

In the following sections, 1) a dynamic approach will be presented to deal with profile-based

application assignment. It uses profiles derived from actual workload logs and implements the

Repairing Genetic Algorithm (RGA, developed in Chapter 4); 2) The research problem will

be formally formulated by considering fluctuations in real-time application arrivals, resource

demands and VM availability; 3) Application finishing times will be estimated for satisfying

deadline constraints and reducing waiting time and assignment overhead; 4) A real-time assign-

ment strategy will be developed to address infrequent issues such as new/random applications

or inoperative VMs; and 5) Actual energy savings will be demonstrated through the three-layer

energy management of data centres as shown in Figure 1.1. The implemented VM placement

policy is first-fit decreasing (FFD).

The remainder of this Chapter is organized as follows. The notations used throughout this

Chapter are listed in Table 5.1. The dynamic research problem is described and formulated in

87

88 CHAPTER 5. DYNAMIC APPLICATION ASSIGNMENT

Section 5.1. A profile-based dynamic application assignment framework for real-time appli-

cations is presented in Section 5.2. Section 5.3 discusses the repairing genetic algorithm for

dynamic application assignment solution. The dynamic application assignment framework and

RGA are evaluated in Section 5.4. Finally, Section 5.5 summarizes the Chapter.

5.1 Dynamic Assignment Problem Formulation

Initially, the application, VM and server profiles have already been created off-line using data

centre workload logs. Then, the profiles are expanded and updated online as needed in real-time.

5.1.1 Characterizing Application Dynamics

In our application assignment problem, multiple real-time applications are to be allocated to

VMs. The application assignment is required to satisfy deadline, waiting time and performance

constraints. Consider a set of real-time applications, {A1, A2, · · · , Ai, · · · , An}. The dynamic

behaviour of an application is characterised by varying arrival times, real-time constraints and

resource demands. Thus, the real-time application Ai, 1 ≤ i ≤ n is characterized by the

following parameters: 1) submission time ts(i); 2) deadline constraint td(i); and 3) required

resources such as cores Nr(i), instruction count IC(i) and memory Mr(i). Therefore, the real-

time application Ai is defined as

Ai = 〈ts(i), td(i), Nr(i), IC(i),Mr(i)〉 , i ∈ I = {1, 2, · · · , n} (5.1)

The application profiles incorporate the above information. They also calculate waiting

times, the maximum execution times, periodicity and finishing times in order to improve the

application assignment efficiency. The waiting time tw(i) is counted from the time instant ts(i)

when the application arrives till the time instant at which the application is allocated. Once the

application is placed on a VM with allocated resources, it executes for a maximum execution

time of max te(i) for i ∈ I . The maximum execution time can be calculated by:

max
i∈I

te(i) = td(i)− ts(i), i ∈ I (5.2)

The length of the application Ai, i ∈ I is represented by instruction count IC(i), which is

5.1. DYNAMIC ASSIGNMENT PROBLEM FORMULATION 89

Table 5.1: Description of notations used in Chapter 5.

Notation Description
αj Ratio of power consumed at max to min util of host Vj
Ai Application, i ∈ I = {1, · · · , n}
β1, β2 Coefficients in fitness function F (X)

Cij Energy cost of Ai, i ∈ I , assigned to Vj, j ∈ J
CPI Cycles Per Instruction
fmaxvc (j) Max CPU Frequency (MHz) of Vj, j ∈ J
fusedvc (j) Used vCPU frequency (MHz) of Vj, j ∈ J
fc(k) Frequency of cores in Sk, k ∈ K = {1, · · · , l}
f totalc (k) Total CPU frequency (MHz) of Sk, k ∈ K
fusedc (k) (%) Total CPU Usage (%) of Sk, k ∈ K
F (obj), F (X) Objective function, and fitness function, respectively
i, j, k Subscripts or indices for applications, VMs and PMs,

respectively
I, J,K Integer sets I = {1, · · · , n}, J = {1, · · · ,m}, K = {1, · · · , l}
IC(i) Instruction Count of Ai, i ∈ I
Mmax

j Memory Capacity (MB) of Vj, j ∈ J
Mused

j Used Memory (KB) of Vj, j ∈ J
Mr(i) Requested Memory (KB) of Ai, i ∈ I
MIPS(j) MIPS rate of Vj, j ∈ J
n,m, l Total numbers of applications, VMs and PMs, respectively
Nc(k) Total number of cores in Sk, k ∈ K
Nr(i) Requested cores for Ai, i ∈ I
Nvcj Number of vCPUs of Vj, j ∈ J
Pk Power consumed (Watts) of Sk, k ∈ K
Pmax
k , Pmin

k Power at respect max and min utilizations of Sk, k ∈ K
Sk Physical Machine (PM) or Server, k ∈ K = {1, · · · , l}
tc(j) Completion time of all applications on Vj, j ∈ J
td(i), te(i), tf (i) Deadline, exec. time & finish time of Ai, i ∈ I , respectively
ts(i), tw(i) Submission time and waiting time of Ai, i ∈ I , respectively
Tλ Time slot ID, λ ∈ {1, 2, · · · ,Λ}
Vj Virtual Machine (VM), j ∈ J = {1, · · · ,m}
xij Binary assignment decision variable
X, X̂ Assignment decision matrix and its estimation, respectively
yjk Binary VM-server host constant
∆t Time interval

measured in million instructions. Periodicity is set to 1 if the application is regular to the data

centre or 0 if it is not periodic. The application releases the VM resources and exits the VM on

execution completion.

90 CHAPTER 5. DYNAMIC APPLICATION ASSIGNMENT

The finishing time of the applicationAi, i ∈ I can be estimated using the application profiles

before the allocation for satisfaction of the deadline constraints.

Estimated tf (i) = ts(i) +
IC(i)

MIPS(j) ·Nr(i)
(5.3)

5.1.2 Characterizing Virtual Machine Dynamics

A virtualized data centre consists of a set of PMs {S1, · · · , Sk, · · · , Sl} and a set of VMs

{V1, · · · , Vj, · · · , Vm}. From our collected information from a real medium-density data centre,

the processing capabilities of the PMs and VMs, such as MIPS rate, CPU frequency, memory

and storage are pre-configured. They are reviewed every 6-12 months and updated if necessary.

Therefore, the maximum server resources available to VMs are considered to be constant in this

research.

For a PM Sk, the total CPU processing capacity f totalc (k) is the product of the frequency

of the processors, fc(k), and the number of cores, Nc(k). Similarly, for a VM Vj , the total

CPU processing capacity fmaxvc (j) is the frequency of the processors, fc(k), times the number

of vCPUs, Nvc(j). The million instructions per second (MIPS) rate, MIPS(j), of the VM is

calculated by assuming constant Cycles Per Instruction, CPI .

f totalc (k) = fc(k) ·Nc(k) (5.4)

fmaxvc (j) = fc(k) ·Nvc(j) (5.5)

MIPS(j) = fmaxvc (j)/CPI (5.6)

For example, a server has 4 cores, each running at the frequency of 2 GHz. The server hosts

2 VMs with 1 vCPU each. In that case, the total CPU frequencies available in MHz from

the server (f totalc (k)) and VM (fmaxvc (j)) are 8,000 MHz and 2,000 MHz, respectively. The

processing rate of the VM is 1,000 MIPS. If the CPU usage of the VM is above 80%, the VM

is over-loaded and the VM status is set to 1. If the CPU usage falls below 20%, the VM is

under-loaded and the VM status is set to 2. If there is a VM failure or deactivation, the VM

status is set to 3. The dynamic VM model is described by the following parameters:

1) the status of the VM Vj; status(j)

2) the resource usage by all real-time applications: fusedvc (j), Mused
j , and

5.1. DYNAMIC ASSIGNMENT PROBLEM FORMULATION 91

3) the linked list of all allocated applications: pointer.

5.1.3 Formulation of Profile-based Dynamic Assignment

The decision matrix X at time t for application assignment to VM is given by:

X(t) = [xij]n×m , i ∈ I, j ∈ J (5.7)

where,

xij(t) =

1, if Ai is assigned to Vj, i ∈ I, j ∈ J

0, otherwise

(5.8)

At time t, the CPU and memory resources used by VM Vj is fusedvc (j, t) and memory

Mused
j (t), respectively. The completion time of all applications on the VM is tc(j).

fusedvc (j, t) =

∑n
i=1 IC(i) · xij(t)

tc(j)
· CPI (MHz) (5.9)

Mused
j (t) =

n∑
i=1

Mr(i) · xij(t) (KB) (5.10)

In physical servers, CPU is the main power consumer compared with other system compo-

nents like memory and storage, which have limited dynamic power ranges Barroso and Holzle

[2007]. The power consumption of the physical server Sk at time t is calculated using the total

CPU utilization percent fusedc (k, t) of the server in the corresponding time period:

fusedc (k, t)[%] =

∑m
j=1 f

used
vc (j, t) · yjk
f totalc (k)

× 100 (5.11)

Pk(t) =
[
(Pmax

k − P idle
k) · fckused(k, t)/100

]
+ P idle

k (5.12)

where, yjk is 1 if VM Vj, j ∈ J , is hosted by server Sk, k ∈ K, and is 0 otherwise.

The ratio of power consumed at maximum to minimum utilization of the host server is

given by αj . Therefore, the energy cost of allocating application Ai to VM Vj is calculated as a

92 CHAPTER 5. DYNAMIC APPLICATION ASSIGNMENT

measure of CPU given by:

Cij = αj · IC(i)/MIPS(j) (5.13)

The constrained combinatorial optimization model for the assignment of a set of applica-

tions to VMs is given as:

F (obj) = min
∑M

j=1

∑N
i=1Cij · xij (5.14)

s.t.
n∑
i=1

[
xij · IC(i)

max (te(i))

]
≤MIPS(j), ∀j ∈ J ; (5.15)∑N

i=1 xij ·Mr(i) ≤Mmax
j , ∀j ∈ J ; (5.16)∑M

j=1 xij = 1, ∀i ∈ I; (5.17)

xij = 0 or 1, ∀i ∈ I, j ∈ J. (5.18)

The constraints in Equations (5.15) and (5.16) ensure that the allocated resources are within the

total capacity of the VM. The constraint in Equation (5.17) restricts an application from running

on more than one VM. The binary constraint of the allocation decision variable xij is given by

(5.18).

For a time interval of ∆t = 30 min, the total daily energy consumption of all servers in the

data centre is given by:

Total Daily Energy Consumption =

∫ 48·∆t

0

(
L∑
k=1

Pk(t)

)
d(t) (5.19)

5.2 Profile-based Dynamic Application Management Framework

The workload of an application is dynamic in nature due to a number of factors such as change in

resource requirements and load surges due to increased user requests. The work in Fahim et al.

[2014] has reported two dynamic allocation algorithms: efficient response time load balancer

and minimum processing time load balancer. While these algorithms update the allocation

tables with respect to VM load, the update does not happen before the completion of processing

current applications. In comparison, our dynamic assignment strategy presented in this Chapter

updates the allocation tables periodically. Prior to the assignment of applications to VMs using

5.2. PROFILE-BASED DYNAMIC APPLICATION MANAGEMENT FRAMEWORK 93

RGA, the FFD algorithm sorts the PMs in decreasing order of resource capacity. Each active

VM is placed onto the first server with adequate space remaining. All active VMs are eventually

packed onto PM servers.

5.2.1 Dynamic Application Assignment

After application, VM and server profiles are built off-line, the real-time allocation of appli-

cations to VMs is initiated. The data centre operation is divided into 30 min time slots ∆t,

the resulting time slot sequence is represented by T1, · · · , Tλ, · · · , TΛ. The periodic real-time

allocation works as follows: The estimated task submission times in the application profiles

are used to determine the arrivals of applications in specific time slots. In time slot Tλ, the

estimated applications arrival in time slot Tλ+1 is batch processed for allocation of applications

to potential VM hosts using the profiles and a Repairing Genetic Algorithm (RGA), which is

discussed later.

The potential assignment considers the following information:

1) the resource requirement history of the applications

2) the load history of the VMs; and

3) the current assignment of applications to VMs

The resulting allocation solution is mapped onto an Estimated Assignment Decision Matrix

X̂(Tλ). Therefore, during time slot Tλ+1, actual arriving applications are treated in a First In

First Out (FIFO) order. They are allocated to the pre-determined host VMs according to the

estimate decision matrix. After that, the actual decision matrix X(Tλ) and profiles are updated.

If the deadline is exceeded in the execution of the application, the overhead is set to a high

value, e.g., 10. If the application finishes execution at the exact deadline, set Overhead = 1.

Otherwise, the overhead of allocating applications using profiles is calculated as:

Overhead =
tw(i)

td(i)− tf (i)
(5.20)

where, tf (i) represents actual finishing time of the application. The overhead is normalized

to the range of [0,1], where 0 and 1 represent the lowest overhead and maximum overheads,

94 CHAPTER 5. DYNAMIC APPLICATION ASSIGNMENT

respectively. It is seen from Equation (5.20) that the overhead of allocating profiled applications

to VMs is small when the waiting time tw(i) is low.

The process of the dynamic allocation scheme is described briefly in Algorithm 11. The

algorithm executes for at each time slot Tλ. It consists of two sequential processes: Process 1

in Lines 2 to 6 for estimation of application allocation in the next time slot Tλ+1, and Process

2 from Lines 7 to 18 for actual application allocation. Process 1 collects application profiles

(Line 3) and VM profiles (Line 4). Then, it deploys RGA for an application assignment solution

(Line 5). After that, it creates an estimated allocation decision matrix X̂(Tλ+1). In Process 2,

applications arrive in a FIFO queue waiting for assignment to a VM (Line 8). If an application

is profiled and expected (Line 9), then allocate the application to a VM using the estimated

X̂λ+1 (Line 10), and terminate the process. Otherwise, the application cannot be allocated to a

VM from the estimated X̂λ+1. There are generally three scenarios: 1) if the application is not

profiled, implying that it is a new application (Line 12), then profile this new application (Line

13); 2) the application is an unanticipated applications with random load; and 3) the application

is a periodic existing application with different parameters. In all these three scenarios, the

application is allocated to the first VM that meets the resource requirements (Lines 14 to 16).

After this allocation, the application and VM profiles need to be updated (Line 18) before

terminating the process.

5.2.2 Dealing with Infrequent Applications

For infrequent applications described above in the three scenarios, dynamic application assign-

ment to VM requires some special treatments. These treatments are described in the following.

Scenario 1: Arrival of new applications. Arriving applications that do not have profiles are

new applications. For a new applications, its resource requirements need to be determined, and

its profile will be created online. The new application is then allocated to the first available VM

that meets the resource requirements and deadline constraints. The waiting times and allocation

overhead of new applications are higher than those of expected applications with profiles. The

overhead of allocating new applications falls between 0.75 and 1. However, there are not many

new applications in the data centres of universities, government agencies and other small- to

medium-scale business companies.

5.2. PROFILE-BASED DYNAMIC APPLICATION MANAGEMENT FRAMEWORK 95

Algorithm 11: Dynamic application assignment algorithm
1 for Time slot Tλ do
2 Process 1 - Estimate Allocation for Tλ+1 ;
3 Collect application profiles for submission times within = Tλ+1;
4 Collect VM profiles, set VM status = 0, normal;
5 Deploy repairing genetic algorithm RGA (given later in Algorithm ??);
6 Create estimated allocation decision matrix X̂(Tλ+1);
7 Process 2 - Actual Allocation for Tλ;
8 Applications arrive in a FIFO queue;
9 if Ai is profiled & expected then

10 Allocate Ai to VM using X̂(Tλ+1);

11 else
12 if Ai is not profiled then
13 Profile this new application;

14 for Each VM do
15 if VM resource availability ≥ Application requirement then
16 Allocate application Ai to the VM;
17 break;

18 Update application and VM profiles;

Scenario 2: Unanticipated existing applications with random load. Non-periodic applica-

tions with random load and variable submission/arrival times are considered as unanticipated

applications. Although these applications have profiles, their resource demands are unknown

prior to execution. Such applications are allocated promptly to the first available high-MIPS

VM that satisfies the resource requirements and deadline constraints. The overhead for such

allocations is in the range of 0.4 to 0.75. It is lower than that of allocation of new applications.

Scenario 3: Periodic existing applications with different parameters. This scenario considers

a profiled periodic application that arrives at Tλ with different parameters. In this case, if the

deadline of the application is less than the estimated finishing time on the pre-determined VM,

then the application is newly allocated to the first available high-MIPS VM that satisfies the

resource requirements and deadline constraints. Otherwise, the application is allocated to the

pre-determined VM host without change. The overhead for such allocations falls between a

wider range of 0.01 to 1 depending on the validity of the pre-determined VM host.

Setting VM Status. Considering real-time usage of a VM, the status parameter of the

VM profile is set to an integer from 0 to 3. The integer value 0 is for normal workload,

1 for over-loaded VM, 2 for under-loaded VM, and 3 for an inactive scenario due to VM

96 CHAPTER 5. DYNAMIC APPLICATION ASSIGNMENT

failure or deactivation. If the status is normal (0), allocation proceeds successfully. The over-

loaded and under-loaded CPU usage thresholds are set to 80% and 20%, respectively. Once

the thresholds are crossed, a repairing procedure discussed later in Section 5.3 is used to

transfer one or more allocated applications from the affected VM to the next available VM.

In the case of over-loading, the transfer of applications continue until the CPU usage falls

below the higher threshold level. Under-loaded VMs are prioritised as available hosts for new

and unanticipated applications with random load. If a VM becomes suddenly inactive due to

failure or deactivation, then the executing applications stop and must be requested again by

the user. These applications are then directed to the first available VM with high MIPS rate.

Concurrently, the energy cost matrix is updated to reflect very high value for the failed VM.

This ensures that the affected VM is not selected for hosting applications until the status returns

to normal.

5.3 Repairing Genetic Algorithm

An integrated component of the dynamic application assignment framework described in Sec-

tion 5.2 is the Repairing Genetic Algorithm (RGA). It is implemented during ∆t time intervals.

At time Tλ, the RGA uses profiles and the expected submission times of the applications to

derive estimated allocations solutions for the next time slot Tλ+1, giving an estimated allocation

decision matrix X̂ (Lines 5 and 6 in Algorithm 11).

In general genetic algorithms, there are two issues that affect the efficiency of deriving an

application assignment solution: initial population and infeasible solutions. General steady-

state GA methods utilize randomly generated initial population [Vasudevan et al., 2015]. In

contrast, the RGA incorporates Longest Cloudlet Fastest Processor (LCFP) heuristics. It consid-

ers computational complexity of applications and computing power of processors, to generate

an initial population. The advantages of using LCFP include faster convergence and better

solutions. The steps involved in implementing LCFP are:

1) Sort applications Ai, i ∈ I in descending order of execution time;

2) Sort VMs Vj, j ∈ J in descending order of processing power (MIPS); and

3) Pack sorted applications into fastest processing VM.

5.3. REPAIRING GENETIC ALGORITHM 97

For infeasible solutions, an infeasible-solution repairing (IRP) process is employed to con-

vert infeasible solutions to feasible solutions. An infeasible application assignment to a VM

is denoted by a ‘violation’ indicator as a result of VM status violation or resource constraint

violation:

violation =

0, if resource constraints are not violated

1, otherwise
(5.21)

When violation = 1, the applications assigned to infeasible VMs are re-assigned to other VMs

until the violations are resolved. The IRP pursues the following steps:

1) Identify VM Vj, j ∈ J , with violation = 1;

2) Calculate resource availability of next VM Vj′ , j
′ ∈ J ;

3) Assign the first application of Vj to new Vj′ if the new Vj′ has more than sufficient

resources to host the application; and

4) Repeat above steps until violation = 0.

In RGA, the genetic operator settings are given in Table 5.2. The quality of the assign-

ment solution is determined by the fitness function. A lower energy cost and higher resource

utilization efficiency result in a higher fitness function. The fitness function is derived as:

F (X) = β1 · F̄obj − β2 ·
1

m

m∑
j=1

[
fusedvc (j)

CPI ·MIPS(j)
+
Mused

j

Mmax
j

]
. (5.22)

The weights [β1, β2] associated with the fitness function is set to [2, 1]. The multiplicative

inverse of the objective function discussed in Equation (5.14) is represented by ¯Fobj . It is scaled

to a range of [1, 10].

Table 5.2: Genetic operator settings.

Initial Population Randomly generated
Genetic Encoding Value encoding
Selection Roulette wheel selection
Crossover Uniform crossover with binary mask
Mutation Select & exchange 2 offspring genes
Termination Condition Until max generations/ suitable solution

98 CHAPTER 5. DYNAMIC APPLICATION ASSIGNMENT

A high level description of RGA is given in Algorithm 8, Section 4.3 of Chapter 4. Gener-

ally, RGA incorporates LCFP to generate initial population (Lines 1 and 2). Then, it evaluates

the fitness of each candidate chromosome (Line 3). If the termination condition is met, output

the best fit chromosome as solution. Otherwise, do the following operations sequentially for

each generation (Line 5):

1) for each chromosome (Line 6), evaluate the fitness (Line 7); and if the chromosome is

infeasible apply IRP process and re-evaluate the fitness (Lines 8 to 10); then select parents

(Line 11);

2) for parent chromosomes, do crossover, mutation, and generation of offspring chromo-

somes (Lines 12 to 15);

3) for offspring chromosomes, evaluate fitness of new candidates, and replace low-fitness

chromosomes with better offspring (Lines 16 to 18);

4) for each chromosome, select chromosomes for next generation.

After these sequential operations, the best fit chromosome is selected for output (Line 21).

5.4 Experimental Studies

This Section undertakes experiments to demonstrate the efficiency of the profile-based dynamic

application management framework and RGA. It begins with an introduction into experimental

design. This is followed by a discussion of evaluation criteria. Then, experimental results are

presented.

Experimental Design

In order to fully realize the efficiency of the dynamic application management framework,

we have built profiles and conducted all experiments using workload traces from a real data

centre. This Chapter has used the MetaCentrum2 workload trace Klusacek et al. [2015] pro-

vided by the Czech National Grid Infrastructure MetaCentrum. We have extracted seven days

of workload from this trace. The total number of applications considered for our experiments

varied per day as expected in a real data centre. On average, there were 2583 applications per

5.4. EXPERIMENTAL STUDIES 99

day, each with an instruction count of [5000, 10000] million instructions and [500, 1000] KB

of memory.

We have investigated a real data centre with 100 physical servers, each containing 2 to 4

CPU cores running at 1000, 1500 or 2000 MIPS and 8 GB of memory. The total number of

VMs considered is 300. Each VM contains 1 vCPU, which we assume is equal to 1 server CPU

core. The vCPU runs at 250, 500, 750 or 1000 MIPS and 128 MB of memory. The server power

consumptions at maximum and idle utilizations (Equation 5.12) are set at 350 and 150 Watts,

respectively as per our observation of the real data centre.

The RGA has a population size of 200 individuals in each generation. The maximum

number of generations is set to 200. Probabilities for crossover and mutation are set to 0.75

and 0.02, respectively. The mutation probability is set to a low value in order to control the

exploration space. The termination condition is reached when there is no change in the average

value and maximum fitness values of strings for 10 generations.

Evaluation Criteria

In order to evaluate the quality and efficiency of the solutions for profile-based dynamic

application assignment to VMs, the dynamic scheme presented in this Chapter is compared with

static application assignment using RGA (discussed in Chapter 4). As there are no benchmarks

for application management, we assume the benchmarks to be existing application assignment

strategies: Random (commonly used in data centres today) and First-Fit [Chandio et al., 2013].

The evaluation criteria for testing dynamic-RGA against static-RGA include the following:

1) Energy efficiency: (a) energy consumption; and (b) statistical T-Test analysis; and

2) Quality of solutions: (a) VM resource utilization; (b) makespan performance; (c) degree

of imbalance; and (d) estimated finishing time performance.

5.4.1 Energy Efficiency

In our case experiments, FFD is implemented as a policy for VM placement to PMs in the three-

layer energy management shown in Figure 1.1. This allows to determine actual energy savings

and efficiency of our dynamic application assignment solutions. The presented dynamic-RGA

100 CHAPTER 5. DYNAMIC APPLICATION ASSIGNMENT

method is compared with three individual assignment methods used as benchmarks: static-

RGA, random, and First-Fit. Random and First-Fit methods are existing assignment methods.

Actual energy consumption of all servers across seven days is calculated using Equation 5.19.

The results are mapped onto Figure 5.1. It is observed from the figure that both static and

dynamic RGAs provide good results in terms of energy consumption. Considering the mean

energy consumption of both methods over seven days, the energy savings of dynamic-RGA

is 7% more than static-RGA. When compared with existing application assignment strategies

(benchmark) dynamic-RGA is 48% and 34% more energy-efficient than Random and First-Fit

methods respectively.

Figure 5.1: Average energy consumptions over seven days for Dynamic-RGA, Static-RGA,
Random and First-Fit strategies.

A paired t-test is conducted to determine the confidence level of the experimental results

for the two independent strategies of static-RGA and dynamic-RGA. As genetic algorithm is

stochastic in nature, both strategies are individually run 30 times for each day. A two-tailed

hypothesis is assumed and the confidence interval is set to 95%. The null hypothesis is that

there is no difference between the means of static-RGA and dynamic-RGA. Table 5.3 records

the average energy consumption across seven days for the two strategies and the corresponding

t-stat values. The two-tailed P-value is less that 0.0001 and is extremely statistically signifi-

cant. The results demonstrate that the difference between dynamic-RGA and static-RGA are

significant and thus the null hypothesis is rejected.

5.4. EXPERIMENTAL STUDIES 101

Table 5.3: Daily energy consumption of the data centre: static-RGA vs. dynamic-RGA.

Day Energy (KWh) T-value std. error df
Static-RGA Dynamic-RGA

1 250.57 316.53 -6.05 10.886 29
2 336.73 258.47 -4.96 15.764 29
3 370.63 384.6 -1.45 9.604 29
4 491.97 417.23 -4.75 15.714 29
5 441.77 391.43 -4.49 11.201 29
6 685.57 629.93 -10.58 5.257 29
7 423.63 343.23 -8.28 9.705 29

5.4.2 Quality of Solutions

The quality of solutions is determined by measuring resource utilization, makespan perfor-

mance, VM degree of imbalance and estimated finishing time performance

VM Resource Utilization. The results of VM resource utilization on implementation

of static-RGA and dynamic-RGA on the increasing number of applications is demonstrated

in Figure 5.2. Both static-RGA and dynamic-RGA realize a linear progression in terms of

utilization efficiency. However, the dynamic-RGA performs upto 10% better in terms of re-

source utilization than static-RGA. The figure also demonstrates the scalability of the presented

approach with respect to increasing problem size.

Figure 5.2: VM resource utilization of static-RGA vs. dynamic-RGA.

Makespan. Makespan is the maximum completion time of all applications allocated to a

VM:

Makespan = max
j∈J

tc(j). (5.23)

102 CHAPTER 5. DYNAMIC APPLICATION ASSIGNMENT

Figure 5.3: Makespan of dynamic RGA.

Completion time is the final time at which all applications conclude processing among all

VMs. The number of VMs is a constant 300 and the number of applications varies every day.

Figure 5.3 illustrates the maximum makespan incurred on implementing dynamic-RGA for the

seven days under consideration. Makespan is linearly dependant on the number of applications.

Degree of Imbalance (DI). The degree of imbalance represents the imbalanced distribution

of load among VMs:

DI =
Makespan−min(tc(j)

avg(tc(j)
. (5.24)

The lower the DI, the more balanced the load distribution. DIs on implementation of the

methods dynamic-RGA and static-RGA is 1.2 and 1.8 respectively. This demonstrates that

dynamic-RGA is more efficient than static-RGA in terms of generating the lest imbalanced

load distribution.

Estimated Finishing Time Performance. The estimated and actual finishing times of the

allocated applications over 24 hours is shown in Figure 5.4. The data shown in the figure are

sampled at an interval of one hour time slot. While the estimated finishing time deviates from

the actual finishing time, the mean of the deviations over 24 hours is as low as 5.551 sec.

This demonstrates that the estimated finishing time (Equation 5.3) is near-accurate to the actual

finishing times. Especially, all applications allocated through the estimated finishing times meet

the deadline constraints, demonstrating the effectiveness of the dynamic application assignment

approach presented in this Chapter.

5.5. SUMMARY OF THE CHAPTER 103

Figure 5.4: Estimated finishing time performance.

5.5 Summary of the Chapter

This Chapter addresses the Dynamic Assignment Problem of implementing profile-based as-

signment for real-time applications with dynamic workload. It makes the third contribution

of our research: a profile-based dynamic application assignment framework. The framework

is implemented with a repairing genetic algorithm (RGA). The finishing times of applications

are estimated by using profiles to satisfy deadline constraints and reduce waiting times and

assignment computation overhead. Strategies are developed to handle infrequent management

scenarios such as new/random applications or failed/deactivated VMs. To derive actual energy

savings, the dynamic assignment assignment approach has been embedded into a three-layered

energy management system. The VM management layer implements a first-fit decreasing (FFD)

VM placement policy and the application management layer implements RGA.

Experiments have been conducted to demonstrate the effectiveness and efficiency of the dy-

namic approach. For the investigated scenarios, the dynamic application assignment approach

has shown 48% more energy savings than existing assignment approaches. Dynamic method

also displays 10% more resource utilization efficiency and lower degree of VM load imbalance

in comparison with the static method. Therefore, the profile-based dynamic assignment is a

promising technique for energy-efficient application management in data centres.

The next Chapter 6 addresses the Consolidation Problem. It develops a method for consoli-

dating applications in data centres as our fourth contribution.

104 CHAPTER 5. DYNAMIC APPLICATION ASSIGNMENT

Chapter 6

Application Consolidation

Among the four research problems of the thesis, we have addressed profile building, static

and dynamic assignment problems in previous chapters. This Chapter is dedicated to the

fourth research problem of the thesis: the Consolidation Problem. It develops a methodology

for a profile-based application assignment consolidation approach. Consolidation is used to

further improve the energy-efficiency of the application assignment solution. Consequently, we

seamlessly incorporate a Local Search Optimization (LSO) heuristic to improve the algorithm

(RGA) developed in our previous chapters for profile-based application assignment. First-Fit

Decreasing (FFD) based VM placement is implemented to complete the three-tiered energy

management solution. Experimental studies demonstrate that consolidation improves static and

dynamic assignment energy-efficiency by 36.5% and 26.5% respectively.

Consolidation can be implemented at each of the three layers of a data centre: Application,

VM and server. Server and VM consolidation of virtualized data centres are popular meth-

ods. Both methods involve migration of VMs or workload to empty and switch-off the server

[Ahmad et al., 2015, Baruchi et al., 2015, Rao and Thilagam, 2015]. Data centres virtualized

with software such as VMware vSphere is equipped with powerful tools for live migration of

VMs and server consolidation. However, few small- to medium- data centres choose to employ

these tools risking reliability and performance. Most of the existing consolidation techniques

fall short of satisfying the Quality of Service (QoS) of applications that run on VMs during

consolidation.

To tackle this challenging problem, we implement consolidation at the application layer.

Consolidation of applications requires minimum number of VMs executing applications with

105

106 CHAPTER 6. APPLICATION CONSOLIDATION

high load balance and resource utilization. It involves emptying VMs running on low utilization

and shutting them down. Consequently, the host servers of these VMs consume less energy,

thereby resulting in actual energy savings. The method of shutting down VMs reduces energy

consumption, although not as significant as shutting down servers directly. However, VMs can

be brought back online with considerably less time than servers. Also, for sudden spikes in

workload, load redistribution can be managed well with the former method as each server is

capable of hosting upto 15 VMs. The former method of shutting down VMs has a lower impact

on data centre reliability.

In the following sections; 1) the consolidation problem will be formally formulated to

minimize active VMs whilst considering fluctuating workload, resource demands, deadline

constraints and VM availability; 2) an application consolidation procedure implemented by

an Improved-RGA is presented. It incorporates a Local Search Optimization (LSO) heuristic;

3) a three-tiered profile-based energy management framework that implements consolidated

application assignment and VM placement is presented; and 4) actual server energy savings are

demonstrated when compared with unconsolidated static and dynamic profile-based application

assignment.

This Chapter is organized as follows. The notations used throughout this Chapter are

listed in Table 6.1. Section 6.1 formulates the application consolidation problem. Section 6.2

describes the application consolidation solution and the improved repairing genetic algorithm.

Experimental studies conducted to demonstrate the effectiveness of our solution is given in

Section 6.3. Finally, Section 6.4 summarizes the Chapter.

6.1 Consolidation Problem Formulation

A virtualized data centre consists of a set of l servers represented by {S1, · · · , Sk, · · · , Sl}.

The servers host a set of m VMs {V1, · · · , Vj, · · · , Vm}. Consider a set of n applications

{A1, A2, · · · , Ai, · · · , An} that must be assigned to these VMs. The consolidation problem

has two components: 1) Application Consolidation; and 2) VM Placement. Solving the prob-

lem leads to a complete application management solution that saves energy consumption, is

performance reliable and load balanced.

6.1. CONSOLIDATION PROBLEM FORMULATION 107

Table 6.1: Description of notations used in Chapter 6.

Notation Description
Ai Application, i ∈ I = {1, · · · , n}
β1, β2 Coefficients in fitness function F (X)

Cij Energy cost of Ai, i ∈ I , assigned to Vj, j ∈ J
fusedvc (j) Used vCPU frequency (MHz) of Vj, j ∈ J
F (obj), F (X) Objective function, and fitness function, respectively
i, j, k Subscripts or indices for applications, VMs and PMs,

respectively
I, J,K Integer sets I = {1, · · · , n}, J = {1, · · · ,m}, K = {1, · · · , l}
Mmax

j Memory Capacity (MB) of Vj, j ∈ J
Mused

j Used Memory (KB) of Vj, j ∈ J
n,m, l Total numbers of applications, VMs and PMs, respectively
Rr(i) Resource required for Ai, i ∈ I
Rmax
v (j) Max resource capacity of Vj, j ∈ J

Rused
v (j) Used resource of Vj, j ∈ J

Rmax
k Max resource capacity of Sk, k ∈ K

Sk Physical Machine (PM) or Server, k ∈ K = {1, · · · , l}
Vj Virtual Machine (VM), j ∈ J = {1, · · · ,m}
wk Max resource weight of Sk, k ∈ K
xij Binary assignment decision variable
yjk Binary VM-server host constant
zj Binary variable representing active/inactive status of Vj, j ∈ J

6.1.1 Formulation of Application Consolidation

The assignment problem addressed in the previous chapters required applications to be assigned

to VMs using profiles. Profile-based static and dynamic application assignment aimed for

energy- and performance-efficiency. This Chapter deals with the additional problem of ap-

plication consolidation that requires minimum number of VMs to be active, whilst the others

are emptied and shut down.

The assignment of an application Ai, i ∈ I , onto a VM Vj , j ∈ J is represented by a

binary decision variable xij, i ∈ I, j ∈ J . The binary variable, zj(t) represents the active or

deactivated status of the VM at a specific time interval.

zj(t) =

1, if Vj, j ∈ J is active at time t

0, otherwise

(6.1)

108 CHAPTER 6. APPLICATION CONSOLIDATION

The consolidation problem is mathematically represented as follows:

min
∑m

j=1 zj(t) (6.2)

s.t.
∑N

i=1Rr(i) · xij ≤ Rmax
v (j), ∀i ∈ I, j ∈ J ; (6.3)∑M

j=1 xij = 1, ∀i ∈ I; (6.4)

zj, xij = 0 or 1, ∀i ∈ I, j ∈ J. (6.5)

The constraints in Equations (6.3) ensure that the allocated resources are within the total

resource capacity, Rmax
v (j) of the VM Vj, j ∈ J . The resource required by an application

Ai, i ∈ I is given by Rr(i). The sum of the workload of every application assigned to a

VM must not exceed the VM resource capacity. The constraint in Equation (6.4) restricts an

application from running on more than one VM. The binary constraint of the allocation decision

variable xij and zj(t) is given by (6.5).

6.1.2 VM Placement

We consider VM placement as a bin packing problem [Song et al., 2014b]. The VMs are placed

onto as few servers (bins) as possible using First-Fit Decreasing (FFD). The VM placement

problem can be formulated as follows: Each server has a weight {w1, · · · , wk, · · · , wl} rep-

resented by maximum resource capacity (Rmax
k , k ∈ K) associated with it. The weights are

normalized to a range of [1, 10].

The servers are sorted such that:

wk > wk+1, 1 6 k 6 l (6.6)

Each active VM is placed onto the first server with adequate space by satisfying the following

resource condition.

m∑
j=1

Rmax
v (j) · yjk ≤ Rmax

k , ∀ j ∈ J, k ∈ K (6.7)

6.2. APPLICATION CONSOLIDATION PROCEDURE 109

6.2 Application Consolidation Procedure

Consolidation of applications is implemented by local search optimization (LSO) heuristic. The

number of active VMs required is scaled down. This ensures VM resource-efficiency, further

reduces server energy and maintains workload balance. The consolidation approach completes

the final solution of energy-efficient profile-based application management in data centres of

this thesis. Figure 6.1 demonstrates the application consolidation process. V2 and V4 are under-

utilized, i.e. operating under user-specified low threshold (in this case, threshold is set at 30%).

The LSO procedure re-assigns the applications hosted by V2 and V4 to V3 which has sufficient

resources available. Then, V2 and V4 are shut down, thereby reducing the number of active VMs

from four to one.

Figure 6.1: Application Consolidation Process.

6.2.1 Local Search Optimization (LSO)

Profile-based application assignment consolidation approach is implemented by LSO. It en-

ables improvement of one design objective without sacrificing or even improving other design

objectives. The design objective under current focus is the number of active VMs. Other design

objectives which we have satisfied (in our previous chapters) are energy and resource utilization.

The LSO is an upgrade to the profile-based application assignment framework. During periods

of low workload, the problem of all VMs across the servers handling few or no applications each

leads to unnecessary energy consumption. This problem is not obvious during high workloads.

LSO is used to improve the assignment solution chromosomes by increasing resource uti-

lization efficiency. If a VM is functioning below a set threshold of its CPU and memory

110 CHAPTER 6. APPLICATION CONSOLIDATION

capacity, then the local optimization procedure transfers the applications hosted by the VM

to another VM. In this procedure, the threshold is set at 0.3, which is 30% of the CPU and

memory capacity. The transfer of applications ensures that for a feasible solution, the CPU and

memory resource utilizations of active VMs are enhanced. After the local optimization, the

fitness of the new solution is compared with the old solution. If the former falls below the latter,

the chromosome reverts to the old solution. Algorithm 12 describes the working of the LSO

process.

Algorithm 12: Local Search Optimization
1 for j = 1 to m do
2 while Vj.pointer 6= null do
3 if (Vj.Rused

v (j) < 0.3 ∗ Vj.Rmax
v (j)) then

4 select = Vj.pointer ;
5 Vj.pointer = Vj.pointer.next ;
6 j′ = j + 1 ;
7 while j′ ≤ m do
8 if (Vj′ .availCPU ≥ select.Rr(i)) then
9 select.next = Vj′ .pointer ;

10 Vj′ .pointer = select ;
11 Vj′ .R

used
v (j)+ = select.Rr(i) ;

12 Set j′ = j′ + 1 ;

6.2.2 Improved-Repairing Genetic Algorithm

The LSO is incorporated into our algorithm to create the improved-RGA. The improved-RGA

now has three components:

1. Longest Cloudlet Fastest Processor: The LCFP generated initial population packs the

longest application to the fastest processor (VM). LCFP sorts applications in decreasing

order of estimated execution times. The VMs are sorted in decreasing order of processing

capacity. The applications are then packed onto the fastest processing VM. The gener-

ated initial population undergoes selection, mutation and crossover to create consequent

offspring populations.

2. Infeasible-solution Repairing Procedure: IRP converts infeasible solutions to feasible

assignments. VMs that violate resource constraints are identified. Each application hosted

by such VMs are reassigned to other suitable VMs until the violation is null.

6.2. APPLICATION CONSOLIDATION PROCEDURE 111

3. Local Search Optimization: LSO is applied to feasible solution chromosomes to con-

solidate the assignment of applications. It re-assigns applications and shuts down low-

utilization VMs. This ensures better workload balance resulting in low degree of imbal-

ance.

The chromosomes of the improved-RGA are represented by value encoding. The parent

chromosomes are selected from the mating pool with the help of roulette wheel selection, which

is a fitness-proportionate selection technique. The greater the fitness value of a chromosome,

the more probability of being selected as a parent. Uniform crossover is applied to the parent

solutions using a binary crossover mask to produce the offspring solutions. Mutation is carried

out by selecting and exchanging two genes from the offspring chromosomes. The mutation

probability is set to a low number, in order to control the search space. The termination

condition specifies that the cycle is repeated for each generation until a maximum number of

generations is reached or an individual is found which adequately solves the problem. Every

iteration of the algorithm creates a population consisting of a set of chromosomes,which repre-

sent a possible assignment solution.

The fitness function defined in Equation 5.22 (Section 5.3) is recalled here:

F (X) = β1 · F̄obj − β2 ·
1

m

m∑
j=1

[
fusedvc (j)

CPI ·MIPS(j)
+
Mused

j

Mmax
j

]
. (6.8)

The weights [β1, β2] associated with the fitness function is set to [2, 1]. The multiplicative

inverse of the objective function discussed in Equation (5.14) is represented by ¯Fobj . It is

normalized and scaled to a range of [1, 10].

The high level description of the improved-RGA is given in Algorithm 13. The improved-

RGA incorporates Longest Cloudlet Fastest Processor (LCFP) generated initial population (Lines

1 and 2). Then, it evaluates the fitness of each candidate chromosome (Line 3). If the termina-

tion condition is met, output the best fit chromosome as solution. Otherwise, do the following

operations sequentially for each generation (Line 5):

1) for each chromosome (Line 6), evaluate the fitness (Line 7); and if the chromosome is

infeasible apply IRP process and re-evaluate the fitness (Lines 8 to 10); then select parents

(Line 11);

112 CHAPTER 6. APPLICATION CONSOLIDATION

2) for parent chromosomes, do crossover, mutation, and generation of offspring chromo-

somes (Lines 12 to 15);

3) for offspring chromosomes, evaluate fitness of new candidates (Line 17), apply LSO pro-

cess (Line 18), evaluate fitness of consolidated candidates (Line 19); compare candidate

fitnesses and replace low-fitness chromosomes with better offspring (Lines 20 and 21);

4) for each chromosome, select chromosomes for next generation.

After these sequential operations, the best fit chromosome is selected for output (Line 24).

Algorithm 13: Improved Repairing Genetic Algorithm
1 Find output of solutions generated by LCFP;
2 Initialize population with LCFP output;
3 Evaluate fitness of each candidate chromosome;
4 while Termination condition is not satisfied do
5 for Each Generation do
6 for Each chromosome do
7 Evaluate fitness;
8 if Chromosome is infeasible then
9 Apply IRP;

10 Evaluate Fitness;

11 Parents selected using Roulette Wheel Selection;

12 for Parent chromosomes do
13 Apply uniform crossover as per crossover probability;
14 Mutate resulting offspring as per mutation probability;
15 Offspring chromosomes generated;

16 for Offspring chromosomes do
17 Evaluate fitness of new candidates;
18 Apply LSO;
19 Evaluate fitness of consolidated candidates;
20 if Consolidated candidate fitness is higher then
21 Replace low-fitness chromosomes with better offspring;

22 for Each chromosome do
23 Select chromosomes for next generation;

24 Output the best fit chromosome as solution;

6.3. EXPERIMENTAL STUDIES 113

Figure 6.2: Three-tiered energy management.

6.2.3 Three-tiered Energy Management

Energy management is implemented at the three layers of the data centre architecture: applica-

tion, VM and server as seen in Figure 6.2. It provides a complete solution in terms of energy

savings. The profile-based consolidated assignment method is used at the application man-

agement layer. The VM management layer implements the first-fit decreasing (FFD) heuristic

described in Algorithm 14 for VM placement to servers.

Algorithm 14: First-Fit Decreasing
1 Sort PMs in descending order of weights, wk;
2 for Each PM, Sk, k = 1, 2..., l do
3 for Each VM, Vj, j = 1, 2, ...,m do
4 if Vj fits in Sk then
5 Pack Vj in Sk ;
6 Break ;

6.3 Experimental Studies

This Section conducts experiments to demonstrate the efficiency of the application consolida-

tion process. Application consolidation makes up the final phase of our profile-based applica-

tion assignment framework. We conduct experiments to test and demonstrate the significant

improvement of energy- and performance-efficiency results on addition of the consolidation

process. It begins with an introduction into experimental design. This is followed by a discus-

sion of evaluation criteria. Then, experimental results are presented.

Experimental Design

114 CHAPTER 6. APPLICATION CONSOLIDATION

The results of the proposed application consolidation scheme are compared with results

prior to consolidation Chapter 4 and 5. Implementation of RGA without the local optimization

procedure results in all VMs being active. Whereas, on implementation of the improved-RGA,

the incorporated LSO minimizes the number of active VMs by migrating the applications in

low utilized VMs to other VMs. As such we conduct experimental studies on the following:

1. Static vs Static-Consolidated

2. Dynamic vs Dynamic-Consolidated

Case Study 1: Static-Consolidated Assignment To ascertain the enhancement of the con-

solidation process, we first compare with the results of the static assignment method discussed

in Chapter 4. Experiment design is similar to that of Chapter 4. A data centre hosts 100 servers

hosting upto 1000 VMs. For our evaluation, 6 different problem test sets are considered where

the number of applications ranges from 200 to 5000 with corresponding number of VMs as seen

in Table 6.2.

Table 6.2: Problem test sets for static-consolidation experiments.

Test set VMs Applications
1 50 200
2 100 500
3 250 1500
4 500 2500
5 750 3500
6 1000 5000

Case Study 2: Dynamic-Consolidated Assignment To fully realize the improvement, the

experimental design is similar to dynamic assignment Chapter 5. Experiments are conducted

using MetaCentrum2 workload trace Klusacek et al. [2015] provided by the Czech National

Grid Infrastructure MetaCentrum. The profiles are built using workload traces from real data

centre systems.

The total number of applications considered for the experiments varied per day as expected

in a real data centre. On average, there were 2583 applications per day, each with an instruction

count of [5000, 10000] million and [500, 1000] KB of memory. A data centre consisting of 100

physical servers, each containing 2 to 4 CPU cores running at 1000, 1500 or 2000 MIPS and 8

6.3. EXPERIMENTAL STUDIES 115

GB of memory is considered. The total number of VMs considered is 300. Each VM contains

1 vCPU, which we assume is equal to 1 server CPU core. The vCPU runs at 250, 500, 750

or 1000 MIPS and 128 MB of memory. The server power consumption at maximum and idle

utilizations is set at 350 and 150 Watts respectively.

The improved-RGA has a population size of 200 individuals in each generation. The

maximum number of generations is set to 200. Probabilities for crossover and mutation are

set to 0.75 and 0.02 respectively. The mutation probability is set to a low constant in order to

control the exploration space. The termination condition is reached when there is no change in

the average value and maximum fitness values of strings for 10 generations.

Evaluation Criteria

The evaluation criteria for testing assignment against consolidated assignment include the

following:

1) Energy efficiency; and

2) Quality of solutions: (a) VM resource utilization; and (b) degree of imbalance.

6.3.1 Energy-Efficiency

Actual energy savings are derived from the consolidation process by implementing the three-

tiered energy management framework. The energy-efficiency of static- and dynamic-consolidated

assignment is demonstrated below.

Static-Consolidated Assignment. Figure 6.3 demonstrates the daily energy consumption of

the static-consolidated method compared to the static method. Upto 36.5% of energy savings

is possible with static-consolidated. Moreover, the static-consolidated uses on average half the

servers required by static to host the VMs. For the Problem Set 6, the actual number of VMs

which is 1000 is reduced to 804 active VMs with the help of improved-RGA. This is equated to

saving approximately 165 KWh daily.

From Table 6.3, the VMs required to host the applications can be reduced upto 41%. There-

fore, the number of physical machines required to host the active VMs for static-consolidated

is much smaller than that of static method for each problem set. On average, seven applications

are hosted by each VM. A server can host upto 15 VMs. Using FFD, number of servers required

116 CHAPTER 6. APPLICATION CONSOLIDATION

Figure 6.3: Energy consumption of static-consolidated assignment.

to host the VMs is scaled to 3-76.

It is observed that reducing the number of servers required, increases the individual server

energy consumption. However, overall energy consumption of the data centre is decreased.

Table 6.3 demonstrates that the average energy per hour of servers is generally higher for static-

consolidated because of higher CPU utilization on packing multiple VMs to fewer servers.

Table 6.3: Energy consumption per active server for static-consolidated and static methods.

Test Set Static-Consolidated Static
Active VMs Required PMs Energy/PM (Wh) Energy/PM (Wh)

1 34 3 305 262
2 59 6 283 204
3 116 13 316 218
4 298 30 331 216
5 512 49 274 233
6 804 76 273 246

Dynamic-Consolidated Assignment. The dynamic-consolidated method exhibits 26.5%

more energy efficiency than dynamic method. This can warrant upto saving 68 KWh per day for

the data centre. From Figure 6.4, it can be inferred that the difference in energy consumption

between both methods is low during high workload and vice versa. Day 6 had the highest

influx of workload at nearly 6000 applications. The percentage difference in energy of both

methods is low as 0.78%. Lowest workload appears on Day 2 with 1200 applications. The

energy-efficiency of application consolidated is evident from the results.

6.3. EXPERIMENTAL STUDIES 117

Figure 6.4: Energy consumption of dynamic-consolidated assignment.

6.3.2 Quality of Solution

The quality of solutions is determined by measuring resource utilization and VM degree of

imbalance.

Resource Utilization.

Static-Consolidated. The consolidated process is capable of increasing average resource

utilization of VMs to 83%. This is 38% more resource-efficient than the static method. The

increase is attributed to low number of active VMs. Whereas the static method utilizes all

available VMs.

Dynamic-Consolidated. From Figure 6.5, the consolidated method maintains the average

resource utilization between 65% to 82%. This is due to reducing the number of active VMs

and satisfying the upper- and lower- threshold constraint set between 30% to 85%. The number

of active VMs is reduced to less than half the total number of VMs. The dynamic method uses

the entire 300 VMs for application assignment. The dynamic-consolidated method uses less

than 150 VMs on average during the seven days under consideration.

Degree of Imbalance.

Represents the imbalanced distribution of load among VMs. It is dependent on the makespan

of the VMs. The lower the DI, the more balanced the load distribution. The DI of the static and

dynamic assignment methods is 1.8 and 1.2 respectively. The consolidation process improves

the DI of the methods to 1.4 and 1.1 for static- and dynamic-consolidated methods respectively.

118 CHAPTER 6. APPLICATION CONSOLIDATION

Figure 6.5: Average resource utilization of active VMs.

6.4 Summary of the Chapter

This Chapter is dedicated to the fourth and final research problem of the thesis: the Con-

solidation Problem. It makes the fourth contribution of our research by presenting a profile-

based application assignment consolidation approach. Consolidation is implemented by a local

search optimization (LSO) heuristic. The number of active VMs required is scaled down.

This ensures VM resource-efficiency, further reduces server energy and maintains workload

balance. The consolidation approach completes the final solution of energy-efficient profile-

based application management in data centres of this thesis. Experimental analysis demonstrate

that the consolidation process improves static and dynamic assignment energy-efficiency by

36.5% and 26.5% respectively. The number of active VMs is reduced such that the resource

utilization is high and degree of imbalance is low. Therefore, consolidation of applications is a

successful component of our profile-based application management framework.

The next Chapter 7 summarizes the complete profile-based application assignment frame-

work and concludes this thesis.

Chapter 7

Conclusions and Recommendations

This Chapter summarizes the research work on profile-based application management for green

(energy-efficient) data centres. It highlights the main contributions, discusses research limita-

tions and outlines future research directions.

7.1 Summary of the Research

Data centres are indispensable in this Information Age. The proliferation of internet users

and data have led to large-scale deployment of data centres around the world. However, they

consume immense amounts of energy resulting in exorbitant energy costs and excessive carbon

footprint. This demands green initiatives and energy-efficient strategies for greener data centres.

Inefficiencies of resources provisioned to application workloads need to be well investigated

and addressed. Improving application management of a data centre is an effective way for this

purpose. Assignment of an application to different virtual machines affects both the energy

consumption and resource utilization significantly. However, energy-efficiency and resource

utilization are conflicting in general. Thus, it is imperative to develop a scalable application

assignment strategy for a trade-off between energy-efficiency and Quality of Service (QoS)

such as resource utilization and workload balance.

To address this problem, a profile-based application management framework has been pre-

sented in this thesis for greener data centres. Profiles provide prior knowledge of the run-

time characteristics of the workload. The profile-based application management framework

addresses the four research questions stated in Section 1.2: The Profiling Problem, The Static

119

120 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

Assignment Problem, The Dynamic Assignment Problem and The Consolidation Problem. The

solutions for the research questions discussed in Chapters 3 through 6 form the four major

contributions of this thesis. Chapter 3 explores profiles and profile building as an application

assignment strategy. Chapters 4, 5 and 6 make use of profiles for static, dynamic and consoli-

dated application assignment.

Firstly, the concept of profiles and profile building have been discussed (The Profiling

Problem). Profiles are built from real data centre workload logs for applications, virtual ma-

chines (VMs) and servers. They are used to predict future workload and plan application

assignment to VMs in advance. A profile-based application assignment problem have been

formulated as a penalty-based constrained optimization model. This is solved by a Penalty-

based Profile Matching Algorithm. Experimental studies have shown that the profile-based

application assignment approach is feasible, scalable and 22% more energy-efficient in com-

parison with other existing/benchmark approaches. This implies that the profiling approach

is successful in providing energy-efficient assignment solutions with good CPU utilization

efficiency and application completion times within deadlines. Thus, the first contribution of

the thesis presented in Chapter 3 solves the first research question: Profiling Problem.

Secondly, a Repairing Genetic Algorithm (RGA) have been designed to implement static

profile-based application assignment (The Static Assignment Problem). RGA is incorporated

with Longest Cloudlet Fastest Processor (LCFP) generated initial population and an Infeasible-

solution Repairing Procedure (IRP). LCFP allows for faster convergence and minimized makespan.

IRP converts infeasible solutions to feasible solutions by re-assigning applications to better

VMs until constraint violations are null. Experiments have been conducted to demonstrate the

effectiveness and efficiency of the profile-based RGA. It is implemented at the top application

management layer in the three-layer energy management. In addition, for a complete energy

management system, First Fit Decreasing (FFD) is implemented at the middle VM management

layer in the three-layer energy management. For the investigated scenarios, RGA has shown

23% less energy consumption and 43% more resource utilization in comparison with the steady-

state GA. The improved solutions are achieved with faster convergence and shorter computing

time than GA. Therefore, the profile-based RGA has been established as a promising tool for

energy-efficient application assignment to VMs in data centres. This solves the second research

question: Static Assignment Problem and makes the second contribution of the thesis presented

in Chapter 4

7.1. SUMMARY OF THE RESEARCH 121

Thirdly, a profile-based dynamic application assignment framework have been developed to

handle real-time applications and workload (The Dynamic Assignment Problem). It is imple-

mented by the RGA. Profiles are used to estimate finishing time of applications, such that dead-

line constraints are satisfied and waiting time is minimized. The dynamic approach exhibits ro-

bustness by handling infrequent scenarios such as new/random applications or failed/deactivated

VMs. The overhead of using profiles for real-time workload have been studied. Experiments

are conducted to demonstrate the effectiveness and efficiency of the dynamic approach over

the static approach and other benchmark approaches. Three-tiered energy management system

is considered to derive actual energy savings. Profile-based dynamic application assignment

is implemented at the application management layer. FFD VM placement is implemented at

the VM management layer. For the investigated scenarios, the dynamic application assignment

approach produces 48% more energy savings than existing benchmark application assignment

approaches. It also performs better than the profile-based static assignment with 7% more

energy savings, 10% more resource utilization efficiency and lower degree of VM load imbal-

ance. Thus, the third contribution of the thesis presented in Chapter 5 solves the third research

question: Dynamic Assignment Problem.

Finally, a methodology for profile-based application assignment consolidation approach

have been developed (The Consolidation Problem). It is implemented by a Local Search Op-

timization (LSO) heuristic. The LSO is integrated into the RGA to develop the Improved-

RGA. Consolidation of applications require low-workload VMs to be emptied and shut down.

This scales down the number of active VMs in a data centre, thereby ensuring VM resource-

efficiency. Consequently, the number of servers and power required to host the VMs also scales

down. This further reduces server energy consumption and maintains workload balance. Ex-

perimental analysis of the three-tiered energy management system using profiles demonstrates

significant energy savings. Consolidation improves static and dynamic assignment energy-

efficiency by 36.5% and 26.5% respectively. Therefore, consolidation of applications is a

successful final component of our profile-based application management framework. This

solves the fourth research question: Consolidation Problem and makes the fourth contribution

of our thesis presented in Chapter 6.

Thus, we have successfully addressed all the four research questions mentioned in Section

1.2. The four contributions forms our final profile-based application management framework

for green (energy-efficient) data centres.

122 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

7.2 Limitations and Future Recommendations

Evolution of next-generation IT applications in science, business and academic fields neces-

sitates energy-efficient application management of cloud data centres explored in this thesis.

This will enable efficient provisioning of resources with lower energy consumptions and carbon

footprint. The research presented in this thesis can be integrated into open source software, such

as Open-Stack or proprietary software, such as VMware vShere. This will advance innovation

in the development of next generation computing systems.

This research only focuses on small- to medium-data centres. Profiles have been built,

tested and applied to application assignment using workload logs from data centres managed

by universities, businesses and government agencies. This is because small- to medium-data

centres claim ownership of 95% of the world’s total data centre usage. Future recommendation

include considering the following two issues:

1. Larger-scale data centres. This will require consideration of various factors in profile

building such as communication, networks and storage.

2. Variable workload. This involves highly variable workload during short periods of time

due to implementation of technologies such as cloud and high performance computing.

The framework presented in this thesis can be expanded to handle the above issues by

modifying profile building.

Literature Cited

Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Yousafzai, A., and Xia, F. (2015).

A survey on virtual machine migration and server consolidation frameworks for cloud data

centers. Journal of Network and Computer Applications, 52:11 – 25.

Apple (2016). Environmental responsibility report: Progress report, covering fy2015. Technical

report, Apple Inc.

Arroba, P., Risco-Martn, J. L., Zapater, M., Moya, J. M., Ayala, J. L., and Olcoz, K. (2014).

Server power modeling for run-time energy optimization of cloud computing facilities.

Energy Procedia, 62:401 – 410.

Bahrpeyma, F., Zakerolhoseini, A., and Haghighi, H. (2015). Using IDS fitted Q to develop

a real-time adaptive controller for dynamic resource provisioning in cloud’s virtualized

environment. Applied Soft Computing, 26:285 – 298.

Bajpai, P. and Kumar, M. (2010). Genetic algorithm an approach to solve global optimization

problems. Indian Journal of Computer Science and Engineering, 1(3):199–206.

Bang, S.-Y., Bang, K., Yoon, S., and Chung, E.-Y. (2009). Run-time adaptive workload

estimation for dynamic voltage scaling. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 28(9):1334–1347.

Barroso, L. and Holzle, U. (2007). The case for energy-proportional computing. Journal of

Computer, 40(12):33–37.

Barroso, L. A., Clidaras, J., and Hlzle, U. (2013). The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machines, Second Edition. Morgan &

Claypool Publishers.

123

124 LITERATURE CITED

Baruchi, A., Midorikawa, E. T., and Sato, L. M. (2015). Reducing virtual machine live

migration overhead via workload analysis. IEEE Latin America Transactions, 13(4):1178–

1186.

Bashroush, R., Woods, E., and Noureddine, A. (2016). Data center energy demand: What got

us here won’t get us there. IEEE Software, 33(2):18–21.

Baxter, J. and Patel, J. (1992). Profiling based task migration. In Proceedings of the Sixth

International Parallel Processing Symposium, pages 192–195, Beverly Hills, California,

USA. IEEE.

Beloglazov, A., Abawajyb, J., and Buyya, R. (2012). Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing. Future Generation

Computer Systems, 28:755–768.

Beloglazov, A., Buyya, R., Lee, Y. C., and Zomaya, A. (2011). A taxonomy and survey of

energy-efficient data centers and cloud computing systems. Advances in Computers, 82:47–

111.

Benbrahim, S. E., Quintero, A., and Bellaiche, M. (2014). New distributed approach for an

autonomous dynamic management of interdependent virtual machines. In Proceedings of the

Eighth Asia Modelling Symposium, pages 193–196, Taipei, Taiwan, China. IEEE.

Berral, J. L., Gavalda, R., and Torres, J. (2011). Adaptive scheduling on power-aware managed

data-centers using machine learning. In Proceedings of the 12th IEEE/ACM International

Conference on Grid Computing, pages 66–73, Lyon, France. IEEE.

Bhoi, U. and Ramanuj, P. N. (2013). Enhanced max-min task scheduling algorithm in

cloud computing. International Journal of Application or Innovation in Engineering and

Management (IJAIEM), 2(4):259–264.

Binkley, A. (2016). Renewable energy innovations in green data centers.

Retrieved on 30/05/2016 from http://datacenterfrontier.com/

renewable-energy-innovations-driving-the-green-boom/.

Blackburn, M. (2008). Five ways to reduce data center power consumption (white paper). The

Green Grid.

LITERATURE CITED 125

Bohrer, P., Elnozahy, E. N., Keller, T., Kistler, M., Lefurgy, C., McDowell, C., and Rajamony,

R. (2002). The case for power management in web servers. Power aware computing, pages

261–289.

Buyya, R., Beloglazov, A., and Abawajy, J. (2010). Energy-efficient management of data

center resources for cloud computing: A vision, architectural elements, and open challenges.

In Proceedings of the International Conference on Parallel and Distributed Processing

Techniques and Applications, pages 1–12, Las Vegas, Nevada, USA. CSREA Press.

Buyya, R., Vecchiola, C., and Selvi, S. T. (2013). Mastering Cloud Computing: Foundations

and Applications Programming. Elsevier, Amsterdam, The Netherlands.

Calheiros, R. and Buyya, R. (2014). Meeting deadlines of scientific workflows in public clouds

with tasks replication. IEEE Transactions on Parallel and Distributed Systems, 25(7):1787–

1796.

Calheiros, R. N., Ranjan, R., Beloglazov, A., Rose, C. A. F. D., and Buyya, R. (2011).

Cloudsim: a toolkit for modeling and simulation of cloud computing environments and

evaluation of resource provisioning algorithms. Software: Practice and Experience,

41(1):23–50.

Campbell, A., Wu, A. S., and Shumaker, R. (2008). Multi-agent task allocation: learning

when to say no. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary

Computation, pages 201–208, Atlanta, Georgia, USA. ACM.

CarbonZone (2010). Carbon reduction commitment. Retrieved on 05/05/2016 from http:

//www.carbonreductioncommitment.co.uk/.

Caron, G., Hansen, P., and Jaumard, B. (1999). The assignment problem with seniority and job

priority constraints. Operations Research, 47(3):449–453.

Chandio, A. A., Xu, C. Z., Tziritas, N., Bilal, K., and Khan, S. U. (2013). A comparative study

of job scheduling strategies in large-scale parallel computational systems. In Proceedings of

the 12th IEEE International Conference on Trust, Security and Privacy in Computing and

Communications, pages 949–957, Melbourne, VIC, Australia. IEEE.

126 LITERATURE CITED

Chaobo, Y. and Qianchuan, Z. (2008). Advances in assignment problem and comparison

of algorithms. In Proceedings of the 27th Chinese Control Conference, pages 607–611,

Kunming, Yunnan, China. IEEE.

Chen, F., Grundy, J., Schneider, J.-G., Yang, Y., and He, Q. (2014a). Automated analysis of

performance and energy consumption for cloud applications. In Proceedings of the Fifth

ACM/SPEC International Conference on Performance Engineering, ICPE ’14, pages 39–50,

New York, NY, USA. ACM.

Chen, F., Grundy, J., Yang, Y., Schneider, J.-G., and He, Q. (2013). Experimental analysis of

task-based energy consumption in cloud computing systems. In Proceedings of the Fourth

ACM/SPEC International Conference on Performance Engineering, ICPE ’13, pages 295–

306, New York, NY, USA. ACM.

Chen, L. Y., Ansaloni, D., Smirni, E., Yokokawa, A., and Binder, W. (2012). Achieving

application-centric performance targets via consolidation on multicores: Myth or reality?

In Proceedings of the 21st International Symposium on High-Performance Parallel and

Distributed Computing, HPDC ’12, pages 37–48, New York, NY, USA. ACM.

Chen, Q., Zheng, L., Guo, M., and Huang, Z. (2014b). EEWA: Energy-efficient workload-

aware task scheduling in multi-core architectures. In IEEE International Parallel Distributed

Processing Symposium Workshops (IPDPSW), pages 642–651, Phoenix, AZ, USA. IEEE.

Chiang, R. and Huang, H. (2011). TRACON: Interference-aware scheduling for data-intensive

applications in virtualized environments. In International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 1–12, Seatle, WA. IEEE.

Cook, G. and Pomerantz, D. (2015). Clicking clean: A guide to building the green internet.

Technical report, Greenpeace.

Corcoran, P. M. and Andrae, A. S. (2013). Emerging trends in electricity consumption for

consumer ict. Electrical and Electronic Engineering Reports, pages 1–56.

Costa-Requena, J., Peuhkuri, M., and Manner, J. (2014). Analysis of software and server

hardware impact on energy efficiency. In Proceedings of the IEEE International Energy

Conference (ENERGYCON), pages 716–721, Cavtat, Croatia. IEEE.

LITERATURE CITED 127

Data Center Huddle (2016). Data center 101 the basics. Retrieved on 04/06/2016 from http:

//www.dchuddle.com/data-center-101/.

Dayarathna, M., Wen, Y., and Fan, R. (2016). Data center energy consumption modeling: A

survey. IEEE Communications Surveys Tutorials, 18(1):732–794.

Delforge, P. (2014). Americas Data Centers Are Wasting Huge Amounts of Energy (Issue

Paper). Natural Resources Defense Council (NRDC).

den Bossche, R. V., Vanmechelen, K., and Broeckhove, J. (2013). Online cost-efficient

scheduling of deadline-constrained workloads on hybrid clouds. Future Generation

Computer Systems, 29(4):973–985.

Desnoyers, P., Wood, T., Shenoy, P., Singh, R., Patil, S., and Vin, H. (2012). Modellus:

Automated modeling of complex internet data center applications. ACM Transactions on

the Web, 6(2):8:1–8:29.

Do, A. V., Chen, J., Wang, C., Lee, Y. C., Zomaya, A., and Zhou, B. B. (2011). Profiling

applications for virtual machine placement in clouds. In Proceedings of the Fourth IEEE

International Conference on Cloud Computing, pages 660–667, Washington, DC, USA.

IEEE.

Doria, A., Carlino, G., Iengo, S., Merola, L., Ricciardi, S., and Staffa, M. (2010). Powerfarm: A

power and emergency management thread-based software tool for the ATLAS Napoli Tier2.

Journal of Physics: Conference Series, 219(5):1–10.

Doulamis, N., Doulamis, A., Panagakis, A., Dolkas, K., Varvarigou, T., and Varvarigos, E.

(2004). A combined fuzzy-neural network model for non-linear prediction of 3-D rendering

workload in grid computing. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 34(2):1235–1247.

Ergu, D., Kou, G., Peng, Y., Shi, Y., and Shi, Y. (2013). The analytic hierarchy process:

task scheduling and resource allocation in cloud computing environment. The Journal of

Supercomputing, 64(3):835–848.

Evans, D. (2011). The internet of things. Cisco Blogs.

128 LITERATURE CITED

Ewashko, T. A. and Dudding, R. C. (1971). Application of kuhn’s hungarian assignment

algorithm to posting servicemen. Operations Research, 19(4):991.

Facebook (2016). Carbon energy water footprint and report: Facebook sustainability. Retrieved

on 04/06/2016 from https://sustainability.fb.com/en/our-footprint/.

Fahim, Y., Ben Lahmar, E., Labriji, E., and Eddaoui, A. (2014). The load balancing based

on the estimated finish time of tasks in cloud computing. In Second World Conference on

Complex Systems (WCCS), pages 594–598, Agadir, Morocco. IEEE.

Fanti, M., Mangini, A., and Ukovich, W. (2012). A quantized consensus algorithm for

distributed task assignment. In Proceedings of the 51st IEEE Annual Conference on Decision

and Control (CDC), pages 2040–2045, Maui, HI, USA. IEEE.

Gates, R. (2015). Top data center industry trends of 2016. Retrieved on 31/05/2016

from http://searchdatacenter.techtarget.com/news/4500260725/

Eight-emerging-data-center-trends-to-follow-in-2016.

Gertphol, S., Yu, Y., Gundala, S., Prasanna, V., Ali, S., Kim, J.-K., Maciejewski, A., and Siegel,

H. (2002). A metric and mixed-integer-programming-based approach for resource allocation

in dynamic real-time systems. In Proceedings of the International Parallel and Distributed

Processing Symposium, pages 1–10, Ft. Lauderdale, FL, USA. IEEE.

Ghorbannia Delavar, A. and Aryan, Y. (2014). HSGA: a hybrid heuristic algorithm for workflow

scheduling in cloud systems. Cluster Computing, 17(1):129–137.

Google (2016). Google data centers: Renewable energy. Retrieved on 04/06/2016 from

https://www.google.com.au/about/datacenters/renewable/.

Grehant, X. and Demeure, I. (2009). Symmetric mapping: An architectural pattern for resource

supply in grids and clouds. In Proceedings of the IEEE International Symposium on Parallel

and Distributed Processing, pages 1–8, Rome, Italy. IEEE.

Guzek, M., Pecero, J. E., Dorronsoro, B., and Bouvry, P. (2014). Multi-objective evolutionary

algorithms for energy-aware scheduling on distributed computing systems. Applied Soft

Computing, 24:432–446.

LITERATURE CITED 129

Han, J., Jeon, S., Choi, Y.-r., and Huh, J. (2016). Interference management for distributed

parallel applications in consolidated clusters. In Proceedings of the 21st International

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’16, pages 443–456, New York, NY, USA. ACM.

Han, K. and Cai, X. (2013). Speed-scaling-based job/tasks deployment for energy-efficient

datacenters in cloud computing. In Proceedings of the Second International Conference on

Innovative Computing and Cloud Computing, ICCC ’13, pages 154–157, New York, NY,

USA. ACM.

Hao, Y. and Liu, G. (2015). Evaluation of nine heuristic algorithms with data-intensive jobs

and computing-intensive jobs in a dynamic environment. Institution of Engineering and

Technology (IET) Software, 9(1):7–16.

Hatime, H., Pendse, R., and Watkins, J. (2013). Comparative study of task allocation strategies

in multirobot systems. IEEE Sensors Journal, 13(1):253–262.

Hermenier, F., Lawall, J., and Muller, G. (2013). Btrplace: A flexible consolidation manager

for highly available applications. IEEE Transactions on Dependable and Secure Computing,

10(5):273–286.

Hong, L. I., Ing, W. K., and Barsoum, N. N. (2012). Workload prediction of wireless sensor

network based on linear prediction. In Proceedings of the IEEE International Conference on

Cyber Technology in Automation, Control, and Intelligent Systems, pages 160–164, Bangkok,

Thailand. IEEE.

Huang, L., Ye, R., and Xu, Q. (2011). Customer-aware task allocation and scheduling for

multi-mode MPSoCs. In Proceedings of the 48th ACM/EDAC/IEEE Design Automation

Conference, pages 387–392, New York, NY, USA. IEEE.

Huang, R. and Masanet, E. (2015). Chapter 20: Data Center IT Efficiency Measures, Technical

Report. USA.

Hwang, I. and Pedram, M. (2016). Hierarchical, portfolio theory-based virtual machine

consolidation in a compute cloud. IEEE Transactions on Services Computing, PP(99):1–14.

130 LITERATURE CITED

Kessaci, Y., Mezmaz, M., Melab, N., Talbi, E.-G., and Tuyttens, D. (2011). Intelligent Decision

Systems in Large-Scale Distributed Environments, chapter Parallel Evolutionary Algorithms

for Energy Aware Scheduling, pages 75–100. Springer Berlin Heidelberg, Berlin, Heidelberg.

Kim, D., Kim, B., and Cho, J. (2014). A partitioning scheme to guarantee minimum execution

time for multiple applications in sensor network nodes. In Proceedings of the International

Conference on Information Networking, pages 126–130, Phuket, Thailand. IEEE.

Klusacek, D., Toth, S., and Podolnikova, G. (2015). Real-life experience with major

reconfiguration of job scheduling system. In Proceedings of the 19th Workshop on Job

Scheduling Strategies for Parallel Processing, pages 1–19, Hyderabad, India. IEEE.

Kong, X., Lin, C., Jiang, Y., Yan, W., and Chu, X. (2011). Efficient dynamic task scheduling

in virtualized data centers with fuzzy prediction. Journal of Network and Computer

Applications, 34(4):1068 – 1077.

Kontogiannis, T. (2005). Adaptable task modelling and its application to job design for safety

and productivity in process control. In Proceedings of the Annual Conference on European

Association of Cognitive Ergonomics, EACE ’05, pages 27–34, Chania, Greece. University

of Athens.

Koomey, J. (2011). Growth in data center electricity use 2005 to 2010. Technical report,

Analytics Press, Oakland, California, USA.

Korupolu, M., Singh, A., and Bamba, B. (2009). Coupled placement in modern data centers. In

Proceedings of the IEEE International Symposium on Parallel and Distributed Processing,

pages 1–12, Rome, Italy. IEEE.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2(1-2):83–97.

Le, K., Bianchini, R., Martonosi, M., and Nguyen, T. (2009). Cost- and energy-aware load

distribution across data centers. In Proceedings of HotPower, pages 1–5, Montana, USA.

Lei, H., Zhang, T., Liu, Y., Zha, Y., and Zhu, X. (2015). SGEESS: Smart green energy-efficient

scheduling strategy with dynamic electricity price for data center. Journal of Systems and

Software, 108:23–38.

LITERATURE CITED 131

León, X. and Navarro, L. (2013). A stackelberg game to derive the limits of energy savings for

the allocation of data center resources. Future Generation Computer Systems, 29:74–83.

Li, J., Shuang, K., Su, S., Huang, Q., Xu, P., Cheng, X., and Wang, J. (2012a). Reducing

operational costs through consolidation with resource prediction in the cloud. In Proceedings

of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

CCGRID ’12, pages 793–798, Washington, DC, USA. IEEE.

Li, W., Delicato, F. C., Pires, P. F., and Zomaya, A. Y. (2012b). Energy-efficient three-

phase task scheduling heuristic for supporting distributed applications in cyber-physical

systems. In Proceedings of the 15th ACM International Conference on Modeling, Analysis

and Simulation of Wireless and Mobile Systems, MSWiM ’12, pages 229–238, New York,

NY, USA. ACM.

Li, Y., Han, J., and Zhou, W. (2014). Cress: Dynamic scheduling for resource constrained jobs.

In Proceedings of the 17th IEEE International Conference on Computational Science and

Engineering (CSE), pages 1945–1952, Chengdu, Sichuan, China. IEEE.

Liu, N., Dong, Z., and Rojas-Cessa, R. (2012). Task and server assignment for reduction

of energy consumption in datacenters. In Proceedings of the 11th IEEE International

Symposium on Network Computing and Applications, pages 171–174, Cambridge, MA,

USA. IEEE.

Liu, X., Wang, C., Zhou, B. B., Chen, J., Yang, T., and Zomaya, A. Y. (2013). Priority-

based consolidation of parallel workloads in the cloud. IEEE Transactions on Parallel and

Distributed Systems, 24(9):1874–1883.

Lo, V. M. (1988). Heuristic algorithms for task assignment in distributed systems. IEEE

Transactions on Computers, 37(11):1384–1397.

Lublin, U. and Feitelson, D. G. (2001). The workload on parallel supercomputers: Modeling

the characteristics of rigid jobs. Journal of Parallel and Distributed Computing, 63:2003.

Luis Bassa, C. and Gil-Lafuente, A. M. (2012). Soft Computing in Management and Business

Economics: Volume 1, chapter The Hungarian Algorithm for Specific Customer Needs, pages

363–379. Springer Berlin Heidelberg, Berlin, Heidelberg.

132 LITERATURE CITED

Luo, L., Wu, W., Tsai, W., Di, D., and Zhang, F. (2013). Simulation of power consumption of

cloud data centers. Simulation Modelling Practice and Theory, 39:152–171.

Machol, R. E. (1970). An application of the assignment problem. Operations Research,

18(4):745–746.

Markets and Markets (2015). Data center power market by solution type (power distribution

and measurement, power back-up, and cabling infrastructure), by service type, by end user

type, by vertical and by region - global forecast to 2020. Technical report, Research and

Markets.

Mars, J., Tang, L., Hundt, R., Skadron, K., and Soffa, M. L. (2011). Bubble-up: Increasing

utilization in modern warehouse scale computers via sensible co-locations. In Proceedings

of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-44,

pages 248–259, New York, NY, USA. IEEE.

Mars, J., Tang, L., Skadron, K., Soffa, M., and Hundt, R. (2012). Increasing utilization in

modern warehouse-scale computers using bubble-up. IEEE Micro, 32(3):88–99.

Mathew, T., Sekaran, K. C., and Jose, J. (2014). Study and analysis of various task scheduling

algorithms in the cloud computing environment. In Proceedings of the International

Conference on Advances in Computing, Communications and Informatics, pages 658–664,

New Delhi, India. IEEE.

Maza, C. (2016). How americas big data centers are going green. Retrieved on

04/06/2016 from http://www.csmonitor.com/Environment/Energy/2016/

0330/How-America-s-big-data-centers-are-going-green.

McFarlane, R. (2015). Is energy-efficient software the next step to reduce operating costs?

Retrieved on 31/05/2016 from http://searchdatacenter.techtarget.com/.

Melis, M. (2013). Practical methods for improving ict sustainability. Re-

trieved on 04/06/2016 from http://www.sustainability-perspectives.com/

article/practical-methods-for-improving-ict-sustainability/.

Moens, H., Handekyn, K., and De Turck, F. (2013). Cost-aware scheduling of deadline-

constrained task workflows in public cloud environments. In Proceedings of the IFIP/IEEE

LITERATURE CITED 133

International Symposium on Integrated Network Management, pages 68–75, Ghent, Belgium.

IEEE.

Nagothu, K., Kelley, B., Prevost, J., and Jamshidi, M. (2010). Ultra low energy cloud computing

using adaptive load prediction. In Proceedings of the World Automation Congress, pages 1–7,

Kobe, Kansai, Japan. IEEE.

Nguyen, H., Shen, Z., Gu, X., Subbiah, S., and Wilkes, J. (2013). AGILE: Elastic distributed

resource scaling for infrastructure-as-a-service. In Proceedings of the 10th International

Conference on Autonomic Computing (ICAC 13), pages 69–82, San Jose, CA, USA.

USENIX.

Nunez, C. (2014). “zombie” servers and inefficiency drive energy waste at data centers.

National Geographic.

Orgerie, A.-C., Assuncao, M. D. d., and Lefevre, L. (2014). A survey on techniques for

improving the energy efficiency of large-scale distributed systems. ACM Computing Surveys,

46(4):47:1–47:31.

Outlook, I. (2014). Industry outlook: Data center energy efficiency. The Datacenter Journal.

Oxley, M. A., Pasricha, S., Maciejewski, A. A., Siegel, H. J., Apodaca, J., Young, D., Briceo, L.,

Smith, J., Bahirat, S., Khemka, B., Ramirez, A., and Zou, Y. (2015). Makespan and energy

robust stochastic static resource allocation of a bag-of-tasks to a heterogeneous computing

system. IEEE Transactions on Parallel and Distributed Systems, 26(10):2791–2805.

Pahlavan, A., Momtazpour, M., and Goudarzi, M. (2012). Data center power reduction by

heuristic variation-aware server placement and chassis consolidation. In Proceedings of the

16th CSI International Symposium on Computer Architecture and Digital Systems, pages

150–155, Shiraz, Fars, Iran. IEEE.

Panda, S. and Jana, P. (2015). Efficient task scheduling algorithms for heterogeneous multi-

cloud environment. The Journal of Supercomputing, 71(4):1505–1533.

Pop, C. B., Anghel, I., Cioara, T., Salomie, I., and Vartic, I. (2012). A swarm-inspired data

center consolidation methodology. In Proceedings of the Second International Conference

on Web Intelligence, Mining and Semantics, WIMS ’12, pages 1–7, New York, NY, USA.

ACM.

134 LITERATURE CITED

Pop, F., Dobre, C., Cristea, V., Bessis, N., Xhafa, F., and Barolli, L. (2015). Reputation-

guided evolutionary scheduling algorithm for independent tasks in inter-clouds environments.

International Journal of Web and Grid Services, 11(1):4–20.

Portaluri, G., Giordano, S., Kliazovich, D., and Dorronsoro, B. (2014). A power efficient

genetic algorithm for resource allocation in cloud computing data centers. In Proceedings

of the Third IEEE International Conference on Cloud Networking (CloudNet), pages 58–63,

Luxembourg City, Luxembourg. IEEE.

Prekas, G., Primorac, M., Belay, A., Kozyrakis, C., and Bugnion, E. (2015). Energy

proportionality and workload consolidation for latency-critical applications. In Proceedings

of the Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages 342–355, New York,

NY, USA. ACM.

Pretorius, M., Ghassemian, M., and Ierotheou, C. (2010). An investigation into energy

efficiency of data centre virtualisation. In Proceedings of the International Conference on

P2P, Parallel, Grid, Cloud and Internet Computing, pages 157–163, Fukuoka, Kyushu,

Japan. IEEE.

Rafiei, S. and Bakhshai, A. (2012). A review on energy efficiency optimization in smart grid.

In Proceedings of the 38th IEEE Annual Conference on Industrial Electronics Society, pages

5916–5919, Montreal, Quebec, Canada. IEEE.

Rao, K. S. and Thilagam, P. S. (2015). Heuristics based server consolidation with residual

resource defragmentation in cloud data centers. Future Generation Computer Systems,

50:87–98.

RE100 (2016). Bt puts sustainability at the heart of its business in line with the companys

purpose to use the power of communications to make a better world. Retrieved on 05/05/2016

from http://there100.org/btm.

Rethinagiri, S. K., Palomar, O., Sobe, A., Yalcin, G., Knauth, T., Gil, R. T., Prieto, P., Schneega,

M., Cristal, A., Unsal, O., Felber, P., Fetzer, C., and Milojevic, D. (2015). Paradime: Parallel

distributed infrastructure for minimization of energy for data centers. Microprocessors and

Microsystems, 39(8):1174–1189.

LITERATURE CITED 135

Ricciardi, S., Careglio, D., Santos-Boada, G., Sole-Pareta, J., Fiore, U., and Palmieri,

F. (2011). Saving energy in data center infrastructures. In Proceedings of the First

International Conference on Data Compression, Communications and Processing, pages

265–270, Palinuro, Italy. IEEE.

Sampaio, A. M., Barbosa, J. G., and Prodan, R. (2015). Piasa: A power and interference aware

resource management strategy for heterogeneous workloads in cloud data centers. Simulation

Modelling Practice and Theory, 57:142 – 160.

Santos, A. S., Madureira, A. M., and Varela, M. L. R. (2014). An ordered approach to

minimum completion time in unrelated parallel-machines for the makespan optimization.

In Proceedings of the Sixth World Congress on Nature and Biologically Inspired Computing

(NaBIC), pages 72–77, Porto, Portugal. IEEE.

Sharma, N. and Reddy, G. (2015). A novel energy efficient resource allocation using hybrid

approach of genetic dvfs with bin packing. In Proceedings of the Fifth International

Conference on Communication Systems and Network Technologies (CSNT), pages 111–115,

Gwalior, Madhya Pradesh, India. IEEE.

Sheikh, A. and Khan, S. (2005). Integer programming approach for optimal resource allocation

in workflow automation design. In Proceedings of the Ninth IEEE International Multitopic

Conference, pages 1–5, Karachi, Pakistan. IEEE.

Shi, X., Jiang, H., He, L., Jin, H., Wang, C., Yu, B., and Wang, F. (2011). EAPAC: An

enhanced application placement framework for data centers. In Proceedings of the 14th IEEE

International Conference on Computational Science and Engineering, pages 34–43, Dalian,

China. IEEE.

Sindhu, S. and Mukherjee, S. (2013). A genetic algorithm based scheduler for cloud

environment. In Proceedings of the Fourth International Conference on Computer and

Communication Technology (ICCCT), pages 23–27, Allahabad, Uttar Pradesh, India. IEEE.

Singh, G. and Kumar, P. (2014). Self-adaptive task distribution for load balancing using

HABACO in cloud. In Proceedings of the International Conference on Advanced

Communication Control and Computing Technologies (ICACCCT, pages 1563–1567,

Ramanathapuram, Tamil Nadu, India. IEEE.

136 LITERATURE CITED

Singh, N. and Rao, S. (2012). Online ensemble learning approach for server workload

prediction in large datacenters. In Proceedings of the 11th International Conference on

Machine Learning and Applications, volume 2, pages 68–71, Boca Raton, FL, USA. IEEE.

Sinha, A. and Chandrakasan, A. (2001). Dynamic power management in wireless sensor

networks. IEEE Design Test of Computers, 18(2):62–74.

Song, W., Xiao, Z., Chen, Q., and Luo, H. (2014a). Adaptive resource provisioning for the

cloud using online bin packing. IEEE Transactions on Computers, 63(11):2647–2660.

Song, W., Xiao, Z., Chen, Q., and Luo, H. (2014b). Adaptive resource provisioning for the

cloud using online bin packing. IEEE Transactions on Computers, 63(11):2647–2660.

Song, Y., Li, Y., Wang, H., Zhang, Y., Feng, B., Zang, H., and Sun, Y. (2008). A service-

oriented priority-based resource scheduling scheme for virtualized utility computing. In

Proceedings of the 15th International Conference on High Performance Computing, pages

220–231, Bangalore, Karnataka, India. Springer Berlin Heidelberg.

Song, Y., Wang, H., Li, Y., Feng, B., and Sun, Y. (2009). Multi-tiered on-demand resource

scheduling for vm-based data center. In Proceedings of the Ninth IEEE/ACM International

Symposium on Cluster Computing and the Grid, pages 148–155, Shanghai, China. IEEE.

Statista (2016). Internet of Things (IoT): number of connected devices worldwide from 2012

to 2020 (in billions). Retrieved on 04/06/2016 from http://www.statista.com/

statistics/471264/iot-number-of-connected-devices-worldwide/.

Stephens, R. (2013). Essential Algorithms: A Practical Approach to Computer Algorithms.

Wiley Publishing, 1st edition.

Stoess, J., Lang, C., and Bellosa, F. (2007). Energy management for hypervisor-based virtual

machines. In Proceedings of the USENIX Annual Technical Conference, pages 1–14,

Berkeley, CA, USA. USENIX Association.

Sueur, E. L. and Heiser, G. (2010). Dynamic voltage and frequency scaling: The laws

of diminishing returns. In Proceedings of the International Conference on Power Aware

Computing and Systems, pages 1–8, Berkeley, CA, USA. USENIX Association.

LITERATURE CITED 137

Sun, G., Liao, D., Zhao, D., Xu, Z., and Yu, H. (2015). Live migration for multiple correlated

virtual machines in cloud-based data centers. IEEE Transactions on Services Computing,

PP(99):1–14.

Tang, C., Steinder, M., Spreitzer, M., and Pacifici, G. (2007). A scalable application placement

controller for enterprise data centers. In Proceedings of the 16th International Conference on

World Wide Web, pages 331–340, Banff, Alberta, Canada. ACM.

Tang, M. and Pan, S. (2015). A hybrid genetic algorithm for the energy-efficient virtual machine

placement problem in data centers. Neural Processing Letters, 41(2):211–221.

Tao, F., Feng, Y., Zhang, L., and Liao, T. (2014). Clps-ga: A case library and pareto solution-

based hybrid genetic algorithm for energy-aware cloud service scheduling. Applied Soft

Computing, 19:264 – 279.

TechNavio (2015). Global data center outsourcing market 2015-2019. Technical report,

Research and Markets.

Tembey, P., Gavrilovska, A., and Schwan, K. (2014). Merlin: Application- and platform-aware

resource allocation in consolidated server systems. In Proceedings of the ACM Symposium

on Cloud Computing, SOCC ’14, pages 1–14, Seattle, WA, USA. ACM.

The Green Grid (2013). Awards industry recognition. Retrieved on 05/05/2016 from http:

//www.thegreengrid.org/.

Vaid, K. (2010). Invited talk: Datacenter power efficiency: Separating fact from fiction. In

Workshop on Power Aware Computing and Systems, Vancouver, British Columbia, Canada.

Vasudevan, M., Tian, Y.-C., Tang, M., and Kozan, E. (2014). Profiling : an application

assignment approach for green data centers. In Proceedings of the 40th IEEE Annual

Conference of the Industrial Electronics Society, pages 5400–5406, Dallas, TX, USA. IEEE.

Vasudevan, M., Tian, Y.-C., Tang, M., Kozan, E., and Gao, J. (2015). Using genetic algorithm

in profile-based assignment of applications to virtual machines for greener data centers. In

Proceedings of the 22nd International Conference on Neural Information Processing, Part II,

Lecture Notes in Computer Science, pages 182–189, Istanbul, Turkey. Springer International

Publishing.

138 LITERATURE CITED

Verma, A., Ahuja, P., and Neogi, A. (2008). pMapper: power and migration cost aware

application placement in virtualized systems. In Proceedings of the Ninth ACM/IFIP/USENIX

International Conference on Middleware, pages 234–264, Leuven, Belgium. Springer-Verlag

New York, Inc.

Votaw, D. and Orden, A. (1952). The personnel assignment problem. In Proceedings of the

Linear Inequalities and Programming Symposium, pages 155–163, Washington, DC, USA.

Elsevier Inc.

Wang, X., Wang, Y., and Cui, Y. (2014). A new multi-objective bi-level programming model

for energy and locality aware multi-job scheduling in cloud computing. Future Generation

Computer Systems, 36:91–101.

Wang, Y. and Wang, X. (2014). Performance-controlled server consolidation for virtualized

data centers with multi-tier applications. Sustainable Computing: Informatics and Systems,

4(1):52–65.

Wang, Z. and Su, X. (2015). Dynamically hierarchical resource-allocation algorithm in cloud

computing environment. The Journal of Supercomputing, 71(7):2748–2766.

Whitehead, B., Andrews, D., Shah, A., and Maidment, G. (2014). Assessing the environmental

impact of data centres part 1: Background, energy use and metrics. Building and

Environment, 82:151–159.

Whitney, J. and Delforge, P. (2014). Scaling Up Energy Efficiency Across the Data Center

Industry: Evaluating Key Drivers and Barriers (Issue Paper). Natural Resources Defense

Council (NRDC).

Williams, D., Jamjoom, H., Liu, Y.-H., and Weatherspoon, H. (2011). Overdriver: Handling

memory overload in an oversubscribed cloud. ACM SIGPLAN Notices, 46(7):205–216.

Winter, J. A. and Albonesi, D. H. (2008). The scalability of scheduling algorithms for

unpredictably heterogeneous CMP architectures. In Proceedings of the 38th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks, pages 42–51,

Anchorage, Alaska, USA. IEEE.

Wu, G., Tang, M., Tian, Y.-C., and Li, W. (2012). Energy-efficient virtual machine placement

in data centers by genetic algorithm. In Proceedings of the 19th International Conference on

LITERATURE CITED 139

Neural Information Processing, Part III, volume 7665 of Lecture Notes in Computer Science,

pages 315–323, Doha, Qatar. Springer Berlin Heidelberg.

Xiao, W., Low, S. M., Tham, C. K., and Das, S. K. (2009). Prediction based energy-efficient task

allocation for delay-constrained wireless sensor networks. In Proceedings of the Sixth Annual

IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications

and Networks Workshops, pages 1–3, Rome, Italy. IEEE.

Xu, Y. and Qu, W. (2011). A trust model-based task scheduling algorithm for data-intensive

application. In Proceedings of the Sixth Annual ChinaGrid Conference, pages 227–233,

Liaoning, China. IEEE.

Yang, H., Breslow, A., Mars, J., and Tang, L. (2013). Bubble-flux: Precise online qos

management for increased utilization in warehouse scale computers. SIGARCH Compututer

Architecture News, 41(3):607–618.

Yang, Y., Cao, X., Ju, J., and Chen, Y. (2005). Research on prediction methods for load

balancing based on self-adaptive and confirmation mechanism. In Proceedings of the

International Conference on Control and Automation, volume 1, pages 533–536, Budapest,

Hungary. IEEE.

Ye, K., Wu, Z., Wang, C., Zhou, B. B., Si, W., Jiang, X., and Zomaya, A. Y. (2015). Profiling-

based workload consolidation and migration in virtualized data centers. IEEE Transactions

on Parallel and Distributed Systems, 26(3):878–890.

Yuan, J., Jiang, X., Zhong, L., and Yu, H. (2012). Energy aware resource scheduling

algorithm for data center using reinforcement learning. In Proceedings of the Fifth

International Conference on Intelligent Computation Technology and Automation, pages

435–438, Zhangjiajie, Hunan, China. IEEE.

Zapater, M., Ayala, J., and Moya, J. (2012). Leveraging heterogeneity for energy minimization

in data centers. In Proceedings of the 12th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, pages 752–757, Ottawa, ON, USA. IEEE.

Zeng, H. and Di Natale, M. (2013). An efficient formulation of the real-time feasibility region

for design optimization. IEEE Transactions on Computers, 62(4):644–661.

140 LITERATURE CITED

Zhang, Y. and Guo, R. (2014). Power-aware fixed priority scheduling for sporadic tasks in hard

real-time systems. Journal of Systems and Software, 90:128–137.

Zhao, Q., Xiong, C., and Wang, P. (2016). Heuristic data placement for data-intensive

applications in heterogeneous cloud. Journal of Electrical and Computer Engineering,

2016:1–8.

Zhu, K., Song, H., Liu, L., Gao, J., and Cheng, G. (2011). Hybrid genetic algorithm for

cloud computing applications. In Proceedings of the IEEE Asia-Pacific Services Computing

Conference (APSCC), pages 182–187, Jeju Island, South Korea. IEEE.

	Abstract
	Keywords
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Research Background
	Statement of the Research Problem
	Research Significance and Motivation
	Main Contributions of this Research
	Thesis Organization
	Research Articles from PhD Research

	Literature Review
	Data Centre Energy Optimization Strategies
	Classification of Green Strategies
	Green IT Management Strategies

	Profiles in Energy-Aware Data Centres
	Application Assignment Models

	Static Application Assignment
	Static Resource Provisioning
	Evolutionary Algorithm based Assignment

	Dynamic Application Management
	Dynamic Resource Provisioning
	Dynamic Application Scheduling and Assignment

	Consolidation Strategies
	Technological Gaps and Motivation

	Profiling and Profile Building
	The Concept of Profiles
	Profile Building
	Physical Machine Profiles
	Virtual Machine Profiles
	Application Profiles

	Formulation of Problem Elements
	Profile-based Application Assignment Model
	Penalty-based Profile Matching Algorithm
	Experimental Studies
	Feasibility
	Scalability
	CPU Utilization Efficiency
	Energy Efficiency
	Further Discussions on Experimental Studies

	Summary of the Chapter

	Repairing Genetic Algorithm
	Static Assignment Problem Formulation
	Genetic Algorithm Case Studies
	Repairing Genetic Algorithm
	High-Level Description of RGA
	LCFP-Generated Initial Population
	Infeasible-solution Repairing Procedure

	Experimental Studies
	Scalability of RGA
	Energy Efficiency and Computing Efficiency
	Quality of Solutions

	Summary of the Chapter

	Profile-based Dynamic Application Assignment
	Dynamic Assignment Problem Formulation
	Characterizing Application Dynamics
	Characterizing Virtual Machine Dynamics
	Formulation of Profile-based Dynamic Assignment

	Profile-based Dynamic Application Management Framework
	Dynamic Application Assignment
	Dealing with Infrequent Applications

	Repairing Genetic Algorithm
	Experimental Studies
	Energy Efficiency
	Quality of Solutions

	Summary of the Chapter

	Application Consolidation
	Consolidation Problem Formulation
	Formulation of Application Consolidation
	VM Placement

	Application Consolidation Procedure
	Local Search Optimization (LSO)
	Improved-Repairing Genetic Algorithm
	Three-tiered Energy Management

	Experimental Studies
	Energy-Efficiency
	Quality of Solution

	Summary of the Chapter

	Conclusions and Recommendations
	Summary of the Research
	Limitations and Future Recommendations

	Literature Cited

