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Abstract
This paper details the submission from the Speech and Audio
Research Lab of Queensland University of Technology (QUT)
to the inaugural 2006 NIST Spoken Term Detection Evalua-
tion. The task involved accurately locating the occurrences of
a specified list of English terms in a given corpus of broadcast
news and conversational telephone speech. The QUT system
uses phonetic decoding and Dynamic Match Lattice Spotting to
rapidly locate search terms, combined with a neural network-
based verification stage. The use of phonetic search means the
system is open vocabulary and performs usefully (Actual Term-
Weighted Value of 0.23) whilst avoiding the cost of a large vo-
cabulary speech recognition engine.
Index Terms: spoken term detection, phonetic search, keyword
spotting

1. Introduction
Providing intelligent access to large corpora of spoken audio is
one of speech technology’s most important challenges. There
is direct demand from a diverse range of areas such as security
and defense, media monitoring, personal entertainment and as
a component of other research areas such as spoken document
retrieval and understanding.

For these reasons, in 2006 the National Institute of Stan-
dards and Technology (NIST) established a new initiative called
Spoken Term Detection (STD) Evaluation, to encourage re-
search and development of technology to detect short word se-
quences rapidly and accurately in large heterogeneous audio
archives [1].

The STD task (also known as keyword spotting) involves
the detection of all occurrences of a specified search term,
which may be a single word or multiple word sequence. A score
is usually output accompanying each putative match as a mea-
sure of how confident the system is that it is a true occurrence.
This enables the adjustment of the system’s operating point to
trade-off between errors due to missing true occurrences and
errors due to detecting spurious false alarms.

One popular approach [2] is to use a large vocabulary con-
tinuous speech recognition (LVCSR) engine to generate a word-
level transcription or lattice, which is then indexed in a search-
able form. This approach has resulted in good performance,
provided a suitable LVCSR engine with low word error rate is
available. However, these systems are critically restricted in that
the terms that are able to be located are limited to the recogniser
vocabulary used at decoding time, meaning that occurrences of
out-of-vocabulary (OOV) terms cannot be detected. This is es-
pecially important since search terms are typically rare words
and practical search engines have been found to experience

OOV rates of up to 12–15% [3]. Also, the run-time require-
ments of LVCSR systems have been suggested to be prohibitive
for some large-scale applications [4].

An alternative method which supports an open-vocabulary
is phonetic search [5, 6]. This approach does not use LVCSR,
but instead performs decoding and indexing at the level of
phones. Searching requires the translation of the term into a
phonetic sequence, which is then used to detect exact or close
matching phonetic sequences in the index. The decoding speed
of phonetic systems is much faster than LVCSR, however, pho-
netic search is not as straightforward and therefore typically
slower than the simple word look-up used with LVCSR systems.
Additionally, it is prone to high levels of false alarms, espe-
cially for short terms [7]. Phonetic systems do, however, show
promise for other languages with limited training resources [8],
for which phonetic decoding may be the only feasible option in
the absence of a thoroughly trained LVCSR engine.

The apparent complementary strengths and weaknesses of
the two above approaches lead to the suggestion of fusion. This
has been consistently shown to improve performance and also
allows for open-vocabulary search [9, 10]. However, this ap-
proach does not avoid the costly training, development and run-
time requirements associated with LVCSR engines, that is, as-
suming such resources even exist for the language in question.

QUT chose a phonetic approach to provide fast, open-
vocabulary search without the need for an LVCSR engine. The
system developed in QUT’s Speech and Audio Research Labo-
ratory uses Dynamic Match Lattice Spotting to detect occur-
rences of phonetic sequences which closely match the target
term. The results of the approach used in the 2006 NIST STD
evaluation are presented. Section 2 provides an overview of
the system. In section 3, the evaluation measures used are ex-
plained, followed by results and discussion of performance in
section 4.

2. Spoken term detection system

The system consists of two distinct stages; indexing and search
(Fig. 1). This approach is used to allow as much processing
as possible to be performed offline, and thereby enable rapid
queries at search time. During indexing, phonetic decoding is
used to generate lattices, which are then compiled into a search-
able database. At search time, a dynamic matching procedure
is used to locate phonetic sequences which closely match the
target sequence. The system is based on the Dynamic Match
Lattice Spotting technique described in [6]. A brief description
of the system components follow.
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Figure 1: System architecture

2.1. Indexing

First, Perceptual Linear Prediction feature extraction is per-
formed, followed by a segmentation stage. The speech is then
decoded using a Viterbi phone recogniser to generate a recog-
nition phone lattice. Tri-phone HMM’s and a bi-gram phone
language model are used during decoding, and a 4-gram phone
language model is used during rescoring.

The resulting phone lattices could be searched directly,
however, this would require a computationally intensive lattice
traversal for each new search term, which would severely im-
pact search speed. Instead, a significant portion of the traversal
is performed offline during indexing. A modified Viterbi traver-
sal is used to emit all phone sequences of a fixed length, N ,
which terminate at each node in the lattice. A value of N = 11
was found to provide a suitable trade-off between index size and
search efficiency.

The resulting collection of phone sequences is then com-
piled into a sequence database. A mapping from phones to their
corresponding phonetic classes (vowels, nasals, etc.) is used
to generate a hyper-sequence database, which is a constrained
domain representation of the sequence database. The resulting
two-tier, hierarchical database structure is used at search time to
significantly reduce the search space and allow for rapid search.

2.2. Search

When a search term is presented to the system, the term is first
translated into its phonetic representation using a pronuncia-
tion dictionary (for multi-word terms, the pronunciation of each
word is concatenated). If any of the words in the term are not
found in the dictionary, letter-to-sound rules are used to estimate
the corresponding phonetic pronunciations.

Given the resulting target phone sequence, and the collec-
tion of indexed phone sequences stored in the database, the task
is to compare the target and indexed sequences and emit puta-
tive occurrences where a match or near-match is detected. To
allow for phone recognition errors, the Minimum Edit Distance
(MED) is used to measure inter-sequence distance by calculat-
ing the minimum cost of transforming an indexed sequence to
the target sequence.

A simplified version of the MED calculation is used which
only allows for phone substitutions. Previous experiments have
shown that this greatly increases search speed with a minimal
effect on performance. Variable substitution costs, Cs(x, y),
are used which depend on x, the indexed phone and y, the tar-
get phone. This allows for the incorporation of prior knowledge
about the typical misrecognitions made by the speech recogni-
tion engine. In particular, the cost of a substitution is inversely
related to the likelihood of it occurring. The substitution costs
are defined as

Cs (x, y) =

(
I (Ry|Ex) x 6= y

0 x = y
. (1)

Here I (Ry|Ex) represents the information associated with the
event that y was actually uttered given that x was recognised;

I (Ry|Ex) = − log (p (Ry|Ex)) . (2)

Using Bayes Theorem, these statistics are easily computed from
the recognition likelihoods, p (Ex|Ry), phone prior probabili-
ties, p (Ry), and emission probabilities, p (Ex), estimated from
a recognition confusion matrix generated during development.

The MED score associated with transforming the indexed
sequence X = (xi)

N
i=1 to the target sequence Y = (yi)

N
i=1, is

defined as the sum of the cost of each necessary substitution;

MED (X, Y ) =

NX
i=1

Cs (xi, yi) . (3)

For each indexed phone sequence, X , associated with a MED
score below a specified threshold, let PX represent the set of
individual occurrences of X , as stored in the index. For each
P ∈ PX , the score for the occurrence is formed by linearly
fusing the MED score with an estimated acoustic log likelihood
ratio score, ALLR (P ), as follows;

Score (P, Y ) = MED (X, Y )− α · ALLR (P ) , (4)

where α is tuned empirically. Occurrences with more negative
scores represent more confident matches. The incorporation
of ALLR (P ) allows for differentiation between occurrences
with equal MED scores, and promotes occurrences with higher
acoustic probability.

Because the index database contains sequences of a fixed
length, when searching for a term longer than N = 11 phones,
the term must first be split (at syllable boundaries) into sev-
eral smaller, overlapping sub-sequences. Each of these sub-
sequences may then be searched for individually. The sub-
sequence occurrences are then merged by emitting a putative
occurrence of the target term where each of the term’s sub-
sequences are found overlapping in correct order. The score
for each complete occurrence is approximated by a linear com-
bination of scores from the sub-sequence occurrences.

Because the MED score is not directly comparable between
terms of different phone lengths, a final verification stage is
required. Longer terms have a higher expected MED score
as there are more phones which may have been potentially
misrecognised. Using a neural network (single hidden layer,
four hidden nodes), Score (P, Y ) is fused with the number of
phones, Phones (Y ), and number of vowels, Vowels (Y ), in the
term, to produce a final detection confidence score for each pu-
tative term occurrence.

3. Evaluation procedure
3.1. Performance metrics

The Receiver Operating Characteristic (ROC) plot is commonly
used to describe STD performance by plotting the detection rate
against the number of false alarms per keyword per hour (fa/kw-
hr). To reduce this representation to a single value, the Figure



of Merit is often used, which is equivalent to the average value
of the ROC curve over the range 0 to 10 fa/kw-hr.

The NIST evaluation instead used a cost/value application
model to derive the Term-Weighted Value (TWV), defined at an
operating point given by the confidence score threshold, θ;

TWV (θ) =1− average
term

{Sterm (θ)} (5)

Sterm (θ) =Pmiss (term, θ) + β · PFA (term, θ) ,

where β ≈ 103, Pmiss (term, θ) = 1− Ncorrect(term,θ)
Ntrue(term)

, and

PFA (term, θ) =
Nspurious(term,θ)

NNT (term)
. In STD, the number of

non-target trials, NNT (term), must be defined in order to cal-
culate false alarm probability. In this case, the number of non-
target trials was defined to be proportional to the number of
seconds of speech in the test data, Tspeech;

NNT (term) = Tspeech −Ntrue (term) , (6)

where Ntrue (term) was the number of true occurrences
of term. Selecting an operating point using the confidence
score threshold, θ, allowed for the creation of Detection Error
Trade-off (DET) plots and calculation of a Maximum TWV. In
addition, a binary “Yes/No” decision output by the system for
each putative occurrence was used to calculate Actual TWV.

Possible TWV values included 1 for a perfect system, a
value of 0 for no output, and negative values for systems which
output many false alarms. Further details may be found in [11].
The TWV metric and DET plots require the calculation of miss
rate, and therefore any terms with no occurrences in the refer-
ence (i.e. Ntrue = 0) were excluded from the evaluation.

3.2. Evaluation data

The English evaluation data consisted of around 3 hours of
American English broadcast news (BNews), 3 hours of con-
versational telephone speech (CTS) and 2 hours of conference
room meetings. The results of the conference room meeting
data will not be discussed, as training resources were not avail-
able for that particular domain.

The evaluation term list included 898 terms for the BNews
data, and 411 for the CTS data. Each term consisted of between
one and four words, with a varying number of syllables (Fig. 2).
Although the actual term list was not released to participants,
for the BNews data, there were, on average, 2.5 occurrences per
term per hour in the evaluation reference, and for the CTS data
there were 4.8 occurrences per term per hour.

4. Results and discussion
4.1. Training data

Two sets of tied-state 16 mixture tri-phone HMM’s (one for
BNews and one for CTS) were trained for speech recogni-
tion using the DARPA TIMIT Acoustic-Phonetic Continuous
Speech Corpus and CSR-II (WSJ1) corpus, then adapted us-
ing 1997 English Broadcast News (HUB4) for BNews and
Switchboard-1 Release 2 for the CTS models. Phone bi-gram
and 4-gram language models, and phonetic confusion statistics
were trained using the same data. Overall, around 120 hours of
speech were used for the BNews models, and around 160 for
the CTS models.

Letter-to-sound rules were generated from The Carnegie
Mellon University Pronouncing Dictionary (CMUDICT 0.4).
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Figure 2: Histogram of search term length in syllables
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Figure 3: DET Plot for all terms in BNews and CTS audio

Tuning of system parameters was performed on separate, held
out data from the same sources as the evaluation. Neu-
ral network training examples were generated by search-
ing for 1965 development terms and using the result-
ing (Score (P, Y ) , Phones (Y ) , Vowels (Y ) , y (P, Y )) tuples,
where y represented the class label, which was set to 1 for true
occurrences and 0 for false alarms.

4.2. Overall results

The overall performance of the system for BNews and CTS
data is shown in Fig. 3. Table 1 lists the Actual and Maximum
TWV for each source type, along with the 1-best phone error
rate (PER) of the phonetic decoder on development data simi-
lar to that used in the evaluation. Clearly, better performance is
achieved in the BNews domain, probably due to the improved
phonetic decoding due to the higher quality and clearer speech.
The Actual TWV is reasonably close to the Maximum TWV,
demonstrating that the operating point determined during de-
velopment generalised well to unseen terms and audio.

Source Type BNews CTS
1-best PER 24% 45%

Actual TWV 0.2265 0.0873
Maximum TWV 0.2459 0.1044

Table 1: Term Weighted Value achieved for each source type
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Figure 4: Performance for single word and 2-word terms

4.3. Effect of term length

One of the difficulties commonly associated with phonetic
search is the large number of false alarms generated when
searching for short terms. Short phonetic sequences are diffi-
cult to detect, as they are more likely to occur as parts of other
words and detections must be made based on limited informa-
tion. The findings displayed in Fig. 4 confirm this, and show
much better performance for two-word terms compared to sin-
gle word terms. The longer terms do however have a higher
minimum miss rate, presumably because the likelihood of find-
ing a complete close-matching sequence is lower for long terms.

4.4. Processing efficiency

Although the system described has not been optimised for in-
dexing efficiency, some measurements are given in Table 2 to
provide a context for the performance results. In addition to the
overall search speed, the speed of search excluding the unopti-
mised merging stage is provided for comparison.

Index size 558 MB/speech hr
Indexing time 18 processing hrs/speech hr
Search speed 5 speech hrs/CPU-sec

Search speed (excluding merging) 8 speech hrs/CPU-sec

Table 2: Processing efficiency measurements

4.5. Use of letter-to-sound rules

The system described uses very little word-level information to
perform decoding, indexing and search. In fact, in the absence
of the pronunciation dictionary, no word-level information is
directly used at all. Fig. 5 demonstrates such a system. It can
be seen that the degradation in performance is not critical, and
therefore demonstrates that without any word-level information,
useful performance can still be obtained.

5. Conclusions
A phonetic search system has been presented which can suc-
cessfully detect occurrences of search terms of various lengths,
with search speeds in excess of 10000× real-time. The system
presented demonstrates that phonetic search can lead to use-
ful spoken term detection performance. However, further per-
formance improvements to verification and confidence scoring,
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Figure 5: Comparison of systems with & without pronunciation
dictionary

particularly for short search terms, are required to compete with
systems which incorporate an LVCSR engine.

The system allows for completely open-vocabulary search,
avoiding the critical out-of-vocabulary problem associated with
word-level approaches. The feasibility of using phonetic search
for languages with limited training data, or for large-scale data
mining applications, are also promising areas of further re-
search.
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