Intrinsically semi-disordered state and its role in induced folding and protein aggregation

Zhang, Tuo, Faraggi, Eshel, , & Zhou, Yaoqi (2013) Intrinsically semi-disordered state and its role in induced folding and protein aggregation. Cell Biochemistry and Biophysics, 67(3), pp. 1193-1205.

[img] Published Version (PDF 981kB)
10.1007_s12013-013-9638-0.pdf.
Available under License Creative Commons Attribution 2.5.

Open access copy at publisher website

Description

Intrinsically disordered proteins (IDPs) refer to those proteins without fixed three-dimensional structures under physiological conditions. Although experiments suggest that the conformations of IDPs can vary from random coils, semi-compact globules, to compact globules with different contents of secondary structures, computational efforts to separate IDPs into different states are not yet successful. Recently, we developed a neural-network-based disorder prediction technique SPINE-D that was ranked as one of the top performing techniques for disorder prediction in the biannual meeting of critical assessment of structure prediction techniques (CASP 9, 2010). Here, we further analyze the results from SPINE-D prediction by defining a semi-disordered state that has about 50 % predicted probability to be disordered or ordered. This semi-disordered state is partially collapsed with intermediate levels of predicted solvent accessibility and secondary structure content. The relative difference in compositions between semi-disordered and fully disordered regions is highly correlated with amyloid aggregation propensity (a correlation coefficient of 0.86 if excluding four charged residues and proline, 0.73 if not). In addition, we observed that some semi-disordered regions participate in induced folding, and others play key roles in protein aggregation. More specifically, a semi-disordered region is amyloidogenic in fully unstructured proteins (such as alpha-synuclein and Sup35) but prone to local unfolding that exposes the hydrophobic core to aggregation in structured globular proteins (such as SOD1 and lysozyme). A transition from full disorder to semi-disorder at about 30–40 Qs is observed in the poly-Q (poly-glutamine) tract of huntingtin. The accuracy of using semi-disorder to predict binding-induced folding and aggregation is compared with several methods trained for the purpose. These results indicate the usefulness of three-state classification (order, semi-disorder, and full-disorder) in distinguishing nonfolding from induced-folding and aggregation-resistant from aggregation-prone IDPs and in locating weakly stable, locally unfolding, and potentially aggregation regions in structured proteins. A comparison with five representative disorder-prediction methods showed that SPINE-D is the only method with a clear separation of semi-disorder from ordered and fully disordered states.

Impact and interest:

53 citations in Scopus
44 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

123 since deposited on 26 Jun 2017
12 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 108212
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Li, Zhixiuorcid.org/0000-0002-2924-9120
Measurements or Duration: 13 pages
Keywords: Poly-Q, SOD1, amyloid formation, induced folding, intrinsically disordered proteins
DOI: 10.1007/s12013-013-9638-0
ISSN: 1559-0283
Pure ID: 32606527
Divisions: Past > QUT Faculties & Divisions > Faculty of Health
Past > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Biomedical Sciences
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 26 Jun 2017 02:26
Last Modified: 31 Jul 2024 09:55