Cerebral microcirculation during mild head injury after a contusion and acceleration experimental model in sheep

Bellapart, Judith, Abi-Fares, Catherine, Cuthbertson, Kylie, , , Platts, David, Raffel, Owen, Gabrielian, Levon, , Paratz, Jennifer, Boots, Robert, & (2016) Cerebral microcirculation during mild head injury after a contusion and acceleration experimental model in sheep. Brain Injury, 30(13-14), pp. 1542-1551.

[img]
Preview
PDF (221kB)
98448.pdf.

View at publisher

Description

Background: Cerebral microcirculation after head injury is heterogeneous and temporally variable. Regions at risk of infarction such as peri-contusional areas are vulnerable to anaemia. However, direct quantification of the cerebral microcirculation is clinically not feasible. This study describes a novel experimental head injury model correlating cerebral microcirculation with histopathology analysis. Objective: To test the hypothesis that cerebral microcirculation at the ischaemic penumbrae is reduced over time when compared with non-injured regions. Methods: Merino sheep were instrumented using a transeptal catheter to inject coded microspheres into the left cardiac atrium, ensuring systemic distribution. After a blunt impact over the left parietal region, cytometric analyses quantified cerebral microcirculation and amyloid precursor protein staining identified axonal injury in pre-defined anatomical regions. A mixed effect regression model assessed the hourly blood flow results during 4 hours after injury. Results: Cerebral microcirculation showed temporal reductions with minimal amyloid staining except for the ipsilateral thalamus and medulla. Conclusion: The spatial heterogeneity and temporal reduction of cerebral microcirculation in ovine models occur early, even after mild head injury, independent of the intracranial pressure and the level of haemoglobin. Alternate approaches to ensure recovery of regions with reversible injury require a targeted assessment of cerebral microcirculation.

Impact and interest:

3 citations in Scopus
3 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

49 since deposited on 06 Nov 2021
12 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 221603
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Barnett, Adrianorcid.org/0000-0001-6339-0374
Measurements or Duration: 10 pages
Keywords: brain injury, intensive care, microcirculation
DOI: 10.1080/02699052.2016.1199894
ISSN: 1362-301X
Pure ID: 33055853
Divisions: Past > QUT Faculties & Divisions > Faculty of Health
Past > Institutes > Institute of Health and Biomedical Innovation
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 06 Nov 2021 15:23
Last Modified: 07 Mar 2024 08:14